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Abstract—Recent research in deterministic sensor place-
ment optimization technologies has improved the capability
of monitoring large-scale field environments with a limited
budget. In traditionalstochasticmixed-integer linear program-
ming formulations, minimizing the expectation of detection
time can lead to a detector placement with good average
behaviorbut unexpectedworst case behavior.The uncertainty
factors in the complex environment and sensor system sig-
nificantly challenge the effects of the placement strategy pro-
vided by stochastic programming (SP). These factors include
unknown leakage rate and location, sensor delay, and pri-
mary uncertainty of wind conditions. This article introduces
a distributionally robust optimization (DRO) formulation of
sensor placement under the uncertainty of wind conditions
and improves a sensor network’s detection robustness. The
method is demonstrated using the atmospheric simulation with site-specific methane-emission scenarios that capture
partial natural wind conditions and emission characteristics.DRO techniques are employed to determine sensor locations
that minimize the detection time expectation of the emission scenarios with a significantly better worst case behavior.
Experiment results show that the proposed DRO method outperforms the sensor placement methods based on SP.

Index Terms— Carbon monitoring, distributionally robust optimization (DRO), methane sensor, mixed-integer program-
ming, optimal sensor placement.

NOMENCLATURE

e ∈ E Set of all events.

L Set of all candidate sensors.

Le Set of all sensors that are capable of detecting event

e.

pe Probability of occurrence for event e.
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de,i Damage coefficient for leak event e at location i .

d 0
e,i Worst case expectation of de,i under uncertainty.

xe,i Indicator for location i that first detects event e.

yl Binary variable indicating if a sensor is installed at

location l.

ci Cost of sensor i .

c Sensors’ budget.

κ Radius of the uncertainty ball.

B
de,i
κ Uncertainty set.

Q Arbitrary distribution within uncertainty set.

T Empirical distribution of de,i .

G+ Set of all probability distributions.

DW Wasserstein distance.

S Number of historical data for empirical distribution.

H Number of bins for empirical distribution.

γ Confidence level.

I. INTRODUCTION

M
ETHANE is the primary component of natural gas

and the second most anthropogenic greenhouse gas

emitted into the atmosphere, which has global warming
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power estimated to be 28–36 times more than CO2 over

the last 100 years from release [1], [2] and 80 times more

potent over 10–20 years from release. Roughly, a third of

the contemporary anthropogenic methane emissions come

from the fossil fuel energy sector worldwide [3], [4], [5].

Curbing methane emissions happening in new and existing

oil and gas infrastructure and restricting unexpected leakage

and intentional releases of methane at oil and natural gas

facilities is considered an effective strategy to slow the rate of

near-term climate warming [6]. New sensors and monitoring

technologies have been increasingly studied and developed

to identify and remove methane leakage in the oil and gas

industry. A key challenge of methane-emission monitoring is

that of comprehensively, accurately, and robustly measuring

large areas at a resolution that allows the separation of different

types of local sources with the lowest cost. Therefore, optimal

methane sensors’ placement serves as one of the essential

techniques to identify the leakage of methane.

Sensor placement optimization problems as one category

of facility location problem (FLP) [7] have been studied

extensively and applied to a wide range of applications, such

as energy management [8], wireless sensor placement [9],

[10] [11], water quality sensor placement [12], and surveil-

lance cameras placement [13]. Sensor placement optimization

is often formulated as coverage formulation or P-median [14]

mixed-integer linear programming (MILP) formulation. With

a coverage formulation, the optimal sensors are placed to max-

imize the geographic sensing covered region straightforwardly

and the capability to detect the most scenario from numerous

leakage scenarios. With a P-median formulation, sensors are

placed to minimize specific emission impact metrics, e.g., the

cost associated with damage. Usually, the emission damage

is proportional to the first detection time after the emission

occurred. These two formulations are early proposed to solve

the water sensor placement problem [12]. Then, they are

applied to the gas sensor placement [15], [16] in petrochemical

facilities and site-scale methane-emission monitoring [17]

recently.

Klise et al. [17] proposed a sensor placement optimiza-

tion scheme based on atmospheric dispersion models and

an open-source MILP solver and developed an open-source

Python package named Chama. In this sensor placement

scheme, both maximum-coverage and minimum-impact prob-

lems are formulated and solved in two steps. The first step

is the simulation of methane-emission dispersion maps based

on the possible leak data (leak rate and leak locations) and

wind data (wind speed and wind direction). The second

step is to solve an MILP problem with given sensor data

(sensitivity and budget) using the MILP solver. This scheme

uses multiple simulations, called scenarios or leakage events,

to represent the system under different conditions to account

for uncertainty. The methane sensing system discussed in

this article is a point sensor system placed in cubic space

with averaged weather data sampled in Fort Worth, Texas,

which contains oil&gas facilities as potential methane leakage

sites. The current oversimplified weather model would cause

performance to deteriorate when the real condition is different

from the condition used for sensor placement simulation.

The current solution algorithm would need to simulate all

possible scenarios with all possible weather conditions on

this site to prevent this problem. Again, the methane sensor

placement is facing the following challenges.

1) Unexpected wind conditions caused detection time

shifts.

2) Sensor bias, noise, and failure caused detection time

shift.

3) Methane propagation physical modeling error compares

to the real environment.

One straightforward way to attempt to solve these chal-

lenges could be given as follows:

1) utilizing more complex wind prediction models or

increasing simulation numbers trying to capture the

distribution of nature [18], [19];

2) improving the sensor’s detection time by using more

advanced sensors, denoising technology, or simply

increasing the sensor’s number [20], [21] [22];

3) improving the physical model of methane propaga-

tion [23].

Each method has its technical challenges and can significantly

increase the solution’s complexity and costs, such as sensor

budget and computational cost. Moreover, the facts mentioned

above will cause the detection time distribution to shift

between simulated and reality.

To solve uncertainty challenges generally, there are three

optimization approaches under the uncertainty in the opti-

mization domain: robust optimization (RO), stochastic pro-

gramming (SP), and distributionally RO (DRO). The RO

method considers the worst case scenarios as constraints,

with a significantly lower probability of actual occurrences.

Although it provides a safe guarantee, the RO method leads

to the most conservative strategies with moderate performance.

The SP method typically assumes that the decision-maker has

complete information on the uncertainty distribution. However,

this assumption is too extreme since it usually does not hold.

In most problems, decision-makers do not know the true

distribution of the uncertainty, especially when the data are

limited. The previous P-median MILP formulation is an SP

method assuming a uniform distribution of simulated leakage

events. Ultimately, DRO [24] bridges the gap between RO

and SP, which builds an uncertainty set of the distribution

for uncertainty parameters based on the data. The data-

driven method, the DRO method, can efficiently utilize the

limited dataset and provide a robust solution. Moreover,

this solution has a better performance than the RO method

and a safer guarantee than traditional methods that do not

consider uncertainty in optimization tasks, such as portfolio

selection [25], flexible generation resources management [26],

and computational offloading [27]. Therefore, this article

proposes a distributionally robust methane sensor placement

optimization framework that is robust to detection time shifts

caused by unexpected wind conditions. The proposed method

can resist the unseen weather performance in the experimental

site because it had estimated the uncertainty level before

the optimization and optimized the sensor placement under

the worst case scenario. Instead of improving the specific

component of the sensor placement scheme, we propose
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to estimate the possible worst time-shift distribution based

on the historical data. With this uncertainty estimation, the

method provides a more robust sensor placement strategy for

the sensor placement. This proposed method also adaptively

adjusts the uncertainty constraints level of the uncertainty set

based on a data-driven way.

The contribution of this article can be summarized as

follows.
1) The experiments in this article show that the perfor-

mance of the traditional sensor placement optimization

method will become worse as the environment distribu-

tion shift, which is a typical challenge for all methane

sensor placement problems.

2) To the authors’ best knowledge, this article is the first

data-driven DRO method for solving sensor placement

problems with risk awareness.

3) In formulation, this article is the first to consider the

impact of leakage events like the first detection time

as a distribution instead of a deterministic variable.

This distribution assumption makes quantification of

uncertainty possible.

4) In solution, this article proposes the integrated solu-

tion that combines the new proposed risk estimation

and previous open-source MILP solution to solve the

distributional shift under uncertainty caused by any

uncertain facts for methane sensor placement. Moreover,

the example and experiments of single-sensor placement,

single-sensor detection time analysis, and multiple wind

conditions show the proposed method’s effectiveness.
The remainder of this article is arranged as follows.

Section II describes the problem formulation and distrib-

utionally robust approach in detail. Section III shows the

optimization results of our method using the synthetic training

dataset and testing dataset of leakage constructed based on the

historical leak and wind data.

II. METHOD

A. Problem Statement

The methane sensor placement problem is a practical gen-

eral sensor placement problem for carbon neutrality. Sensor

placement is the subset of location planning problems that

involves specifying the physical position of facilities that

provide demanded services. Examples of facilities include

hospitals, restaurants, ambulances, retail and grocery stores,

schools, and fire stations. In this article, the facilities are the

methane sensors, and the demanded service provided by the

methane sensors is methane leakage monitoring. The ultimate

goal is to use the least amount of sensor budget to design

sensor networks for unknown leakage events with the fastest

alert time under unknown environmental conditions. There

were various models to solve this problem, and the most

common model considered a specific type of discrete location

model for numerical simulation purposes. Leaking sources and

sensors are in discrete positions in a 3-D space. The P-median

formulation is a specific type of discrete problem formulation

originally proposed to place p facilities to minimize the

(demand-weighted) average distance between a demand node

and the location in which a facility was placed. In this article,

the modified P-median formulation is proposed for tackling

the uncertainty challenges in the sensor methane placement

problem.

B. Problem Formulation

The distributionally robust P-median mixed-integer pro-

gramming formulation used in methane-emission applications

to place sensors that minimize detection time under uncertainty

is given by

min
yl

�

e∈Ee

pe

�

i∈Le

sup

Q∈B
de,i
κ

E (Q) xe,i (1)

subject to
�

l∈L

yl ≤ c (2)

xe,i ≤ yi ∀ e ∈ E, i ∈ Le (3)
�

i∈Le

xe,i = 1 ∀ e ∈ E (4)

yl ∈ {0, 1} ∀ l ∈ L (5)

0 ≤ xe,i ≤ 1 ∀ e ∈ E, i ∈ Le (6)

B
de,i
κ := {Q ∈ G+ : DW (Q, T ) ≤ κ} . (7)

The notation used in the problem is summarized in the

Nomenclature. In the interest of the methane leakage site,

there exists a set of potential methane sensor locations, defined

as L = {1, 2, . . . , N}, where L is the set of all N potential

locations, indexed by l. E = {1, 2, . . . , M} represents the set

of leakage events considered, where E is the set of all M

leakage events. A single event is indicated by e. Not all sensor

locations are affected by each leakage event. The subsets

Le ⊆ L,∀ e ∈ E , are defined such that Le contains all the

sensor locations that can detect particular leakage event e.

Parameter pe is the probability associated with leakage event

e out of all events in E , and
�

e∈E pe = 1.

It is important to note that de,i is the applicable damage

coefficient if leak event e is first detected by a sensor at loca-

tion i . For the methane case study, previous studies [15], [28]

pursue to minimize the expected value of the first detection

time of all simulated leak events with the assumption of

the total volume of leakage from the event e corresponding

to first detection time by a methane sensor at location i .

Therefore, de,i is designed to be the time required for a

sensor at location i to detect the leak simulated in the

event e. In previous studies’ [15], [28] formulation, de,i is

a deterministic parameter and neglects the statistical nature

of the real environment. In our proposed formulation, de,i is a

distribution considering sensor delay caused by the uncertainty

of environment modeling.

The binary decision variable yl represents the existence of

a sensor (yl = 1) or not (yl = 0) at location l. Equation (2)

constrains the maximum number of methane detectors placed

to be no more than the parameter c, the total sensor budget.

Each xe,i is an indicator variable that has a value of 1 if a

sensor at location i is the first sensor to detect the leak event

e among all sensors active for this event and 0 otherwise. The

difference between y and x is that there might be multiple

sensors installed and activated by the leak event, but only one
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is the first sensor to detect this event. Equation (3) ensures

that location i can only be the first to detect leak event e if

there is a sensor placed at location i . Therefore, if yi = 0, the

location i cannot claim to be the first to detect an event.

The objective function equation (8) can be reformulated to

a standard MILP problem’s minimum objective function [17]

by solving the following distributionally optimization problem

first:

d 0
e,i = max

Q∈B
de,i
κ

E (Q) (8)

subject to

B
de,i
κ := {Q ∈ G+ : DW (Q, T ) ≤ κ} (9)

κ =

�

H

2S

�

log

�

2H

1 − γ

�

(10)

where G+ represents the set of all possible distributions. In (9),

DW denotes the probability distance between any arbitrary

distribution and the reference empirical distribution, de,i within

uncertainty set B
de,i
κ , Q ∈ B

dei
κ . In this article, we use the L1

Wasserstein distance as DW . According to [29, Proposition 1],

given a set of historical data, (10) defines the relationship

between the size of data and the value of uncertainty level

κ under the L1 norm. Here, S, H , and γ denote the size of

historical data, the number of bins, and the confidence level,

respectively.

C. Solution

The major innovation of the proposed method is that it

provides an uncertainty-resistant robust solution by leveraging

the cutting-edge uncertainty-aware optimization theory and

historical data of methane leakage and environment features

generated from the physical numerical simulation model.

Following [17], this article focuses on the remaining open

challenge of the persistent nature of methane leaks and uncer-

tainty in atmospheric conditions, which prevent researchers

from studying P-median sensor placement formulations for

methane leakage sensor placement. We considered the uncer-

tainty of wind speed and constructed the framework based

on Fig. 1, composed of five core processes. The first two

steps demonstrate similar modeling processes as in [17] and

prepare the methane dispersion geospatial characteristic events

for optimization. Instead of adopting events’ group simulated

based on upscaled wind data for MILP directly, we propose a

new data-driven component to estimate the uncertainty of the

current dataset for optimization of worst case events.

The five core steps of our new proposed solution framework

are given as follows.
1) Historical Data Input: This step relates to acquiring

and preprocessing the data required for the solution.

Oil and gas facility locations, including wells, natural

gas pipelines, and processing plants, available in the

public domain, are identified for the area of interest,

which could be inferred from satellite images or civil

construction records. Historical emissions distribution

data related to source leak rates are a function of the

oil and gas facility type. Therefore, the leak rates are

selected from empirical data published in the Fort Worth

Natural Gas Air Quality Study [30]. Multiple events are

simulated to capture methane concentration distribution

concerning uncertain leak location, leak rate, leak height,

and wind speed and direction. Wind speed and direction

are defined using data collected in Fort Worth in 2015 by

NOAA [31].

2) Methane Dispersion Simulation: This is the

physical-based element of the framework that models

the movement of methane in the atmosphere over the

area of interest using atmospheric-based dispersion

models. This article adopts the Gaussian plume model

to the atmospheric dispersion model for methane

transport schemes.

3) Estimate Uncertainty of Historical Data: There are three

ways to explore the persistent nature of uncertainty in

atmospheric conditions: stochastic optimization (SO),

RO, and DRO. Most studies focus on SO: decreasing

the uncertain level by increasing the simulation events’

number or using more complex atmospheric transport

models. In theory, increasing the sample number can

result in a better-fit model to the empirical distribution as

a known distribution to optimize the objective function.

However, the distribution will shift over time due to

facts such as climate change [32]. This no-distribution-

shift assumption limited these SO methods being

applied to the out-of-sample scenarios. Moreover, these

methods face significant inaccurate challenges when

modeling the atmosphere and simulating with limited

computational resources [33]. The RO aims to determine

the uncertainty boundary of natural atmospheric

distribution and optimize theoretical worst case events,

which is over pessimist because the worst case has a

very small probability of happening in reality. Therefore,

we propose the DRO to optimize over the worst case

within an uncertainty set constructed based on the

empirical distribution and uncertain level estimated

from data. Once the events have been simulated using

the physical dispersion model and upscaled wind data in

step 2, each potential sensor placement grid point will

have an empirical distribution of detection time for each

leakage event. Considering that the actual distribution

might be different from this empirical distribution,

we use statistical inference to define the uncertainty set

corresponding to a given radius of the uncertainty set

and the Wasserstein L1 distance. Within this uncertainty

set, we can determine the worst Dirac delta distribution

of detection time at each sensor grid point.

4) MILP: The newly generated worst case events have the

same data schema as the original P-media formulation

and can be solved by any MILP solver. In this

article, we utilize the open-source python-based sensor

placement optimization software Chama [28], which

constructed optimization using Pyomo [34] and is

solved using an open-source GNU linear programming

kit (GLPK) [35]. The open-source solver GLPK can be

used for many applications. For future work, there are

several ways to improve the accuracy of the proposed

methods and lower the missing leakage events in the
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Fig. 1. Workflow of the distributionally robust sensor placement optimization for site-scale methane-emissions monitoring.

Fig. 2. 3-D view of potential leak locations (blue triangles) and candidate
sensor locations (yellow circles).

out-of-sample testing set. First, increasing the sampling

number will likely increase the confidence level of

avoiding those missing events. Second, use a more

reliable and sensible sensor. Third, satellite and air-bone

sensor has shown the promising capability to detect

methane on a site scale [36], [37]. A DRO multimodel

sensor fusion sensor network could also improve the

accuracy.

D. Single-Sensor Placement Example

Assuming that there is one leak source and two sensor

placement candidates’ locations, the total sensor budget can

only afford to place one sensor near this methane leak source.

Based on the historical data, the minimum detection time

in two locations is two distribution, dA = [0, 2, 6, 6, 6] and

dB = [3, 3, 3, 3, 8]. The ultimate goal is to pick one sensor,

place location to place sensor, and expect to minimize the

detection time in future leak events. If we use the SP method,

both sensor candidates have the same expectation detection

time E[dA] = 4 and E[dB] = 4, which cannot help distinguish

the superior sensor candidates. On the other hand, the RO

method will take the worst case scenario of each distribution

to make the decision, max(dA) = 6, max(dB) = 8, resulting in

choosing sensor A as the placement strategy. DRO-based worst

case expectations of sensors A and B’s minimum detection

times are calculated by using the L1 Wasserstein distance with

confidential γ = 0.9; based on 10, κ = 2, Eworst(dA) = 6,

and Eworst(dB) = 14/3, and choose that the sensor B is the

best choice. Eworst(dA) and Eworst(dB) are calculated by

solving the following equations:
⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

1

5
|Eworst (dA)| +

1

5
|Eworst (dA) − 2|

+
3

5
|Eworst (dA) − 6| = 2

4

5
|Eworst (dB) − 3| +

1

5
|Eworst (dB) − 8| = 2.

(11)

III. EXPERIMENT

The case study in Section III-A is similar to [28]. The

open-source data [31] are utilized to determine the wind

conditions setting. This case study provides a general methane

emissions setting that allows methods’ development and eval-

uation. The case study’s simulation and optimization are

performed using Chama [17], and the open-source solver

GLPK [35] with custom-developed uncertainty quantification

and detection-time-shift correction tool.

A. Simulations Setting

Fig. 2 shows the 3-D simulation domain. The simulation

area is defined as a 100 × 100 × 10 m cubic region. There

are 30 potential source points (blue triangles) within this area,
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Fig. 3. Methane plume simulation using one wind speed trace, one
sensor (red star), and one leak rate in the top-view view.

Fig. 4. Methane plume simulation using one wind speed trace, one
sensor (red star), and one leak rate in the cross-sectional view.

indicating ten potential locations near the surface (0 m–2 m).

These points represent equipment and devices that have the

potential to emit methane, such as well, pipelines, and plants.

Moreover, candidate sensor locations (yellow circles) are the

grid points that can install sensors for monitoring.

For the physical simulation, the methane leakage propa-

gation processing and concentration are modeled using the

Gaussian plume model in Chama [17]. Each leak event

simulates a single emission scenario (one leak source point

with one leak rate) over one day using a 1-h time step.

In addition, we set the impact of this event to 72 h if the event

is failed to be detected. In space, the simulation model domain

is divided into one m3 cell. Figs. 3 and 4 show the top view

and side view of an example of a leak event extent scenario

and one sensor candidate position near the source location,

respectively. According to the physical model, the extent of

methane plume increases as the leak rate increases. The extent

of methane plume and detection time for the candidate sensor

is also affected by the wind speed and direction. In the

simulation, the steady-state Gaussian plume model’s extent is

recomputed at each time step as the wind speed and direction

change over the day.

Multiple events are simulated as events set and used to

capture methane concentration concerning the uncertainty of

leak location, leak rate, leak height, wind speed, and direction.

However, it is difficult to capture the distribution of all

uncertainty by simply increasing the simulation scenarios’

number. Although the leak position and leak range might

Fig. 5. Wind direction over a single day, including original 1-min original
data (green line) and data averaged to 1 h (blue line).

Fig. 6. Wind speed over a single day, including original 1 min original
data (orange line), data averaged to 1 h (green line), and one perturbation
wind trace (pink line).

be stable in a particular location and range, the wind data’s

uncertainty can be hard to capture with limited data. Moreover,

the computational costs also increase drastically when the

simulation’s wind conditions increase.

In the previous study, Klise et al. [17] proposed reducing

the amount of wind data used in the simulations by random

selection and vector averages. Wind speed and direction

are defined using data collected in Fort Worth in 2015 by

NOAA [31]. A comparison of the original wind data and

averaged wind data, for one example day’s wind direction

and wind speed, are shown in Figs. 5 and 6, respectively.

The averaging result focuses on capturing predominant wind

characteristics throughout the year but results in a loss of wind

variability. Fig. 6 also shows one perturbation wind speed

condition sampled from assumed real wind speed distribution,

assuming as a Gaussian distribution with mean as average

wind speed and before average variance as the stand deviation.

Leak rates are selected from empirical data as in [17], as shown

in Fig. 7. Each leak event simulation is defined by one day of

wind speed trace, one wind direction trace, one leak location,

and one leak rate.

In this case study, the locations for candidate sensors

are defined using a regular grid throughout the model

domain, same as setting in [17], at 10-m spacing in the

x- and y-directions and 1-m spacing (starting at the

ground elevation) in the z-direction. This setting results in

810 (9 × 9 × 10) candidate sensors. The total sensor budget

is set to $100 000, and each sensor has 0.1 active thresholds

with $10 000 cost.
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TABLE I

SENSORS

B. Sensor’s Discussion

The sensor used in our numerical simulation experiment is

an ideal point sensor with characters listed in Table I. We also

provide both one high cost and low cost, most commonly used

sensor as the reference for practical use reference. Methane

is presented in the atmosphere at low concentrations, with

a global background concentration of around 1.8 ppm [38].

The most used sensor in environments with low methane

concentrations is the cavity ring-down spectrometry (CRDS)-

type sensor [39]. One example of a CRDS sensor is Los Gatos

UGGA that served as a reference instrument for methane [40].

It has a high precision (one standard deviation <2 ppb at 1 Hz)

and has been used on long-term measurements [41], [42].

However, the cost and the power consumption remain an issue.

Therefore, there is a growing interest in incorporating it into

monitoring networks [43]. One example of a low-cost sensor

is the Taguchi Gas Sensors, such as TGS 2611(Figaro Engi-

neering Inc., Osaka, Japan), which are designed to measure

ambient methane mixing ratios between 500 and 10 000 ppm.

C. Detection Time Distributionally Robust Analysis

Fig. 3 shows one leak event leaked at (65, 60, 5). The one

sensor candidate near this source is plotted as a red star located

at (70, 50, 7). The leak rate is set to 5, and the detection

threshold of this sensor is set to 0.01. With the Gaussian wind

speed distribution, randomly sample 25 wind speed traces

to generate detection time’s empirical distribution, as shown

in Fig. 8. The blue bins indicate the empirical distribution

of the minimum detection time at this sensor place. The

green bin is the expectation of the minimum detection time

at this sensor candidate place, and the red bin indicates the

distributionally robust expectation of the minimum detection

time. From Fig. 8, the confidential level changes from 0.5 to

0.7 and 0.9, and the associated distributionally worst spike

distribution is the shift from the low value near the mean to

the maximum value of the original distribution. Accordingly,

the uncertainty set contains more distribution and the method

because more conservative. When the confidentiality level

increases, the result obtained from DRO will become closer

to that obtained from RO.

D. Dataset’s Preparing

With the vector averaged wind conditions as the fixed

environment, 37 basic leak events set are generated by

sampling different values from the leak rate data and leak

height distribution. As shown in Figs. 5 and 6, we assume

that the true natural wind speed and direction distribution

are the Gaussian distributions with averaged wind speed and

direction trace as the mean. The variances of these Gaussian

distributions are calculated from the actual measured

Fig. 7. Probability distribution of leak rate data.

Fig. 8. Probability distribution of minimal detection data (blue bins).
The expectation of this distribution (green spike). Distributionally robust
expectation spike distribution (red) with different confidence levels.

wind data. For the testing dataset, we sample four disturbed

wind conditions from Gaussian. Wind conditions, combined

with basic leak events set to generate testing leak events

dataset, result in 148 events (four wind conditions × 37 leak

scenarios). Like the testing leak events set, we assume that the

observation wind condition is different from the true wind dis-

tribution. We modeled the observed wind distributions as two

Gaussian distributions with perturbated wind speed like Fig. 6

and perturbated wind direction traces as the mean, which can

cause up to 30% scale wind speed and wind direction shift.

The observed wind distribution also has a half-scaled variance

than the true distribution, making it more biased. We sampled

two wind conditions from the observation wind distribution

and utilized them to generate 74 leak events (two wind

conditions × 37 leak scenarios) as the observation leak

events set.

E. Results

Optimal sensor placements of different methods are vali-

dated using testing leak events set, which has different scenar-

ios than those used in the optimization. This comparison helps

determine how optimal sensor placement methods perform

under different conditions. Three methods are compared in this
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TABLE II

TESTING ACCURACY

TABLE III

TESTING OBJECTIVE

Fig. 9. Minimal detection time on testing leak events set: DRO (red),
MEAN (blue), and SO (orange).

Fig. 10. DRO and SO residual of minimal detection time on testing leak
events set with the mean method as the baseline.

section, DRO sensor placement method, SO sensor placement

method with averaged wind condition (MEAN), and SO sensor

placement with all leak events in observation wind conditions

(SO). Also, these methods are validated in leak events used for

their optimization. The comparison optimization performance

and the testing performance of traditional averaged wind

method and traditional stochastic method on the limited obser-

vation leak events face the performance dropping when facing

out-of-sample performance dropping. In other work, these

traditional methods are biased toward observing leak events

and cannot be generalized to the out-of-sample scenarios.

Fig. 9 compares minimal detection time distributions from

a distributionally robust optimal sensor placement strategy

to an average wind optimization sensor placement strategy

and stochastic optimal sensor placement strategy using the

minimal detection time distributions. Also, with the mean

method’s distribution result as the baseline, the residual of

DRO and SO methods has been shown in Fig. 10. Table II

compares DRO, SO with observation wind conditions, and

SO with mean wind conditions using the detection accuracy.

Moreover, Table III compares these three methods using the

Fig. 11. Optimal sensor placements using SO, MEAN, and DRO.

minimal detection time expectation objective. Results show

that the optimal placement consistently outperforms sensors

placed using the SO method. As the newest proposed method

in the literature, the mean method has high accuracy and

objective result in leak events used for its optimization.

It can detect all 37 basic leak events (100% accuracy) with

16.97297297-h expected minimal detection time. However,

it fails to detect 30 leak events in the testing leak events

set with 148 events in total, which results in roughly 20%

accuracy dropping (79.73%), and the objective increasing from

16.97297297 to 24.79054054 h. Similar results are observed

when we increase the leak events used for the SO. The SO

method can achieve 95% accuracy with three events missing

and 17.97297297 objectives in the observation leak events set

but still has significant performance dropping in the testing

leak events set, 84% and 20.11486486, which means that

it fails to detect 23 events out of 148 testing events. The

proposed DRO method has a relatively robust performance

with the accuracy performance of 95% accuracy in observation

events set with three missing events and 18.55 objectives

and in the testing set with 87% accuracy, 19 missing events,

and 18.86 objectives. Fig. 11 shows the sensor placement

strategies of the stochastic method by using a single mean

wind condition or multiple observation wind conditions, the

placement of DRO with the same observation wind conditions,

and the leakage source locations.

All methods have performance dropping when validating

their placement optimized from their observation dataset to

the testing dataset because the observation dataset and testing

dataset are sampled from two different distributions with a

distribution shift. The observation is limited to the number and
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observation environment and bias; therefore, the optimization

result solely based on these observation data faces the gen-

eralization problem. However, because DRO is considered,

the worst case events are based not only on the empirical

distribution (observation distribution) but also on all possible

distributions within the uncertainty set. In the DRO theory,

this uncertainty set contains the true distribution of the natural

environment at a confident level. The validation performance

can remain relatively robust with the DRO optimization result

event when validation leak events are sampled from a distrib-

ution that differs from the observation leak events distribution.

IV. CONCLUSION

In this article, we proposed a DRO formulation of the site-

scale methane-emission sensor placement problem for oil and

gas industry carbon footprint monitoring. To the best of the

authors’ knowledge, this is the first DRO method that has been

proposed to provide a data-driven robust sensor placement

solution. Accounting for the big gap between observation and

the real-life environment is also known as a distribution shift

or generalization problem. When the observation sample is

limited, we proposed an uncertainty-level estimation com-

ponent to provide a safe solution under the uncertain. The

experiments demonstrated as follows. First, traditional and

proposed methods face performance dropping when validating

their placement on testing sets that are different from the

leak events used in their optimization. Second, insufficient

sample or biased observation of the environment will harm

the performance of non-RO and cause significant damage

such as missing events or increasing the detection time.

Third, the proposed DRO sensor placement method has the

lowest performance gap dropping in terms of accuracy and

objective. Also, it achieved the highest performance on the

out-of-sampled testing leak events set. Finally, in all results

presented in this article, the proposed distributionally robust

sensor placement algorithm has a relatively better robust

performance when facing observation limitations (observation

data shortage). It took uncertainty into account and performed

risk-aware updates during optimization. For future work, there

are several ways to improve the accuracy of the proposed

methods and lower the missing leakage events in the out-

of-sample testing set. First, increasing the sampling number

will likely increase the confidence level of avoiding those

missing events. Second, use a more reliable and sensible sensor

with more practical characteristics. Third, satellite and air-bone

sensor has shown the promising capability to detect methane

on a site scale [36], [37]. A DRO multimodel sensor fusion

sensor network could also improve the accuracy.
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