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Abstract—Stochastic Gradient Descent (SGD) is a valuable
algorithm for large-scale machine learning, but has proven
difficult to parallelize on conventional architectures because of
communication and memory access issues. The HogWild series
of mixed logically distributed and physically multi-threaded algo-
rithms overcomes these issues for problems with sparse charac-
teristics by using multiple local model vectors with asynchronous
atomic updates. While this approach has proven effective for
several reported examples, there are others, especially very sparse
cases, that do not scale as well. This paper discusses an SGD
Support Vector Machine (SVM) on a cacheless migrating thread
architecture using the Hogwild algorithms as a framework. Our
implementations on this novel architecture achieved superior
hardware efficiency and scalability over that of a conventional
cluster using MPI. Furthermore these improvements were gained
using naive data partitioning techniques and hardware with
substantially less compute capability than that present in con-
ventional systems.

Index Terms—emerging architectures, irregular applications,
machine learning

I. INTRODUCTION

Inferencing via Machine learning (ML) is often straight-
forward to perform efficiently, especially by purpose-built
hardware (cf. Google’s TPU) [1]). However, learning is far
more complex. It typically involves reading large numbers of
training examples, performing a small number of operations on
each, updating an evolving solution, and repeating. In addition,
much training data is sparse, and this sparsity is often very
irregular from sample to sample.

This paper focuses on parallel execution of one such learn-
ing algorithm, Stochastic Gradient Descent (SGD) as applied
to Support Vector Machine problems, and implemented
on a novel emerging architecture. The implementations are
based on the “HogWild” algorithms [2]—[4] that were designed
with sparse data sets in mind. Sparsity in this case is where
individual training records may all have the same logical size
but may have only a few features that are non-zero.

Good speedup has been reported in the past for problems
with moderate sparsity and moderate levels of multi-threaded
parallelism. Reported speedup, however, isn’t as efficient for
the sparsest of data sets, largely because of major inefficiencies
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in modern architectures when faced with memory-bound prob-
lems with significant irregular communication. Unfortunately
such sparsity is common in many real large applications such
as recommender systems and social media applications. Prior
work on conventional parallel SGD implementations have
yielded similar disappointing results.

Previous studies have also evaluated the effects of extreme
sparsity on similar irregular problems such as Sparse Matrix
Vector Product (SpMV) when executed on a variety of
architectures [5]-[7], and real-time streaming [8]. All have
had similar results on modern conventional architectures:
attempting strong scaling on sparse data is very tough, and
sometimes even counter-productive - more parallelism often
lowers performance. In fact the only architecture evaluated
which exhibited sustained positive scaling on these problems
was the one used here [6], [8], [9].

The main contributions of this paper come from a port of the
Hogwild++ algorithm to a migrating thread architecture and a
careful scaling comparison with both results from the literature
and a local implementation on a conventional cluster. The
migrating thread version we developed uses multiple unique
features of the underlying architecture, and demonstrates su-
perior scalability over the conventional implementations, both
in terms of use of hardware resources (“cores”) and in terms
of logical concurrency (‘“threads”).

II. BACKGROUND
A. Reference Problem

The goal of a typical ML problem is to analyze a set 2 of
training examples (each a vector with [’ features), and deter-
mine an F-element model vector & = [y, ...wJr] € R that can
be used to predict something about a previously unseen feature
vector, such as what class it may lie in. This model vector
is one that minimizes some objective function f(w), often
expressed as a sum over an “error function” applied to each
example. Stochastic Gradient Descent (SGD) repeatedly uses
training data against the current model vector, determines
when a projection is incorrect, and uses the “direction” of
the error to modify the model vector slightly. Problems that
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Fig. 1: A single node in the Emu Chick system. There are
8 nodelets within a single node. Nodes are connected over a
Serial RapidIO interconnect (not shown here).

fall in this class include: SVM, matrix completion, and graph
partitioning.

The SGD variant analyzed here is for the Support Vector
Machine (SVM) problem, taken from [2]. In such a problem,
samples and observations are vectors of features, and are to be
divided into one of two classes. The desired support vector w
determines this split by taking the inner product between itself
and an observation, and looking at the sign of the scalar that
results. The training set in this case is a set of pairs (ze, Ye)
where z. is a vector of feature values, and vy, is either 41 or
—1, depending in which of the two classes sample e falls. The
error function f, is the hinge loss: max(0, 1—y.d.) where
de =0T z+b is the “inference” inner product plus a bias term
b. The product y.d. is thus positive if & is a good predictor,
and negative otherwise, For a model that predicts incorrectly,
the loss is positive. For a correct prediction there are two cases:
correct but “close” (1 > y.d. > 0) and “very correct”. The
latter case makes the loss zero; the former returns a small loss
that is an encouragement to “do better.”

The objective function is thus the sum of the error functions
applied to all samples, with an extra term \||&||3 added on to
keep the magnitude of the model vector small.

The gradient V f (w) is an n-element vector where the i‘"
component can be approximated as:

Viw)li] = (f(w+ hb;) — f(w))/h (1)

where h is a small number and b; is the n-element basis vector
where only the i*” component is non-zero (a “1”).

B. Migrating Thread Architecture

A migrating thread architecture [10] is one where the
underlying hardware dynamically moves the state of a thread
during execution. Fig. 1 diagrams such an architecture as
implemented by Lucata Solutions [11] for a large scalable
Partitioned Global Address Space (PGAS) parallel system
where any thread on any core can reference any memory
location in the system by simple load/stores. The basic unit, a
nodelet, is a memory module, its controller and some number
of multi-threaded cores. All nodelet memory resides in a
common address space. A network connects all nodelets. A

thread runs in a multi-threaded “GC core” until it makes
a memory reference that is not contained in that nodelet’s
memory. The hardware then puts the thread to sleep, packages
it, and moves it over the network to the correct nodelet, where
it is unpacked and restarted. No software need intervene.

A thread can spawn independent child threads. Also, the
memory controller contains hardware to implement atomic
operations as close to memory as possible. Finally, very
lightweight threads can be spawned to perform remote mem-
ory operations without moving the parent.

The prototype used, a Lucata Chick, is housed at Georgia
Tech’s CRNCH center!. It has 64 nodelets, each with 8GB of
memory and one 175MHz multi-threaded core. These nodelets
are packaged 8 to a node board which supports a RapidIO-
based network that connects 8 such boards in a single chassis.
A dual core POWER microprocessor on each node board
runs Linux, manages a local SSD, and launches migrating
threads into the system. The nodelet logic on each board is
implemented in an FPGA. Table I compares its characteristics
to that of the conventional system used as a baseline.

Due to the FPGA implementation, the core clock rate of
the conventional baseline is 15X that of the CRNCH Chick.
A more complete comparison is probably even higher than
this in favor of the baseline as the nodelet cores are single
issue and the baseline cores are multi-issue. Also, on a per
core basis, the baseline has about 4.4X a pro-rated memory
bandwidth of a core in the Chick, but, because of the memory
channel design used in the nodelets, the ability of a Chick core
to handle different independent memory accesses is actually
1.8X higher. Finally, the average network injection bandwidth
per core is higher for the Chick than the baseline?.

The programming tool chain is based on Cilk: C with a
prefix to function calls to spawn new threads, a sync to wait
for a set of children to complete, and a parallel forall to have
a set of independent threads cooperate on a loop. Supported
intrinsics include a rich set of remote atomic operations.

The migrating thread system has 3 levels of system paral-
lelism: node, nodelet, and thread. Furthermore because threads
can migrate freely throughout the entirety of the address space,
there is the capability for significant overlapping of thread
migration with computation. Lastly cacheless architectures
are naturally coherency-free, therefore the performance degra-
dation from cache coherency protocols and repeated cache
invalidations on conventional architectures can be avoided.

A second generation system, Pathfinder-S, is currently being
installed in the CRNCH Center, and should be available in the
near future. This system has 3X the cores per node board and
2.7X the memory bandwidth. Also, unlike the Chick, a thread
running on any core can access any of the 8 memory channels
without even a local on-board migration. This improves load
balancing. Only accessing memory on some other board causes
a migration.

Uhttps://crnch.gatech.edu/rogues-Lucata
2It should be noted that the baseline system has much higher bandwidth
between its on-node 48 cores, and thus this ratio has a lot of caveats
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System [ Baseline [ CRNCH [ CRNCH ] Ratio: [ Ratio: |
Type HPE DL385 Genl0 Chick Pathfinder-S Baseline/Chick | Pathfinder/Chick
Socket AMD 7451 Arria FPGA | Stratix FPGA

Cores/Socket 24 8 24 3 3
Core Clock (GHz) 2.66 0.175 0.220 15.2 1.3
Memory Channels 8 8 24 1 3
Compute Cycles per Socket (G/s) 63.8 1.4 5.3 45.6 3.8
Mem. B/W per Socket (GB/s) 170.62 12.8 34.1 13.3 2.7

TABLE I: Comparison to Baseline Implementation.

III. RELATED WORK

Many real problems involve huge training sets, both in the
number of samples |E| and the number of features per sample
F. Both can quickly range into the millions or more; therefore,
parallel versions that scale well are essential. Unfortunately,
simple approaches bottleneck around memory issues such as
inter-socket coherency traffic and false sharing. The obvious
multi-threaded algorithm handles different examples concur-
rently. However, if all updates into a shared model vector
from each example must be done atomically for each working
solution, computing serializes around locking and unlocking
access to that solution. This serializes the solution.

Prior parallel SGD implementations have seen such issues
limit efficient parallel scalability. The codes DisBelief and
Downpour [12], for example, saw only moderate speedups for
dense problems solved on deep neural nets: 2.2X on 8 nodes
for moderate speech problems, and 12X on 81 node systems
for larger images. Other work has focused on relatively sparse
SVM [13] but has not reported comparable speedup.

The exception is when the samples are very sparse, that
is when most of the features in a training example are not
relevant or not available. In this case, the interleaving of partial
updates to the overall solution may be acceptable, because
each training sample typically affects a small subset of the
solution. Thus, each example updates a relatively different
subset of the model vector, and doing so in parallel is likely
not to significantly lengthen the number of epochs needed for
convergence. This likely independence of update subsets also
means that locking the entire solution during an update is
unnecessary, as long as individual model vector elements are
updated atomically.

1) Hogwild!: The HogWild! algorithm [2] was the first of
a series of algorithms (summarized in Table II) to employ this
technique. The original paper discusses the sparsity conditions
under which such update independence is possible. Decent
speedup was reported when using a small number of threads
on data sets with 10s of thousands to millions of features per
sample but extreme sparsity (as little as 0.002%). However,
coherency traffic limited the maximum number of threads that
were useful to the number of cores on one socket. This in turn
limited the maximum speedup.

The DimmWitted algorithm [15] performed a careful com-
parison of several variants of HogWild!s. Tradeoffs included
whether to store examples by rows or columns, how the set
of training examples should be replicated and blocked, and
how many “local” training vectors were reasonable. The best
combination achieved about 2.3X improvement over HogWild!

for the rcv1 data set, but parallelism was limited to two sockets
of only six cores each.

The BuckWild! algorithm [4] reduced the precision of indi-
vidual features to as low as 8-bits, allowing memory fetches
to return more features per access. One data set saw 2.5 times
the performance of HogWild! at 12 cores.

The final algorithm in Table II was DMS, [15]. This study
was much like DimmWitted in that it surveyed a variety of
options. It was different in that it assumed a conventional
distributed cluster with Infiniband interconnect. Variations
included the number and placement of model vectors and vari-
ations in block size. Synchronization of local model vectors
was via a global AllReduce done after blocks of examples
were processed in each node. Speedup here appears to peak
at about 5X over a single core in a system with 32 total cores.
The limiting factor appeared to be inter-node bandwidth, much
like what we found in our SpMV studies.

2) Hogwild++: The HogWild++ algorithm [3] assumes
a NUMA? architecture and goes even further in reducing
the effects of sharing between threads, especially that which
causes invalidation traffic, without causing major increases
in convergence time. The algorithm divides computation into
logical clusters that have their own local model vector, and
includes a step to propagate local changes to other clusters.
Having a pair of working vectors then means that a cluster can
determine which features have changed since the last token
passing, and then send updates for just those changes to its
neighbors. This greatly reduces inter-cluster traffic when the
number of features is large and the sparsity significant.

Each cluster is a multi-core implementation of the original
asynchronous HogWild! algorithm, but where all cores are on
the same physical socket. In a multi-socket system, the com-
putations within a cluster thus never cross a socket boundary,
so that none of the corrosive cross-socket invalidation traffic
is created. Only the memory channels tied to a single socket
are devoted to a particular cluster. There is still, however, on-
socket interfering cache traffic.

Table III summarizes reported results for SVM using the
HogWild++ algorithm*. The F’ column gives the average
number of non-zeros per sample, and is the feature count F'
times the sparsity. The 7y column is the minimum number of
samples that must be processed by a cluster before the cluster

3NUMA = "Non Uniform Memory Access” where a deep hierarchy of
caches often make memory accesses highly variable in access time, and is
typical of modern multi-core chips and multi-socket nodes.

4The best configuration reported in Table III comes from the speedup
figures, not the text, as there seems to be a difference.



[ Algorithm [ Refs [ Type [ Parallel Model | Key Feature | Scaling [ Limiter
HogWild! [2], | Sparse NUMA multi-core Single model; async up- | rcvl: 4.5X@10 cores cache  sparsity,
2011 [14] date via atomic operations coherency traffic
DimmWitted [15] Sparse NUMA Multi-socket Row access, one model | rcvl:2.3X Hogwild! at 2 node, | N.A.
2014 multi-core per node 12 cores
BuckWild! [4] Dense Same as Hogwild! Hogwild! with short rcvl: 5X HogWild! at 12 cores | Same
2015 precision & 8-bit precision
HogWild++ [3] Sparse NUMA multi-socket, multiple local models, | news20: 9.5X@4x10 cores update process
2016 multi-core round robin model sync
DMS [13] Dense Distributed cluster Local models, partitioned | ~ 5X @32 processes and large | model communi-
2019 dataset, global sync block sizes cation

TABLE II: SVM via SGD Algorithmic Variations. The

“Scaling” column reflects the best reported parallel speedup; either a

speedup measured against a single core running the algorithm or a speedup over the original HogWild! for specific data set.

Training Per Sample Best Configuration
Samples Features Non-Zeros | Speedup/ | Cores /
Data set S Sparsity F F Efficiency | Cluster | Clusters | 79 1o ¥
news20 16,000 0.034% | 1,355,191 455 9.5/24% 10 4 16 0.5 0.8
covtype 464,810 | 22.12% 54 12 30/75% 1 40 16 | 0.005 | 0.85
webspam | 280,000 | 33.52% 254 85 40/100% 1 40 16 0.2 0.8
rcvl 677,399 | 0.155% 47,236 73 38/95% 1 40 16 0.5 0.8

TABLE III: SVM Training Data set Characteristics from [3].

will accept a token’. Of these data sets the most interesting is
news20 as it is the most sparse and the lowest speedup. It also
has by far the largest number of features, meaning inter-cluster
traffic is liable to be more significant.

In this table, “cores” means the same as “threads,” and the
“Best Configuration” columns describe the division of cores
into clusters. “Speedup” is measured against running on a
single core/single thread. In all cases, the biggest case was
using all 40 cores in the system (4 sockets of 10 cores each).

IV. IMPLEMENTATION
A. Passel: Distributed Hogwild++ on Migrating Threads

The migrating thread version of distributed Hogwild++,
called Passel, uses the conventional cluster implementation
as a framework and incorporates hardware specific advance-
ments. The result is that Passel is true to the Hogwild++
algorithm, but tailored to using migratory threads within
a logically shared but physically distributed address space.
Despite the Lucata Chick being a shared cacheless archi-
tecture, application performance is often dependent on data
partitioning and placement as was shown in [16]. Each cluster
is given a disjoint subset of training data to work over, as well
its own working and model vector. Correspondingly, training
in Passel is identical to that of Hogwild++ and our distributed
derivative version.

Passel’s advantage stems from its use of thread migrations
and remote atomic operations. Given the PGAS address space
of the Lucata Chick system, any address in the entire space
is accessible by any thread, from anywhere in the system, at
any time. As such it is the passing of update tokens and the
subsequent update sequence that takes full advantage of the
migrating thread architecture.

Fig. 2 illustrates the sequence of events that occur during an
inter-cluster update. In Fig. 2a cluster j is currently training

5 [3] reports using T of 64 when the number of cores per cluster was 10,
and 16 otherwise.

when it receives the update token. At the beginning of its next
loop iteration, thread O on j detects the token and spawns
a team of upstream update threads followed immediately by
spawning a team of threads remotely on j+1 to perform the
downstream update. Once the newly spawned update threads
have finished spawning and are ready, they begin to execute
their respective update operations.

During any update, both cluster 7 and j+1 partake in the
update, while the training threads on either cluster continue to
train if there is still training data to analyze. From Fig. 2b we
see that update thread teams on both clusters have begun to
execute and calculate the model vector alterations that must be
made to their targets’ working or model vectors. These scaled
adjustments are done using REMOTE_ADD() operations and
are executed directly in the receiver’s memory controller. As
such j can asynchronously update j + 1’s working vector as
well as its own model vector, while j 4+ 1 is simultaneously
remotely updating j’s model and working vectors. Once the
update is complete, both upstream and downstream thread
teams exit and cluster 7 passes the token to j+1 via another
REMOTE_ADD().

Additionally since the training loop consists entirely of local
operations within a cluster, full thread migrations do not occur
because the threads only access memory addresses on their
own nodelet. Instead we take advantage of the architecture’s
method for performing instructions as remote atomic stores.
Any arbitrary store to memory is done atomically and can
be done asynchronously without causing the calling thread
to wait for completion. This means that local working vector
updates generated during the analysis of a training sample are
added atomically and do not require the explicit use of atomic
instructions or critical sections to prevent race conditions
despite the shared environment.

Similar to Hogwild++ and our distributed version, training
and updates continue as per normal until the desired comple-
tion criteria has been met.
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B. Conventional Distributed Hogwild++

The original Hogwild++ algorithm was intended to elimi-
nate the performance penalty of cache coherency traffic seen
during the Hogwild! study by subdividing the training set
into disjoint clusters which run independently of one another
during training. To compare the Lucata Chick against tradi-
tional cluster systems, in addition to reported numbers from
a shared memory configuration, we developed a distributed
implementation of the Hogwild++ algorithm which utilizes the
message passing interface (MPI) to perform its inter-cluster
updates.

Memory allocation and indexing as well as the arithmetic
operations performed during training and updates is identical
to that of the original shared memory version of Hogwild++.
Additionally, updates are still initiated upon receipt of a token.
In our distributed implementation Update tokens are passed to
the adjacent nodelet asynchronously using MPI_Isend while
thread O on the receiving cluster periodically probes to see if it
has received the token. Once an update has begun, MPI_Sends
send model alterations between the updating cluster j and its
update target j+1. After using the transmitted data to update
7 + 1’s working vector as well as perform a self update of
both j’s working and model vectors, 7 will pass the token to
j+1. This process continues until the desire epoch count, or
some other stopping criteria has been met.

V. EVALUATION

A. Experimental Setup

Tests using the distributed Hogwild++ were implemented
on the conventional cluster and used between 1 and 64 nodes,
with each node constituting a single cluster. In order to

perform the best possible architectural comparison, 1 core per
node was used, meaning each cluster consisted of a single
compute core but retained full use of all memory channels
and other relevant hardware on node. This was chosen due to
the current Chick implementation possessing a single core per
nodelet, providing us a method for comparing on a core to
core basis.

Tests on the Lucata system were conducted using between
1 and 8 nodes for a total of 8 to 64 nodelets in a log2 fashion
just as in the conventional tests. Total thread counts range
from 1 to 1024. The much higher thread counts allow for the
16 stage pipeline of each nodelet processing core to have a
higher chance of remaining full. This is not something that
the conventional processor required, as it is capable of multi-
instruction issue and has a different pipeline depth. Addition-
ally results in previous studies show that increasing thread
count per cluster on a conventional systems leads to decreased
performance from cache coherency traffic. Our evaluations
indicate that a nodelet running 16 threads is roughly equivalent
in CPI to a conventional core of the type used in this study
running a single thread.

We ran each of the 4 data sets on both systems in accor-
dance with the standard “10 fold cross validation method”
for evaluating a machine learning algorithms accuracy. Every
system size or thread count configuration ran all 10 variations
of training and testing data in order to obtain valid accuracy
and standard deviation measurements.

B. Accuracy

Both our distributed Hogwild++ and Passel achieved accu-
racy comparable to those observed by Hogwild++ on a single
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shared memory system. Fig. 3 shows that the accuracy we
observed for Passel on the Lucata system is on par with
Hogwild++ despite the lack of explicit atomic operations
during training in a shared environment. As can be seen
the error (standard deviation) observed during the 10 fold
cross validation test is extremely low indicating high accuracy
consistency of Passel.

C. Scalability

We evaluated the scalability of our implementations by
comparing their average epoch times. Fig. 4 shows the av-
erage epoch time of all 4 data sets on for both distributed
Hogwild++ on conventional and Passel on the Lucata Chick.
As expected both systems and their respective implementation
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Fig. 5: Observed Scalability as a function of core count. Note:
clusters use only 1 core regardless of trainer thread count per
cluster.

experienced a decreased in the average time to complete a
single as system size was scaled up towards the maximum
of 64 cores. Each core represents a single Hogwild++ cluster
with each cluster residing on a single node in the case of the
conventional system, or a single Chick nodelet. this means that
any inter-cluster update will require communication of some
kind be it explicit MPI send/receives or thread migrations. The
conventional system achieves the fastest epoch times for all
data sets. However it also saw considerable increase at 2 cores
(clusters) due to the addition of MPI overhead required to
perform updates. On the other hand, Passel achieved consistent
reduction in epoch times as core counts increased. Additionally
unlike the conventional cluster as more nodes were added, thus
increasing the off node communication required, no significant
impact from this additional overhead was observed. We note
that the execution time per epoch for the Chick is about greater
than that for the conventional implementation, but at a factor
almost perfectly in line with the difference in clock rates.

Here we define speedup as Singlecluster time 1y, pio 5 e
mutli—cluster time

show the speedup for Passel and distributed Hogwild++. Much
like the epoch times seen in the previous figure, the slope of
lines for each data set is similar across both implementations
and architectures. That being said, Passel and its use of mi-
grating threads maintained near-perfect speedup for all but the
sparsest data set news20. The conventional cluster experienced
significantly decreased speedup when moving from 1 to 2
clusters as the additional MPI overhead necessary for inter-
cluster updates outweighed the performance benefit of strong
scaling. As system size was further increased, computational
performance gain via strong scaling regained much of this
speedup. In spite of this the continued presence of overhead
communication means that the conventional system was only
able to achieve between approximately 45.6% and 85.9%
the speedup observed for Passel on covtype and news20
respectively. Fig. 5 also includes starred points representing
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reported scaling results from the original HogWild++ paper.
As can be seen they are in almost perfect agreement with our
conventional results.

In addition to hardware concurrency (cores) we evaluated
speedup in relation to logical concurrency (threads). As stated
previously, due to architectural differences in the processing
cores single conventional core running 1 thread is equivalent to
a Chick nodelets’ core running 16 threads. This means that the
Lucata Chick is capable of higher levels of logical concurrency
using for the same amount of physical hardware concurrency
on a conventional system. Remember that it was the logical
concurrency (inter-thread coherency traffic) that afflicted the
original HogWild implementations. Fig. 6 shows the speedup
relative to the total number of threads used for all data sets.

For the speedups shown on Fig. 6 we compute speedup
as Smglfogfﬁiffezznf(ﬁ:ft"e“d. We can see that the speedups
for the conventional cluster remain unchanged from those
seen in the core count comparison, since its core and thread
counts are 1 to 1. Alternatively due to the dramatic increase
in logical concurrency on the Chick we were able to run up to
1024 concurrent threads when using 64 total nodelets. Thanks
to this additional concurrency Passel achieved dramatically
improved speedup of 978X, 754X, 919X, and 125X for
covtype, webspame, rcvl, and news20 respectively. These
speedups are vastly superior to distributed Hogwild++ on the
conventional cluster.

D. Hardware Efficiency

A common metric for benchmarking HPC systems is hard-
ware efficiency. Fig. 7 shows throughput in terms of non-zeros
from training data evaluated per second vs compute cycles
(clock times cores). The slope of the each data set’s line for
both systems is approximately the same, with the exception of
the significant dip at 2 cores for the conventional cluster. As
mentioned previously this dip is caused by the introduction of
MPI communication which was not present when running on
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Fig. 7: Observed throughput as a function of aggregate com-
pute cycles.
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Fig. 8: Speedup per thread, defined as total speedup divided
by thread count.

only one node. For Passel on the Chick we can see that the
throughput scales near perfectly for all data sets except the
sparsest news20.

In addition to throughput we analyzed the efficiency of
logical concurrency for each system by looking at speedup per
thread for both systems. As seen in Fig. 8 Passel on migrating
threads achieves superior speedup per thread despite being a
single instruction issue core, possessing just 1/15th the clock
rate and just 1/8th the bandwidth per memory channel. This is
due to the cacheless nature of the Lucata Chick architecture.
Even when executing multiple threads per core, the Chick
does not incur any invalidation penalty since there are no core
caches. Similarly each memory references accesses a single 64
bit value meaning that the hardware only accesses the exact
memory address requested and nothing more, eliminating
wasted memory bandwidth taken up by unused data as is done



on conventional architectures.

Another important factor is the elimination of explicit
software driven inter-node communication such as MPI. This
is not to say that there is no communication in the Lucata
Chick but rather that communication is performed in a highly
efficient manner directly at the hardware level. We can see the
dramatic effects eliminating this overhead has on scalability
in Fig. 8 where we observed perfect or near perfect speedup
per thread using Passel while the conventional system had
significantly lower efficiency.

VI. EXTRAPOLATION TO PATHFINDER-S

As mentioned earlier, a new migrating thread system is
being installed in the CRNCH center, with characteristics in
Table I. There are 3X more, 1.3X faster, cores and almost
3X more memory bandwidth. This should reduce Epoch time
(Fig. 4) by up to 3X. The Speedup vs Core Count (Fig.
5) and Speedup per Thread Count (Fig. 6) should maintain
their advantages over conventional for the pictured range,
with the potential to scale further up to a 6X higher range.
The Non-Zeros/s vs Compute Cycles (Fig. 8) should see an
upward lift of 30% for the Lucata curves as shown (faster
clock), and again a 6x increase in the trends (2X nodes, 3X
cores/node). We expect to perform verifying experiments on
the new CRNCH Center system when it becomes available.

VII. CONCLUSIONS

This study sought to evaluate the performance and scalabil-
ity of SGD SVM on a novel migrating thread architecture. We
designed and implemented a distributed implementation for
use on a conventional AMD based cluster, as well as Passel
a migrating thread implementation designed for the Lucata
Chick architecture.

Our tests showed that the conventional architecture scaled
poorly with respect to threads averaging considerably less than
1X speedup for each additional thread. Alternatively migrating
threads obtained near perfect speedup per thread leading to a
peak speedup of 978X with 1024 concurrent threads vs a peak
of just 41.7X on conventional, despite having dramatically less
compute capability in terms of hardware. This was possible
thanks to improved hardware efficiency brought on by the
cacheless nature of the system, as well as the ability to perform
remote atomic operations directly in the memory controller
thereby providing an additional level of logical concurrency
not present in traditional architectures.

We also now understand why the migrating thread advantage
was lessened for the most sparse news20 case (the model
vectors are much longer), and have an alternative algorithm
under test that appears to regain the significant migrating
advantage for this very sparse case. Coupled with enhance-
ments as found in the Pathfinder-S system, and even further
with competitive ASIC implementations, it is not unreasonable
to suggest that such systems will not only continue to have
superior scalability, but also superior raw performance for such
irregular problems.
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