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Abstract—Recent research in deterministic sensor place-
ment optimization technologies has improved the capability
of monitoring large-scale field environments with a limited
budget. In traditional stochastic mixed-integer linear program-
ming formulations, minimizing the expectation of detection
time can lead to a detector placement with good average
behavior but unexpected worst case behavior. The uncertainty
factors in the complex environment and sensor system sig-
nificantly challenge the effects of the placement strategy pro-
vided by stochastic programming (SP). These factors include
unknown leakage rate and location, sensor delay, and pri-
mary uncertainty of wind conditions. This article introduces
a distributionally robust optimization (DRO) formulation of
sensor placement under the uncertainty of wind conditions
and improves a sensor network’s detection robustness. The
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method is demonstrated using the atmospheric simulation with site-specific methane-emission scenarios that capture
partial natural wind conditions and emission characteristics. DRO techniques are employed to determine sensor locations
that minimize the detection time expectation of the emission scenarios with a significantly better worst case behavior.
Experiment results show that the proposed DRO method outperforms the sensor placement methods based on SP.

Index Terms— Carbon monitoring, distributionally robust optimization (DRO), methane sensor, mixed-integer program-

ming, optimal sensor placement.

NOMENCLATURE
e €& Setof all events.
L Set of all candidate sensors.
L, Set of all sensors that are capable of detecting event
e.
De Probability of occurrence for event e.
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de.i Damage coefficient for leak event e at location i.

dé, . Worst case expectation of d,; under uncertainty.

Xe,i Indicator for location i that first detects event e.

v Binary variable indicating if a sensor is installed at
location /.

ci Cost of sensor i.

c Sensors’ budget.

K Radius of the uncertainty ball.

B Uncertainty set.

0 Arbitrary distribution within uncertainty set.

T Empirical distribution of d, ;.

G4+  Set of all probability distributions.

Dw  Wasserstein distance.

S Number of historical data for empirical distribution.

H Number of bins for empirical distribution.

y Confidence level.

|. INTRODUCTION
ETHANE is the primary component of natural gas
and the second most anthropogenic greenhouse gas
emitted into the atmosphere, which has global warming
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power estimated to be 28-36 times more than CO> over
the last 100 years from release [1], [2] and 80 times more
potent over 10-20 years from release. Roughly, a third of
the contemporary anthropogenic methane emissions come
from the fossil fuel energy sector worldwide [3], [4], [5].
Curbing methane emissions happening in new and existing
oil and gas infrastructure and restricting unexpected leakage
and intentional releases of methane at oil and natural gas
facilities is considered an effective strategy to slow the rate of
near-term climate warming [6]. New sensors and monitoring
technologies have been increasingly studied and developed
to identify and remove methane leakage in the oil and gas
industry. A key challenge of methane-emission monitoring is
that of comprehensively, accurately, and robustly measuring
large areas at a resolution that allows the separation of different
types of local sources with the lowest cost. Therefore, optimal
methane sensors’ placement serves as one of the essential
techniques to identify the leakage of methane.

Sensor placement optimization problems as one category
of facility location problem (FLP) [7] have been studied
extensively and applied to a wide range of applications, such
as energy management [8], wireless sensor placement [9],
[10] [11], water quality sensor placement [12], and surveil-
lance cameras placement [13]. Sensor placement optimization
is often formulated as coverage formulation or P-median [14]
mixed-integer linear programming (MILP) formulation. With
a coverage formulation, the optimal sensors are placed to max-
imize the geographic sensing covered region straightforwardly
and the capability to detect the most scenario from numerous
leakage scenarios. With a P-median formulation, sensors are
placed to minimize specific emission impact metrics, e.g., the
cost associated with damage. Usually, the emission damage
is proportional to the first detection time after the emission
occurred. These two formulations are early proposed to solve
the water sensor placement problem [12]. Then, they are
applied to the gas sensor placement [15], [16] in petrochemical
facilities and site-scale methane-emission monitoring [17]
recently.

Klise et al. [17] proposed a sensor placement optimiza-
tion scheme based on atmospheric dispersion models and
an open-source MILP solver and developed an open-source
Python package named Chama. In this sensor placement
scheme, both maximum-coverage and minimum-impact prob-
lems are formulated and solved in two steps. The first step
is the simulation of methane-emission dispersion maps based
on the possible leak data (leak rate and leak locations) and
wind data (wind speed and wind direction). The second
step is to solve an MILP problem with given sensor data
(sensitivity and budget) using the MILP solver. This scheme
uses multiple simulations, called scenarios or leakage events,
to represent the system under different conditions to account
for uncertainty. The methane sensing system discussed in
this article is a point sensor system placed in cubic space
with averaged weather data sampled in Fort Worth, Texas,
which contains oil&gas facilities as potential methane leakage
sites. The current oversimplified weather model would cause
performance to deteriorate when the real condition is different
from the condition used for sensor placement simulation.

The current solution algorithm would need to simulate all
possible scenarios with all possible weather conditions on
this site to prevent this problem. Again, the methane sensor
placement is facing the following challenges.

1) Unexpected wind conditions caused detection time
shifts.

2) Sensor bias, noise, and failure caused detection time
shift.

3) Methane propagation physical modeling error compares
to the real environment.

One straightforward way to attempt to solve these chal-

lenges could be given as follows:

1) utilizing more complex wind prediction models or
increasing simulation numbers trying to capture the
distribution of nature [18], [19];

2) improving the sensor’s detection time by using more
advanced sensors, denoising technology, or simply
increasing the sensor’s number [20], [21] [22];

3) improving the physical model of methane propaga-
tion [23].

Each method has its technical challenges and can significantly
increase the solution’s complexity and costs, such as sensor
budget and computational cost. Moreover, the facts mentioned
above will cause the detection time distribution to shift
between simulated and reality.

To solve uncertainty challenges generally, there are three
optimization approaches under the uncertainty in the opti-
mization domain: robust optimization (RO), stochastic pro-
gramming (SP), and distributionally RO (DRO). The RO
method considers the worst case scenarios as constraints,
with a significantly lower probability of actual occurrences.
Although it provides a safe guarantee, the RO method leads
to the most conservative strategies with moderate performance.
The SP method typically assumes that the decision-maker has
complete information on the uncertainty distribution. However,
this assumption is too extreme since it usually does not hold.
In most problems, decision-makers do not know the true
distribution of the uncertainty, especially when the data are
limited. The previous P-median MILP formulation is an SP
method assuming a uniform distribution of simulated leakage
events. Ultimately, DRO [24] bridges the gap between RO
and SP, which builds an uncertainty set of the distribution
for uncertainty parameters based on the data. The data-
driven method, the DRO method, can efficiently utilize the
limited dataset and provide a robust solution. Moreover,
this solution has a better performance than the RO method
and a safer guarantee than traditional methods that do not
consider uncertainty in optimization tasks, such as portfolio
selection [25], flexible generation resources management [26],
and computational offloading [27]. Therefore, this article
proposes a distributionally robust methane sensor placement
optimization framework that is robust to detection time shifts
caused by unexpected wind conditions. The proposed method
can resist the unseen weather performance in the experimental
site because it had estimated the uncertainty level before
the optimization and optimized the sensor placement under
the worst case scenario. Instead of improving the specific
component of the sensor placement scheme, we propose
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to estimate the possible worst time-shift distribution based
on the historical data. With this uncertainty estimation, the
method provides a more robust sensor placement strategy for
the sensor placement. This proposed method also adaptively
adjusts the uncertainty constraints level of the uncertainty set
based on a data-driven way.

The contribution of this article can be summarized as

follows.

1) The experiments in this article show that the perfor-
mance of the traditional sensor placement optimization
method will become worse as the environment distribu-
tion shift, which is a typical challenge for all methane
sensor placement problems.

2) To the authors’ best knowledge, this article is the first
data-driven DRO method for solving sensor placement
problems with risk awareness.

3) In formulation, this article is the first to consider the
impact of leakage events like the first detection time
as a distribution instead of a deterministic variable.
This distribution assumption makes quantification of
uncertainty possible.

4) In solution, this article proposes the integrated solu-
tion that combines the new proposed risk estimation
and previous open-source MILP solution to solve the
distributional shift under uncertainty caused by any
uncertain facts for methane sensor placement. Moreover,
the example and experiments of single-sensor placement,
single-sensor detection time analysis, and multiple wind

conditions show the proposed method’s effectiveness.
The remainder of this article is arranged as follows.

Section II describes the problem formulation and distrib-
utionally robust approach in detail. Section III shows the
optimization results of our method using the synthetic training
dataset and testing dataset of leakage constructed based on the
historical leak and wind data.

Il. METHOD

A. Problem Statement

The methane sensor placement problem is a practical gen-
eral sensor placement problem for carbon neutrality. Sensor
placement is the subset of location planning problems that
involves specifying the physical position of facilities that
provide demanded services. Examples of facilities include
hospitals, restaurants, ambulances, retail and grocery stores,
schools, and fire stations. In this article, the facilities are the
methane sensors, and the demanded service provided by the
methane sensors is methane leakage monitoring. The ultimate
goal is to use the least amount of sensor budget to design
sensor networks for unknown leakage events with the fastest
alert time under unknown environmental conditions. There
were various models to solve this problem, and the most
common model considered a specific type of discrete location
model for numerical simulation purposes. Leaking sources and
sensors are in discrete positions in a 3-D space. The P-median
formulation is a specific type of discrete problem formulation
originally proposed to place p facilities to minimize the
(demand-weighted) average distance between a demand node
and the location in which a facility was placed. In this article,

the modified P-median formulation is proposed for tackling
the uncertainty challenges in the sensor methane placement
problem.

B. Problem Formulation

The distributionally robust P-median mixed-integer pro-
gramming formulation used in methane-emission applications
to place sensors that minimize detection time under uncertainty
is given by

mjn Z De Z sup E (Q)xe,i (D)
o ee&, iel, Qe]Bi“*[
subject to
dyszc )
lelL
Xei <yi Yee&, i€elL, 3)
D xei=1Veek& )
i€l
v €{0,1} Viel 5)
0<x,; <1 Veef&, icl, (6)

B :={Q e Gy :Dw(Q. T)<x}. (1)

The notation used in the problem is summarized in the
Nomenclature. In the interest of the methane leakage site,
there exists a set of potential methane sensor locations, defined
as L = {1,2,..., N}, where L is the set of all N potential
locations, indexed by [. £ = {1, 2, ..., M} represents the set
of leakage events considered, where £ is the set of all M
leakage events. A single event is indicated by e. Not all sensor
locations are affected by each leakage event. The subsets
L, C L,Ve € &, are defined such that L, contains all the
sensor locations that can detect particular leakage event e.
Parameter p,. is the probability associated with leakage event
e out of all events in £, and Zeeé‘ pe = 1.

It is important to note that d,; is the applicable damage
coefficient if leak event e is first detected by a sensor at loca-
tion i. For the methane case study, previous studies [15], [28]
pursue to minimize the expected value of the first detection
time of all simulated leak events with the assumption of
the total volume of leakage from the event e corresponding
to first detection time by a methane sensor at location i.
Therefore, d.; is designed to be the time required for a
sensor at location i to detect the leak simulated in the
event e. In previous studies’ [15], [28] formulation, d,; is
a deterministic parameter and neglects the statistical nature
of the real environment. In our proposed formulation, d,; is a
distribution considering sensor delay caused by the uncertainty
of environment modeling.

The binary decision variable y; represents the existence of
a sensor (y; = 1) or not (y; = 0) at location /. Equation (2)
constrains the maximum number of methane detectors placed
to be no more than the parameter c, the total sensor budget.
Each x,.; is an indicator variable that has a value of 1 if a
sensor at location i is the first sensor to detect the leak event
e among all sensors active for this event and 0 otherwise. The
difference between y and x is that there might be multiple
sensors installed and activated by the leak event, but only one
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is the first sensor to detect this event. Equation (3) ensures
that location i can only be the first to detect leak event e if
there is a sensor placed at location i. Therefore, if y; = 0, the
location i cannot claim to be the first to detect an event.

The objective function equation (8) can be reformulated to
a standard MILP problem’s minimum objective function [17]
by solving the following distributionally optimization problem
first:

dé’l- = max E(Q) 8)
Qe]Bi“’[
subject to
dei
B :={0 € G4+ :Dw (0, T) <k} 9)

H ! 2H 10
<= () () o
where G represents the set of all possible distributions. In (9),
Dw denotes the probability distance between any arbitrary
distribution and the reference empirical distribution, d, ; within
uncertainty set Bze’i, 0 € Bﬁ” . In this article, we use the L
Wasserstein distance as Dy . According to [29, Proposition 1],
given a set of historical data, (10) defines the relationship
between the size of data and the value of uncertainty level
x under the L1 norm. Here, S, H, and y denote the size of
historical data, the number of bins, and the confidence level,
respectively.

C. Solution

The major innovation of the proposed method is that it
provides an uncertainty-resistant robust solution by leveraging
the cutting-edge uncertainty-aware optimization theory and
historical data of methane leakage and environment features
generated from the physical numerical simulation model.
Following [17], this article focuses on the remaining open
challenge of the persistent nature of methane leaks and uncer-
tainty in atmospheric conditions, which prevent researchers
from studying P-median sensor placement formulations for
methane leakage sensor placement. We considered the uncer-
tainty of wind speed and constructed the framework based
on Fig. 1, composed of five core processes. The first two
steps demonstrate similar modeling processes as in [17] and
prepare the methane dispersion geospatial characteristic events
for optimization. Instead of adopting events’ group simulated
based on upscaled wind data for MILP directly, we propose a
new data-driven component to estimate the uncertainty of the
current dataset for optimization of worst case events.

The five core steps of our new proposed solution framework
are given as follows.

1) Historical Data Input: This step relates to acquiring

and preprocessing the data required for the solution.
Oil and gas facility locations, including wells, natural
gas pipelines, and processing plants, available in the
public domain, are identified for the area of interest,
which could be inferred from satellite images or civil
construction records. Historical emissions distribution
data related to source leak rates are a function of the
oil and gas facility type. Therefore, the leak rates are
selected from empirical data published in the Fort Worth

2)

3)

4)

Natural Gas Air Quality Study [30]. Multiple events are
simulated to capture methane concentration distribution
concerning uncertain leak location, leak rate, leak height,
and wind speed and direction. Wind speed and direction
are defined using data collected in Fort Worth in 2015 by
NOAA [31].

Methane  Dispersion  Simulation: This is the
physical-based element of the framework that models
the movement of methane in the atmosphere over the
area of interest using atmospheric-based dispersion
models. This article adopts the Gaussian plume model
to the atmospheric dispersion model for methane
transport schemes.

Estimate Uncertainty of Historical Data: There are three
ways to explore the persistent nature of uncertainty in
atmospheric conditions: stochastic optimization (SO),
RO, and DRO. Most studies focus on SO: decreasing
the uncertain level by increasing the simulation events’
number or using more complex atmospheric transport
models. In theory, increasing the sample number can
result in a better-fit model to the empirical distribution as
a known distribution to optimize the objective function.
However, the distribution will shift over time due to
facts such as climate change [32]. This no-distribution-
shift assumption limited these SO methods being
applied to the out-of-sample scenarios. Moreover, these
methods face significant inaccurate challenges when
modeling the atmosphere and simulating with limited
computational resources [33]. The RO aims to determine
the uncertainty boundary of natural atmospheric
distribution and optimize theoretical worst case events,
which is over pessimist because the worst case has a
very small probability of happening in reality. Therefore,
we propose the DRO to optimize over the worst case
within an uncertainty set constructed based on the
empirical distribution and uncertain level estimated
from data. Once the events have been simulated using
the physical dispersion model and upscaled wind data in
step 2, each potential sensor placement grid point will
have an empirical distribution of detection time for each
leakage event. Considering that the actual distribution
might be different from this empirical distribution,
we use statistical inference to define the uncertainty set
corresponding to a given radius of the uncertainty set
and the Wasserstein L distance. Within this uncertainty
set, we can determine the worst Dirac delta distribution
of detection time at each sensor grid point.

MILP: The newly generated worst case events have the
same data schema as the original P-media formulation
and can be solved by any MILP solver. In this
article, we utilize the open-source python-based sensor
placement optimization software Chama [28], which
constructed optimization using Pyomo [34] and is
solved using an open-source GNU linear programming
kit (GLPK) [35]. The open-source solver GLPK can be
used for many applications. For future work, there are
several ways to improve the accuracy of the proposed
methods and lower the missing leakage events in the
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Fig. 2. 3-D view of potential leak locations (blue triangles) and candidate
sensor locations (yellow circles).

out-of-sample testing set. First, increasing the sampling
number will likely increase the confidence level of
avoiding those missing events. Second, use a more
reliable and sensible sensor. Third, satellite and air-bone
sensor has shown the promising capability to detect
methane on a site scale [36], [37]. A DRO multimodel
sensor fusion sensor network could also improve the
accuracy.

D. Single-Sensor Placement Example

Assuming that there is one leak source and two sensor
placement candidates’ locations, the total sensor budget can
only afford to place one sensor near this methane leak source.
Based on the historical data, the minimum detection time

in two locations is two distribution, d4 = [0, 2, 6, 6, 6] and
dp = [3, 3,3, 3, 8]. The ultimate goal is to pick one sensor,
place location to place sensor, and expect to minimize the
detection time in future leak events. If we use the SP method,
both sensor candidates have the same expectation detection
time E[d4] = 4 and E[dp] = 4, which cannot help distinguish
the superior sensor candidates. On the other hand, the RO
method will take the worst case scenario of each distribution
to make the decision, max(d4) = 6, max(dg) = 8, resulting in
choosing sensor A as the placement strategy. DRO-based worst
case expectations of sensors A and B’s minimum detection
times are calculated by using the L Wasserstein distance with
confidential y = 0.9; based on 10, ¥ = 2, Eorst(da) = 6,
and Eyorst(dp) = 14/3, and choose that the sensor B is the
best choice. Eyworst(da) and Eyworst(dp) are calculated by
solving the following equations:

1 1

§|Ew0rst (da)l + §|Ew0rst (da) — 2|
3

+§|Eworst (dA) —-6/=2

4 1
§|Eworst (dp) — 31+ §|Eworst (dp) — 8] = 2.

(1)

I1l. EXPERIMENT
The case study in Section III-A is similar to [28]. The
open-source data [31] are utilized to determine the wind
conditions setting. This case study provides a general methane
emissions setting that allows methods’ development and eval-
vation. The case study’s simulation and optimization are
performed using Chama [17], and the open-source solver
GLPK [35] with custom-developed uncertainty quantification

and detection-time-shift correction tool.

A. Simulations Setting

Fig. 2 shows the 3-D simulation domain. The simulation
area is defined as a 100 x 100 x 10 m cubic region. There
are 30 potential source points (blue triangles) within this area,
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Fig. 4. Methane plume simulation using one wind speed trace, one
sensor (red star), and one leak rate in the cross-sectional view.

indicating ten potential locations near the surface (0 m—2 m).
These points represent equipment and devices that have the
potential to emit methane, such as well, pipelines, and plants.
Moreover, candidate sensor locations (yellow circles) are the
grid points that can install sensors for monitoring.

For the physical simulation, the methane leakage propa-
gation processing and concentration are modeled using the
Gaussian plume model in Chama [17]. Each leak event
simulates a single emission scenario (one leak source point
with one leak rate) over one day using a 1-h time step.
In addition, we set the impact of this event to 72 h if the event
is failed to be detected. In space, the simulation model domain
is divided into one m> cell. Figs. 3 and 4 show the top view
and side view of an example of a leak event extent scenario
and one sensor candidate position near the source location,
respectively. According to the physical model, the extent of
methane plume increases as the leak rate increases. The extent
of methane plume and detection time for the candidate sensor
is also affected by the wind speed and direction. In the
simulation, the steady-state Gaussian plume model’s extent is
recomputed at each time step as the wind speed and direction
change over the day.

Multiple events are simulated as events set and used to
capture methane concentration concerning the uncertainty of
leak location, leak rate, leak height, wind speed, and direction.
However, it is difficult to capture the distribution of all
uncertainty by simply increasing the simulation scenarios’
number. Although the leak position and leak range might

Fig. 6. Wind speed over a single day, including original 1 min original
data (orange line), data averaged to 1 h (green line), and one perturbation
wind trace (pink line).

be stable in a particular location and range, the wind data’s
uncertainty can be hard to capture with limited data. Moreover,
the computational costs also increase drastically when the
simulation’s wind conditions increase.

In the previous study, Klise et al. [17] proposed reducing
the amount of wind data used in the simulations by random
selection and vector averages. Wind speed and direction
are defined using data collected in Fort Worth in 2015 by
NOAA [31]. A comparison of the original wind data and
averaged wind data, for one example day’s wind direction
and wind speed, are shown in Figs. 5 and 6, respectively.
The averaging result focuses on capturing predominant wind
characteristics throughout the year but results in a loss of wind
variability. Fig. 6 also shows one perturbation wind speed
condition sampled from assumed real wind speed distribution,
assuming as a Gaussian distribution with mean as average
wind speed and before average variance as the stand deviation.
Leak rates are selected from empirical data as in [17], as shown
in Fig. 7. Each leak event simulation is defined by one day of
wind speed trace, one wind direction trace, one leak location,
and one leak rate.

In this case study, the locations for candidate sensors
are defined using a regular grid throughout the model
domain, same as setting in [17], at 10-m spacing in the
x- and y-directions and 1-m spacing (starting at the
ground elevation) in the z-direction. This setting results in
810 (9 x 9 x 10) candidate sensors. The total sensor budget
is set to $100000, and each sensor has 0.1 active thresholds
with $10000 cost.
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TABLE |
SENSORS

Sensors Type

Range

Time resolution | Accuracy Cost

Point detector [17] | Ideal point sensor

0.1-100 ppm

1/3600 Hz 0 $10,000

TGS 2611-E00 MOS type

500-10,000 ppm

1 Hz 1.7 ppm $15

Los Gatos UGGA Spectroscopic

0.1-100 ppm

1 Hz 2 ppb $50,000

B. Sensor’s Discussion

The sensor used in our numerical simulation experiment is
an ideal point sensor with characters listed in Table I. We also
provide both one high cost and low cost, most commonly used
sensor as the reference for practical use reference. Methane
is presented in the atmosphere at low concentrations, with
a global background concentration of around 1.8 ppm [38].
The most used sensor in environments with low methane
concentrations is the cavity ring-down spectrometry (CRDS)-
type sensor [39]. One example of a CRDS sensor is Los Gatos
UGGA that served as a reference instrument for methane [40].
It has a high precision (one standard deviation <2 ppb at 1 Hz)
and has been used on long-term measurements [41], [42].
However, the cost and the power consumption remain an issue.
Therefore, there is a growing interest in incorporating it into
monitoring networks [43]. One example of a low-cost sensor
is the Taguchi Gas Sensors, such as TGS 2611(Figaro Engi-
neering Inc., Osaka, Japan), which are designed to measure
ambient methane mixing ratios between 500 and 10000 ppm.

C. Detection Time Distributionally Robust Analysis

Fig. 3 shows one leak event leaked at (65, 60, 5). The one
sensor candidate near this source is plotted as a red star located
at (70, 50, 7). The leak rate is set to 5, and the detection
threshold of this sensor is set to 0.01. With the Gaussian wind
speed distribution, randomly sample 25 wind speed traces
to generate detection time’s empirical distribution, as shown
in Fig. 8. The blue bins indicate the empirical distribution
of the minimum detection time at this sensor place. The
green bin is the expectation of the minimum detection time
at this sensor candidate place, and the red bin indicates the
distributionally robust expectation of the minimum detection
time. From Fig. 8, the confidential level changes from 0.5 to
0.7 and 0.9, and the associated distributionally worst spike
distribution is the shift from the low value near the mean to
the maximum value of the original distribution. Accordingly,
the uncertainty set contains more distribution and the method
because more conservative. When the confidentiality level
increases, the result obtained from DRO will become closer
to that obtained from RO.

D. Dataset’s Preparing

With the vector averaged wind conditions as the fixed
environment, 37 basic leak events set are generated by
sampling different values from the leak rate data and leak
height distribution. As shown in Figs. 5 and 6, we assume
that the true natural wind speed and direction distribution
are the Gaussian distributions with averaged wind speed and
direction trace as the mean. The variances of these Gaussian
distributions are calculated from the actual measured
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Fig. 8. Probability distribution of minimal detection data (blue bins).
The expectation of this distribution (green spike). Distributionally robust
expectation spike distribution (red) with different confidence levels.

wind data. For the testing dataset, we sample four disturbed
wind conditions from Gaussian. Wind conditions, combined
with basic leak events set to generate testing leak events
dataset, result in 148 events (four wind conditions x 37 leak
scenarios). Like the testing leak events set, we assume that the
observation wind condition is different from the true wind dis-
tribution. We modeled the observed wind distributions as two
Gaussian distributions with perturbated wind speed like Fig. 6
and perturbated wind direction traces as the mean, which can
cause up to 30% scale wind speed and wind direction shift.
The observed wind distribution also has a half-scaled variance
than the true distribution, making it more biased. We sampled
two wind conditions from the observation wind distribution
and utilized them to generate 74 leak events (two wind
conditions x 37 leak scenarios) as the observation leak
events set.

E. Results

Optimal sensor placements of different methods are vali-
dated using testing leak events set, which has different scenar-
ios than those used in the optimization. This comparison helps
determine how optimal sensor placement methods perform
under different conditions. Three methods are compared in this
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TABLE Il
TESTING ACCURACY
Methods Testing Accuracy of in-sample events | Testing Accuracy of Out-of-sample events | Accuracy Regret Value
MEAN [17] 100% 79.73% 20.27%
SO [19] 95.95% 84.46% 11.49%
DRO 95.95% 87.16% 8.78%
TABLE Il
TESTING OBJECTIVE
Methods Testing Objective of in-sample events | Testing Objective of Out-of-sample events | Objective Regret Value
MEAN [17] 16.97297297 24.79054054 -7.81756757
SO [19] 17.97297297 20.11486486 -2.14189189
DRO 18.55405403 18.86486486 -0.31081083
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Fig. 9. Minimal detection time on testing leak events set: DRO (red),
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Fig. 10. DRO and SO residual of minimal detection time on testing leak
events set with the mean method as the baseline.

section, DRO sensor placement method, SO sensor placement
method with averaged wind condition (MEAN), and SO sensor
placement with all leak events in observation wind conditions
(SO). Also, these methods are validated in leak events used for
their optimization. The comparison optimization performance
and the testing performance of traditional averaged wind
method and traditional stochastic method on the limited obser-
vation leak events face the performance dropping when facing
out-of-sample performance dropping. In other work, these
traditional methods are biased toward observing leak events
and cannot be generalized to the out-of-sample scenarios.
Fig. 9 compares minimal detection time distributions from
a distributionally robust optimal sensor placement strategy
to an average wind optimization sensor placement strategy
and stochastic optimal sensor placement strategy using the
minimal detection time distributions. Also, with the mean
method’s distribution result as the baseline, the residual of
DRO and SO methods has been shown in Fig. 10. Table II
compares DRO, SO with observation wind conditions, and
SO with mean wind conditions using the detection accuracy.
Moreover, Table III compares these three methods using the

Fig. 11. Optimal sensor placements using SO, MEAN, and DRO.

minimal detection time expectation objective. Results show
that the optimal placement consistently outperforms sensors
placed using the SO method. As the newest proposed method
in the literature, the mean method has high accuracy and
objective result in leak events used for its optimization.
It can detect all 37 basic leak events (100% accuracy) with
16.97297297-h expected minimal detection time. However,
it fails to detect 30 leak events in the testing leak events
set with 148 events in total, which results in roughly 20%
accuracy dropping (79.73%), and the objective increasing from
16.97297297 to 24.79054054 h. Similar results are observed
when we increase the leak events used for the SO. The SO
method can achieve 95% accuracy with three events missing
and 17.97297297 objectives in the observation leak events set
but still has significant performance dropping in the testing
leak events set, 84% and 20.11486486, which means that
it fails to detect 23 events out of 148 testing events. The
proposed DRO method has a relatively robust performance
with the accuracy performance of 95% accuracy in observation
events set with three missing events and 18.55 objectives
and in the testing set with 87% accuracy, 19 missing events,
and 18.86 objectives. Fig. 11 shows the sensor placement
strategies of the stochastic method by using a single mean
wind condition or multiple observation wind conditions, the
placement of DRO with the same observation wind conditions,
and the leakage source locations.

All methods have performance dropping when validating
their placement optimized from their observation dataset to
the testing dataset because the observation dataset and testing
dataset are sampled from two different distributions with a
distribution shift. The observation is limited to the number and
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observation environment and bias; therefore, the optimization
result solely based on these observation data faces the gen-
eralization problem. However, because DRO is considered,
the worst case events are based not only on the empirical
distribution (observation distribution) but also on all possible
distributions within the uncertainty set. In the DRO theory,
this uncertainty set contains the true distribution of the natural
environment at a confident level. The validation performance
can remain relatively robust with the DRO optimization result
event when validation leak events are sampled from a distrib-
ution that differs from the observation leak events distribution.

IV. CONCLUSION

In this article, we proposed a DRO formulation of the site-
scale methane-emission sensor placement problem for oil and
gas industry carbon footprint monitoring. To the best of the
authors’ knowledge, this is the first DRO method that has been
proposed to provide a data-driven robust sensor placement
solution. Accounting for the big gap between observation and
the real-life environment is also known as a distribution shift
or generalization problem. When the observation sample is
limited, we proposed an uncertainty-level estimation com-
ponent to provide a safe solution under the uncertain. The
experiments demonstrated as follows. First, traditional and
proposed methods face performance dropping when validating
their placement on testing sets that are different from the
leak events used in their optimization. Second, insufficient
sample or biased observation of the environment will harm
the performance of non-RO and cause significant damage
such as missing events or increasing the detection time.
Third, the proposed DRO sensor placement method has the
lowest performance gap dropping in terms of accuracy and
objective. Also, it achieved the highest performance on the
out-of-sampled testing leak events set. Finally, in all results
presented in this article, the proposed distributionally robust
sensor placement algorithm has a relatively better robust
performance when facing observation limitations (observation
data shortage). It took uncertainty into account and performed
risk-aware updates during optimization. For future work, there
are several ways to improve the accuracy of the proposed
methods and lower the missing leakage events in the out-
of-sample testing set. First, increasing the sampling number
will likely increase the confidence level of avoiding those
missing events. Second, use a more reliable and sensible sensor
with more practical characteristics. Third, satellite and air-bone
sensor has shown the promising capability to detect methane
on a site scale [36], [37]. A DRO multimodel sensor fusion
sensor network could also improve the accuracy.
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