
Greatly Accelerated Scaling of Streaming Problems
with A Migrating Thread Architecture

Brian A. Page
Dept. of Computer Science and Engineering

University of Notre Dame
Notre Dame, IN USA

bpage1@nd.edu

Peter M. Kogge
Dept. of Computer Science and Engineering

University of Notre Dame
Notre Dame, IN USA

kogge@nd.edu

Abstract—Applications where continuous streams of data are
passed through large data structures are becoming of increasing
importance. However, their execution on conventional architec-
tures, especially when parallelism is desired to boost performance,
is highly inefficient. The primary issue is often with the need
to stream large numbers of disparate data items through the
equivalent of very large hash tables distributed across many
nodes. This paper builds on some prior work on the Firehose
streaming benchmark where an emerging architecture using
threads that can migrate through memory has shown to be
much more efficient at such problems. This paper extends that
work to use a second generation system to not only show that
same improved efficiency (10X) for larger core counts, but even
significantly higher raw performance (with FPGA-based cores
running at 1/10th the clock of conventional systems). Further,
this additional data yields insight into what resources represent
the bottlenecks to even more performance, and make a reasonable
projection that implementation of such an architecture with
current technology would lead to 10X performance gain on an
apples-to-apples basis with conventional systems.

Index Terms—Emerging Architectures, Migrating Threads,
Streaming, Agent Based Execution, Scalability

I. INTRODUCTION

Applications where streams of data pass through large
data structures such as huge hash tables are of increasing
importance. Examples include cyber-security, social networks,
interactive messaging, and e-commerce. The ExaBiome bioin-
formatics project1 (part of the US ECP exascale effort) is
an example. Unfortunately, implementations on conventional
architectures become horribly inefficient, especially when at-
tempts are made to scale up performance via parallelism.

Earlier studies [1]–[3] investigated the scalablity of stream-
ing in an unbounded key space using the Lucata2 migrating
thread architecture. In those studies we chose to use the
Firehose streaming benchmark [4]–[7] as a framework.

This paper extends that work in two directions. First is a
port to a newer and larger migrating thread platform with
significantly more, and slightly faster, cores. This allows better
and more accurate scaling measurements. Second, a compari-
son of these new results with those of a prior implementation
provides significant insight into exactly how the resources of
such an architecture are used. This in turn permits a reasonable

1https://www.exascaleproject.org/research-project/exabiome/
2Lucata formerly EMU Solutions Inc.

projection to be made of what performance might be if the
architecture of the migrating thread machine was implemented
in the same technology as a conventional system.

The results of this study are rather remarkable, even consid-
ering the current implementation base is an FPGA with core
clocks at a measly 220MHz:
• On a throughput per compute cycle, the migrating thread

platform is 10X more efficient, even where only one
instruction can be dispatched per clock cycle.

• One node of such an architecture significantly outperforms
in raw throughput a single conventional node.

• A projection to an implementation in technology comparable
to modern conventional architectures indicates that some-
thing approaching 10X in raw performance is possible.
Finally, it should be noted that there are a growing number

of other problems where random or irregular accesses cause
major scaling problems for conventional architectures, but
early evidence suggests again that a migrating thread archi-
tecture has significant benefits. This includes two different
machine learning problems: one [8] on very sparse data and
strong scaling, and one on decision forests [9]. Strong scaling
of SpMV (Sparse Matrix-Vector product) on conventional
architectures suffers from inefficiencies [10], but results [8]
indicates that much better scaling may be possible with
migrating threads, versus not only conventional but versus a
variety of hybrid architectures [11]–[13]. More general sparse
linear algebra operators may also benefit [14].

Other examples of benchmarking results for this machine
include radix sort [15], pointer chasing (and an overall evalu-
ation) [16], and approaches to handling sparsity [17].

This paper is organized as follows. Section II reviews the
Firehose benchmark and introduces the second generation
migrating thread platform Pathfinder-S used in this study.
Section III discusses the parallel Deluge algorithm used to
implement Firehose. Section IV describes the experimental
setup. Section V evaluates the results. Section VI introduces
results from other architectures, including a projection of the
Pathfinder architecture to an ASIC implementation. Section
VII concludes. It should be noted that sections II-A and III
are largely equivalent to the prior work [3], but the port to the
new machine, its evaluation, and the projection to a possible
future implementation are all new.

https://www.exascaleproject.org/research-project/exabiome/

Fig. 1. Firehose PHISH Python/C++ Design: Parser converts datums (ASCII
strings) into address, payload, and bias flag triplets. The datum is assigned to
an analyzer process via UDP packets. Analyzers look up the address in their
local hash table update counters and check for anomalies as necessary.

II. BACKGROUND

A. Firehose Streaming Benchmark

Firehose [18] resembles a cyber-security like streaming
function where incoming IP packets are to be monitored.
When some number of packets with the same address have
been detected, the payload fields are examined for potential
anomalies, and if detected, a report issued. The IP address in
each incoming packet is used to probe a very large hash table,
and when a match is found, data from the packet’s payload
is merged into the entry, and a match count incremented.
When 24 packets have been found, the aggregated payload
is analyzed. An “atypical” outcome results in the IP address
being flagged. Three variants are proposed: one with a limited
key range, a second with an expanded key range, and a more
complex third with a nested key extraction.

Using an active set key generator [18], from an existing
computational capability standpoint variant 2 possesses a po-
tentially infinite key range (264 possible keys). Due to resource
constraints, implementations center around limiting memory
footprint by ”aging” keys out of a hash table when they are
likely to no longer be present in the current active set.

The Firehose website contains several reference implemen-
tations. However in this study we focus on their PHISH
Python/C++ version which utilizes UDP for multi-process
communication in a distributed or hybrid environment. The
benchmark is run for either some predetermined amount of
time or total datum volume, and statistical data is output for
review. Runs may be done with multiple parsing processes,
multiple analysis processes, or a combination of the two. This
creates the possibility for the following producer-consumer
relationships: one-to-one, one-to-many, and many-to-many.
Fig. 1 shows the execution flow for the PHISH/C++ imple-
mentations in which a single datum parser process (producer)
assigns work to multiple analyzer processes (consumers).

Analysis of an arbitrary datum occurs only within the
analyzer process to which it was assigned. The PHISH C++
code uses std::unordered map for the hash table functionality
of storing and looking up keys, while a Least Recently Used

(LRU) eviction mechanism using doubly linked lists tracks
keys based on occurrence for removal or reuse. The total hash
table coverage amongst all analyzer processes is subdivided
into segments equivalent to global size/analyzer count,
where global size is some multiple of the generator’s active
set size, and analyzer count is the number of analyzers.

It is worth noting that performance can be dependent on
workload distribution which is directly determined by the
active set generator, system size, and key hashing function
used for datum assignment.

B. Lucata Pathfinder-S Migrating Thread Architecture

The Lucata architecture [14] follows the migratory memory
side processing principle. It is a parallel architecture based
on a partitioned global address space, where threads can be
spawned remotely across the system in addition to being able
to migrate automatically when attempting to access memory
addresses which are not local to the node on which they are
currently executing. A thread runs in a multi-threaded “GC
core” until it makes a memory reference that is not contained
in that node’s memory. The hardware then puts the thread
to sleep, packages it, and moves it over the network to the
correct node, where it is unpacked and restarted. A thread can
spawn independent child threads. Also, the memory controller
contains hardware to implement atomic operations as close
to memory as possible. Finally, very lightweight threads can
be spawned to perform remote memory operations without
moving the parent. This is possible thanks to the PGAS
address space which is accessible by any thread form any
location within the system at all times.

The first version of the Lucata architecture was the Lucata
Chick [19]. Fundamental to the Chick’s design was the concept
of ”nodelets” as the basic unit. A nodelet is a memory module,
its controller, and a single multi-threaded core. Each of the 8
nodes in the Chick contained 8 nodelets, therefore an 8 node
Chick would have a total of 64 nodelets (cores). A node’s logic
is implemented in an FPGA, and as a result core clock speed
is rather low 175MHz. A dual core POWER microprocessor
on each node board runs Linux, manages a local SSD, and
launches migrating threads into the system. Each node had 6
links to other nodes in a hypercube topology.

While Pathfinder-S builds upon the concepts of the Chick
system, as well as the intermediate Pathfinder-A which pro-
vided further insight [20], the Pathfinder-S does away with
the nodelet concept in favor of increased core count per node.
The current prototype used in this study is housed at Georgia
Tech’s CRNCH center3. Fig. 2 illustrates to the Pathfinder-S
architecture for a single chasis consisting of 8 node boards.
The design methodology is nearly identical to that of the
Chick. FGPAs are still used for the hardware implementation,
but instead of Intel Arria FPGAs, Pathfinder-S uses Intel
Stratix chips. The increased size of the Stratix enabled the
use of 24 cores per node at a faster 220MHz. However each
core still maintains a single instruction issue pipeline.

3https://crnch.gatech.edu/rogues-Lucata

https://crnch.gatech.edu/rogues-Lucata

Fig. 2. A single chassis in the Lucata Pathfinder-S system. There are 8 nodes within a single chassis

CRC Skybridge Chick Pathfinder-S ASIC Path/Chick ASIC/Path
Cores/node 24 16 8 24 24 3X 1X

Mem. Channels/node 8 4 8 8 32 1X 4X
Links/node 1 2 6 6 6 1X 1X

Core Clock (GHz) 2.3 2.6 0.175 0.22 2.0 1.26X 9X
C: Cycles/node (G/s) 55.2 41.6 1.4 5.3 48 3.78X 1.5X

M: Mem. B/W/node (GB/s) 170.6 51.2 12.8 34.1 1638 2.67X 48X
A: Mem. Accesses/node (GB/s) 21.3 12.8 1.6 4.3 25.6 1.33X 6X

L: Link B/W/node (GB/s) 3.4 3.4 2.5 2.5 16 1X 6.4X
p: packet size/datum (B) 1236 1605 615 615 26

c: cycles/datum 15127 899 1298 899 53
m: mem. bytes/datum (B) 18618 8216 8389 8216 199
a: Mem. Accesses/datum 4655 1027 1049 1027 25
D: Datums/s /node (M/s) 2.75 1.56 4.07 25 25

TABLE I
SYSTEM COMPARISONS WITH ONE NODE FOR GENERATOR AND ONE NODE FOR HASH TABLE. THE LAST TWO COLUMNS ARE RATIOS OF RESOURCES.

THE RED NUMBERS ARE THE SMALLER OF THE CHICK AND PATHFINDER VALUES. THE BLUE NUMBERS ARE THE EXTRAPOLATED DATUMS/S USING JUST
THAT RESOURCE. THE GREEN IS THE SMALLEST OF THE BLUE NUMBERS.

Table I compares Pathfinder-S’s characteristics to that of the
Chick as well as two conventional systems and projections
to a future ASIC implementation, all discussed later. For
performance comparison we list the total compute cycles
(core count times core clock) for each system, along with the
improvement ratio between the Pathfinder-S and the Chick.
Given the 3X increase in cores, the Pathfinder-S is almost 3.8X
more capable than the Chick. Additionally, each Pathfinder
memory channel returns 16 bytes for each access compared to
the Chicks 8 byte access. This leads to an increase in memory
bandwidth per node of 2.67X over that of the Chick hardware.

Programming uses a version of the Cilk language [21]:

1) Parallelism: basic parallelism is obtained using cilk
spawn for local thread spawns, as well as cilk spawn
at(ptr) and cilk migrate hint(ptr) for remote spawns. Loop
level parallelism is introduced through the use of cilk for.
Explicit synchronizations are performed using cilk sync.

2) Atomic operations: remote atomic operations are avail-
able for 64-bit integers, and do not require a migration
to the node containing the variable. They are used when
the result is not immediately needed. Versions returning
the result (hence incurring a migration) are also available.
The hardware also supports an atomic compare-and-swap
on 64-bit integers.

3) Data distribution: data can be distributed using different
patterns. The most commonly used are the roundrobin
allocation of one element or one structure at a time. More
dynamic allocations allocate a new chunk of memory
collocated to a pointer.

4) Helper libraries: helper libraries provide a blocked
distribution of the data, as well as efficient functions to
spawn threads that will work on local chunks.

Fig. 3. Pathfinder Topology

C. Pathfinder-S Interconnect Topology

Migrating thread architectures utilize a PGAS address space
in which memory is logically shared but physically distributed.
When a thread accesses any arbitrary memory address it does
so as though it was a read from local memory, even if the
thread is currently executing on a node that does not control
the address being accessed. As mentioned in the previous
section the thread context is packaged up and sent to the
node governing the desired memory address such that when
execution continues a true local memory access takes place.
Thread migrations of any kind require communication much
like messages via MPI on conventional distributed systems
with the key difference the migrating thread hardware per-
forms this functionality very efficiently at the hardware level.

In order to facilitate efficient transfer of thread contexts
for intra-chassis as well as inter-chassis communication the
network interconnect must be robust enough to handle high
traffic volume at low latency. In Fig. 3 the network topology
for a 2 chassis Pathfinder-S is shown. Each node board has 6
ports each of which connects to one of 6 12-port switches. In
doing so, within a chassis, there are 6 disjoint star topologies
each providing a route to every other node within the chassis,
for a total of 6 2-hop routes between any arbitrary node
pairing. This provides very high available bandwidth for inter-
node communication within a single chassis.

As mentioned 12-port switches are currently used for each
chassis, with 8 ports on each switch delegated to local node
connections. The remaining 4 ports are then used for connec-
tions to additional chassis in a multi-chassis system such as the
we evaluated in this study. As can be seen in Fig. 3 the reduced
number of connections between chassis switches means that
a full mesh topology at the chassis level is not present. This
limits the number of routes between among an arbitrary cross-
chassis node pairing to 4 3-hop routes. The reduction of routes
effectively reduces the available aggregate bandwidth between

chassis to 2/3 that present within a chassis. Additionally the
link between chassis switches adds an extra layer of latency
that is not present for inter-node communications.

Despite this the network topology currently implemented
for the Pathfinder-S is an improvement over that of the Lucata
Chick, in which an incomplete hypercube, in which the center
diagonals were missing, since it created the necessity for 2-hop
routes for some inter-chassis node pairings.

III. DELUGE

Deluge [3] utilizes the actor execution model via the use
of migrating threads in order to perform analysis of the
generated datums. Unlike our previous attempts, here there
is no distinction between ”producer” and ”consumer” threads
throughout the system, but rather each thread is an ”actor”
which both generates a new datum to evaluate and performs
the analysis of that datum itself.

In Fig. 4 we see that the system is split into producer
(generator) and consumer (analyzer) nodes. Actor threads are
spawned on producer nodes and begin generating datums
using the active set generator as done in the official Firehose
benchmark spec. An actor will hash the address in the datum
it generates to determine the consumer node which governs
the hash table portion the address should be checked against.

At this point the Actor’s thread context is packaged up and
subsequently migrated to the appropriate consumer node. Once
on the destination node the actor is rebuilt and scheduled on
one of the node’s cores where it then proceeds with analysis
of the datum. Being shared memory, all Actors currently
executing on a consumer node share the local hash table, and
therefore must acquire a lock on the given hash table slot they
wish to perform insertions, updates, or deletions on. At this
point, analysis occurs in the same manner as the benchmark
spec in which a least recently used (LRU) list maintains the
order of key occurrence to select a good candidate for eviction
in the event the hash table has become full.

Once the actor completes evaluation of its current datum,
the actor is packaged up for its return trip to the producer
on which it was spawned, is migrated, rebuilt and scheduled
on an arbitrary core in preparation for generator a new datum.
Unlike today’s conventional MPI-based model, the recognition
of the need to migrate, the packing, and the unpacking is all
done by hardware.

This process continues until the desired datum volume is
reached. The number of actors spawned on a producer node
can be in the thousands. With such a large actor thread pool
to draw from, producers are able to maintain high utilization
even though many of their resident actors have migrated or
are in the process of ”flooding” consumer(s) at any one time.
This constant ”flood” of threads also insures greater overlap
between in-flight threads and computation on consumer nodes.

By using the actor based execution model in this way,
only producer nodes function as the permanent home for
actor threads. Consumer nodes have no resident execution.
Because of this a consumer node’s hardware resources are
dedicated to the analysis of datums only, and do not have to be

Fig. 4. Deluge execution pattern on Pathfinder-S.

shared with generation or parsing of datums as was necessary
in previous versions.

IV. EXPERIMENTAL SETUP

In this study we utilized the Pathfinder-S available at
Georgia Tech’s CRNCH facility which consists of 2 chassis
of 8 nodes each for a total of 16 nodes (384 cores). For
our weak scaling tests, we increase the number of consumer
nodes in powers of 2. Additionally we increase the number
of producer nodes, and the number of actor threads spawned
within each producer, by powers of 2 up to a total of 8192
across all producers. One key note is that for evaluating 16
consumer nodes, due to system size constraints, we were
forced to perform datum generation on the same nodes as
datum analysis. As such each producer is also a consumer
since at 16 consumers there would be no additional nodes in
the current system to act as dedicated producer nodes.

Generation of datums is done by each actor thread, with
each thread generating from its own key distribution and
active set. Run time measurements are started before the
recursive spawn which generates worker threads in each team
on each node. A cilk sync prevents further program execution
until all nodes have completed, upon which the stop time
is measured and total runtime determined. The time required
by the asynchronous updates to statistic counters is included,
and is consistent with the benchmark specification and our
conventional cluster’s baseline implementation.

V. SCALING RESULTS

Comparing two systems is often done by looking at how
performance varies as a function of some resource. For
systems that are close in architecture (such as conventional
clusters) this is typically using the number of cores or nodes
in each system. For a migrating thread versus a conventional

Fig. 5. Observed throughput scalability. Each curve represents the maximum
observed throughput for each consumer core count.

system, however, things get a bit more difficult. For hardware
references, we could use “cores,” but also a case could be made
for comparing on the basis of sockets or nodes. Alternatively,
we could use metrics such as number of compute cycles
available (clock times core count), or perhaps as aggregate
memory bandwidth or access rate. As each gives somewhat
different insight we will utilize several here.

Fig. 5 shows the observed throughput in datums per mil-
lisecond analyzed (d/msec) as a function total thread count
within the system. We conducted tests on a range of consumer
node counts and thread counts. As can be seen in Fig. 5
we observed near perfect throughput scaling for all consumer
node counts up through 256 total threads at which the single
consumer throughput begins to deviate and eventually saturate
by 1024 total threads. Throughput for 2 consumer nodes

Fig. 6. Observed throughput scalability. Each curve represents the maximum
observed throughput for each consumer core count.

deviates from perfect scaling at 1024 threads, followed by 8
and 16 nodes at 8192 threads respectively. Based on the results
we observed in our study of Deluge on the Lucata Chick [3]
we had expected to see good throughput scalability at higher
system sizes just like those visible in Fig. 5.

As stated, for our throughput tests all nodes that which are
not currently used as consumer nodes are used as producer
nodes on which threads are spawned and generate datums.
Therefore we were able to produce enough threads in the
system to saturate the consumer nodes in our tests. For 16
consumers this caused produced an issue as the maximum
node count on a 2 chassis system is 16, leaving no dedicated
producer nodes. In order to evaluate throughput on 16 con-
sumer nodes, we were required to spawn threads on all 16
nodes making each node both a producer and consumer node.

In an earlier study we evaluated an implementation of
Firehose variant 2 for the Chick [2] using 2 thread types, again
producer and consumer. However those threads were stationary
and remained on their original nodelets. Throughput scaling in
that study was lackluster due to limited compute capability of
individual nodelets having a single core which was then split
between both datum generation and datum analysis tasks. Due
to the increased core count, clock rate, and memory bandwidth
available per node on the Pathfinder-S we were able to achieve
superior performance in a shared producer/consumer role en-
vironment as observed by the scaling obtained by 16 consumer
nodes, with the eventual saturation at higher thread counts. It
is important to note that we expect increased throughput is
possible if enough system chassis were available to facilitate
the use of dedicated producer nodes.

The Firehose benchmark defines throughput as the maxi-
mum number of datums per millisecond (d/msec) that can be
handled by a system before problems occur. Using consumer
core count is an obvious metric. In [3] we performed a
comparison between Deluge on the Lucata Chick as well as a

version designed for a conventional cluster using the Message
Passing Interface (MPI). For the conventional implementation
we did not run multiple threads within any process, therefore
core count is equivalent to process count. Similarly with
respect to the Chick, a nodelet contains a single processing
core (that may be handling 100s of threads at any point in
time) thus consumer nodelet count is equivalent to core count.
Conversely each Pathfinder-S node has 24 cores, on which
threads can be arbitrarily scheduled for execution without any
method for limiting intra-node core use. This means that the
base core count for a Pathfinder single consumer node must
be 24 compared to 1 in the case of the Chick and conventional
tests.

Fig. 6 shows the observed maximum throughput achieved
at each consumer core count up to 384 (the maximum for a
2 chassis Pathfinder-S system). Results from the prior study
have been included for comparison. Additionally we show
the theoretical perfect scaling for each system, computed as
max(single core throughput) ∗ consumer count.

As detailed in our earlier study the conventional system
experienced good initial throughput scaling but quickly de-
viates as node count increased. This is most likely due to
increased MPI communication overhead, as well as poor cache
behavior as a result of the highly irregular memory access
pattern inherent to streaming applications. Surprisingly, for the
Pathfinder we begin to see similar behavior emerge around
consumer 8 nodes, and continue to worsen at 16 nodes.
We believe this to be a result of the added communication
overhead associated with migrating thread contexts across the
chassis boundary. In Section II-C we discussed how inter-
chassis communication using the current network topology
has 4 routes per node pairing as opposed to the 6 available
for intra-chassis traffic. This reduction in available routes
effectively limits inter-chassis bandwidth to 2/3 of that within
a single chassis. The Deluge implementation we used here
allocates consumer nodes sequentially meaning that for an 8
consumer node test all 8 consumers are on 1 chassis with
all 8 nodes of the 2nd chassis serving as producer nodes. As
a result virtually all thread migrations, and therefore every
datum analysis, must be sent between chassis and incur the
reduced connection quantity as well as the increased latency
of additional switch-to-switch connection.

Perhaps a better resource to use as a basis of comparison is
a measure of computational capability available. We chose ag-
gregate compute cycles clock rate∗consumer count, Fig. 7.
Again the excellent scaling of Deluge is apparent. Throughput
on the chick followed the perfect scaling for nearly all system
configurations. As predicted in [3] the results for Pathfinder-
S appear above and to the right of those observed for the
Chick system due largely to the dramatic increase in compute
capability per Pathfinder node. Throughput closely follows the
perfect scaling line deviating noticeably at the highest core
count due to having to share hardware resources between
datum generation and analysis.

Additionally at approximately 85 gigacycles, or 8 nodes
(192 cores), throughput on the Pathfinder-S is about an

Fig. 7. Observed throughput scalability as a function of compute cycles.

order of magnitude greater than that observed on the
conventional cluster. This is a direct result of dramatically
improved efficiency per core on Pathfinder over the conven-
tional AMD EPYC 7541 used in the previous study, along
with other hardware improvements such as increased memory
channel width and memory access rates.

VI. OTHER IMPLEMENTATIONS

Other than our previous study in which we evaluated Deluge
on the Lucata Chick [3] there are several other reported
implementations of Firehose variant 2. The website discusses
two other implementations. One is a shared memory imple-
mentation on a single node where performance on one core
was 1900 d/ms, and only 3400 for 7 cores. These numbers
are higher than either of our implementations on a single
core basis, but it must be remembered that the multi-process
overheads of messaging are not present in a shared memory
implementation. However, the efficiency at 7 cores is only
about 25%, so clearly this is not a scalable implementation.

Another very relevant implementation discussed on the
website and in [6] is a cluster implementation on a Cray
CS-300 with data from dual-socket 16 core 2.6GHz nodes
in configurations from 40 up to 300 nodes. Scalability was
decent, but performance on a per core basis was about 62K
d/msec, considerably less than any of our implementations.
Efficiencies appear to be even less than the ones for our
conventional implementation here.

A final implementation used NVIDIA Tesla GPUs [7]. The
limited published data indicated a performance of 61K d/ms
for 2 Tesla M40s, and 122K d/msec for 4 M40s. This is higher
than the implementations here, but it is unclear how such a
system would scale to very large numbers of such nodes.

A. Extrapolation to ASIC

Given the fact that both systems we have run on so far
are FPGA-based, an obvious question is what would happen

if the same architecture were to be implemented in a modern
ASIC technology. Table I has some additional cells to begin an
exploration of that idea. The top entries in the “ASIC” column
assume an ASIC implementation that looks like modern de-
signs such as the A64FX4 (the chip used in the top system
in the TOP500 list for June 2021 - the Fugaku machine).
The A64FX has 48 ARM cores at 1.8GHz and 4 HBM2
memory stacks, with each core having a vector extension, and
significant on-chip caches. For our study we assume just 24
cores at 2GHz (simpler in architecture, without either vector
extensions or L2 caches), and 6 network links of 4 lanes each
at PCIe-5 rates. Our study assumes 4 HBM2e memory stacks.

Table I has 4 rows near the bottom labelled with lower case
letters. For the Skybridge, Chick, and Pathfinder-S columns
the numbers in these rows represent how different system
resources are used on a “per datum” basis. The “p” row is the
ratio of the bandwidth on one link (in one direction) divided
by the datum rate achieved by the system. Likewise, “c” is the
aggregate compute cycles divided by the datum rate, with “m”
the aggregate memory bandwidth and “a” the aggregate access
rate both divided by the datum rate. Each number represents
how much of that resource would be needed if it were used
up completely handling the datum traffic.

Clearly not all resources are fully utilized at the same time,
so each of these numbers represents an upper bound on how
much was actually used. The red numbers in italics under the
ASIC column of Table I thus represent the smaller of the two
implementation numbers for each resource, and was used to
estimate ASIC performance. Each smaller number may still
be larger than the actual needed resource amount, but are
guaranteed not to exceed that number.

The comparative numbers for these 4 resources between
the Chick and Pathfinder-S system give insight into what
resources are needed for Firehose on this class of architecture.
The one-way link bandwidth of the two systems is identical,
but the “l” parameter decreases (even while performance
on the Pathfinder-S increased). This decrease implies that
network bandwidth is not yet a problem. Whether or not
615 bytes/datum is in fact the amount needed cannot be
determined, but the odds are the real number is considerably
less (even with a header, the maximum state size of a migrating
thread is considerably less).

In terms of available compute cycles, the Pathfinder-S has
more faster cores, so has more compute power. However, the
“c” ratio actually goes up! This can only be if compute is not
the limiting factor, and the number of idle cycles has increased.

The two memory parameters “m” and “a” however are
nearly flat from system to system, with a ratio that mirrors
almost perfectly the ratio of of datums/s between the two sys-
tems. The obvious conclusion is that memory is the resource
that bottlenecks first, although from these numbers it is hard
to say if that is due to bandwidth or access rate.

4https://www.fujitsu.com/global/products/computing/servers/
supercomputer/a64fx/

https://www.fujitsu.com/global/products/computing/servers/supercomputer/a64fx/
https://www.fujitsu.com/global/products/computing/servers/supercomputer/a64fx/

Given these bounds we can thus go backwards from them
through the estimates for the ASIC system to come up with
a series of estimates for ASIC throughput assuming each
resource was the limiting factor. They are computed as the
ratio of an uppercase letter with the matching lowercase
parameter. The blue numbers in the table are these individual
rate estimates; for example A/a = 25.6/1027 = 25e− 3. The
green number at the bottom left is then the minimum of these
blue numbers, and represents a minimum datum processing
rate that we would expect, given all else was equal.

The estimate of 25M datums/s for the ASIC system is
6.1X that of the Pathfinder-S, and almost 10X that of the
distributed system documented in the Firehose website. If
our analysis is correct, the bounding resource is memory
access rate, followed closely by network bandwidth (which
as previously discussed is liable to be better in real life than
that assumed here). There is more than twice the available
compute cycles and 8X the memory bandwidth, which would
be available for enhanced analytics without dragging down
expected performance. The extra bandwidth comes primarily
from the much longer memory lines read out for each access,
where much of the extra data is never used.

VII. CONCLUSION

In this study we evaluated the new Lucata Pathfinder-S
migrating thread architecture via streaming anomaly detection
in an unbounded keyspace. Pathfinder was able to achieve
up to approximately 10X throughput over a conventional
MPI based cluster and greater than 2X over the Lucata
Chick system. Increases to Pathfinder’s core count, clock rate,
and memory access rate per node all aid in providing superior
performance. Regardless of possessing comparatively lower
compute resources, as system sizes increased the dramatically
superior hardware efficiency achieved by Deluge and migrat-
ing threads lead to a significantly superior system performance
after just a few cores. The ability to support huge numbers of
threads relative to the number of cores makes for excellent
and essentially self-managing load balancing.

As previously stated the Lucata systems exhibit many novel
architectural features and provided good proof of concept
data. The results indicate that further refinement may obtain
improved performance at much greater systems sizes. This
is evidenced by the emergence of communication overhead
impacting overall performance, which had not been observed
previously for the migrating thread architecture. More robust
interconnects may rectify this issue.

Finally, the results of the projection to an ASIC implemen-
tation are significant enough that additional studies are in order
to project such architectures to even larger scales such as found
in exascale computing. We also look forward to adapting the
paradigm used here to other streaming problems.

ACKNOWLEDGEMENTS

This work was supported in part by NSF grant CCF-
1822939, and in part by the University of Notre Dame. We

would also like to acknowledge the CRNCH Center at Georgia
Tech for allowing us to use the Chick system there.

REFERENCES

[1] B. A. Page and P. M. Kogge, “Scalability of streaming on migrating
threads,” High Performance Extreme Computing (HPEC), Sept. 2020.

[2] ——, “Scalability of streaming anomaly detection in an unbounded key
space using migrating threads,” in High Performance Computing, B. L.
Chamberlain, A.-L. Varbanescu, H. Ltaief, and P. Luszczek, Eds. Cham:
Springer International Publishing, 2021, pp. 157–175.

[3] ——, “Deluge: Achieving superior efficiency, throughput, and scalability
with actor based streaming on migrating threads,” in High Performance
Extreme Computing Conf. (HPEC), Sept. 2021.

[4] J. Eaton, “firehose, pagerank, and nvgraph: Gpu accelerated analytics.”
[5] K. Anderson, “FIREHOSE: Benchmarking Streaming Architectures,” in

Chesapeake Large Scale Data Analytics Conf., 2016.
[6] J. Berry and A. Porter, “Stateful streaming in distributed memory

supercomputers,” in Chesapeake Large Scale Data Analytics Conf.,
2016.

[7] M. Bisson, M. Bernaschi, and M. Fatica, “GPU Processing of Streaming
Data: a CUDA Implementation of the FireHose Benchmark,” High
Performance Extreme Computing (HPEC), October 2016.

[8] B. A. Page, “Scalability of irregular problems,” Ph.D. dissertation, 2020.
[9] P. L. Springer, T. Schibler, G. Krawezik, J. Lightholder, and P. M. Kogge,

“Machine learning algorithm performance on the lucata computer,” IEEE
High Performance Extreme Computing Conf. (HPEC), Sept. 2020.

[10] B. Bylina, J. Bylina, P. Stpiczyński, and D. Szałkowski, “Performance
Analysis of Multicore and Multinodal Implementation of SPMV
Operation,” vol. 2, pp. 569–576, 2014. [Online]. Available: https:
//fedcsis.org/Proc./2014/drp/313.html

[11] B. A. Page and P. M. Kogge, “Scalability of hybrid sparse
matrix dense vector (spmv) multiplication,” Int. Conf. on High
Performance Computing & Simulation, Jul 2018. [Online]. Available:
http://par.nsf.gov/biblio/10064735

[12] ——, “Scalability of hybrid spmv on intel xeon phi knights landing,”
Int. Conf. on High Performance Computing & Simulation, Jul 2019.
[Online]. Available: https://par.nsf.gov/biblio/10109480

[13] ——, “Scalability of hybrid spmv with hypergraph partitioning and
vertex delegation for communication avoidance,” Int. Conf. on High
Performance Computing & Simulation, Mar 2020.

[14] G. P. Krawezik, S. K. Kuntz, and P. M. Kogge, “Implementing sparse
linear algebra kernels on the Lucata Pathfinder-A computer,” in IEEE
High Performance Extreme Computing Conf. (HPEC), Sept. 2020.

[15] M. Minutoli, S. Kuntz, A. Tumeo, and P. M. Kogge, “Implementing
radix sort on Emu 1,” in 3rd Workshop on Near-Data Processing
in conjunction with 48th IEEE/ACM Int. Symp. on Microarchitecture
(MICRO-48), Dec. 2015.

[16] J. Young, E. Hein, S. Eswar, P. Lavin, J. Li, J. Riedy, R. Vuduc, and
T. M. Conte, “A microbenchmark characterization of the Emu Chick,”
Parallel Computing, Sep. 2019.

[17] T. B. Rolinger and C. D. Krieger, “Impact of traditional sparse op-
timizations on a migratory thread architecture,” in 2018 IEEE/ACM
8th Workshop on Irregular Applications: Architectures and Algorithms
(IA3), 2018, pp. 45–52.

[18] S. N. Labs, “Firehose benchmarks,” http://firehose.sandia.gov/.
[19] T. Dysart, P. Kogge, M. Deneroff, E. Bovell, P. Briggs, J. B. Brockman,

K. Jacobsen, Y. Juan, S. Kuntz, R. Lethin, J. McMahon, C. Pawar,
M. Perrigo, S. Rucker, J. Ruttenberg, M. Ruttenberg, and S. Stein,
“Highly scalable near memory processing with migrating threads on
the emu system architecture,” Piscataway, NJ, USA, pp. 2–9, Nov.
2016. [Online]. Available: https://doi.org/10.1109/IA3.2016.7

[20] G. P. Krawezik, S. K. Kuntz, and P. M. Kogge, “Implementing sparse
linear algebra kernels on the lucata pathfinder-a computer,” in 2020 IEEE
High Performance Extreme Computing Conf. (HPEC), 2020, pp. 1–6.

[21] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson,
K. H. Randall, and Y. Zhou, “Cilk: An efficient multithreaded runtime
system,” in Proceedings of the Fifth ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, ser. PPOPP ’95.
New York, NY, USA: Association for Computing Machinery, 1995, p.
207–216. [Online]. Available: https://doi.org/10.1145/209936.209958

https://fedcsis.org/Proc./2014/drp/313.html
https://fedcsis.org/Proc./2014/drp/313.html
http://par.nsf.gov/biblio/10064735
https://par.nsf.gov/biblio/10109480
http://firehose.sandia.gov/
https://doi.org/10.1109/IA3.2016.7
https://doi.org/10.1145/209936.209958

	Introduction
	Background
	Firehose Streaming Benchmark
	Lucata Pathfinder-S Migrating Thread Architecture
	Pathfinder-S Interconnect Topology

	Deluge
	Experimental Setup
	Scaling Results
	Other Implementations
	Extrapolation to ASIC

	Conclusion
	References

