
The Evolution of a New Model of Computation
Brian A. Page§

Laboratory of Physical Sciences (LPS)
College Park, MD, USA

bapage@lps.umd.edu
0000-0001-5563-9678

Peter Kogge
Computer Science and Engineering

University of Notre Dame
Notre Dame, IN

kogge@nd.edu

Abstract—The conventional model of parallel program-
ming today involves either copying data across cores (and
then having to track its most recent value), or not copying
and requiring deep software stacks to perform even the
simplest operation on data that is “remote”, i.e., out of
the range of loads and stores from the current core. As
application requirements grow to larger data sets, with more
irregular access to them, both conventional approaches start
to exhibit severe scaling limitations. This paper reviews some
growing evidence of the potential value of a new model
of computation that skirts between the two: data does not
move (i.e., is not copied), but computation instead moves
to the data. Several different applications involving large
sparse computations, streaming of data, and complex mixed
mode operations have been coded for a novel platform where
thread movement is handled invisibly by the hardware.
The evidence to date indicates that parallel scaling for
this paradigm can be significantly better than any mix of
conventional models.

Index Terms—multi-threading, thread migration, parallel
scaling

I. INTRODUCTION

This paper discusses new models of computation
where data does not move, but where the computation
itself moves to the data as needed. Such a reversal
has two effects on computation. First, it removes the
need to track copies of data and to ensure coherence
between copies. Second, it reduces the latency of access
— instead of a synchronous two-way round trip out
and back to access some remote datum, just a one-way
asynchronous outwards trip is needed. The latter also
has the significant benefit of freeing up the core where
the computation resided originally. With relentless multi-
threading of both the hardware and the applications, this
latter effect means that both hardware utilization and net
system throughput can increase considerably for irregu-
lar applications, relative to conventional approaches.

The rest of the paper is organized as follows. Section
II introduces a new model of computation where thread
migration is ubiquitous and an integral part of the
underlying hardware. Section III discusses a series of
actual platforms that implement this model. Section IV
provides evidence of the efficacy of our approach with
real-world irregular applications. Section V concludes.

§The work reported here was performed while Dr. Page was a
graduate student at the University of Notre Dame.

Network

…

…

Partition

R
em

ot
e 

M
em

or
y 

O
ps

Thread Migration Engine)

Memory Side Processor (MSP)

M
em

or
y …

M
em

or
y

. . .

Thread
State

. .
 .

Thread
State

C
or

e

Thread
State

. .
 .

Thread
State

C
or

e

…

Partition

R
em

ot
e 

M
em

or
y 

O
ps

Thread Migration Engine)

Memory Side Processor (MSP)

M
em

or
y …

M
em

or
y

. . .

Thread
State

. .
 .

Thread
State

C
or

e

Thread
State

. .
 .

Thread
State

C
or

e

System-arch

Fig. 1: A generic migrating thread architecture.

II. INTRINSIC MIGRATION

Fig. 1 shows a generic “migrating thread” architecture
where computation can be migrated freely across a Parti-
tioned Global Address Space (PGAS) memory structure,
with direct support from the underlying hardware to
perform such migrations automatically as needed. The
basic building block of the architecture is a partition1

that contains a pool of “cores” that can house thread
states that migrate in or are spawned locally. There is
also a set of memory blocks, each connected through a
separate memory channel to the pool of cores. Between
the cores and these channels are memory controllers that
translate access requests from the cores to the timing
signals needed by the memory channels. In Fig. 1 they
are embedded in a Memory Side Processor (MSP) that,
depending on the system, may include processing logic
to perform operations “at the memory.” Also attached
to the core pool is a Thread Migration Engine (TME)
that routes migrating threads from their origin cores
to designated network ports. Once launched into the
network, the thread state is transported to the target
partition where it is unpacked and placed in a selected

1Many systems described later use a variety of terms (e.g., “nodelet”)
to describe a local combination of memory and processing; we use the
term “partition” to be generic and consistent with the PGAS model.



core. Not shown in Fig. 1 is some sort of conventional
Stationary Processor (SP) that can couple the system to
the outside world, provide access to file storage, initiate
applications, and manage the system as a host processor.

A. Basic Execution Model

With such an architecture, the migration model of
computing is straightforward. A thread executing in
some partition stays there as long as all memory ref-
erences it makes are to locations in memory within the
partition. As soon as the thread makes a reference to a
location that is non-local, the hardware in the partition
suspends the thread, packages the thread’s state, and
ships the package over the inter-partition network to the
partition that holds the desired location. At that partition
the thread state is unpacked and placed in any of the
partition’s cores, where execution resumes. Resources
used by the migrating thread at the originating partition
can be freed up for use by incoming threads.

This migration has two positive effects on overall
performance of the parent program owning the thread.
First, the migrating thread model halves the latency and
avoids idling cores. In a conventional system, accessing
a non-local location requires a two-way latency: out and
back. Even with a sophisticated out-of-order core and
load/store buffers that allow overlaps of memory and
computation, very soon such latencies will cause proces-
sor stalls. These stalls represent hardware cycles which
do not perform useful activities for the program for
some period of time. Studies of big data applications on
conventional processors (c.f. [1]) indicate that such long
latency stalls are major factors affecting the performance
of current systems.

The second effect is that there is no need in a migrating
thread model for managing remote copies of memory
locations in remote caches. The thread moves to the data
being accessed rather than making a copy that then must
be kept coherent. Thus, there is no need for cache co-
herency traffic as in conventional processors, freeing up
cross-core bandwidth for other purposes. Studies similar
to the above have again shown that such coherency
traffic is a major limitation in parallel scalability when
the data is sparse, and there is little reuse.

B. Pervasive Lightweight Multi-threading

A potential challenge with this approach is that such a
system can see loads shift dramatically at unpredictable
moments. Huge numbers of threads can descend unex-
pectedly on a particular partition, in larger numbers than
available cores. While they could simply be buffered in
queues until a core is free, that could result in threads
with just a small amount of work to wait for extraordi-
narily long times, delaying the entire application.

One approach to addressing this challenge is to deeply
multi-thread each core to accommodate very large num-
bers of thread states. Core microarchitectures that inter-

leave instructions from different threads enable forward
progress to be made on all threads, regardless of the
number of threads. As threads migrate into a partition,
they can be directed to the cores with the least number
of active thread states. As threads migrate out, the
cores free up their slots, and the remaining threads get
more service. For applications that support significant
thread-level parallelism, this provides a natural form of
automatic load balancing.

“Spawning” new threads is usually a complex opera-
tion in conventional systems, often incurring significant
software overhead to separate out state that is truly part
of the computation (program counter, working registers)
versus state that is part of the surrounding infrastructure
(TLBs, caches, page tables, ...). In a migrating thread
architecture, state related to infrastructure has by ne-
cessity already been architected out, and thus the cost
of creating a new thread by simply copying working
registers is greatly reduced, thereby making it easier to
create large numbers of threads dynamically.

C. Memory Controllers and Ultra Lightweight Threads
One of the most productive features of the Cray T3D

[2] was a facility whereby a thread could assemble and
launch an operation to be performed adjacent to the
memory controller of a location anywhere in the sys-
tem. In particular, operations that performed “atomic”
updates2 to memory were of significant value in elimi-
nating many of the parallel synchronization operations
needed to allow parallel programs to execute correctly.
Such remote atomic operations have continued to be an
important capability supported by conventional systems.
However, because of the deep cache hierarchies and
the need to maintain cache coherency, the mechanisms
needed for this support can get quite complex.

In a migrating thread architecture, another alterna-
tive becomes possible. Without the need for coherency,
such atomic operations can be performed directly by
the memory controller in a guaranteed uninterruptible
basis, at very low latency, and with no need to con-
sider possible retries. Thus, instructions can simply be
added to the ISA to directly perform remote atomic
operations. Further, and of perhaps even more value
in future systems, mechanisms can be added to spawn
from any thread an ultra-light weight (ULW) thread that
migrates like any other thread to the target partition.
However, instead of a program counter, such threads
can contain one of a predefined memory operations,
or perhaps a very short sequence of operations, and a
bare minimum of operand values. When executed, such
threads could operate directly in the memory controller
at very high efficiency, thereby bypassing the cores that
support longer lived multi-instruction threads.

2Such operations perform read-compute-write sequences to memory
locations in ways that prevent any other memory operation to the same
location from interfering.



III. HARDWARE IMPLEMENTATIONS

Table I summarizes a series of real platforms produced
by Lucata Inc. (previously Emu Solutions) that have been
implemented to support the migration model of compu-
tation. Several of these platforms are openly available at
the Georgia Tech CRNCH Center3, and were used for
the experiments discussed in Section IV.

A. The Chick system
The Chick system [3] consists of 8 node boards where

each node board supported 8 partitions in a single
FPGA. Each partition was a single 64-bit multi-threaded
Gossamer core (GC) and a single memory channel.

In contrast to an earlier prototype, the ISA of the GC
dropped the ability to carry code, but was enhanced with
more working registers and the ability to spawn ULW
threads that would perform memory operations (varia-
tions of stores and atomic updates) on remote partitions
without migrating the parent thread. The memory con-
troller was upgraded to a smart Memory Front End (MFE)
engine that was capable of handling atomic operations
from either threads in the local GCs or incoming ULW
threads from elsewhere.

Six Rapid I/O gen 2.7 network ports were shared
among all 8 partitions on a node card, and driven by
a Migration Engine (ME) that routed threads between
partitions and/or through the appropriate network port.
A chassis contained 8 such node boards interconnected
by these links in a binary hypercube configuration, The
result was a system with 64 partitions.

Each node board also held a shared SP consisting of a
dual core POWER processor, memory, and an SSD. Each
SP ran Linux and was capable of loading and storing the
memory in the partitions, launching migrating threads
into the system, monitoring progress of a code, and
communicating with the outside world via a PCIe board.

B. The Pathfinder systems
The Pathfinder series of designs saw an upgrade in

the technology and architecture. Technology saw use of
more advanced FPGAs and memory. The architecture
saw further expansion of the capabilities of the MFE
to a full-fledged Memory Side Processor as pictured in
Fig. 1 where remote memory threads can be performed
directly, without having to use the cores. Also in the
Pathfinder-S (currently in the Georgia Tech CRNCH Cen-
ter) each card has become one partition, so that incoming
threads can be placed in any of the partition’s cores.
There are still multiple memory channels, any of which
can be accessed concurrently from any of the partition’s
cores. In addition, each memory interface has a small
memory-side cache to increase effective bandwidth.

Architecturally, features were added, akin to a fence,
that allow a thread to know when all outstanding ULWs

3https://crnch.gatech.edu/

it has launched have acknowledged completion. The
same mechanism is used to prevent threads from mi-
grating if in fact they have outstanding ULWs.

C. Enhanced Programming Model

The original prototype system was programmed
largely in low level assembly. Starting with the Chick
the programming model and software support tool chain
was upgraded to a modern LLVM-based C/C++ en-
hanced by a optimized extension of Cilk [4]. The key
extensions include three Cilk keyword extensions re-
worked to match hardware-supported migration. The
cilk_spawn keyword is a prefix to a conventional func-
tion call that converts it into a non-blocking procedure
call that executes independently of the code following
the call (called the “continuation”). In conventional im-
plementations the thread performing the non-blocking
call is taken from a pool of pre-established threads. In
the migrating thread case, it is simply an inline spawn of
a new thread that builds a cactus stack like frame on the
call stack and provides the child thread with information
as to what to do when the call completes. If for some
reason a new thread cannot be spawned, then just as in
conventional Cilk, the call becomes blocking - the calling
program is stalled until the called procedure completes.

The Cilk keyword cilk_sync causes the thread ex-
ecuting it to wait for all child threads (created by
cilk_spawns in the enclosing block) to complete.

The cilk_for keyword looks syntactically like a
conventional for but acts like a parallel for loop in other
languages. The difference is that there is no assumed or
implicit ordering to the loop evaluations, as each loop
iteration can be executed by a separate thread. Notion-
ally, the loop is converted into a tree of cilk_spawns
where each such spawn uses the body of the loop as an
anonymous function. As with cilk_spawn, there is an
implied cilk_sync before leaving the loop body.

In addition to the Cilk-based keywords, the tool chain
includes intrinsic functions that allow the programmer to
directly access parts of the architecture and ISA that are
not in the vanilla Cilk model, such as atomic memory
operations along with several thread control functions
(save state, reschedule, etc.) that allow finer control over
the scheduling of threads and memory operations.

D. Typical Program Structure

Many programs written using this tool chain have
a similar three-level hierarchy of threads. First is the
insertion from an SP of a master thread that migrates
through all partitions that will be used by the program.
At each partition it spawns a child thread whose job is
to initiate any local data structures and fill in any initial
replicated data values. Each of these child threads then
spawns some number of worker threads to carry out the
actual program. These workers may spawn additional
workers as required by the program.

https://crnch.gatech.edu/


Feature Gen 0 Gen 1 Gen 2 Gen 3
Prototype Chick Pathfinder-A Pathfinder-S

Partition (cores and memories where accesses do not require migration) Characteristics
Cores/Partition 1 1 1 24

Core Clock (MHz) 100 175 175 220
Runnable Threads/Core Many 64 64 64

Mem. Channels/Partition 1 1 1 8
Memory/Channel (GB) 8 8 8 8

Memory Protocol DDR3-166 DDR4-1600 DDR4-1600 DDR4-2400
Mem. Channel Width (Bytes) 8 1 1 2

Mem. Channel Peak B/W (GB/s) 2.6 1.6 1.6 4.8
Mem. Channel Access rate (G/s) 0.032 0.2 0.2 0.3

Channel Cache No No No Yes
Core Logic FPGA Virtex 6 LX240T Altera Arria 10 Altera Arria 10 Stratix 10

Node Card (card with multiple partitions) Characteristics
Partitions/Node Card 4 8 8 1

Network Ports/Node Card 8 6 6 6
Network Protocol PCIe-Gen2 SRIO 2.7 SRIO 2.7 SRIO 2.7

Injection B/W/Port (GB/s) 5 2.5 2.5 2.5
Injection B/W/Node Card (GB/s) 10 15 15 15

Chassis (Group of node cards) Characteristics
Node Cards/Chassis 3 8 8 8

Chassis/System 1 1 1 2
Stationary Processor Intel PC Power E5500 Power E5500 Power E6500

SSD None 1TB/Node card 1TB/Node card 1TB/Node card
Network Topology Switched Hypercube Switched Switched

Aggregate Characteristics
Total Chassis 1 1 1 2

Total Partitions 12 64 64 16
Total Cores 12 64 64 384

Other Coprocessor support

TABLE I: Generations of Prototypes.

IV. EVIDENCE OF USEFULNESS

A new model of computation is of value only if
systems (hardware and software) can together demon-
strate that there are at least some problems for which
solutions become faster or more efficient or scale better
than solutions using conventional models. This section
briefly reviews the results of several such comparative
studies that used systems available at Georgia Tech.

A. SpMV

The product of a matrix by a vector to form another
vector is an important part of many applications. When
both the matrix and vector are dense (few zeros), modern
architectures can operate at high efficiency. However,
when especially the matrix is sparse (few non-zeros,
and in irregular locations), processing typically becomes
memory bound. Despite the horrible inefficiency, the
matrices used in benchmarks like HPCG all fit in the
memory accessible to a single core. SpMVs that handle
much larger matrices are rapidly becoming important in
many areas such as the processing of very large graphs
[5], and parallel libraries are being developed to handle
them (cf. the GraphBLAS API [6]) and the SuiteSparse
implementation [7]). SpMV has been identified as part of
the “13 dwarfs” [8] that are representative of the parallel
patterns needed for emerging application areas.

1) Prior work
Despite the inefficiencies, a survey of several well-

respected SpMV codes against multiple large matrices

0

1

10

1 10 100

Sp
ee

du
p 
ov

er
 1
 P
ro
ce
ss

Processes

0.0013% 0.0218% 0.0631%

0.5539% Perfect

Fig. 2: Hybrid Speedup for 4 sparse matrices.

on 12 core shared memory systems [9] showed that
speedups of up to only about 4X are possible4, and
when the time to load and unload the matrices into
GPU memory is ignored, up to an 11X speedup using a
single GPU (the speedup is negative when transfer times
are included). The less than stellar scaling is a result of
the underlying architecture relying heavily on coherent
caches which are of little use in sparse environments.

The situation gets even worse in distributed memory
environments due to load imbalances in the number of
non-zeros per core and the relatively few operations that
can be performed on one node before communication
with another node must occur. One study [10] looked at
hybrid algorithms where a shared memory multi-core,

4Using as a basis a single core code from Intel’s MKL package



Partitions (same as core count)

Fig. 3: SpMV with migrating threads.

multi-threaded algorithm was used within a node, and
then multiple MPI processes using this code collaborated
on the overall problem. Four different sparse matrices
were taken from [11] with sparsities from 0.0013% to
0.55% non-zeros. The multi-core algorithm in isolation
peaked at about 2 to 5X with somewhere between 6 and
10 threads (3 to 5 cores). The hybrid algorithm results are
pictured in Fig. 2, where the different lines correspond
to matrices of different sparsity. The x-axis is the number
of MPI processes used, where each process was a 4-
core multi-core code. The dotted line corresponds to
perfect speedup. The key takeaways were that none of
the matrices scaled anywhere near perfect, and even
worse the most sparse demonstrated negative scaling -
more resources slowed down the process.

An expanded study of a similar hybrid algorithm
[12] with more (25) matrices and more nodes (72)
and more cores per node (16) had similar results: the
sparsest matrices had negative scaling immediately, and
even the denser ones went negative once parallelism
crossed about 16 processes. Instrumentation revealed
that MPI_Reduce (to accumulate partial results from
different processes) rapidly dominated, and by the time
parallelism reached 81 processes, the ratio between com-
munication and compute time exceeded 30X.

Similar studies looked at the same matrices but several
significantly different architectures [13], [14], and even
more matrices (1800 of them) [15], with similar results.

2) A Migrating Thread Implementation
The key takeaway from the above is that for SpMV

the cost of collectives and communication very quickly
swamps any advantage in processing that advanced core
microarchitectures can give us. These effects show up
because almost regardless of how a matrix is partitioned,
a point is reached where partial sums must be combined,
and that is where current architectures bog down.

Given that such “combining” looks like some sort
of remote data operation, it is obvious to ask if the
migrating thread model can help. An implementation
study using the Chick at Georgia Tech [16] considered
several variations of migrating thread algorithms over
the same matrices discussed above.

The algorithm finally used had each partition compute

24
matches

Stream
Generator

Datum format:
• Key: IP Address
• Payload: Value
• Truth Flag

Compute Hash
From Key

Probe
Hash Table

Initialize
New entry

Update
entry

Generate
Repot

Analyze
History

Firehose variants 1 & 2

Hit

Miss Anomaly
detected

Firehose

Fig. 4: Data streaming through the Firehose benchmark.

its partial sum for each segment of each row with non-
zeros in it, and send a remote atomic add to accumulate
that partial into the correct element of the output vector
approach. Two distribution techniques for the matrix
were tried: a naive round-robin striping where column
i is placed on partition i mod P where P is the num-
ber of available partitions, and use of the hypergraph
partitioner used in [14]. There is only one copy of the
dense vector which is striped across the partitions. These
threads migrated as needed. A remote add ULW thread
added the partial sum into the correct output vector
location. All 25 prior matrices were used.

Fig. 3 diagrams the results for the naive round-robin
matrix distribution and 64 threads per partition. While
not perfect, the scaling stays positive the entire time.
The dip at 16 partitions represents the points where the
number of partitions exceeds a single board and the
migrating threads have to use the network to get to the
correct partition. However, the performance then goes
up considerably as more node boards are used. Better
network technology is liable to alleviate this issue.

A second observation is the tight banding of results
- there is no major spreading tied to matrix sparsity.
Also, not shown are the results from the expensive pre-
computation using the hypergraph partitioner that not
only did little to improve the best results, but had a
significantly larger distribution as a function of matrix
sparsity, and are actually worse for several matrices.

The key takeaway is that not only does the migrating
thread architecture support better scalability with little
sensitivity to sparsity, it does so with very simple code.

B. Streaming

The processing of continual streams of data has grown
in importance as we enter a connected, real-time world.
Two aspects of most streaming applications are that data
needs to be processed at its arrival, usually using a finite
bounded amount of data from prior inputs, and that an
answer to some query needs to be considered each time
such data modifies this prior data. Such “histories” are
often large, complex, irregular data structures such as
graphs or big data repositories, and the queries represent
the “discovery” of some new property that they possess
as a result of the new data (cf. [17]–[20]).

General studies of streaming algorithms include [21]–
[24], with a small but growing suite of software support
packages [25]–[28]. Unfortunately, when implemented



1

10

100

1000

10000

1 10 100 1000 10000

Da
tu
m
s/
se
c 
(M

ill
io
ns
/s
ec
)

Cores

Perfect
Multi‐Threaded
Cluster

Fig. 5: Firehose scalability on conventional systems.

on conventional architectures such applications often
become horribly inefficient, especially when attempts are
made to use some sort of parallelism.

The Firehose benchmark5 [29]–[31] is a stand-in for
cyber-security streaming applications where information
from different incoming internet packets (called datums)
must be aggregated in some way so that different kinds
of “events” can be recognized, and potential “anomalies”
detected. The performance metric is “datums/sec:” how
many such datums can be pushed through the system
per second without dropping too many of them.

Fig. 4 diagrams two of the three variants of Firehose.
A stream of synthetic packets are generated, each repre-
senting an IP packet holding a hex IP address (expressed
as an ASCII string) and a payload (a boolean for the
benchmark)6. The IP field is used to probe a large hash
table, and on a match, a count field in the entry is
incremented and the payload added to a sum in the same
entry. When the 24th datum is detected, the payload sum
is inspected, and if it exceeds some threshold, an anomaly
report is generated. The difference between the first two
variants is that in the first there is a known limit to the
number of datums that may be generated; the second
has no limit but does constrain the number of unique IP
addresses that may be in play at any time.

To show the issues with such a kernel on conventional
architectures, Fig. 5 graphs two sets of data from the Fire-
hose website that describe performance (as a through-
put) versus the number of cores used in the implementa-
tion. The “perfect” line represents the throughput from
a single core times the number of cores. The blue line
represents implementation on a multi-core chip using
shared memory for data exchange. Seven cores gives less
than a factor of two throughput. The red line represents
throughput measured from a large cluster, starting at a
configuration of about 1000 cores. While there is good
scaling beyond that, the throughput “per core” on this
red curve is about 1/30th of that of a single core. The
penalty is due solely once again to the communication
between cores needed to advance the computation.

The migrating thread FPGA-based hardware forced

5https://firehose.sandia.gov, https://stream-benchmarking.github.
io/firehose/

6A “truth flag” is also included so that implementations can check
if they got the correct results

10

100

1,000

10,000

100,000

1,000,000

1 10 100 1000 10000

Cy
cl
es
/D

at
um

Cores
V2 Multi‐threaded V2 Cluster V1 Filtered V2 Initial

V2 Initial MPI V2 Deluge V2 Deluge‐S

Fig. 6: Machine cycles per datum for different Firehose
implementations. The dashed lines are conventional im-
plementations; the solid are from the migrating thread
experiments. Lower is better. Perfect scaling is flat.

some simplifications to be made. Because of the lack
of high bandwidth inputs, the incoming streams of
unprocessed datums were precomputed and placed in
memory. Also, because of the lack of string handling
instructions, the IP headers in each packet were stored
in hex rather than ASCII. Both of these artificially inflate
the throughput, but still allow scaling comparisons, as
pictured in Fig. 6 which for each experiment shows the
number of machine cycles per datum processed as a
function of the number of cores7.

1) Variant 1 Experiments
The first Variant 1 experiments [32] ran on the Chick at

Georgia Tech and used an open address hash table that
was striped across the partitions in use. Since the max-
imum number of IP addresses was known in advance,
the hash table was big enough so that no probe collisions
would occur. Two implementations were tested. The first
launched multiple threads on each partition, each of
which would handle one of the datums pre-stored on
the partition. On average, each thread would migrate
once from the partition with the datum to the partition
holding the hash table entry, and once to return. The
second implementation was similar but included at each
partition a “prefilter” to catch datums that have already
accumulated enough hits to send a report.

The study varied both the number of partitions and
the number of threads initiated on each partition. For the
unfiltered case, increasing the former increased through-
put until saturation was reached. Higher thread counts
per partition lowered the point at which saturation oc-
curred, which indicates that migrations were the bottle-
neck. The filtered version, however, did not exhibit this
problem, and throughput increased as either (or both)
initial threads or partitions increased. Overall through-
put was over 220 million datums/s - 20X that of the
unfiltered case, with migrations reduced by orders of
magnitude. As pictured in Fig. 6 the machine cycles
per datum were around 50, which is 1/30th that of

7This metric was chosen to normalize the difference between ASIC
chips and FPGA implementations.

https://firehose.sandia.gov
https://stream-benchmarking.github.io/firehose/
https://stream-benchmarking.github.io/firehose/


the best conventional (single core) implementation, and
approaches 1/1000th that from the conventional cluster.

2) Variant 2 Initial Implementation
A number of implementations were created for variant

2. The largest performance hit for this variant is the need
to “age out” entries in the hash table over time as the
set of active keys changes.

The first of the variant 2 implementations [33] kept
the pre-stored datum set, but increased the realism of
the implementation by performing the ASCII to binary
conversion as in the benchmark spec. Also the imple-
mentation divided the pool of threads into two classes:
producers and consumers. The producer threads read out
the raw datums, did the string conversion, determined
which partition held the hash table entry for that key,
and inserted the entry into a partition-local queue. The
consumer threads managed aging entries as needed,
updated them to reflect new data, generated reports
when appropriate. and kept local key tables with LRU
data to determine “oldest” entries.

The optimal combination of initial threads per parti-
tion was 8 producers and 16 consumers. With a small
number of datums per partition, the algorithm achieved
near perfect scaling with respect to number of cores
(again using the Chick at Georgia Tech where each
partition had one core). With larger (but more realistic)
numbers of threads, the performance plateaued due to
an increase in the number of times aging out of entries
was necessary. As pictured in Fig. 6 the performance in
terms of machine cycles per datum tracked the shared
memory conventional configuration.

As a point of comparison, an MPI version of the same
algorithm was implemented and run on a conventional
cluster of 24 core 2.66 GHz AMD EPYC 7451 chips.
Performance in terms of cycles per datum are worse than
the migrating thread by a factor of around 4.

3) Variant 2 - Deluge
The major issue with the prior design was that since

each consumer thread handled a distinct set of keys (to
avoid inter-thread synchronization), “hot spots” would
develop for those key values that appeared in many
datums. These consumer threads would thus have far
more work to do than the other consumers, and would
thus gate the execution.

Another implementation of variant 2 called “Deluge”
[34] did not discriminate between producer and con-
sumer, and thus avoided the queuing between them. A
more “Actor” model was adopted where separate “pro-
ducer” partitions hold threads that dynamically generate
datums using the official Firehose spec. At completion
of the datum generation (corresponding to the arrival
in a real system of the datum), the thread will hash the
address in the datum and migrate to the appropriate
hash entry for processing. Given the now possibility of
contention, locks are necessary on each entry, and were
handled by built-in atomic memory ops. The implemen-

0.01

0.1

1

10

100

1000

1 10 100 1000 10000

D
at
um

s/
se
c 
(M

ill
io
n/

s)

Cores
V2 Multi‐threaded V2 Cluster V1 Filtered V2 Initial

V2 Initial MPI V2 Deluge V2 Deluge‐S

Fig. 7: Firehose Measured Performance in Datums/s. The
solid lines are for the migrating thread systems whose
core clocks are 10-20X slower than the conventional
systems (dashed lines). Higher is better.

tation again included an LRU list to help when collisions
occur and aging needs to be employed. After completing
an update, the thread returns to the producer partition
to generate another datum. Importantly unlike any of
the prior implementations, nodes holding the hash table
had no permanently resident threads.

As pictured as the red “V2 Deluge” line in Fig. 6, the
machine cycles per datum is essentially flat (i.e. near
perfect scaling), and considerably lower than any of the
prior implementations, particularly including the shared
memory on conventional cores.

4) Implementation on a bigger system
All the above ran on the Chick system at Georgia

Tech. Recently an upgraded Pathfinder-S system became
available, and the Deluge algorithm run on it [35], with a
varying number of partitions devoted to the hash tables.
All partitions not hosting hash entries were producing
sites. The line labelled “V2 Deluge-S” reflects this exper-
iment. As can be seen, the overlap with the prior Deluge
curve is very good, and there is only limited growth on
cycles per datum as the number of cores increase.

5) Summary Measured Performance
Fig. 7 shows the actual measured datums per second

for each of the above implementation versus the number
of cores. Remembering that the cores in the migrating
thread systems are currently at least an order of magni-
tude slower than the cores in the conventional (dashed
line) systems, the comparison is stunning. The net con-
clusion from this is that using the Deluge algorithm,
the migrating thread architecture has the potential to
significantly beat conventional implementations if put
on a common technology footing (i.e. cores in an ASIC
running at comparable clocks).

C. Machine Learning

Machine learning (ML) is becoming an essential part of
much of modern computing. The predicting/inferencing
part of ML is often straightforward to perform efficiently,
especially by purpose-built hardware (cf. Google’s TPU
[36]). However, learning is far more complex. One well
known ML technique is Stochastic Gradient Descent



1

10

100

1 10 100 1000 10000

Sp
ee

d
u
p
 o
ve
r 
1
 T
h
re
ad

Total Number of Threads
Perfect CovType WEbspam Rev1 news20 Hogwild++

Fig. 8: Wildebeest Speedup.

Fig. 9: Passel Speedup.

(SGD) that repeatedly uses training data against a cur-
rent model vector, determines when a projection (infer-
ence) is incorrect, and uses the “direction” of the error to
modify the model vector slightly. A series of studies have
explored a wide range different parallel SGD algorithms
[37]–[40], largely on multi-core chips, with at best limited
scalability. Memory issues such as inter-socket coherency
traffic and false sharing have been primary. Perhaps the
most influential of these algorithms was Hogwild! [41],
[42] - a multi-threaded implementation where indepen-
dent trainers could update the same model vector at
the same time with a feature-at-a-time atomic update.
This algorithm demonstrated scaling of up to 4.5X on 10
core systems for sparse and very sparse problems where
the there were very few updates to make from each
training datum. An important follow-on, Hogwild++
[38], provided somewhat higher speedups (up to 9.5X on
40 cores, and again for the sparse problems for which the
conventional algorithms do poorly) by creating “clus-
ters” of cores where each cluster had an affinity to some
memory channel. Each cluster ran a separate training
session using Hogwild! on just local data, but with a
rotating “token” whose arrival on a cluster caused it to
exchange changes in its model vector since the last token
with the next cluster. This exchange is in both directions.

1) Implementation on the Chick
Several migrating thread codes were based on Hog-

wild! and Hogwild++. In the first, called Wildebeest

[43], a Hogwild++ implementation matched a partition
with a cluster, and used a variety of migration-based
mechanisms for the inter-cluster communication. A re-
mote atomic ULW would be launched by one cluster
to set a flag in the next cluster. When one of the train-
ing threads detects this, it starts comparing the current
model vector with the previous one, and sending out a
stream of updates (feature numbers and updates), again
using remote atomic ULWs. The updates modify the
upstream cluster’s model vector; the feature numbers are
queued. Then, when the token is passed, a thread on this
next cluster starts working through the queue of feature
numbers, determining what has changed in that position
since the last token passing, and sending an update the
other way. Fig. 8 diagrams some results on the Chick.
The four colored markers provide speedup as a function
of the total number of threads for four different data sets.
The outlined circles represent data for the same data sets
from the original Hogwild++ paper. As can be seen, the
migrating thread had better scalability in all cases, and
was significantly better for the sparsest of data sets (the
red points).

A second code, called Passel [44], replaced the queue
of modified features that was sent upstream with in-
dividual threads that performed the updates directly.
In this case, the reference data is the same algorithm
implemented on a conventional cluster. The results in
Fig. 9 are even better than before, with the dotted
lines representing the conventional code and the solid
ones the migrating threads. Again the latter are clearly
superior in all cases.

V. CONCLUSION

Sparsity and irregularity seems to be becoming the
Achilles heel of parallel codes that scale well through
large numbers of cores, especially for systems where
mixed shared memory multi-threading and distributed
message passing are needed to use all the resources
efficiently. This paper looked at a variety of different
problems that all exhibited this phenomena. Strong scal-
ing of sparse linear algebra operations scale miserably,
even while their dense counterparts are the bread and
butter of conventional parallel benchmarks. Streaming
of data through large complex data structures scales but
at horrible inefficiencies. Even the hottest of emerging
applications, machine learning, has significant problems
when the problems are large and sparse.

In contrast, a new paradigm based on migrating
threads seems to scale better in all these cases. These
numbers should only get better as implementation of the
basic architecture are in comparable ASIC technologies.

A future paper will explore all these cases, and add
several more, in more detail, with a detailed projection as
exactly how much better implementations in comparable
technology will get.



ACKNOWLEDGMENTS

This work was supported in part by NSF grant CCF-
1822939, and in part by the University of Notre Dame.
We would also like to acknowledge the CRNCH Center
at Georgia Tech for allowing us to use the Lucata systems
there.

REFERENCES

[1] Z. Jia, J. Zhan, L. Wang, C. Luo, W. Gao, Y. Jin, R. Han,
and L. Zhang, “Understanding big data analytics workloads on
modern processors,” IEEE Transactions on Parallel and Distributed
Systems, vol. 28, no. 6, pp. 1797–1810, 2017.

[2] Cray, “Cray t3d system architecture overview manual.”
[Online]. Available: ftp://ftp.cray.com/product-info/mpp/T3D
Architecture Over/T3D.overview.html

[3] T. Dysart, P. Kogge, M. Deneroff, E. Bovell, P. Briggs, J. Brockman,
K. Jacobsen, Y. Juan, S. Kuntz, R. Lethin, J. McMahon, C. Pawar,
M. Perrigo, S. Rucker, J. Ruttenberg, M. Ruttenberg, and S. Stein,
“Highly scalable near memory processing with migrating threads
on the emu system architecture,” in 2016 6th Workshop on Irregular
Applications: Architecture and Algorithms (IA3), 2016, pp. 2–9.

[4] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou, “Cilk: an efficient multithreaded runtime
system,” in Proceedings of the fifth ACM SIGPLAN symposium
on Principles and practice of parallel programming, ser. PPOPP
’95. New York, NY, USA: ACM, 1995, pp. 207–216. [Online].
Available: http://doi.acm.org/10.1145/209936.209958

[5] J. Kepner and J. Gilbert, Graph Algorithms in the Language of Linear
Algebra. USA: Society for Industrial and Applied Mathematics,
2011.

[6] B. Brock, A. Buluç, T. Mattson, S. McMillan, and J. Moreira,
“The GraphBLAS C API Specification version 2.0.0,” https://
graphblas.org/docs/GraphBLAS API C v2.0.0.pdf.

[7] T. Davis, “Suite sparse,” https://github.com/
DrTimothyAldenDavis/GraphBLAS.

[8] K. Asanovic, R. Bodik, J. Demmel, T. Keaveny, K. Keutzer,
J. Kubiatowicz, N. Morgan, D. Patterson, K. Sen, J. Wawrzynek,
D. Wessel, and K. Yelick, “A view of the parallel computing
landscape,” Commun. ACM, vol. 52, no. 10, p. 56–67, oct 2009.
[Online]. Available: https://doi.org/10.1145/1562764.1562783

[9] M. Grossman, C. Thiele, M. Araya-Polo, F. Frank, F. O. Alpak,
and V. Sarkar, “A survey of sparse matrix-vector multiplication
performance on large matrices,” ArXiv, vol. abs/1608.00636, 2016.

[10] B. Bylina, J. Bylina, P. Stpiczyński, and D. Szałkowski, “Perfor-
mance analysis of multicore and multinodal implementation of
SpMV operation,” in 2014 Federated Conference on Computer Science
and Information Systems, 2014, pp. 569–576.

[11] T. Davis, “Suite sparse matrix collection,” https://sparse.tamu.
edu/.

[12] B. A. Page and P. M. Kogge, “Scalability of hybrid sparse matrix
dense vector (SpMV) multiplication,” in 2018 International Confer-
ence on High Performance Computing and Simulation (HPCS), 2018,
pp. 406–414.

[13] ——, “Scalability of hybrid SpMV on Intel Xeon Phi Knights
Landing,” in 2019 International Conference on High Performance
Computing and Simulation (HPCS), 2019, pp. 348–357.

[14] ——, “Scalability of hybrid SpMV with hypergraph partitioning
and vertex delegation for communication avoidance,” in Int. Conf.
on High Performance Computing and Simulation (HPCS 2020), 2021.

[15] S. Usman, R. Mehmood, I. Katib, A. Albeshri, and S. Altowaijri,
“Zaki: A smart method and tool for automatic performance opti-
mization of parallel SpMV computations on distributed memory
machines,” Mobile Networks and Applications, 07 2019.

[16] B. A. Page and P. M. Kogge, “Scalability of sparse matrix dense
vector multiply (SpMV) on a migrating thread architecture,” in
2020 IEEE International Parallel and Distributed Processing Sympo-
sium Workshops (IPDPSW), 2020, pp. 483–488.

[17] Z. Bar-Yossef, R. Kumar, and D. Sivakumar, “Reductions
in streaming algorithms, with an application to counting
triangles in graphs,” in Proceedings of the Thirteenth Annual
ACM-SIAM Symposium on Discrete Algorithms, ser. SODA ’02.
Philadelphia, PA, USA: Society for Industrial and Applied
Mathematics, 2002, pp. 623–632. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=545381.545464

[18] L. Becchetti, P. Boldi, C. Castillo, and A. Gionis, “Efficient
semi-streaming algorithms for local triangle counting in massive
graphs,” in Proceedings of the 14th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, ser. KDD ’08.
New York, NY, USA: ACM, 2008, pp. 16–24. [Online]. Available:
http://doi.acm.org/10.1145/1401890.1401898

[19] D. A. Bader, J. Berry, A. Amos-Binks, D. Chavarra-Miranda,
C. Hastings, K. Madduri, and S. C. Poulos, “Stinger: Spatio-
temporal interaction networks and graphs (sting) extensible rep-
resentation,” Georgia Institute of Technology, Tech. Rep, 2009.

[20] D. Ediger, K. Jiang, J. Riedy, and D. Bader, “Massive streaming
data analytics: A case study with clustering coefficients,” in
IEEE International Symposium on Parallel and Distributed Processing,
Workshops and Phd Forum (IPDPSW), 05 2010, pp. 1 – 8.

[21] P. A. Bernstein and N. Goodman, “Timestamp-based algorithms
for concurrency control in distributed database systems,” in
Proceedings of the Sixth International Conference on Very Large Data
Bases - Volume 6, ser. VLDB ’80. VLDB Endowment, 1980, pp.
285–300. [Online]. Available: http://dl.acm.org/citation.cfm?id=
1286887.1286918

[22] A. McGregor, “Graph stream algorithms: A survey,” SIGMOD
Rec., vol. 43, no. 1, pp. 9–20, May 2014. [Online]. Available:
http://doi.acm.org/10.1145/2627692.2627694

[23] J. Feigenbaum, S. Kannan, A. McGregor, S. Suri, and J. Zhang,
“On graph problems in a semi-streaming model,” Theor. Comput.
Sci., vol. 348, no. 2, pp. 207–216, Dec. 2005. [Online]. Available:
http://dx.doi.org/10.1016/j.tcs.2005.09.013

[24] P. M. Kogge, N. Butcher, and B. Page, “Introducing streaming
into linear algebra-based sparse graph algorithms,” in HPCS 2019
(nominated for best paper), July 2019.

[25] P. Carbone, A. Katsifodimos, S. Ewen, V. Markl, S. Haridi, and
K. Tzoumas, “Apache flink: Stream and batch processing in
a single engine,” in Bulletin of the Technical Committee on Data
Engineering, Dec. 2015.

[26] J. Riedy and D. Bader, “Stinger: Multi-threaded graph streaming,”
05 2014.

[27] S. J. Plimpton and T. Shead, “Streaming data analytics via message
passing with application to graph algorithms,” Journal of Parallel
and Distributed Computing, vol. 74, no. 8, 5 2014.

[28] G. Wang, L. Chen, A. Dikshit, J. Gustafson, B. Chen, M. J.
Sax, J. Roesler, S. Blee-Goldman, B. Cadonna, A. Mehta,
V. Madan, and J. Rao, “Consistency and completeness: Rethinking
distributed stream processing in apache kafka,” in Proceedings
of the 2021 International Conference on Management of Data,
ser. SIGMOD ’21. New York, NY, USA: Association for
Computing Machinery, 2021, p. 2602–2613. [Online]. Available:
https://doi.org/10.1145/3448016.3457556

[29] K. Anderson, “Streaming benchmarks firehouse and experiences
with waterslide,” in Chesapeake Large Scale Data Analytics Conf.,
2016.

[30] J. Berry and A. Porter, “Stateful streaming in distributed memory
supercomputers,” in Chesapeake Large Scale Data Analytics Conf.,
2016.

[31] J. Eaton, “Firehose, pagerank, and nvgraph: Gpu accelerated
analytics,” in Chesapeake Large Scale Data Analytics Conf., 2016.

[32] B. A. Page and P. M. Kogge, “Scalability of streaming on migrat-
ing threads,” in 2020 IEEE High Performance Extreme Computing
Conference (HPEC), 2020, pp. 1–8.

[33] ——, “Scalability of streaming anomaly detection in an
unbounded key space using migrating threads,” in High
Performance Computing: 36th International Conference, ISC High
Performance 2021, Virtual Event, June 24 – July 2, 2021, Proceedings.
Berlin, Heidelberg: Springer-Verlag, 2021, p. 157–175. [Online].
Available: https://doi.org/10.1007/978-3-030-78713-4 9

[34] ——, “Deluge: Achieving superior efficiency, throughput, and
scalability with actor based streaming on migrating threads,” in

ftp://ftp.cray.com/product-info/mpp/T3D_Architecture_Over/T3D.overview.html
ftp://ftp.cray.com/product-info/mpp/T3D_Architecture_Over/T3D.overview.html
http://doi.acm.org/10.1145/209936.209958
https://graphblas.org/docs/GraphBLAS_API_C_v2.0.0.pdf
https://graphblas.org/docs/GraphBLAS_API_C_v2.0.0.pdf
https://github.com/DrTimothyAldenDavis/GraphBLAS
https://github.com/DrTimothyAldenDavis/GraphBLAS
https://doi.org/10.1145/1562764.1562783
https://sparse.tamu.edu/
https://sparse.tamu.edu/
http://dl.acm.org/citation.cfm?id=545381.545464
http://dl.acm.org/citation.cfm?id=545381.545464
http://doi.acm.org/10.1145/1401890.1401898
http://dl.acm.org/citation.cfm?id=1286887.1286918
http://dl.acm.org/citation.cfm?id=1286887.1286918
http://doi.acm.org/10.1145/2627692.2627694
http://dx.doi.org/10.1016/j.tcs.2005.09.013
https://doi.org/10.1145/3448016.3457556
https://doi.org/10.1007/978-3-030-78713-4_9


2021 IEEE High Performance Extreme Computing Conference (HPEC),
2021, pp. 1–6.

[35] ——, “Greatly accelerated scaling of streaming problems with a
migrating thread architecture,” in 2021 IEEE/ACM 11th Workshop
on Irregular Applications: Architectures and Algorithms (IA3), 2021,
pp. 11–18.

[36] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal,
R. Bajwa, S. Bates, S. Bhatia, N. Boden, A. Borchers, R. Boyle,
P.-l. Cantin, C. Chao, C. Clark, J. Coriell, M. Daley, M. Dau,
J. Dean, B. Gelb, T. V. Ghaemmaghami, R. Gottipati, W. Gulland,
R. Hagmann, C. R. Ho, D. Hogberg, J. Hu, R. Hundt,
D. Hurt, J. Ibarz, A. Jaffey, A. Jaworski, A. Kaplan, H. Khaitan,
D. Killebrew, A. Koch, N. Kumar, S. Lacy, J. Laudon, J. Law, D. Le,
C. Leary, Z. Liu, K. Lucke, A. Lundin, G. MacKean, A. Maggiore,
M. Mahony, K. Miller, R. Nagarajan, R. Narayanaswami, R. Ni,
K. Nix, T. Norrie, M. Omernick, N. Penukonda, A. Phelps,
J. Ross, M. Ross, A. Salek, E. Samadiani, C. Severn, G. Sizikov,
M. Snelham, J. Souter, D. Steinberg, A. Swing, M. Tan,
G. Thorson, B. Tian, H. Toma, E. Tuttle, V. Vasudevan, R. Walter,
W. Wang, E. Wilcox, and D. H. Yoon, “In-datacenter performance
analysis of a tensor processing unit,” SIGARCH Comput. Archit.
News, vol. 45, no. 2, p. 1–12, jun 2017. [Online]. Available:
https://doi.org/10.1145/3140659.3080246

[37] J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao,
M. aurelio Ranzato, A. Senior, P. Tucker, K. Yang, Q. V. Le, and
A. Y. Ng, “Large scale distributed deep networks,” in Advances in
Neural Information Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds. Curran Associates, Inc.,
2012, pp. 1223–1231. [Online]. Available: http://papers.nips.cc/
paper/4687-large-scale-distributed-deep-networks.pdf

[38] H. Zhang, C. J. Hsieh, and V. Akella, “Hogwild++: A new
mechanism for decentralized asynchronous stochastic gradient
descent,” in 2016 IEEE 16th Int. Conference on Data Mining (ICDM),
Dec 2016, pp. 629–638.

[39] C. D. Sa, C. Zhang, K. Olukotun, and C. Ré, “Taming the wild:
A unified analysis of hog wild! -style algorithms,” in Proc. of
the 28th Int. Conference on Neural Information Processing Systems
- Volume 2, ser. NIPS’15. Cambridge, MA, USA: MIT Press, 2015,
p. 2674–2682.

[40] C. Zhang and C. Ré, “Dimmwitted: A study of main-
memory statistical analytics,” Proc. VLDB Endow., vol. 7,
no. 12, p. 1283–1294, Aug. 2014. [Online]. Available: https:
//doi.org/10.14778/2732977.2733001

[41] F. Niu, B. Recht, C. Re, and S. J. Wright, “Hogwild!: A lock-free
approach to parallelizing stochastic gradient descent,” in Proc. of
the 24th Int. Conference on Neural Information Processing Systems,
ser. NIPS’11. USA: Curran Associates Inc., 2011, pp. 693–701.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2986459.
2986537

[42] L. M. Nguyen, P. H. Nguyen, M. van Dijk, P. Richtárik,
K. Scheinberg, and M. Takáč, “SGD and Hogwild! convergence
without the bounded gradients assumption,” 2018. [Online].
Available: https://arxiv.org/abs/1802.03801

[43] B. A. Page, “Scalablity of irregular problems,” Ph.D. dissertation,
Univ. of Notre Dame, October 2020.

[44] B. A. Page and P. M. Kogge, “Passel: Improved Scalability and
Efficiency of Distributed SVM using a Cacheless PGAS Migrating
Thread Architecture,” in 12th IEEE/ACM Workshop on Latest Ad-
vances in Scalable Algorithms for Large-Scale Systems (Scala). IEEE,
2021, pp. 1–8.

https://doi.org/10.1145/3140659.3080246
http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf
http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf
https://doi.org/10.14778/2732977.2733001
https://doi.org/10.14778/2732977.2733001
http://dl.acm.org/citation.cfm?id=2986459.2986537
http://dl.acm.org/citation.cfm?id=2986459.2986537
https://arxiv.org/abs/1802.03801

	Introduction
	Intrinsic Migration
	Basic Execution Model
	Pervasive Lightweight Multi-threading
	Memory Controllers and Ultra Lightweight Threads

	Hardware Implementations
	The Chick system
	The Pathfinder systems
	Enhanced Programming Model
	Typical Program Structure

	Evidence of Usefulness
	SpMV
	Prior work
	A Migrating Thread Implementation

	Streaming
	Variant 1 Experiments
	Variant 2 Initial Implementation
	Variant 2 - Deluge
	Implementation on a bigger system
	Summary Measured Performance

	Machine Learning
	Implementation on the Chick


	Conclusion
	References

