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Abstract—This paper focuses on the design of an automated 
statistical evaluation framework for mapping generation of 
Rapidly-Exploring Random Tree (RRT) frontier detectors. By 
evaluating the run time and distance traveled of the simulated 
Kobuki robot agent in a Gazebo environment, the designed 
framework can automatically evaluate the process on a user- 
defined Gazebo map for a large number of repeated simulations. 
We also expanded the experiment platform into customized maps 
with complex layouts and trial schemes. The key formulas and 
parameters are provided with different trial settings. During the 
development of this framework, we have added functions that 
allow the user to choose among the maps we have designed, 
and the initial positions of the simulated robots for each map at 
the beginning of each trial. We have also modified the modules 
developed by Umari et al. so that the RRT frontier detection 
process can be started automatically with pre-defined exploration 
area in place. Modules have also been added so that the run 
time and distance traveled by the simulated robot for each 
trial can be measured and saved to the respective CSV files for 
further statistical analysis. We have created additional procedures 
that ensure the consistency of each trial. The results show that our 
designed automated evaluation framework is reliable and suitable 
for use as a fully automated research platform for robot 
exploration. 

Keywords—Frontier detection, rapidly-exploring random tree 
(RRT), simultaneous localization and mapping (SLAM), path 
planning, and statistical analysis 

I. INTRODUCTION 

Frontier-based exploration is one of the most common 
approaches for automated robot exploration. In frontier-based 
exploration, robots explore by repeatedly computing (and 
moving towards) frontiers, segments which separate the known 
regions from unknown [1]. Several algorithms have been 
designed for this application. In particular, two frontier-based 
exploration methods were initially developed: Wave-front 
Frontier Detector (WFD) and Fast Frontier Detector (FFD) [1]. 
Both methods do not need to process the entire map data, and 
it was shown that both methods have higher frontier point 
computation rates than the state-of-the-art method during that 
time by several orders of magnitude. However, both frontier 
exploration methods were not implemented for single or multi- 
robot SLAM map generation with simulated robot agents and 

environments. Thus, the average run time and total distance 
traveled by the agents while they explore and generate the 
whole map were difficult to obtain.

In 2017, Umari et al. developed a multi-rapidly-exploring 
randomized trees (RRT) method for autonomous robotic ex- 
ploration [2]. The authors used multiple RRT’s (global and 
local RRT) for seeking frontier points when generating a map 
of an unknown environment using SLAM. The purpose of 
the multiple RRT’s is to increase the rate of frontier points 
generation. This method was tested in both simulated and 
physical environments to address its exploration efficiency 
as compared to the image-based method. In order to per- 
form the comparative analysis between the proposed method 
and the image-based method in simulated environments, 70 
exploration runs (10 for image-based method and 60 for 
proposed method) were performed on each map. However, the 
autonomous robotic exploration method developed by Umari et 
al. still required the manual design or control from the user in 
the process. For example, a user is required to define the area 
of exploration and start a new trial when the simulated robot 
finishes exploring a given map. This limitation makes the 
process time-consuming and would require constant user 
intervention if the user would like to dramatically increase the 
number of trials to gain further statistical insight of the frontier 
detector performance. Therefore, this paper aims to develop a 
more automated framework for evaluating the performance of 
future novel frontier detection methods.

The frontier-based approach, which is the most common 
approach for robot exploration, was first proposed by Ya- 
mauchi [3]. The frontier is a set of points that make up the 
boundary between the open space and the unexplored space [4]. 
Such approach has been extended to multiple robots, and 
image processing based method has been used for edge 
detection in multiple frontier based approaches [5]. However, 
as the dimension of the area of exploration increases, the image 
processing based approach becomes time and resource 
consuming. 

One of the frontier-based methods, Rapidly-exploring Ran- 
dom Trees (RRT) [6] [7], is a fast probability path planning 
method with the ability to operate in 3-D space [8]. More 

65

2022 4th International Conference on Control and Robotics

978-1-6654-8641-5/22/$31.00 ©2022 IEEE

Authorized licensed use limited to: Florida Atlantic University. Downloaded on March 22,2023 at 01:30:26 UTC from IEEE Xplore.  Restrictions apply. 



specifically, the RRT is probabilistically complete [9]. Thus 
this approach guarantees the complete discovery and the ex- 
ploration of the whole environment. Using the RRT algorithm, 
an optimal sub-path can be generated from the starting position 
to the target position [10]. Umari [2] proposed the utilization of 
multiple RRT trees to detect frontier points. Moreover, since the 
RRT algorithm is biased towards the unknown regions, it can 
quickly detect the frontier points on the map [2].

On the other hand, Kontoudis and Vamvoudakis [11] in- 
troduced an online kinodynamic motion planning algorith- mic 
framework using asymptotically optimal rapidly-exploring
random tree and continuous-time Q-learning (RRT-Q ). This 
approach offers an online optimal policy with asymptotic
convergence properties and with completely unknown physics 
of the system. More specifically, they utilize integral reinforce- 
ment learning and a model-free Q-based advantage function to 
generate tuning laws for the online approximation of the 
optimal cost and the optimal policy of continuous-time linear 
systems. In addition, they propose a local static obstacle 
augmentation and a local re-planning framework to guarantee
safe kinodynamic motion planning. However, RRT-Q cannot 
be employed for unknown continuous-time non-linearizable
systems. Moreover, this approach is not robust to disturbances 
such as external disturbances or measurement noise. This 
approach also employs static obstacle augmentations, which 
means the shape of the obstacles increases through time 
depending on the kinodynamic distance if the environment 
is dynamic. 

The online resource of rrt exploration is a repository of 
single/multi-robot RRT map exploration algorithm for mo- bile 
robots that was developed for Robotic Operating Sys- tem 
(ROS). It uses occupancy grids as a map represen- tation 
[12]. Whereas rrt exploration tutorials is a comple- mentary 
package for the RRT Exploration package. The rrt 
exploration tutorials package was developed for ROS, and it 
provides all the needed Gazebo simulation files to bring up 
simulated Kobuki robots equipped with laser scanners and its 
physical properties [13]. However, the simulation process re- 
quires a user to launch the simulated environment program and 
the frontier detection program separately, and then manually 
define the area of exploration on the map for all of the trials. 
And when the current trial is done, the user has to manually 
start another trial using the previous steps. Performing the 
above tasks for any arbitrary number of trials to gain a statistical 
insight of the frontier detector performance can be time-
consuming and would require constant user interventions to 
start new trials.

With the aforementioned observation, this paper expands the 
capacity of the existing RRT exploration packages [12] 
[13] by extending the program modules to include automated
simulation, customized maps, performance evaluation, and so
on. In specific, we have modified the RRT frontier detectors
module from [12] so that it will automatically shutdown when
the SLAM map of the environment is complete. Moreover, the
statistical results of the evaluation, such as run time and the
distance traveled by the simulated robot during the trial, can 

now be saved as designated CSV files at the end of each trial 
for further analysis. A few customized maps are created as well 
to show the robustness/scalability of the framework.

The organization of the paper is provided as follows. The 
traditional implementation by Umari et al. is presented in sec- 
tion II. The automated framework development is presented in 
section III. The problem set-up along with the set parameters 
for each environment is presented in section IV. The results 
with relevant figures are provided in section V. Finally, section 
VI concludes the work. 

II. BACKGROUND AND TRADITIONAL IMPLEMENTATION 

As previously stated, RRT-based frontier detector modules 
discover frontier points. A point that is reached by the growing 
RRT tree is considered a frontier point, if this point lies in the 
unknown region of the map [2]. The map is represented as an 
occupancy grid, points located in the unknown region carry 
a cell value of -1, so by reading the cell value of a point, 
it can be classified as unknown, free or occupied. Note that the 
initial occupancy grid map is filled only with unknown cells 
(obstacles are not known). Obstacles and known regions (cells) 
are marked (i.e. the cell values in the occupancy grid are updated) 
as a robot explores the map. Umari et al. proposed two versions 
of frontier detectors: i) a local frontier detector; and ii) a global 
frontier detector [2]. 

A. Local RRT

Similar to the RRT algorithm, it starts from a single initial
vertex V xinit , and the edge set E ϕ, at each iteration 

a random point xrand Xfree, the free space is sampled
using the SAMPLEFREE function. Then, the STEER function 
generates a point xnew. The GRIDCHECK function checks 
if xnew lies in the unknown region, or if any point of the line 
segment between xnew and xnearest lies in the unknown region. 
If either of the above conditions is true, then xnew is 
considered as a frontier point. The point xnew is then sent to 
the filter module, and the tree is reset, i.e. tree vertices
and edges are deleted. The next iteration of the tree starts 
from the current robot position (i.e. V xcurrent , and
E ϕ). If there is no obstacle at xnew and no obstacle in
the space between xnew and xnearest, the tree extends by 
adding xnew as a new vertex. An edge is created between 
xnew and xnearest. The resetting of the tree is one of the major 
differences between the usage of RRT for exploration in [2], 
compared to other standard implementations of RRT available 
in literature. For each robot running the local frontier detector, 
a tree generates by the process described above. Once the tree 
reaches an unknown region, a frontier point is marked and the 
tree is reset. This process happens during a robot’s motion, 
therefore the tree grows from a new initial point each time it 
resets. The local detector is proposed by Umari et al. for fast 
detection of frontier points in the immediate vicinity of the 
robot at any time [2]. 
B. Global RRT

The implementation of the global frontier detector is iden- 
tical to that of the local frontier detector, except that the 
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global tree doesn’t reset and keeps growing during the whole 
exploration period (i.e. until the map is completely explored), 
which makes the global frontier detector algorithm similar to 
RRT. The global frontier detector is meant to detect frontier 
points through the whole map and in regions far from the robot. 
The authors in [2] proposed to use global and local RRT 
detectors because:

This allows detection of frontier points quicker due to the
local detector tree always starts growing from the robot’s
current position, which increases the chance that the next
point picked from the RRT for exploration lies in the
unknown space.
The robot can miss exploring small corners in a map. To
fix the problem of missing exploration of corners, and
also to make sure that points which are far from the robot’s
current position are detected and explored, the global
frontier detector is used. 

C. Strategy Description

The exploration strategy proposed by [2] is split into three
modules; the RRT-based frontier detector module, the filter 
module, and the robot task allocator module. The frontier 
detector is responsible for detecting frontier points and passing 
them to the filter module. The filter module clusters the frontier 
points and stores them. The filter module also deletes invalid 
and old frontier points. The task allocator module receives the 
clustered frontier points from the filter module, and assigns 
them to a robot for exploration. For an overall high level 
schematic diagram of the exploration strategy, please refer to 
Figure 1 from [2]. Thus, the task allocator module will need to 
terminate the whole exploration algorithm when it receives no 
more clustered frontier points from the filter module in order 
for the trial to end automatically once the SLAM map of the 
environment is generated completely. This will be explained in 
greater detail in section III-A. 

D. ROS Implementation

The exploration strategy consists of the SLAM module, path
planning module, global and local frontier detector modules, 
the filter module, and the robot task allocator module. For more 
details on the ROS implementation of the exploration strategy 
described above, please refer to Figure 6 from [2]. Different 
pre-built ROS packages are used in the implemen- tation for 
mapping and path planning. Also the exploration strategy is 
itself implemented as a ROS package consisting of four nodes; 
the local frontier detector node, the global frontier detector node, 
the filter node, and the robot task allocator node. The ROS 
‘gmapping’ package is used for generating the map and 
localizing the robot. The ‘gmapping’ package implements a 
SLAM algorithm that uses a Rao-Blackwellized particle filter
[14] [15]. The ROS Navigation stack is used to control and
direct the robot towards exploration goals (i.e. the assigned
clustered frontier points). Path planning based on the A*
algorithm [16] is one of the packages already available within
the ROS navigation stack, which is used for planning paths
to an assigned frontier point from the robot’s current position.

The global and local frontier detectors are programmed as ROS 
nodes written in C++. Every local and global frontier detector 
publishes detected frontier points on a common ROS topic. The 
filter node subscribes to this topic, so that it can receive all 
detected frontier points. The filter node processes the received 
frontier points, and then publishes remaining valid frontier 
points on a ROS topic which is subscribed by the robot task 
allocator node. The robot task allocator node receives points 
provided by the filter node and assigns them for exploration. 
For details related to ROS terminology (publish, subscribe, etc.) 
please refer to [17], and for specific details related to the actual 
implementation by [2] please see [12].

III. PROPOSED FRAMEWORK DEVELOPMENT 

In this section we will describe the design of the automated 
framework for evaluating performance of RRT frontier detec- 
tion. 

A. Automated Framework Development

At the beginning of each exploration trial, the exploration
area of the unknown environment needs to be defined by the 
manually clicking corner points of the area (upper, lower right 
and left), and the root point of the RRT exploration tree start- 
ing right from the middle of the area. Both the local and global 
frontier detector nodes described in section II-D subscribe to a 
common ROS topic called ”/clicked point”, which publishes 
coordinates of clicked points on rviz visualizer (rviz is a 3D 
visualizer for the ROS framework [18]) made by the user. The 
coordinates of the clicked points are in meters.

To make the exploration defining task automatic, the clicked 
points on the rviz visualizer published to the local and global 
detector nodes were hard-coded to the following: (-16.82, 
13.86), (-16.23, -13.81), (15.70, -13.92), (16.26, 12.31), (0, 
0); where coordinates (0, 0) is the coordinates of the root point 
of the local and global RRT exploration trees, which is usually 
the center of the map. These coordinates that define the 
exploration area covers most of the environments described in 
section IV-A.

To make the RRT exploration terminate automatically when 
the SLAM map of a given environment is complete, the 
robot task allocator described in section II-D needs to be 
modified. Since the robot task allocator was written as a while 
loop that terminates only when a user shuts down the whole 
process manually, and the robot task allocator receives new 
frontier points by subscribing to the ROS topic called ”/filtered 
points” which is published by the filter node, a new condition 
that terminates the whole exploration when no new frontier 
points are received by the allocator was added.

While developing the RRT frontier detector evaluation 
framework, the Gazdebo simulator crashed for some trials. 
Therefore a ”restart trial” condition for the Gazebo program 
was added to the framework. Figure 1 shows the overall RRT 
frontier detector performance evaluation structure for each trial. 
For each trial, the environment name and the number 
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Fig. 1. RRT frontier detector evaluation framework structure for each trial. 
The processes boxed in blue are the modifications made by us. The RRT 
frontier detection process has been modified so that publish points that 
designate the exploration area can be automatically assigned at the start of each 
trial. Auxiliary processes such as Gazebo simulator crashing preventor have 
been added to ensure the consistency of each trial. 

of trials are provided as inputs. A process will then launch 
the Gazebo simulator with the environment associated with the 
given name. If in the process the Gazebo simulator crashes, the 
current trial will be restarted. Next the distance traveled by the 
simulated robot will be initialized to 0 meters since the robot 
has not moved yet. Then the RRT frontier detection process 
will be started. At this stage, a timer will be started to measure 
the elapsed time of the exploration of whole environment while 
mapping. For each iteration of RRT frontier detection, the 
distance traveled by the simulated robot and the time elapsed 
will be measured. Both the global and local RRT frontier 
detectors take in the current local map and the robot position as 
inputs, and then output the new frontier points, global and local 
RRT tree edges to the Gazebo environment. A process will then 
check if the RRT frontier detection process is still running. If 
the RRT frontier detection process is terminated, the elapsed 
time of the process will be checked if it is larger than the 
maximum cutoff time or less than the minimum cutoff time. 
The purpose of the maximum and minimum cutoff time is 
to eliminate

trials where the simulated robot hangs at one place for a 
substantial amount of time, or trials where the RRT frontier 
detection process terminates before the whole SLAM map of 
the given environment is generated. If the elapsed time of the 
process satisfies the above conditions, the current trial will 
be restarted. Otherwise, the time elapsed of the process, the 
distance traveled by the simulated robot, and the generated 
SLAM map of the given environment, depending on the user’s 
choice on saving the map, of the current trial will be saved. The 
next trial is then continued as the above routine.
B. Automatic RRT Program Design

To start the exploration trial without launching separate
processes by hand as described in section I, a whole new 
workflow is constructed. Below are the procedures used in the 
workflow: 

SPAWNROBOTINENVi xPosi , yPosi , zPosi : Spawns a
simulated robot at location xPosi , yPosi , zPosi of a
given environment Envi.
INITMOVEMENTDETECTOR : This is a custom class
constructor for measuring total distance traveled by sim- 
ulated robot in the environment. Its ”distance” attribute
saves the updated total distance traveled by the simulated
robot in the given environment.
LAUNCHRRTFRONTIERDETECTOR : This is a custom
function for launching the RRT frontier detector process.
RECORDCURRENTTIME : This is a built-in Python
function that displays current time in UTC.
RRTFRONTIERDETECTORRUNNING : This is a custom
function that returns TRUE if the RRT frontier detector
process is running. 
OUTPUTGENERATEDMAP : This is a built-in ROS
function that saves the resulting SLAM map of the
environment. 
DISTANCEADDTOCSV dtrial : This is a custom func- tion
that saves the distance traveled by the simulated robot
during the current trial, dtrial, to dedicated CSV file.
TIMEADDTOCSV ttrial : This is a custom function that
saves the run time of exploring the whole environment
during the current trial, ttrial, to dedicated CSV file.

The automation workflow is split into 3 processes to reduce 
the complexity of the individual task:

Environment Selector: This procedure accepts the fol- 
lowing as inputs:

– Name of the environment (Env): the name of the
environments is entered as a string. The available
environments for this workflow were described in
section IV-A.

– Initial position of robot (Pos): the initial position of
the simulated robot is entered as a string (”C” for
Center, ”UR” for upper right, ”LR” for lower
right, ”LL” for lower left, and ”UL” for upper left).
The available initial positions are already pre-defined
for each environment described in IV-A.

– Number of trials (Num): the number of trials to per- 
form the RRT exploration on the given environment
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is entered as an integer. The experiment will run for 
as many trials as indicated by this number. 

– Save map option (Map): the option to save the gen- 
erated SLAM will be entered as a Boolean variable.
When enabled, the generated SLAM map will be
saved to local drive at the end of each trial. This
can be used to judge if the completed trial was
successful.

This procedure processes the environment choice entered 
by the user. There is an RRT exploration trial process 
for each included environment, so this procedure can 
be expanded to any number of environments. For each 
environment, the remaining user inputs are passed to the 
next process, which is the initial position selector. 
Initial Position Selector: There can be as many initial
position selectors as the number of available environ- 
ments. This procedure accepts the unprocessed inputs
passed by the environment selector, and processes the
initial position choice entered by the user. There is an RRT
exploration trial process for each initial position, so this
procedure can be expanded to any number of positions.
For each position, the remaining user inputs are passed to
the next process, which is the core process of the RRT
exploration automation trial.
RRT Starter: This procedure accepts the unprocessed
inputs passed by the initial position selector, and pro- 
cesses the number of trials to be run and option to save
generated SLAM map entered by the user. The process
iterates through each trial, so this can be ex- panded to
any number of trials. For each trial, the proce- dure
SPAWNROBOTINENVi xPosi , yPosi , zPosi spawns the
simulated robot into the ith environment at the ith initial
position with coordinates xPosi , yPosi , zPosi . Then a
movement detector is initialized using the
INITMOVEMENTDETECTOR procedure so that the dis- 
tance traveled by the simulated robot is measured at
all times. LAUNCHRRTFRONTIERDETECTOR then
launches the RRT frontier detection process for the
robot. RECORDCURRENTTIME then records the start- 
ing time to a variable named tstart While the RRT
frontier detection process is running, the running time
trunning is recorded by RECORDCURRENTTIME . The
updated elapsed time telapsed is then calculated by finding
the difference between trunning and tstart. The up- dated
distance traveled by the robot is then recorded using
the ”distance” attribute of the initialized move- ment
detector. If at any moment the elapsed time telapsed

exceeds the maximum cutoff time tmax, the RRT
frontier detector process will be terminated by setting
RRTFRONTIERDETECTORRUNNING to FALSE.
When the RRT frontier detection process terminates,
the elapsed time telapsed will be checked if it’s greater than
the maximum cutoff time tmax or less than the minimum
cutoff time tmin. If the above condition is met, the
current trial will be ignored. Otherwise, both

the elapsed time telapsed and distance traveled dtraveled 
by the robot will be recorded to dedicated CSV files 
for later analysis using DISTANCEADDTOCSV dtrial and 
TIMEADDTOCSV ttrial . The next trial is then proceeded 
with the above routine. 

IV. EXPERIMENTS  SET-UP

A. Environments Used in Simulations

The two environments used for this framework are created
using the Gazebo simulator [19], which provides realistic 
robotic movements, a physics engine, and the generation of 
sensor data combined with noise. 

a) Apartment: The first environment shown in Fig.
2, is a customized map with an area of approximately .
m (free space area). 

Fig. 2. The custom apartment environment. Dimension . m× . m. 
Environment size ≈ . m2. 

b) Office: The second environment shown in Fig.
3, is a customized map with an area of approximately 
m (free space area). 

Fig. 3. The custom office environment. Dimension . m × . m. 
Environment size ≈ m2. 

B. Parameters Used in Simulations

a) Apartment Environment: The following are the
parameters used for this particular environment: 

Minimum cutoff time: seconds
Maximum cutoff time: seconds

These parameters are set since the RRT exploration trial can
sometimes prematurely end due to SLAM map refresh rate and 
frontier points update update mismatch. 
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b) Office Environment: The following are the parame- 
ters used for this particular environment: 

Minimum cutoff time: seconds
Maximum cutoff time: seconds

These parameters are set since the RRT exploration trial can
sometimes prematurely end due to SLAM map refresh rate and 
frontier points update update mismatch. 

V. R
A. Apartment Environment

Figures 4 and 5 show the histograms of distance traveled by
the robot and elapsed time over 100 trials when the robot starts 
from the center initial position. 

Fig. 4. Distance traveled histogram for center initial position at the Apartment 
environment. 

Fig. 5. Time elapsed histogram for center initial position at the Apartment 
environment. 

We have conducted 100 trials with various initial positions. 
Figures 6 and 7 show the box plots of distance traveled and time 
elapsed for all the initial positions. As can be seen in the 
box plots, the center initial position yields the longest median 
distance traveled. This, as can be observed from Figure 2, is due 
to the robot starting from a region with obstacles (tables) in that 
room. The robot would travel back and forth 

more often to find the assigned frontier points around those 
obstacles. Whereas the lower right initial position yields the 
longest median time elapsed. This, again can be observed from 
Figure 2, is due to the robot starting from a narrow region. The 
robot would sometimes hang in place thus this initial position 
does not yield longer distance traveled than the center. 

Fig. 6. Distance traveled box plot for the Apartment environment. 

Fig. 7. Time elapsed box plot for the Apartment environment. 

B. Office Environment

We have also conducted 100 trials with various initial
positions for this environment. Figures 8 and 9 show the box 
plots of distance traveled and time elapsed for all the initial 
positions. As can be seen in the box plots, the lower right initial 
position yields the longest median distance traveled and time 
elapsed. This, as can be observed from Figure 3, is due to the 
robot starting from a more restricted region by the surrounding 
walls in that room. The robot would travel back and forth more 
often to find the assigned frontier points, and the RRT frontier 
detector tree would need more time to expand to the other rooms. 
Whereas the upper left initial position yields the shortest 
median distance traveled and time elapsed. This, again can be 
observed from Figure 3, is due to the robot starting from a more 
spacious region. The robot would travel in straight line to find 
the assigned frontier points most of the time, and the RRT 
frontier detector tree would expand to the other rooms faster. 
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Fig. 8. Distance traveled box plot for the Office environment. 

Fig. 9. Time elapsed box plot for the Office environment. 

VI. CONCLUSIONS

In this work, we developed an automated RRT frontier de- 
tection evaluation framework based on the module developed 
by [2] that is implemented in ROS. The evaluation framework 
is able to automate any desired number of trials using RRT 
without constant user intervention, including the ability to start 
and end each trial automatically, as well as collect statistical 
results that can be saved in CSV format for further external 
analysis. Furthermore, the framework can also be configured 
with custom map layouts and trial parameters, such as initial 
positions, allowing for high levels of customization that can be 
tailored to any future research needs. 
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