2022 4th International Conference on Control and Robotics (ICCR) | 978-1-6654-8641-5/22/$31.00 ©2022 IEEE | DOI: 10.1109/ICCR55715.2022.10053918

2022 4th International Conference on Control and Robotics

An Automated Statistical Evaluation Framework of
Rapidly-Exploring Random Tree Frontier Detector
for Indoor Space Exploration

Wen-Chung (Andy) Cheng, Wen-Yu (Marty) Cheng, Zhen Ni, Xiangnan Zhong
Department of Electrical Engineering and Computer Science
Florida Atlantic University
Boca Raton, United States

{wcheng3, wcheng2014, zhenni, xzhong }@fau.edu

Abstract—This paper focuses on the design of an automated
statistical evaluation framework for mapping generation of
Rapidly-Exploring Random Tree (RRT) frontier detectors. By
evaluating the run time and distance traveled of the simulated
Kobuki robot agent in a Gazebo environment, the designed
framework can automatically evaluate the process on a user-
defined Gazebo map for a large number of repeated simulations.
We also expanded the experiment platform into customized maps
with complex layouts and trial schemes. The key formulas and
parameters are provided with different trial settings. During the
development of this framework, we have added functions that
allow the user to choose among the maps we have designed,
and the initial positions of the simulated robots for each map at
the beginning of each trial. We have also modified the modules
developed by Umari et al. so that the RRT frontier detection
process can be started automatically with pre-defined exploration
area in place. Modules have also been added so that the run
time and distance traveled by the simulated robot for each
trial can be measured and saved to the respective CSV files for
further statistical analysis. We have created additional procedures
that ensure the consistency of each trial. The results show that our
designed automated evaluation framework is reliable and suitable
for use as a fully automated research platform for robot
exploration.

Keywords—Frontier detection, rapidly-exploring random tree
(RRT), simultaneous localization and mapping (SLAM), path
planning, and statistical analysis

[. INTRODUCTION

Frontier-based exploration is one of the most common
approaches for automated robot exploration. In frontier-based
exploration, robots explore by repeatedly computing (and
moving towards) frontiers, segments which separate the known
regions from unknown [1]. Several algorithms have been
designed for this application. In particular, two frontier-based
exploration methods were initially developed: Wave-front
Frontier Detector (WFD) and Fast Frontier Detector (FFD) [1].
Both methods do not need to process the entire map data, and
it was shown that both methods have higher frontier point
computation rates than the state-of-the-art method during that
time by several orders of magnitude. However, both frontier
exploration methods were not implemented for single or multi-
robot SLAM map generation with simulated robot agents and

978-1-6654-8641-5/22/$31.00 ©2022 IEEE

65

environments. Thus, the average run time and total distance
traveled by the agents while they explore and generate the
whole map were difficult to obtain.

In 2017, Umari et al. developed a multi-rapidly-exploring
randomized trees (RRT) method for autonomous robotic ex-
ploration [2]. The authors used multiple RRT’s (global and
local RRT) for seeking frontier points when generating a map
of an unknown environment using SLAM. The purpose of
the multiple RRT’s is to increase the rate of frontier points
generation. This method was tested in both simulated and
physical environments to address its exploration efficiency
as compared to the image-based method. In order to per-
form the comparative analysis between the proposed method
and the image-based method in simulated environments, 70
exploration runs (10 for image-based method and 60 for
proposed method) were performed on each map. However, the
autonomous robotic exploration method developed by Umari et
al. still required the manual design or control from the user in
the process. For example, a user is required to define the area
of exploration and start a new trial when the simulated robot
finishes exploring a given map. This limitation makes the
process time-consuming and would require constant user
intervention if the user would like to dramatically increase the
number of trials to gain further statistical insight of the frontier
detector performance. Therefore, this paper aims to develop a
more automated framework for evaluating the performance of
future novel frontier detection methods.

The frontier-based approach, which is the most common
approach for robot exploration, was first proposed by Ya-
mauchi [3]. The frontier is a set of points that make up the
boundary between the open space and the unexplored space [4].
Such approach has been extended to multiple robots, and
image processing based method has been used for edge
detection in multiple frontier based approaches [5]. However,
as the dimension of the area of exploration increases, the image
processing based approach becomes time and resource
consuming.

One of the frontier-based methods, Rapidly-exploring Ran-
dom Trees (RRT) [6] [7], is a fast probability path planning
method with the ability to operate in 3-D space [8]. More

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 22,2023 at 01:30:26 UTC from IEEE Xplore. Restrictions apply.

specifically, the RRT is probabilistically complete [9]. Thus
this approach guarantees the complete discovery and the ex-
ploration of the whole environment. Using the RRT algorithm,
an optimal sub-path can be generated from the starting position
to the target position [10]. Umari [2] proposed the utilization of
multiple RRT trees to detect frontier points. Moreover, since the
RRT algorithm is biased towards the unknown regions, it can
quickly detect the frontier points on the map [2].

On the other hand, Kontoudis and Vamvoudakis [11] in-
troduced an online kinodynamic motion planning algorith- mic
framework using asymptotically optimal rapidly-exploring
random tree and continuous-time Q-learning (RRT-Q). This
approach offers an online optimal policy with asymptotic
convergence properties and with completely unknown physics
of the system. More specifically, they utilize integral reinforce-
ment learning and a model-free Q-based advantage function to
generate tuning laws for the online approximation of the
optimal cost and the optimal policy of continuous-time linear
systems. In addition, they propose a local static obstacle
augmentation and a local re-planning framework to guarantee
safe kinodynamic motion planning. However, RRT-Q" cannot
be employed for unknown continuous-time non-linearizable
systems. Moreover, this approach is not robust to disturbances
such as external disturbances or measurement noise. This
approach also employs static obstacle augmentations, which
means the shape of the obstacles increases through time
depending on the kinodynamic distance if the environment
is dynamic.

The online resource of rrt exploration is a repository of
single/multi-robot RRT map exploration algorithm for mo- bile
robots that was developed for Robotic Operating Sys- tem
(ROS). It uses occupancy grids as a map represen- tation
[12]. Whereas rrt exploration tutorials is a comple- mentary
package for the RRT Exploration package. The rrt
exploration tutorials package was developed for ROS, and it
provides all the needed Gazebo simulation files to bring up
simulated Kobuki robots equipped with laser scanners and its
physical properties [13]. However, the simulation process re-
quires a user to launch the simulated environment program and
the frontier detection program separately, and then manually
define the area of exploration on the map for all of the trials.
And when the current trial is done, the user has to manually
start another trial using the previous steps. Performing the
above tasks for any arbitrary number of trials to gain a statistical
insight of the frontier detector performance can be time-
consuming and would require constant user interventions to
start new trials.

With the aforementioned observation, this paper expands the
capacity of the existing RRT exploration packages [12]
[13] by extending the program modules to include automated
simulation, customized maps, performance evaluation, and so
on. In specific, we have modified the RRT frontier detectors
module from [12] so that it will automatically shutdown when
the SLAM map of the environment is complete. Moreover, the
statistical results of the evaluation, such as run time and the
distance traveled by the simulated robot during the trial, can

66

now be saved as designated CSV files at the end of each trial
for further analysis. A few customized maps are created as well
to show the robustness/scalability of the framework.

The organization of the paper is provided as follows. The
traditional implementation by Umari et al. is presented in sec-
tion II. The automated framework development is presented in
section III. The problem set-up along with the set parameters
for each environment is presented in section IV. The results
with relevant figures are provided in section V. Finally, section
VI concludes the work.

II. BACKGROUND AND TRADITIONAL IMPLEMENTATION

As previously stated, RRT-based frontier detector modules
discover frontier points. A point that is reached by the growing
RRT tree is considered a frontier point, if this point lies in the
unknown region of the map [2]. The map is represented as an
occupancy grid, points located in the unknown region carry
a cell value of -1, so by reading the cell value of a point,
it can be classified as unknown, free or occupied. Note that the
initial occupancy grid map is filled only with unknown cells
(obstacles are not known). Obstacles and known regions (cells)
are marked (i.e. the cell values in the occupancy grid are updated)
as arobot explores the map. Umari et al. proposed two versions
of frontier detectors: i) a local frontier detector; and ii) a global
frontier detector [2].

A. Local RRT

Similar to the RRT algorithm, it starts from a single initial
vertex V = {xiic}, and the edge set E = ¢, at each iteration

a random point Xrand C Xfree, the free space is sampled
using the SAMPLEFREE function. Then, the STEER function

generates a point Xpew. The GRIDCHECK function checks
if Xnew lies in the unknown region, or if any point of the line
segment between Xnew and Xnearest lies in the unknown region.
If either of the above conditions is true, then Xpew 1S
considered as a frontier point. The point Xpew is then sent to
the filter module, and the tree is reset, i.e. tree vertices
and edges are deleted. The next iteration of the tree starts
from the current robot position (i.e. V = {Xcurrent}, and
E = ¢). If there is no obstacle at xnewy and no obstacle in
the space between Xnew and Xnearest, the tree extends by
adding xpew as a new vertex. An edge is created between
Xnew and Xnearest. The resetting of the tree is one of the major
differences between the usage of RRT for exploration in [2],
compared to other standard implementations of RRT available
in literature. For each robot running the local frontier detector,
a tree generates by the process described above. Once the tree
reaches an unknown region, a frontier point is marked and the
tree is reset. This process happens during a robot’s motion,
therefore the tree grows from a new initial point each time it
resets. The local detector is proposed by Umari et al. for fast
detection of frontier points in the immediate vicinity of the
robot at any time [2].

B. Global RRT

The implementation of the global frontier detector is iden-
tical to that of the local frontier detector, except that the

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 22,2023 at 01:30:26 UTC from IEEE Xplore. Restrictions apply.

global tree doesn’t reset and keeps growing during the whole
exploration period (i.e. until the map is completely explored),
which makes the global frontier detector algorithm similar to
RRT. The global frontier detector is meant to detect frontier
points through the whole map and in regions far from the robot.
The authors in [2] proposed to use global and local RRT
detectors because:

e This allows detection of frontier points quicker due to the
local detector tree always starts growing from the robot’s
current position, which increases the chance that the next
point picked from the RRT for exploration lies in the
unknown space.

e The robot can miss exploring small corners in a map. To
fix the problem of missing exploration of corners, and
also to make sure that points which are far from the robot’s
current position are detected and explored, the global
frontier detector is used.

C. Strategy Description

The exploration strategy proposed by [2] is split into three
modules; the RRT-based frontier detector module, the filter
module, and the robot task allocator module. The frontier
detector is responsible for detecting frontier points and passing
them to the filter module. The filter module clusters the frontier
points and stores them. The filter module also deletes invalid
and old frontier points. The task allocator module receives the
clustered frontier points from the filter module, and assigns
them to a robot for exploration. For an overall high level
schematic diagram of the exploration strategy, please refer to
Figure 1 from [2]. Thus, the task allocator module will need to
terminate the whole exploration algorithm when it receives no
more clustered frontier points from the filter module in order
for the trial to end automatically once the SLAM map of the
environment is generated completely. This will be explained in
greater detail in section III-A.

D. ROS Implementation

The exploration strategy consists of the SLAM module, path
planning module, global and local frontier detector modules,
the filter module, and the robot task allocator module. For more
details on the ROS implementation of the exploration strategy
described above, please refer to Figure 6 from [2]. Different
pre-built ROS packages are used in the implemen- tation for
mapping and path planning. Also the exploration strategy is
itself implemented as a ROS package consisting of four nodes;
the local frontier detector node, the global frontier detector node,
the filter node, and the robot task allocator node. The ROS
‘gmapping’ package is used for generating the map and
localizing the robot. The ‘gmapping’ package implements a
SLAM algorithm that uses a Rao-Blackwellized particle filter
[14] [15]. The ROS Navigation stack is used to control and
direct the robot towards exploration goals (i.e. the assigned
clustered frontier points). Path planning based on the A*
algorithm [16] is one of the packages already available within
the ROS navigation stack, which is used for planning paths
to an assigned frontier point from the robot’s current position.

67

The global and local frontier detectors are programmed as ROS
nodes written in C++. Every local and global frontier detector
publishes detected frontier points on a common ROS topic. The
filter node subscribes to this topic, so that it can receive all
detected frontier points. The filter node processes the received
frontier points, and then publishes remaining valid frontier
points on a ROS topic which is subscribed by the robot task
allocator node. The robot task allocator node receives points
provided by the filter node and assigns them for exploration.
For details related to ROS terminology (publish, subscribe, etc.)
please refer to [17], and for specific details related to the actual
implementation by [2] please see [12].

III. PROPOSED FRAMEWORK DEVELOPMENT

In this section we will describe the design of the automated
framework for evaluating performance of RRT frontier detec-
tion.

A. Automated Framework Development

At the beginning of each exploration trial, the exploration
area of the unknown environment needs to be defined by the
manually clicking corner points of the area (upper, lower right
and left), and the root point of the RRT exploration tree start-
ing right from the middle of the area. Both the local and global
frontier detector nodes described in section II-D subscribe to a
common ROS topic called “/clicked point”, which publishes
coordinates of clicked points on rviz visualizer (rviz is a 3D
visualizer for the ROS framework [18]) made by the user. The
coordinates of the clicked points are in meters.

To make the exploration defining task automatic, the clicked
points on the rviz visualizer published to the local and global
detector nodes were hard-coded to the following: (-16.82,
13.86), (-16.23, -13.81), (15.70, -13.92), (16.26, 12.31), (0,
0); where coordinates (0, 0) is the coordinates of the root point
of the local and global RRT exploration trees, which is usually
the center of the map. These coordinates that define the
exploration area covers most of the environments described in
section [V-A.

To make the RRT exploration terminate automatically when
the SLAM map of a given environment is complete, the
robot task allocator described in section II-D needs to be
modified. Since the robot task allocator was written asa while
loop that terminates only when a user shuts down the whole
process manually, and the robot task allocator receives new
frontier points by subscribing to the ROS topic called "/filtered
points” which is published by the filter node, a new condition
that terminates the whole exploration when no new frontier
points are received by the allocator was added.

While developing the RRT frontier detector evaluation
framework, the Gazdebo simulator crashed for some trials.
Therefore a “restart trial” condition for the Gazebo program
was added to the framework. Figure 1 shows the overall RRT
frontier detector performance evaluation structure for each trial.
For each trial, the environment name and the number

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 22,2023 at 01:30:26 UTC from IEEE Xplore. Restrictions apply.

New Trial

Trial Env Launch Gazebo Env

Num of Trials

Start Recording

Current local map

Current robot position distance

Launch RRT

Start Recording

Frontier points
Global RRT
Local RRT

(*RRT:] ([Get)

Global

distance

Local

time

J

Parameters reset

Save

distance

time

Next trial

\ 4
CSV file

(

Trial 1, distance_1, time_1

)

Disregard
current trial

Trial 2, distance_2, time_2

Fig. 1. RRT frontier detector evaluation framework structure for each trial.
The processes boxed in blue are the modifications made by us. The RRT
frontier detection process has been modified so that publish points that
designate the exploration area can be automatically assigned at the start of each
trial. Auxiliary processes such as Gazebo simulator crashing preventor have
been added to ensure the consistency of each trial.

of trials are provided as inputs. A process will then launch
the Gazebo simulator with the environment associated with the
given name. If in the process the Gazebo simulator crashes, the
current trial will be restarted. Next the distance traveled by the
simulated robot will be initialized to 0 meters since the robot
has not moved yet. Then the RRT frontier detection process
will be started. At this stage, a timer will be started to measure
the elapsed time of the exploration of whole environment while
mapping. For each iteration of RRT frontier detection, the
distance traveled by the simulated robot and the time elapsed
will be measured. Both the global and local RRT frontier
detectors take in the current local map and the robot position as
inputs, and then output the new frontier points, global and local
RRT tree edges to the Gazebo environment. A process will then
check if the RRT frontier detection process is still running. If
the RRT frontier detection process is terminated, the elapsed
time of the process will be checked if it is larger than the
maximum cutoff time or less than the minimum cutoff time.
The purpose of the maximum and minimum cutoff time is
to eliminate

68

trials where the simulated robot hangs at one place for a
substantial amount of time, or trials where the RRT frontier
detection process terminates before the whole SLAM map of
the given environment is generated. If the elapsed time of the
process satisfies the above conditions, the current trial will
be restarted. Otherwise, the time elapsed of the process, the
distance traveled by the simulated robot, and the generated
SLAM map of the given environment, depending on the user’s
choice on saving the map, of the current trial will be saved. The
next trial is then continued as the above routine.

B. Automatic RRT Program Design

To start the exploration trial without launching separate
processes by hand as described in section I, a whole new
workflow is constructed. Below are the procedures used in the
workflow:

SPAWNROBOTINENV(Xpos;, YPos;, ZPos;): Spawns a
simulated robot at location (xpos;, YPos;, ZPos;) Oof a
given environment Env;.

INITMOVEMENTDETECTOR(): This is a custom class
constructor for measuring total distance traveled by sim-
ulated robot in the environment. Its “distance” attribute
saves the updated total distance traveled by the simulated
robot in the given environment.

LAUNCHRRTFRONTIERDETECTOR(): This is a custom
function for launching the RRT frontier detector process.

RECORDCURRENTTIME(): This is a built-in Python
function that displays current time in UTC.

RRTFRONTIERDETECTORRUNNING(): This is a custom
function that returns TRUE if the RRT frontier detector
process is running.
e OUTPUTGENERATEDMAP(): This is a built-in ROS
function that saves the resulting SLAM map of the
environment.
DISTANCEADDTOCSV (diriar): This is a custom func- tion
that saves the distance traveled by the simulated robot
during the current trial, dpial, to dedicated CSV file.
TIMEADDTOCSV (t#iar): This is a custom function that
saves the run time of exploring the whole environment
during the current trial, fmia, to dedicated CSV file.
The automation workflow is split into 3 processes to reduce
the complexity of the individual task:

e Environment Selector: This procedure accepts the fol-
lowing as inputs:

— Name of the environment (Env): the name of the
environments is entered as a string. The available
environments for this workflow were described in
section [V-A.

— Initial position of robot (Pos): the initial position of
the simulated robot is entered as a string (C” for
Center, "UR” for upper right, "LR” for lower
right, ”LL” for lower left, and "UL” for upper left).
The available initial positions are already pre-defined
for each environment described in IV-A.

— Number of trials (Num): the number of trials to per-
form the RRT exploration on the given environment

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 22,2023 at 01:30:26 UTC from IEEE Xplore. Restrictions apply.

is entered as an integer. The experiment will run for
as many trials as indicated by this number.

— Save map option (Map): the option to save the gen-
erated SLAM will be entered as a Boolean variable.
When enabled, the generated SLAM map will be
saved to local drive at the end of each trial. This
can be used to judge if the completed trial was
successful.

This procedure processes the environment choice entered
by the user. There is an RRT exploration trial process
for each included environment, so this procedure can
be expanded to any number of environments. For each
environment, the remaining user inputs are passed to the
next process, which is the initial position selector.

Initial Position Selector: There can be as many initial
position selectors as the number of available environ-
ments. This procedure accepts the unprocessed inputs
passed by the environment selector, and processes the
initial position choice entered by the user. There is an RRT
exploration trial process for each initial position, so this
procedure can be expanded to any number of positions.
For each position, the remaining user inputs are passed to
the next process, which is the core process of the RRT
exploration automation trial.

RRT Starter: This procedure accepts the unprocessed
inputs passed by the initial position selector, and pro-
cesses the number of trials to be run and option to save
generated SLAM map entered by the user. The process
iterates through each trial, so this can be ex- panded to
any number of trials. For each trial, the proce- dure
SPAWNROBOTINENVi(Xpos; , YPos; , ZPos;) Spawns the
simulated robot into the ith environment at the it initial
position with coordinates (Xpos;, YPos;, ZPos;). Then a
movement detector is initialized using the
INITMOVEMENTDETECTOR() procedure so that the dis-
tance traveled by the simulated robot is measured at
all times. LAUNCHRRTFRONTIERDETECTOR() then
launches the RRT frontier detection process for the
robot. RECORDCURRENTTIME() then records the start-
ing time to a variable named fsiorr While the RRT
frontier detection process is running, the running time
trunning 1s recorded by RECORDCURRENTTIME(). The
updated elapsed time felapsed is then calculated by finding
the difference between trunning and tstart. The up- dated
distance traveled by the robot is then recorded using
the “distance” attribute of the initialized move- ment
detector. If at any moment the elapsed time feiapsed
exceeds the maximum cutoff time fmax, the RRT
frontier detector process will be terminated by setting
RRTFRONTIERDETECTORRUNNING() to FALSE.

When the RRT frontier detection process terminates,
the elapsed time feiqpsed Will be checked if it’s greater than
the maximum cutoff time #max or less than the minimum
cutoff time tmin. If the above condition is met, the
current trial will be ignored. Otherwise, both

the elapsed time feipsed and distance traveled diraveled
by the robot will be recorded to dedicated CSV files
for later analysis using DISTANCEADDTOCSV (dial) and
TIMEADDTOCSV (ttrial). The next trial is then proceeded
with the above routine.

IV. EXPERIMENTS SET-UP

A. Environments Used in Simulations

The two environments used for this framework are created
using the Gazebo simulator [19], which provides realistic
robotic movements, a physics engine, and the generation of
sensor data combined with noise.

a) Apartment: The first environment shown in Fig.
2, is a customized map with an area of approximately 82.75
m? (free space area).

Fig. 2. The custom apartment environment. Dimension = 12.50 m X8.00 m.
Environment size = 82.75 m?.

b) Office: The second environment shown in Fig.
3, is a customized map with an area of approximately 267

m? (free space area).

Fig. 3. The custom office environment. Dimension = 18.00 m X 15.00 m.
Environment size = 267 m®.

B. Parameters Used in Simulations

a) Apartment Environment.: The following are the
parameters used for this particular environment:

e Minimum cutoff time: 80 seconds

e Maximum cutoff time: 300 seconds

These parameters are set since the RRT exploration trial can
sometimes prematurely end due to SLAM map refresh rate and
frontier points update update mismatch.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 22,2023 at 01:30:26 UTC from |IEEE Xplore. Restrictions apply.

b) Office Environment: The following are the parame-
ters used for this particular environment:
e Minimum cutoff time: 80 seconds
e Maximum cutoff time: 300 seconds
These parameters are set since the RRT exploration trial can
sometimes prematurely end due to SLAM map refresh rate and
frontier points update update mismatch.

V. RESULTS AND ANALYSIS
A. Apartment Environment

Figures 4 and 5 show the histograms of distance traveled by
the robot and elapsed time over 100 trials when the robot starts
from the center initial position.

RRT Distances Traveled from Center of Apartment Map
Mean Distance = 45.85 m

= Distance (m) = Mean Distance (m)

i

Distance (m)

Fig. 4. Distance traveled histogram for center initial position at the Apartment
environment.

RRT Runtime from Center of Apartment Map
Mean Runtime = 267.66 s

® Times (s) = Mean Runtime (s)

1000

Time (s)

Fig. 5. Time elapsed histogram for center initial position at the Apartment
environment.

We have conducted 100 trials with various initial positions.
Figures 6 and 7 show the box plots of distance traveled and time
elapsed for all the initial positions. As can be seen in the
box plots, the center initial position yields the longest median
distance traveled. This, as can be observed from Figure 2, is due
to the robot starting from a region with obstacles (tables) in that
room. The robot would travel back and forth

70

more often to find the assigned frontier points around those
obstacles. Whereas the lower right initial position yields the
longest median time elapsed. This, again can be observed from
Figure 2, is due to the robot starting from a narrow region. The
robot would sometimes hang in place thus this initial position
does not yield longer distance traveled than the center.

RRT Distance Traveled for Apartment Map Boxplot
100 °

° °
°
&0
w
2
c w (R w R

Robot Spawn Locations

Distance (m)

Fig. 6. Distance traveled box plot for the Apartment environment.

RRT Runtime for Apartment Map Boxplot

1000

? o)
800
0 8
- 600
ge— %8
£ ¢ 8
400 8
200
c H R w R

Robot Spawn Locations

Fig. 7. Time elapsed box plot for the Apartment environment.

B. Office Environment

We have also conducted 100 trials with various initial
positions for this environment. Figures 8 and 9 show the box
plots of distance traveled and time elapsed for all the initial
positions. As can be seen in the box plots, the lower right initial
position yields the longest median distance traveled and time
elapsed. This, as can be observed from Figure 3, is due to the
robot starting from a more restricted region by the surrounding
walls in that room. The robot would travel back and forth more
often to find the assigned frontier points, and the RRT frontier
detector tree would need more time to expand to the other rooms.
Whereas the upper left initial position yields the shortest
median distance traveled and time elapsed. This, again can be
observed from Figure 3, is due to the robot starting from a more
spacious region. The robot would travel in straight line to find
the assigned frontier points most of the time, and the RRT
frontier detector tree would expand to the other rooms faster.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 22,2023 at 01:30:26 UTC from |IEEE Xplore. Restrictions apply.

RRT Distance Traveled for Office Map Boxplot

180 —
160 o
140

_ 120

E

o 100

e

Il

R 80

o

)
40 o
- ol
[o]
c H IR w R

Robot Spawn Locations

Fig. 8. Distance traveled box plot for the Office environment.

RRT Runtime for Office Map Boxplot
o

900

35

LL LR
Robot Spawn Locations

=}
800

700

600

Time (s)

300

200

Fig. 9. Time elapsed box plot for the Office environment.

VI. CONCLUSIONS

In this work, we developed an automated RRT frontier de-
tection evaluation framework based on the module developed
by [2] that is implemented in ROS. The evaluation framework
is able to automate any desired number of trials using RRT
without constant user intervention, including the ability to start
and end each trial automatically, as well as collect statistical
results that can be saved in CSV format for further external
analysis. Furthermore, the framework can also be configured
with custom map layouts and trial parameters, such as initial
positions, allowing for high levels of customization that can be
tailored to any future research needs.

ACKNOWLEDGEMENT

This work was partially supported by the National Science
Foundation under Grant 1947418.

REFERENCES

[1] M. Keidar and G. A. Kaminka, “Robot exploration with fast frontier
detection: Theory and experiments,” in Proceedings of the 11th Inter-
national Conference on Autonomous Agents and Multiagent Systems-
Volume 1,2012, pp. 113—120.

H. Umari and S. Mukhopadhyay, “Autonomous robotic exploration
based on multiple rapidly-exploring randomized trees,” in 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). 1EEE, 2017, pp. 1396-1402.

(2]

71

[3] B. Yamauchi, “A frontier-based approach for autonomous exploration,”
in Proceedings 1997 IEEE International Symposium on Computational
Intelligence in Robotics and Automation CIRA’97. Towards New Com-
putational Principles for Robotics and Automation’. 1EEE, 1997, pp.
146-151.

Z. Yan, L. Fabresse, J. Laval, and N. Bouraqadi, “Metrics for perfor-
mance benchmarking of multi-robot exploration,” in 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2015, pp. 3407-3414.

W. Qiao, Z. Fang, and B. Si, “Sample-based frontier detection for
autonomous robot exploration,” in 2018 IEEE International Conference
on Robotics and Biomimetics (ROBIO). 1EEE, 2018, pp. 1165-1170.

S. M. LaValle et al., “Rapidly-exploring random trees: A new tool for
path planning,” 1998.

S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,”
The international journal of robotics research, vol. 20, no. 5, pp. 378—
400, 2001.

L. Zhang, Z. Lin, J. Wang, and B. He, “Rapidly-exploring random trees
multi-robot map exploration under optimization framework,” Robotics
and Autonomous Systems, vol. 131, p. 103565, 2020.

S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,” The international journal of robotics research, vol. 30,
no. 7, pp. 846-894, 2011.

A. Ivanov and M. Campbell, “An efficient robotic exploration planner
with probabilistic guarantees,” in 2016 IEEE International Conference
on Robotics and Automation (ICRA). 1EEE, 2016, pp. 4215-4221.

G. P. Kontoudis and K. G. Vamvoudakis, “Kinodynamic motion planning
with continuous-time g-learning: An online, model-free, and safe navi-
gation framework,” IEEE transactions on neural networks and learning
systems, vol. 30, no. 12, pp. 3803-3817, 2019.

H. Umari, “rrt exploration,” https://github.com/hasauino/rrt exploration,
2016.

[10]

[11]

[12]

[13] “rrt exploration tutorials,”
exploration tutorials, 2016.

G. Grisettiyz, C. Stachniss, and W. Burgard, “Improving grid-based slam
with rao-blackwellized particle filters by adaptive proposals and selective
resampling,” in Proceedings of the 2005 IEEE international conference
on robotics and automation. 1EEE, 2005, pp. 2432-2437.

G. Grisetti, C. Stachniss, and W. Burgard, “Improved techniques for grid
mapping with rao-blackwellized particle filters,” IEEE transactions on
Robotics, vol. 23, no. 1, pp. 3446, 2007.

P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE transactions on Systems
Science and Cybernetics, vol. 4, no. 2, pp. 100-107, 1968.

A. Romero, “Ros concepts,” http://wiki.ros.org/ROS/Concepts, 2014,
[Online; accessed 27-Apr-2022].

Open Source Robotics Foundation, “rviz,” https://github.com/ros-
visualization/rviz, 2012.

Gazebo, “Open Source Robotics Foundation,” http://gazebosim.org/,
2014, [Online; accessed 24-Apr-2022].

https://github.com/hasauino/rrt

[14]

[15]

[16]

[17]
[18]

[19]

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 22,2023 at 01:30:26 UTC from IEEE Xplore. Restrictions apply.

