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Spatio-Temporal Point Processes With Attention for
Traffic Congestion Event Modeling

Shixiang Zhu

Abstract— We present a novel framework for modeling traffic
congestion events over road networks. Using multi-modal data by
combining count data from traffic sensors with police reports that
report traffic incidents, we aim to capture two types of triggering
effect for congestion events. Current traffic congestion at one
location may cause future congestion over the road network, and
traffic incidents may cause spread traffic congestion. To model
the non-homogeneous temporal dependence of the event on the
past, we use a novel attention-based mechanism based on neural
networks embedding for point processes. To incorporate the
directional spatial dependence induced by the road network,
we adapt the “tail-up” model from the context of spatial statistics
to the traffic network setting. We demonstrate our approach’s
superior performance compared to the state-of-the-art methods
for both synthetic and real data.

Index Terms— Traffic congestion, attention, point process.

I. INTRODUCTION

RAFFIC congestion modeling is critical to modern trans-

portation applications, such as route guidance or traffic
network planning. For example, in Atlanta, which has over
half a million daily commuters, reducing congestion is a top
priority. The city spends millions of dollars on traffic-reducing
measures, including toll lanes and high-capacity transport [1].
However, modeling the complex traffic dynamics and pre-
dicting traffic congestion events in real-time is vital but has
remained extremely challenging. Indeed, traffic modeling is
inherently intricate because of the complex spatio-temporal
dynamics and the fact that congestion also stems from
responses to real-time events such as traffic accidents. As a
result, understanding and predicting congestion events can
help cities cope with traffic more efficiently and plan future
urban development.

Traffic sensors distributed over highway and road networks
are widely deployed. They are key technology enablers that
provide a unique opportunity to understand the traffic dynamic
and congestion. Traffic sensor data reports traffic counts,
i.e., the number of cars passing through per unit of time. These
traffic counts are exploited by most existing works (reviewed
in the section below), but traditional approaches do not model
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Fig. 1. An illustration of the Atlanta traffic dataset. The left panel shows
the numbers of traffic congestions recorded by 14 traffic sensors. The size
of the blue circle represents the number of traffic congestion events recorded
by the traffic sensor. The right panel shows the spatial distribution of traffic
incidents reported by 911 calls on the highway. Black dots represent the
locations of traffic incidents. The panel in the bottom shows an event series
in a single day. The height of the red bar indicates the length of the processing
time.

traffic events and incidents, which are fundamentally different
in nature. An essential feature of traffic congestion modeling
is the ability to capture triggering effects. For example, when
congestion occurs, the effect will propagate, and subsequent
congestion is typically more likely to happen along the affected
road or highway. Moreover, other types of events with police
intervention, such as response to traffic accidents, may also be
related to traffic congestion. Such events logged into the police
reports provide an additional data source useful for modeling
and predicting traffic congestion.

In this paper, we aim to capture these two types of events
and their triggering effects. Hawkes processes (also called
self-exciting point processes) are a popular model for mod-
eling such a triggering effect, and they have been successfully
used in many different applications (see [2] for a review).
A Hawkes process models the dependence between events
using mutually dependent point processes, with intensities
depending on historical events.

There are two main reasons for the knowledge gap
between existing point process models and our application in
traffic congestion event modeling. (1) Most existing models
assume that the influence function decays monotonically
over time and space and introduce parametric models for
the influence function. For instance, this approach is used in
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methods based on the popular Recurrent Neural Networks
(RNNSs) [3]-[9], which can capture some complex temporal
dependence with particular assumptions, e.g., [3] assumes
that the influence of an event decreases exponentially over
time. However, in traffic modeling settings, the influence
of past events may not decay monotonically over time or
space. For example, suppose that a major car accident occurs
on the highway. The police are called to the scene, and
they may need to wait for a specialized unit to move the
wreckage. The process can take several hours during which
the highway is blocked. In such a situation, the traffic event’s
influence may not decrease over a while and only start to
relieve after the traffic blockage has been cleared. (2) We
need to consider the special spatial correlation structure
induced by road networks. Indeed, the spatial dependence
is highly directional and what happens “up-stream” will
influence what happens “down-stream”, and the sensors
along the same road (in the same direction) will have
higher correlations. Existing Hawkes process models tend
to discretize space and treat it as a multi-dimensional
Hawkes process without considering such a special
structure.

In this paper, we develop a novel spatio-temporal atten-
tion point processes (APP) model for traffic congestion
events while capturing the relationship between exogenous
and endogenous factors for traffic congestion. Specifically,
we consider the police response to traffic incidents as exoge-
nous promotion [10] on traffic congestion (since such events
indicate traffic accidents) and consider the influence between
congestion events as endogenous self-excitation. To model the
dynamics of the endogenous self-excitation, we borrow the
idea of the so-called attention mechanism [11], [12], which
is originally proposed to capture the non-linear dependence
between words in natural language processing. This approach
allows us to go beyond the assumption that the influence of
the historical event fades over time and leverage the attention
mechanism to develop a flexible framework that “focuses”
on past events with high importance scores on the current
event. Moreover, we also introduce a new element in the
attention mechanism, the adaptive score function to measure
the importance between past events and the current event,
which is highly interpretable and adapts the conventional
dot-product score [12] to measure non-homogeneous spatio-
temporal distance in traffic networks. To tackle the directional
spatial correlation induced by road networks, we also adopt
the idea of the “tail-up” model (developed for spatial statistics
for Gaussian processes) to our point process setting. Finally,
to achieve constant memory in the face of streaming data,
we introduce an online algorithm to efficiently implement
our APP model’s attention component, where only the most
informative events in the past are retained for computation.
We show that our proposed method outperforms the state-
of-the-art in achieving both a higher likelihood function of
the point process model and higher prediction accuracy, using
real-data traffic and police data set from Atlanta, USA. The
novelty of our paper can be highlighted as follows. Our APP
model is the first attempt to combine traffic sensor count data
with police reports to model traffic events, to the best of
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our knowledge. Our spatio-temporal model is tailored for our
application by including a novel attention-based mechanism
to capture the non-homogeneous spatio-temporal dependence
of the historical events, and a “tail-up” model to capture the
directional spatial dependence.

A. Related Work

Earlier works [13]-[22] on traffic modeling focusing on pre-
dicting speed, volume, density, and travel time have achieved
much success in this field. Other works [23]-[25] targeting at
modeling traffic congestion based on the speed and density of
vehicle stream have resulted in good mathematical descriptions
for traffic flow. However, traffic events modeling is much less
studied and in the nascent stage. Existing work in discrete
event modeling using point processes have been used for
modeling earthquake events, crime events, social networks,
such as [26]-[29]. Such works often make strong assumptions
and specify a parametric form of the intensity functions.
Although they enjoy good interpretability and are efficient,
parametric models may not be expressive enough to capture
the event dynamics in some applications.

Recently there has been work on improving the expressive
power of point process models. One approach is to develop
RNNs based point process models [3], [4], [7], [9], which
develop an RNN structure to mimic the conditional intensity
function; however, the conditional intensity still discounts
the influence of historical events. Another approach uses
neural networks to directly model temporal dependence of
sequence data. This includes [5], [8], which use RNNs as a
generative model without specifying the conditional intensity
function explicitly, and [30], which uses a neural network to
parameterize the hazard function, and the conditional intensity
can be derived by taking the derivative of the hazard function.
However, the above approach focuses on temporal dependence
rather than accounting for special structures in spatio-temporal
dependence and is not directly applicable to our setting.

A recent work [31] also uses attention to model the his-
torical information in point processes. However, they still
assume the conditional intensity function follows a parametric
exponential decaying model, which may not capture distant
events, although they can be important. We do not make such
assumptions in our APP model and can capture important
events as long as their “importance score” is high. Moreover,
[31] focuses on temporal point processes, while we consider
spatio-temporal point processes; they use the dot-product
score function to measure the similarity of two events, while
we develop a more flexible score function based on neural
networks. Another related work [21] models traffic counts
using two individual attention structures to embed spatial
and temporal information; however, traffic count modeling is
completely different from traffic event modeling considered in
our paper.

II. DATASETS

In this section, we introduce the main datasets for our
study, which consists of (1) a traffic congestion events dataset;
(2) the 911 calls-for-service dataset; and (3) the Atlanta traffic
network dataset.
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Fig. 2. Two examples of extracted traffic congestion recorded on the same
traffic sensor labeled as “L1N” in Fig. 3 for two consecutive days. The rise of
the traffic counts above the normal traffic level is followed by a drop below
the level.

A. Traffic Congestion

The traffic congestion dataset is collected from the Georgia
Department of Transportation (GDOT) [32], which records
the real-time traffic condition throughout the state of Geor-
gia. These data are collected by traffic sensors installed on
highways’ main traffic points, which records the number of
vehicles pass by the sensor every 5 minutes. The dataset also
includes lane information (the number of lanes, the maximum
speed of the lane, and the direction) at locations where the
sensors are installed. The number of lanes can be used to
estimate the maximum number of vehicles on the highway
during that time. We assume the highway capacity — the
maximum number of vehicles that a highway can support in
normal conditions — is a linear function of the number of lanes.

As recognized in the literature [33], when traffic congestion
initiates, the traffic count usually starts to increase and exceeds
the normal volume. Then vehicles begin to slow down. As the
congestion sets in, the throughput of the highway drops, and
the traffic count falls below the normal level. We illustrate two
examples in Fig. 2, which are extracted from the Atlanta traffic
data. We find such patterns prevalent in traffic congestion
events — the rise of the traffic counts above the normal traffic
level is followed by a drop below the level. Thus, we detect a
congestion event when the traffic counts exceed a threshold.
Moreover, we found the traffic congestion events tend to
cluster in time — in Fig. 2, the red stars indicate when the
traffic counts exceed the threshold and the “stars” are clustered
in times; this is a motivation for us to consider the self-exciting
process model in the paper.

For our study, we consider K = 14 traffic sensors on
two major highways in metro Atlanta, I-75 and I-85, shown
in Fig. 3. We denote their geo-locations (latitude and longi-
tude) on the traffic network by rp € ¥ C RLk=1,...,K,
where . denote the location space of traffic networks, which
will be discussed in Section II-C. Let {xi}fv:‘*1 represent a
sequence of traffic congestion events in a single day, where N,
is the number of the congestion events generated in one-day
[0, T). The i-th congestion event x; = (t;, s;) is a data tuple
consisting of the occurrence time t; € [0, T'), and the sensor
location index s; € {l,...,K}. We extract 18,618 traffic
congestion events from 174 days between April 2018 and
December 2018. The maximum and the minimum number of
events in a single day are 168 and 19, respectively.
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Fig. 3. The traffic network for major highways in Atlanta. The left panel
shows the spatial distribution of traffic sensors, where green triangles represent
locations of traffic sensors. Traffic sensors on the highway are bi-directional,
i.e., two directions of the same location have separate traffic sensors to monitor
the traffic condition. The right panel shows the traffic network and where
traffic sensors located on the network. Each line segment represents one
specific road segment, and black dots represent the confluence of two roads.

B. 911 Calls-for-Service

As mentioned in Section I, traffic incidents may trigger
unexpected congestion over traffic networks. Since the police
respond to many traffic incidents, the 911 calls-to-service
contains useful traffic incidents records. Thus, we use another
data set, the 911 calls-for-service reports provided by the
Atlanta Police Department (also used in [29], [34]) and extract
all traffic incidents. When a 911 call reporting a traffic incident
is received, the operator will start a record ID and dispatch
police offices to the scene. The record includes the call time
and occurrence location. The police officers arrive at the
scene and start the investigation. Once the police complete the
investigation and clean the scene, a clear time will be added
to the record. The time interval between the call time and the
clear time is called processing time. A long processing time
is usually a strong indicator of a severe traffic incident that
significantly impacts the highway traffic condition.

Let {y;} j 2, represent a sequence of traffic incidents
extracted from 911 calls in a single day, where N, is the total
number of recorded 911-call incidents in one day. The j-th
911-call incident y; = (#;,rj,z;) is a data tuple consisting
of the call time ¢; € [0, T'), the occurrence location r; € %’ on
the traffic network, and the processing time z; > 0 indicating
the police processing time. We extract 19,805 such 911-call
records on two major highways between April 2018 and
December 2018 with processing time larger than 15 minutes.
The incidents include many different categories ranging from
speeding tickets to massive car pile-ups.

C. Traffic Network

Due to the nature of the traffic flow, there is a strong
spatial dependence among the traffic data collected at different
locations on the network. Moreover, the network topology and
the direction of the flow will impact spatial correlations. For
instance, there should not be a correlation for data collected
at two locations that do not share a common traffic flow.
In metro Atlanta, there are two major highways I-75 and
I-85, passing through the city center. These two highways
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Fig. 4. The architecture for traffic congestion events modeling. The historical
data, consisting of traffic congestion events and the 911 incidents, is fed
into the multi-head attention mechanism to estimate the conditional intensity
function for the point process model. The conditional intensity consists of
three key components: (1) The background intensity g (which is estimated
from the traffic data); (2) The exogenous promotion x (representing the
influence of traffic events from police reports); (3) Endogenous self-excitation
A" (capturing the spatio-temporal dependence between congestions events).

start from the northwest and northeast side of the city, run
due south, and intersect in Midtown, as shown in the left of
Fig. 3. Between I-75 and I-85, two connectors bridge two
highways via single-direction ramps. We extracted the network
information of I-75, I-85 and their connectors in Atlanta from
OpenStreetMap [35], which is an editable map database and
allows us to construct, visualize, and analyze complex traffic
networks. The traffic network of a city is represented by a
set of road segments defined in the OpenStreetMap dataset as
shown in the right of Fig. 3. Let ./ C R? represent the set
of all geo-locations on the network. Suppose there are L road
segments, and the set of locations on each segment is denoted
as 7 C{l,...,L},l =1,..., L. For any location s € .% on
the network, we define the upstream portion Vg € {1,..., L}
of the network to include s itself and all locations upstream
from s. Define the downstream portion Ay € .¥ to include s
itself and all locations downstream from s. For two locations
u,v € .7, the distance d(u,v) € Rt is defined as the stream
distance along the highway if one of the two locations belongs
to the downstream of the other. We also denote u — » when v
belongs to Vv, and the two points are said to be flow-connected.
When two points are flow-unconnected, neither u belongs to
Ap nor v belongs to A, and the relationship between u and
v is denoted u - v.

III. METHODOLOGY

In this section, we propose an attention-based point process
model for modeling traffic congestion events while consider
the police 911-call data. The architecture of our model is
shown in Fig. 4.

A. Spatio-Temporal Point Processes

The spatio-temporal point processes (STPPs) [2] consist of
a sequence of events, represented by their times, locations,
and marks. In our setting, the events are traffic congestion
events. Let {xl,xz,...,xNx} represent a sequence of con-
gestion events sampled from a STPP and {yi, y2,..., yN),}
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represent a sequence of 911-call incidents recorded in the
same time period. Recall that Ny and N, are the number
of congestion events (extracted from traffic counts) and the
number of traffic incidents (extracted from 911-calls), respec-
tively, in the time horizon [0, T'). Let H; = Z; U % denote
the o-algebra generated by all historical events before time #,
where Z; = {xi}; < and % = {y;};; <. The distribution in
STPPs are characterized via a conditional intensity function
A(t, k|'H;), which is the conditional probability of observing
an event at (¢t,k) € [0,T) x {l,..., K}, given the events’
history H,. Formally, A(¢, k|H,) = E [Ny ([t, t + dt))|H,] /dt,
where Ni(A) is the counting measure of events for sensor k
over any set A C [0, T).

To capture the dynamic between traffic congestion and
traffic incidents, we consider the following form for the
conditional intensity function in our model:

Mt k|Hy) = po(t, k) + pi (e, k|20 + 2/, k| 27), (1)

——
background exogenous endogenous
intensity promotion self-excitation

where uo(z, k) is the background intensity at (¢, k), which can
be estimated from data. The exogenous promotion w1 (¢, k|%;)
captures the influence of past 911-call incidents reported
by the police before time ¢. The endogenous self-excitation
N (t,k|Z;) captures the influence of past traffic congestion
before time ¢. In the remainder of the section, we will
discuss how to model these two types of triggering effects
in Section III-B and Section III-C, respectively.

B. Police Intervention as Exogenous Promotion

As we discussed in Section II, police response to traffic
incidents is often correlated with an increase in the strain
on urban traffic. Such strain only spreads along the traffic
direction and decays as the distance increases from where the
traffic incident originated. Due to this consideration, the spatial
correlation between two locations u, v € .% on the highway is
determined by the traffic network structure and their “stream
distance” d(u,v), which is the distance to reach from u to
v in the directed graph. Also, the spatial correlation may
vary from time to time since the traffic intensity is always
changing throughout the day. Here, we denote such spatial
correlation between two arbitrary locations u,» € % on
the traffic network at time ¢t € [0,7T) as o,(u,v) € [0, 1].
We will discuss the estimation of the spatial correlation in
Section III-E.

Now we consider the traffic incidents extracted from the
police reports, y; = (tj,r;,z;), at (t,k) as an additive
exogenous promotion when ¢ is in the middle of process of
the event yj, i.e., t € [tj,t; + z;). Formally, the exogenous
promotion in (1) can be defined as

k2 = D yalir) a1, 15 +2)) @)
vi€%

where J;(A) is the Dirac measure, i.e., taking the value 1 when
t € A and O otherwise. The parameter y > 0 captures the
decay rate of the influence.
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C. Attention-Based Self-Excitation Modeling

The idea of Attention Point Processes (APP) is to model
the non-linear and long-term dependence of the current traffic
congestion event from past congestion events using the atten-
tion mechanism [11], [12]. The attention model has recently
become popular in natural language processing and computer
vision to tackle non-linear and long-range dependencies. Still,
it has been rarely used outside of these domains. We adopt the
attention mechanism for point process models by redefining
“attention” in our context and adopt the “multi-heads” mech-
anism [12] to represent more complex non-linear triggering
effects. Specifically, we model the endogenous self-excitation
A (t,k|Z;) in (1) using the output of the attention structure.
The exact definition of the conditional intensity is as follows.

For the notational simplicity, let x := (¢, s) represent the
data tuple of the current congestion event and x" := (¢, s') €
Z:,t" < t represent the data tuple of another event in the past.
As shown in Fig. 5, for the m-th attention head, we score
the current congestion event against its past event, denoted
as v,(x,x") € RT. For the event x, the score v,,(x,x’)
determines how much attention to place on the past event x’
as we encode the history information, which will be further
discussed in Section III-D. The normalized score vy, (x, x') €
[0, 1] for events x and x’ is obtained by employing the softmax
function as:

Um(x,x/)
ZX;‘E% Um(x; )C,') '

O (x, x") = (3)
The m-th attention head h,(x) € R? for the event x is
defined as

B (¥) = D (X, x0) P (x), “)

xiE%

where the value embedding ¢, (x) = xTW? and W!, € R4*P
is a weight matrix, d is the data dimension (here d = 3), and
p is the dimension of value embedding. In comparison with
the self-attention mechanism [12], the current event x and past
event x; are analogous to query and key, respectively, and the
value embedding for the past event ¢, (x;) is analogous to
value. The multi-head attention i (x) € RMP for event x is the
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distance between two events, in which their spatial correlation is represented
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non-linear mapping for different attention head.

concatenation of M single attention heads:
h(x) = concat (h{(x), ..., hy(x)).

Denote A'(t, k|.27) in (1) as A/ (x|.27). The historical infor-
mation in Z; can be modeled as a non-linear transformation
of the multi-head attention h(x). Hence, the endogenous
self-excitation A’ can be specified as:

A (x127) = A (x|h(x)) = softplus (h(x)TW +b),  (5)

where W € RLP is the weight matrix and b € R is the bias
term. The function softplus(x) = log(1 +¢*) > 0 is a smooth
approximation of the ReLU function, which ensures that the
intensity strictly is positive at all times.

D. Score Function

The score function quantifies how likely a past event
triggers one event. The most commonly used score func-
tion in attention models is the dot-product score function.
Typically, the score is obtained by computing the inner
product between the query x and the key x’ given two
mapping matrices W, W’ (the so-called key/query embedding),
ie., v(x,x") = xTWTW'x’. This can be viewed as their inner
product in the embedding space. However, as discussed in
Section III-B, for our setting, the correlation between two
locations on the highway may not depend on their Euclid-
ean distance, and this correlation may also vary over time.
We adopt the spatial correlation o, (ry,, rs;) at time ¢ between
locations of two events ry, , r; € . rather than their Euclidean
distance.

As illustrated in Fig. 6, the score function v, (x, x’) for the
m-th attention head can be expressed as:

Um(x,x/):W@,,,(t_t/,at(rs,rs/))a (6)

where the wg, (-,-) € RT is a multi-layer neural network
parameterized by a set of weights and biases denoted by 6,,.
The neural network takes the spatial correlation a; (ry, ry) and
the temporal distance r — ¢’ as input and yields a non-negative
score. The score function can be interpreted as a weighted
spatio-temporal distance, where the weights of time and space
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are learned from data. Note that the score function for each
attention head may be different.

E. Tail-Up Spatial Model in Score Function

To capture the spatial correlation o, (u,v) between two
locations u,v € .¥ on the traffic network at time ¢t €
[0, T), we adopt the idea of tail-up spatial model, which is
originally based on moving averages [36]-[39] and widely
used in river systems modeling [40]-[42]. For the notational
simplicity, we omit 7 in the following. There are three major
advantages of tail-up models against other methods: (1) The
tail-up models use stream distance rather than the Euclidean
distance, which is defined as the shortest distance along with
the traffic network between two locations. (2) The statistical
independence is imposed on the observations located on stream
segments that do not share the same traffic flow. (3) Proper
weighting is incorporated on the covariance matrix entries
when the road segments in the network are splitting into
multiple segments to ensure that the resulting covariance is
stationary. The tail-up models are appropriate when we want to
enforce zero covariance when locations are flow-unconnected.
This situation can occur when the flow dominates a variable
(e.g., when traffic congestion enters a stream and can influence
the upstream, it induces correlation in sensor measurements
only when they are flow-connected).

Assume the traffic at location u € % can be viewed as a
white-noise random process Z,, where observable locations
on the traffic network can be developed by creating random
variables as the integration of a moving average function over
the process on the upstream of the network [41],

Zy = 1y +/ gr —u) /%dB(r),

where u, is a deterministic mean process at location u, Vv,
denotes the upstream of location u and w(r) = w' for all
location r € .#7 on the segment /, which is the weight that
satisfies the additivity constraint to ensure the stationarity
in variance. The weights can be estimated using normalized
average traffic counts for each segment on the traffic network.
The moving average function g(-) is square-integrable and
defined on R. The B(r),r € . is a Brownian process
starting from sources of the traffic network, progressing toward
the outlets, separating or merging themselves at traffic forks.
The spatial correlation a(u, v) is obtained by cov(Z,, Z,) =
E[Z.Z,] — E[Z,]E[Z,], i.e.,

a(u,z)):/m o — u)g(r — v)——2

Jww)w ) dr.

Let Ar be a stream distance on R™ and define C(Ar) :=
ng(r)g(r — Ar)dr. By choosing a particular moving aver-
age function, we can reparameterize C(-) in forms typically
seen in the spatial statistical literature. We adopt the tail-up
exponential model here [39], i.e.,

C(Ar) := pexp(—Ar/o),

where 8, o are parameters of the tail-up model. Let d(u, v) €
R+ be the stream distance between locations u, v € .% on the
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Fig. 7. Weighting example for the tail-up model: arrows indicate flow
directions of segments on the traffic network; gray dots represent confluences;
w! is the weight of the segment /; triangle u, v, and r are observable locations.

traffic network. The above covariance can be simplified as:

w(u)

u—2o

w()’ @)
0, u-v.

Note that the tail-up model simplifies the parameterization
of spatial correlation in the score function by replacing two
complete weight matrices to be only with two trainable
parameters f, .

For example in Fig. 7, we first define all weights for each
segment, i.e., {w' }IL:1- The structure of the traffic network
ensures that the sum of weights that flow into a confluence
equals to the sum of weights that flow out of the same
confluence (e.g. w! = w® + w? and w® + w® = w!'!). Then
we can obtain

a(u,r) = Cdu,v))vww)/wm) = Cdu,v))/ w/wl,

and a(u,r) =
unconnected.

In the experiment, we consider the tail-up model to be time-
variant, i.e., for each time ¢, we can obtain a set of weights
{wf}lE o and spatial correlation o, (u,v) by estimating the
traffic counts at time ¢, since the distribution of the traffic
flow may vary over time. For example, as shown in Fig. 7 (b),
the time-variant weights of four traffic sensors are estimated
based on the normalized traffic counts for every two hours.

w.n) | € @)

0 because locations u# and r are flow-

FE. Online Attention for Streaming Data

For streaming data, calculating attention may be computa-
tionally intractable since the past events may accumulate as
time goes on. Here, we propose an adaptive online attention
algorithm to address this issue. The main idea is only to keep
a fixed number of “important” historical events with high
average scores when calculating the attention head. Using both
synthetic and real data, we will show that, in many cases, only
a few events have a dominant influence on future events. The
online APP model can be performed efficiently using a small
part of historical data.

The procedure for collecting “important” events in each
attention head is as follows. When the i-th event occurs,
for a past event x;,¢; < ¢ in the m-th attention head,
we denote the set of its score against the future congestion

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 22,2023 at 03:34:39 UTC from IEEE Xplore. Restrictions apply.



7304

Algorithm 1 Event Selection for Online Attention
Input: data x = {x;};> and threshold #.
Initialize <7, 0 = 0.
for i =1 to +o00. do

for m =1 to M. do
L i < Gi—1 U {xi}
Initialize €,,; = 9.
for j=1toi— 1 do
%m,j <~ <gm’j U o (x4, xj).
om,j < (Xpeg, ; 0)/1Cn,jl-
end for
if i > 5 then
i < Sy i—1 \ argmin {Em,j}.

Jitj<ti

end if
end for
end for

events {vy, (xi, Xj)}iznj<y; s Gm,j. Then the average score of
the event x; can be computed by v, ; = (Zveffm § 0)/|Gm, |,

where |%’| denotes the number of elements in a set 4. Hence,

a recursive definition of the set .27, , for selected events in the
m-th attention head up until the occurrence of the event x; is
written as:

v‘Z{m,i = %H—l’

i = Yy i—1 U{x;}\ argmin {l_)m,j} R
Jitj <t

Vi <n,
Vi > 7,

where # is the maximum number of events we will retain. The
complete event selection procedure is explained Algorithm 1.
To perform the online attention, we substitute H; in (3) and
(4) with <, ; for all attention heads, where i is the number
of occurred events before time 7.

G. Learning and Inference

Note that our model is jointly parameterized by a set of
parameters {W, b, y, B, &, {Om, W21 1}. We fit the model by
the standard maximizing log- hkehhood approach, which can
be solved conveniently via the stochastic gradient descent.
Equipped with the definition of conditional intensity in (1),
we can write down the likelihood function of the data explic-
itly. Suppose there are n observed events before 7', denoted
as x = {((t,s))'_,. Let F*(t,k) = P{t > 1;,kI'H;} be
the conditional cumulative function at (¢, k), where ¢; is the
occurrence time of the last event before time 7. Let f*(¢, k)
be the corresponding conditional density probability. For sim-
plicity, denote the conditional intensity function A(¢, k|H;) as
A*(t, k). The conditional intensity function for an arbitrary
sensor k is defined by A*(¢t,k) = f*(t,k)/(1 — F*(t,k)).
From the definition above, we can show A*(¢, k) = —d log(1—
F*(t,k))/dt and hence, ft 2*(t, k)dt = —log(l — F*(¢, k)),
where F*(¢, k) = 0, since the (n+1)-th event does not exist at
time t,. Therefore, F*(¢,k) = 1 — exp{— ftn A*(z, k)dt} and

FE(t k) = A5 (1, k) - exp{—/t 2 (2, k)dz). (8)
th
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Then the log-likelihood of observing a sequence x can be
written as:

n K T
t(x) = Zlogi*(ti,sl-) - Z/O (1, k)dt. 9)
i=1 k=1

Note that we can further predict a future event (f,11, §,41)
given the past observations {x;};=1,... ., by using the conditional
probability defined in (8) as follows:

A T Ko
tn+1 _ Lftn T zk:l f (T’ k)dT (10)
Snt1 argmax ftT f*(r, k)dr

k n
In general, the integration above cannot be obtained ana-
Iytically. Therefore, we use standard numerical integration
techniques to calculate the expectation.

IV. EXPERIMENTAL RESULTS

In this section, we first conduct experiments on four syn-
thetic datasets to illustrate our attention-based point process
model’s effectiveness. Then we test our model on the
large-scale Atlanta traffic dataset. We evaluate our model with
and without the online attention, and other alternative methods
by comparing their log-likelihood and inspecting the recovery
of corresponding conditional intensities in both temporal and
spatial scenarios. Below, we refer to the attention-based point
process model as APP and refer to its online version as OAPP.
There are five alternative methods that we are considering in
the following experiments:

(a) Long-Short Term Memory (LSTM) is a specialized
recurrent neural network (RNN) commonly used for
sequential data modeling. Here, we feed the event series
into the LSTM and obtain the hidden state to summarize
the historical information. Then the LSTM can generate
the next event via an output layer given the last hidden
state [43].

(b) Recurrent Marked Temporal Point Process (RMTPP)
assumes the following form for the conditional intensity
function A* in point processes, denoted as A*(r)
exp (vTh; + o(t — ;) + b), where the i-th hidden state
in the RNN #h; is used to represent the influence of
historical data up to the most recent event i, and w (¢ —t;)
represents the current influence. The v, w, b are trainable
parameters [3].

(c) Neural Hawkes Process (NHP) specifies the conditional
intensity function in the temporal point processes using
a continuous-time long-short term memory (LSTM),
denoted as A*(t) = f(wTh;), where the hidden state
of the LSTM up to time #; that represents the influence
of historical data, the f(-) is a softplus function which
ensures the positive output given any input [4].

(d) Self-Attentive Hawkes Process (SAHP) adopts the
self-attention mechanism to model the historical infor-
mation in the conditional intensity function specified as
A*(t) = softmax(u + a exp{o(r — t;)}), where u, a, w
are computed via three non-linear mappings: ¢ =
softplus(hWy), & = tanh(hW,), o = softplus(hW,,).
Here W,, W,, W,, are trainable parameters [31].
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The average log-likelihood of synthetic datasets versus training epochs. For each synthetic dataset, we evaluate the performance of the five methods

based on the maximum log-likelihood averaged per series calculated for the test data.

(e) Hawkes Process (HP) is one of the most common
model for temporal events data. The conditional intensity
function of the Hawkes process is given by A*(r) =
u+o sz - Bexp{—p(t—t;)}, where parameters x, a, f
can be estimated via maximizing likelihood [26].

The experiment setup is as follows. A three-layer neural
network in (6) and three attention heads in (5) are employed in
our model. Note that using multiple layers in neural networks
and multiple heads are critical to achieving our approach’s
good performance. Each dataset is divided into 80% training
and 20% testing data. In particular, we use 50% events in the
training data to initialize OAPP; this corresponds to # = 0.5 n,
n is the maximum length of sequences in the dataset. It takes
20 epochs for our model to converge (on a personal laptop, this
takes about 12 minutes) for synthetic data. For real traffic data,
these numbers increase to 50 epochs and about 45 minutes.
To optimize our model, we employ Adam optimizer [44]
with a learning rate = 10~3 while the batch size is 64. The
objective is to minimize the negative log-likelihood function
derived in (9). Both our method and alternative approaches are
implemented using Python and TensorFlow.

A. Synthetic Data

For the ease of presentation, we compare conditional inten-
sities between approaches using time series data, where each
data point is an one-dimensional timestamp. To adapt our
APP model to time-only scenarios (in order to compare
with the existing methods), we only consider the temporal
distance in the score function of APP. i.e., substitute (3) with
O (Xn, Xi) = Yo, (ta — 1;).

The following experiments with synthetic data validate that
our APP can capture the temporal pattern of synthetic data
generated from conventional generative processes. To quanti-
tatively evaluate each method’s performance, we measure the
average maximum likelihood on each synthetic dataset. Since
the true intensities of these generating processes are known in
the synthetic examples, we plot the conditional intensity over
time (for one given series of events) to examine if the method
can recover the true intensities.

The synthetic data are obtained by the following four gener-
ative processes: (1) Hawkes process: the conditional intensity
function is given by 1*(1) = u +« z,‘/_g pexp—L((r —t))),
where ¢ = 10, o« = 1, and f = 1; (2) self-correction

TABLE I
AVERAGE MAXIMUM LOG-LIKELIHOOD ON SYNTHETIC DATA

DATA SET SAHP NHP RMTPP APP OAPP
HAWKES 20.8 20.0 19.7 21.2 21.1
SELF-CORRECTION 3.5 5.4 6.9 7.1 7.1
NON-HOMO 1 432.4  445.6 443.1 442.3  457.0
NON-HOMO 2 364.3 410.1 405.1 428.3 420.1

point process: the conditional intensity function is given by
A¥(t) = exp(ut — 2, _,a), where x4 = 10, a = 1; (3)
non-homogeneous Poisson 1: The intensity function is given
by A*(t) = ¢ - @@ — 0.5) - U[0, 1] where ¢ = 100 is
the sample size, the ®(-) is the PDF of standard normal
distribution, and Ula, b] is uniform distribution between a
and b; (4) non-homogeneous Poisson 2: The intensity function
is a composition of two normal functions, where 1*(t) =
c1 - D6F —0.35)) - U0, 1] + ¢ - D(6(r — 0.75)) - U[O, 1],
where ¢; = 50, ¢ = 50. Each synthetic dataset contains
5,000 sequences with an average length of 30, where each
data point in the sequence only contains the occurrence time
of the event.

Fig. 8 summarizes the log-likelihood value of each model
versus the training epochs, where each epoch includes
125 batches, and each batch randomly takes 40 sequences
as training data. A higher log-likelihood value indicates a
better performance of the model. As Fig. 8 and Table I
show, our APP outperforms other four baseline methods on all
four synthetic datasets by converging to larger log-likelihood
values. Besides, our OAPP also shows competitive perfor-
mances, when only 50% of events are used in online attention
calculation.

Fig. 9 shows the estimated intensities using different meth-
ods in contrast to the true latent intensities indicated by the
gray lines. We compare the predictive performance of the
proposed model fitted to three types of time series models. Our
APP can better capture the true conditional intensity function
for all four synthetic datasets compared to the other four
baseline methods.

B. Traffic Data

This section further evaluates our model on the real Atlanta
traffic dataset. As a sanity check, we also add two more
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and without considering spatial information.

MAXIMUM LOG-LIKELIHOOD, LOCATION-PREDICTION ACCURACY, AND

TABLE I

TIME-PREDICTION ERROR FOR ATLANTA TRAFFIC DATASET

MODELS max ¢ max ¢ LOCATION  TIME
(TIME ONLY) (TIME & SPACE) ACCURACY MAE
LSTM N/A N/A 18.5% 44.0
HP 339.9 307.5 8.82% 39.1
RMTPP 339.2 490.1 22.0% 27.6
NHP 324.4 N/A N/A 24.1
SAHP 326.7 N/A N/A 49.4
APP_,,, +TAILUP 378.4 512.9 28.8% 17.6
APP + EUCLIDEAN 392.3 570.7 30.9% 5.5
APP + TAILUP 458.5 636.2 37.6% 3.7
OAPP + TAILUP 437.5 615.9 36.9% 3.7

baselines in the comparison: (i) replacing the tail-up spa-
tial correlation defined in (7) with the Euclidean distance
(APP+Euclidean), (ii) removing the exogenous promotion
w1 defined in (1) (APP_,, +Tailup). Below, we refer to our
proposed approach as APP+Tailup).

As shown in Fig. 10, we report the average log-likelihood
per sequence for each method over training epochs. The
results show that our method outperforms the competitors by
attaining the maximum log-likelihood for both time-only and
space-time traffic datasets when the algorithm convergence.
Apart from reporting the maximum log-likelihood of each
method, in Table II, we also evaluate the average accuracy
for predicting the location of the next event and the mean
absolute error (MSE) for predicting the time of the next event,
respectively. We use equation (10) for making the prediction
and deem it correct if the prediction location is the same as

il
V] 0 0.2 0.4 0.6 0.8 10 0.0 0.2 0.4 0.6 0.8 10
time (t) time (t)

(c) non-homogeneous (d) non-homogeneous

The conditional intensity function estimated from synthetic datasets. Triangles at the bottom of each panel represent events. The ground truth of

the actual location of the event (recall that the event location
is discrete). Then the prediction accuracy is the number of
correctly predicted events over the total number of events.
We remark that the prediction accuracy, if using random guess,
is 7.1% since there are 14 sensors. Similarly, given observed
past events, we can use equation (10) to predict the next event’s
time. The result shows that our method obtains the highest
location accuracy and the lowest time error comparing to other
baselines. The experiments also validate that considering the
tail-up spatial correlation and the police intervention in our
model effectively improves the performance.

Moreover, we examine each traffic sensor’s conditional
intensity computed by the fitted APP on the traffic dataset.
As discussed in Section I, there are 14 traffic sensors installed
along two major highways (I-75 and I-85) in Atlanta, as shown
in the left of Fig. 3. For better presenting the spatial pattern
captured by the model, we select two typical days in Atlanta,
which are May 8th, 2018, and April 24th, 2018, respectively.
Fig. 11 (a) shows a clear temporal pattern on a regular
weekday (Tuesday, May 8th, 2018), where the intensity of
each sensor reaches its pinnacle in both morning (around 7:00)
and evening (around 16:00) rush hours; Fig. 11 (b) shows the
intensities on another weekday (Tuesday, April 24th, 2018).
On this day, Atlanta broke a 135-year-old rainfall record
when it got 4.16 inches of rain [45]. The previous record,
set in 1883, was 2.4 inches. As we can see from the figure,
the heavy rain and subsequent flood in the city led to an
unusual traffic congestion level. Different from the results
shown in Fig. 11 (a), the traffic congestion level remains at a
relatively high level throughout the entire day.

We categorize the traffic sensors into three sub-groups based
on their locations and then plot their conditional intensities
individually. Note that similar temporal patterns can be found
among the traffic sensors in the same sub-group. This can be
explained since these sensors are in the same traffic direction
and sharing the same traffic flow. The delay can be explained
by a so-called “phantom traffic jam” phenomenon [46]. This
situation usually begins when a part of traffic flow slows down
slightly, causing the flow behind that part to slow down even
more. The effect then spreads out through the traffic network
and becomes worse further up the stream. For example, as the
sensor LIS, L2S, LR1S show (which are along the southbound
of 1-75), the peak intensity of the first sensor has an about
half an hour delay against the following sensors. Similar
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(a) Tuesday, May 8th, 2018

(b) Tuesday, April 24th, 2018

Fig. 11. (a) The heatmap shows the conditional intensities of 14 traffic sensors in a single day. Each row represents a traffic sensor (associated with a unique
site ID), each column represents a particular time slot, blue dots correspond to the occurrence of events, and red vertical lines to traffic incidents extracted
from 911 calls. The color depth in the heatmap represents the level of intensity. (b) We categorize the conditional intensity into three subplots; the three plots
from left to right represent the intensity of five sites on northbound highways, five sites on southbound highways, and four sites on connectors, respectively.
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Fig. 12. Visualization of scores (discussed in Section III-D) between pairs of
events in the sequence for (a) synthetic data generated from a Hawkes process
model and (b) traffic data collected from the GDOT. Here x; represents the
current event and x; represents past events, where t; < t,. The color of
the entry at the n-th row and the i-th column represents the score v (x;, x;)
learned from data using our DAPP model.

phenomenons can also be found among the sensor LIN, L2N,
LRIN.

C. Score Function Interpretation

We now interpret the score function by visualizing the
scores of a sequence of 15 congestion events extracted from
real data. As shown in Fig. 12, each entry of the heatmap
shows the score for one of the event x,, against its historical
events {xi}l'.’:_ll. The entry at the n-th row and the i-th column
of the lower triangular matrix represents scores of the event
X, against its past event x;, i.e., v(xp, x;).

As demonstrated in Fig. 12, our APP can capture com-
plex dependence between events accurately. In particular,
Fig. 12 (a) shows the scores of events generated from a
Hawkes process defined in Section IV-A. Note that the scores
for events against their past resemble an exponential decay,
reflecting the reality (in this case, the kernel function is
exponentially decaying.) We also conduct a similar experiment
on the traffic dataset, as shown in Fig. 12 (b). Note that
there is a “network community” structure in that the first
nine events pose a much weaker impact on their subsequent
events than others, i.e., the first nine scores in the last row
are remarkably lower than the other scores. By investigating
the data further, we realize that the traffic sensor observes
the first nine events on the highway northbound. In contrast,
all the other events are observed by sensors installed in the
opposite direction. These two sets of traffic sensors are not
flow-connected, which explains the score matrix we learned
in Fig. 12 (b).

0.00 - 2:00 6:00 - :00

16:00 - 18:00

il

s

Morning rush hour Evening rush hour

Fig. 13. Comparison of the spatial correlation between 14 traffic sensors
generated by the tail-up model. Each row or column corresponds to one
specific traffic sensor. Brighter color indicates a higher correlation. The red
and blue boxes include the correlations between traffic sensors located in
southbound and northbound of highways, respectively.

D. Tail-Up Spatial Correlation Interpretation

The spatial correlation between 14 traffic sensors learned by
our tail-up model is highly interpretable. As shown in Fig. 13,
we visualize three covariance matrices of 14 traffic sensors
corresponding to three different periods: the morning rush
hour, the evening rush hour, and the midnight. The spatial
structure of these covariance matrices reveals that: (1) There
are two ‘“network communities” among two sets of traffic
sensors, which correspond to the sensors along the southbound
and northbound highways. (2) The covariance between the
highway connectors (CI-C4) and the southbound of highways
(LIS, L2S, RIS, R2S) are different depending on whether
it is rush hour or not. These observations confirm the idea
that the triggering effect between congestion events can be
spatially structured and directional. The highway connectors,
in particular, play a vital role in defining such a structure.

V. CONCLUSION

We developed a novel attention-based point process model
for modeling the dynamics of traffic congestion events con-
sidering the influence of traffic incidents. In building the
model, we combine two data sources: the traffic sensor
counts and the police reports (which contain comprehen-
sive records of traffic incidents since police typically are
responding to traffic incidents as part of their duty). Our
main goal is to model traffic congestion events’ self and
mutual triggering effect while considering the traffic networks’
structures. We adopt the state-of-the-art spatio-temporal point
process model, together with the attention models, to achieve
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our goals. As demonstrated by our experiments, our method
achieves a good performance in achieving a higher likelihood
of a point process and a higher prediction accuracy compared
with previous approaches. By testing on various kinds of point
process models, we demonstrate the flexibility of our proposed
method.

[1]

[2]
[3]

[4]

[5]

[6

)

[7]

[8

—_

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

REFERENCES

D. Wickert. Is There a fix for I-85 Traffic?. (Feb. 2020). [Online].
Available: https://www.ajc.com/news/transportation/there-fix-for-traffic/
FBjOFLgKW7kGphc3itpvnl/

A. Reinhart, “A review of self-exciting spatio-temporal point processes
and their applications,” Stat. Sci., vol. 33, no. 3, pp. 299-318, Aug. 2018.
N. Du, H. Dai, R. Trivedi, U. Upadhyay, M. Gomez-Rodriguez, and
L. Song, “Recurrent marked temporal point processes: Embedding event
history to vector,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining (KDD), New York, NY, USA, Aug. 2016,
pp. 1555-1564.

H. Mei and J. M. Eisner, “The neural Hawkes process: A neurally self-
modulating multivariate point process,” in Advances in Neural Informa-
tion Processing Systems. Red Hook, NY, USA: Curran Associates, 2017,
pp. 6754-6764.

S. Li, S. Xiao, S. Zhu, N. Du, Y. Xie, and L. Song, “Learning temporal
point processes via reinforcement learning,” in Proc. 32nd Int. Conf.
Neural Inf. Process. Syst. Red Hook, NY, USA: Curran Associates, 2018,
pp. 10804-10814.

U. Upadhyay, A. De, and M. Gomez Rodriguez, “Deep reinforcement
learning of marked temporal point processes,” in Advances in Neural
Information Processing Systems, S. Bengio, H. Wallach, H. Larochelle,
K. Grauman, N. Cesa-Bianchi, and R. Garnett, Eds. Red Hook, NY,
USA: Curran Associates, 2018, pp. 3168-3178.

S. Xiao, J. Yan, X. Yang, H. Zha, and S. M. Chu, “Modeling the
intensity function of point process via recurrent neural networks,” in
Proc. 31st AAAI Conf. Artif. Intell. Palo Alto, CA, USA: AAAI Press,
2017, pp. 1597-1603.

S. Xiao, M. Farajtabar, X. Ye, J. Yan, L. Song, and H. Zha, “Wasserstein
learning of deep generative point process models,” in Proc. 31st Int.
Conf. Neural Inf. Process. Syst. Red Hook, NY, USA: Curran Associates,
2017, pp. 3250-3259.

S. Zhu, H. S. Yuchi, and Y. Xie, “Adversarial anomaly detection
for marked spatio-temporal streaming data,” in Proc. IEEE Int. Conf.
Acoust., Speech Signal Process. (ICASSP), May 2020, pp. 8921-8925.
M.-A. Rizoiu, L. Xie, S. Sanner, M. Cebrian, H. Yu, and P. Van
Hentenryck, “Expecting to be hip: Hawkes intensity processes for social
media popularity,” in Proc. 26th Int. Conf. World Wide Web (WWW),
Apr. 2017, pp. 735-744.

T. Luong, H. Pham, and C. D. Manning, “Effective approaches to
attention-based neural machine translation,” in Proc. Conf. Empir-
ical Methods Natural Lang. Process., Lisbon, Portugal, 2015,
pp. 1412-1421.

A. Vaswani et al., “Attention is all you need,” in Advances in Neural
Information Processing Systems. Red Hook, NY, USA: Curran Asso-
ciates, 2017, pp. 5998-6008.

A. Abadi, T. Rajabioun, and P. A. Ioannou, “Traffic flow prediction
for road transportation networks with limited traffic data,” IEEE Trans.
Intell. Transp. Syst., vol. 16, no. 2, pp. 653-662, Apr. 2015.

Y. Lv, Y. Duan, W. Kang, Z. Li, and F.-Y. Wang, “Traffic flow prediction
with big data: A deep learning approach,” IEEE Trans. Intell. Transp.
Syst., vol. 16, no. 2, pp. 865-873, Apr. 2015.

X. Ma, Z. Dai, Z. He, J. Ma, Y. Wang, and Y. Wang, “Learning
traffic as images: A deep convolutional neural network for large-scale
transportation network speed prediction,” Sensors, vol. 17, no. 4, p. 818,
Apr. 2017.

Z. Cui, R. Ke, Z. Pu, and Y. Wang, “Deep bidirectional and uni-
directional LSTM recurrent neural network for network-wide traf-
fic speed prediction,” 2018, arXiv:1801.02143. [Online]. Available:
https://arxiv.org/abs/1801.02143

B. Liao et al., “Deep sequence learning with auxiliary information
for traffic prediction,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl.
Discovery Data Mining (KDD), New York, NY, USA, Jul. 2018,
pp. 537-546.

Z. Yuan, X. Zhou, and T. Yang, “Hetero-ConvLSTM: A deep learning
approach to traffic accident prediction on heterogeneous spatio-temporal
data,” in Proc. 24th ACM SIGKDD Int. Conf. Knowl. Discovery Data
Mining (KDD), New York, NY, USA, Jul. 2018, pp. 984-992.

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Y. Gu, W. Lu, X. Xu, L. Qin, Z. Shao, and H. Zhang, “An improved
Bayesian combination model for short-term traffic prediction with
deep learning,” IEEE Trans. Intell. Transp. Syst., vol. 21, no. 3,
pp. 1332-1342, Mar. 2020.

Z. Pan, Y. Liang, W. Wang, Y. Yu, Y. Zheng, and J. Zhang, “Urban
traffic prediction from spatio-temporal data using deep meta learning,”
in Proc. 25th ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining
(KDD), New York, NY, USA, Jul. 2019, pp. 1720-1730.

C. Zheng, X. Fan, C. Wang, and J. Qi, “GMAN: A graph multi-attention
network for traffic prediction,” in Proc. AAAI Conf. Artif. Intell., vol. 34,
no. 1, Apr. 2020, pp. 1234-1241.

L. Zhu, F. R. Yu, Y. Wang, B. Ning, and T. Tang, “Big data analytics in
intelligent transportation systems: A survey,” IEEE Trans. Intell. Transp.
Syst., vol. 20, no. 1, pp. 383-398, Jan. 2019.

R. E. Wilson, “An analysis of Gipps’s car-following model of highway
traffic,” IMA J. Appl. Math., vol. 66, no. 5, pp. 509-537, Oct. 2001.
A. Zeroual, F. Harrou, Y. Sun, and N. Messai, “Monitoring road traffic
congestion using a macroscopic traffic model and a statistical monitoring
scheme,” Sustain. Cities Soc., vol. 35, pp. 494-510, Nov. 2017.

A. Solé-Ribalta, S. Gémez, and A. Arenas, “A model to identify urban
traffic congestion hotspots in complex networks,” Roy. Soc. Open Sci.,
vol. 3, no. 10, Oct. 2016, Art. no. 160098.

A. G. Hawkes, “Spectra of some self-exciting and mutually exciting
point processes,” Biometrika, vol. 58, no. 1, pp. 83-90, 1971.

M. G. Rodriguez, J. Leskovec, and A. Krause, “Inferring networks
of diffusion and influence,” in Proc. 16th ACM SIGKDD Int. Conf.
Knowl. Discovery Data Mining (KDD), New York, NY, USA, Feb. 2010,
pp. 1019-1028.

B. Yuan, H. Li, A. L. Bertozzi, P. J. Brantingham, and M. A. Porter,
“Multivariate spatiotemporal Hawkes processes and network reconstruc-
tion,” SIAM J. Math. Data Sci., vol. 1, no. 2, pp. 356-382, Jan. 2019.
S. Zhu and Y. Xie, “Spatial-temporal-textual point processes with appli-
cations in crime linkage detection,” 2019, arXiv:1902.00440. [Online].
Available: https://arxiv.org/abs/1902.00440

T. Omi, N. Ueda, and K. Aihara, “Fully neural network based model for
general temporal point processes,” in Advances in Neural Information
Processing Systems. Red Hook, NY, USA: Curran Associates, 2019,
pp. 2120-2129.

Q. Zhang, A. Lipani, O. Kirnap, and E. Yilmaz, “Self-attentive Hawkes
process,” in Proc. 37th Int. Conf. Mach. Learn., vol. 119, Jul. 2020,
pp. 11183-11193.

Georgia Department of Transportation. Traffic Analysis and Data
Application (TADA). Accessed: Feb. 2020. [Online]. Available:
https://www.dot.ga.gov/DS/Data

M. Treiber and A. Kesting, “Traffic flow dynamics,” Flow Dynamics:
Data, Models and Simulation. Berlin, Germany: Springer-Verlag, 2013.
S. Zhu and Y. Xie, “Crime event embedding with unsupervised feature
selection,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), May 2019, pp. 3922-3926.

OpenStreetMap contributors. (2017). Openstreetmap. [Online]. Avail-
able: https://www.openstreetmap.org

R. P. Barry and J. M. V. Hoef, “Blackbox Kriging: Spatial prediction
without specifying variogram models,” J. Agricult., Biol., Environ.
Statist., vol. 1, no. 3, pp. 297-322, 1996.

V. Garreta, P. Monestiez, and J. M. V. Hoef, “Spatial modelling and
prediction on river networks: Up model, down model or hybrid?”
Environmetrics, vol. 21, no. 5, pp. 439-456, 2010.

J. M. V. Hoef, E. Peterson, and D. Theobald, “Spatial statistical models
that use flow and stream distance,” Environ. Ecol. Statist., vol. 13, no. 4,
pp. 449-464, Dec. 2006.

J. M. V. Hoef and E. E. Peterson, “A moving average approach for spatial
statistical models of stream networks,” J. Amer. Stat. Assoc., vol. 105,
no. 489, pp. 6-18, Mar. 2010.

J. Chen, S.-H. Kim, and Y. Xie, “$3t: An efficient score-statistic
for spatio-temporal surveillance,” Forthcoming Sequential Anal., Des.
Methods Appl., vol. 39, no. 4, pp. 563-592, Jan. 2021.

N. Cressie, J. Frey, B. Harch, and M. Smith, “Spatial prediction on
a river network,” J. Agricult., Biol., Environ. Statist., vol. 11, no. 2,
pp. 127-150, Jun. 2006.

E. E. Peterson, D. M. Theobald, and J. M. V. Hoef, “Geostatistical
modelling on stream networks: Developing valid covariance matrices
based on hydrologic distance and stream flow,” Freshwater Biol., vol. 52,
no. 2, pp. 267-279, Feb. 2007.

S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735-1780, 1997.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 22,2023 at 03:34:39 UTC from IEEE Xplore. Restrictions apply.



ZHU et al.: SPATIO-TEMPORAL POINT PROCESSES WITH ATTENTION FOR TRAFFIC CONGESTION EVENT MODELING 7309

[44]

[45]

[40]

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. ICLR, 2015. [Online]. Available: http://arxiv.org/abs/1412.6980
B. Nitz. (Apr. 2018). Atlanta Breaks 135-Year-old Rainfall Record.
[Online].  Available:  https://www.wsbtv.com/news/local/wet-roads-
could-make-for-messy-commute/737464010/

D. C. Gazis and R. Herman, “The moving and ‘phantom’ bottlenecks,”
Transp. Sci., vol. 26, no. 3, pp. 223-229, Aug. 1992.

Shixiang Zhu received the B.S. and M.S. degrees
in computer science from the Beijing University of
Posts and Telecommunications, in 2014 and 2017,
respectively. He is currently pursuing the Ph.D.
degree in machine learning with the H. Milton
Stewart School of Industrial and Systems Engineer-
ing, Georgia Institute of Technology. His research
interests include machine learning in spatio-temporal
analysis, optimization in urban planning, and related
applications.

Minghe Zhang received the B.S. degree in
electronic engineering from Tsinghua University
in 2017 and the M.S. dergee in electrical and com-
puter engineering in 2019. He is currently pursu-
ing the Ph.D. degree in machine learning with the
H. Milton Stewart School of Industrial and Systems
Engineering, Georgia Institute of Technology. His
research interests include machine learning, network
change detection, and online learning.

Pascal Van Hentenryck is currently the A. Russell
Chandler III Chair and a Professor of industrial
and systems engineering with Georgia Tech. He
is credited with pioneering advances in constraint
programming and stochastic optimization, bridging
theory, and practice to solve real-world problems
across a range of domains, including sports schedul-
ing, protein folding, kidney matching, disaster relief,
power systems, recommender systems, and trans-
portation. He has developed several optimization
technologies, including CHIP, Numerica, the opti-

mization programming language, and comet. He has also published several
books, including Online Stochastic Combinatorial Optimization, Hybrid Opti-
mization, and Constraint-Based Local Search.

Ruyi Ding received the B.S. degree in informa-
tion engineering from Zhejiang University, China,
in 2018, and the M.S. degree in electrical and
computer engineering from the Georgia Institute
of Technology in 2020. His research focuses on
hardware-oriented security and side-channel analysis
on deep neural networks.

Yao Xie (Member, IEEE) received the Ph.D. degree
in electrical engineering from Stanford University,
with a focus on mathematics. She is currently
an Associate Professor and the Harold R. and
Mary Anne Nash Early Career Professor with the
H. Milton Stewart School of Industrial and Systems
Engineering, Georgia Institute of Technology and
also an Associate Director of the Machine Learning
Center. Her research areas are statistics, sequen-
tial analysis and sequential change-point detec-
tion, machine learning, and signal processing. She

received the National Science Foundation (NSF) CAREER Award in 2017.
She is also an Associate Editor for IEEE TRANSACTIONS ON SIGNAL

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 22,2023 at 03:34:39 UTC from IEEE Xplore. Restrictions apply.



