A Divide & Concur Approach to Collaborative
Goal Modeling with Merge in Early-RE

Kathleen R. Hablutzel, Anisha Jain, Alicia M. Grubb
Department of Computer Science
Smith College, Northampton, MA, USA
amgrubb@smith.edu

Abstract—Goal modeling enables the elicitation of stakehold-
ers’ intentionality in the earlier stages of a project. Often,
approaches are limited by the effort required to create an initial
goal model. In this paper, we investigate the problem of model
merging for Tropos goal models. Specifically, we propose a
formal approach to the problem of automatically merging the
attributes of intentions and actors, once these elements have
been matched. Additionally, recent approaches have investigated
answering questions about future evolutions of stakeholders’
projects with goal models. In this work we consider both static
models, as well as those with timing information, using the
principles of gullibility, contradiction, and consensus. We study
our implementation and validate the merge operation on a variety
of models from the literature.

I. INTRODUCTION

Goal-Oriented Requirements Engineering (GORE) aims to
help stakeholders make trade-off decisions when planning
a project [1], [2]. GORE frameworks also provide analysis
capabilities to solve problems facing stakeholders, understand
project evolution, and connect their models with downstream
development activities [1], [3]. Using GORE approaches in
the early-phases of projects, modelers elicit the intentions
and dependencies of stakeholders and users within the project
domain, and document these requirements using a central
visual artifact, called a goal model [4]. Modelers can ask
trade-off questions of their goal models, and help stakeholders
visualize alternatives and make project decisions.

Recent work suggests that given the same initial docu-
mentation, requirements analysts focus on different aspects of
a project with some leaning toward refinements and others
creating new features [5], which suggests that requirements
specifications can be improved through the multiple perspec-
tives of different analysts. Others found matching and merging
goal models leads to better requirements [6]. Yet, there is a
significant cognitive barrier in merging the work of multiple
modelers. We aim to automate merging Tropos model syntax
and semantics to reduce the burden of merging, and allow
modelers to have more focused discussions during elicitations.
State of the Art in Model Merging. Model merging has
been extensively studied in the literature. Researchers have
proposed approaches for behavior and state-based models [7],
[8], [9], [10]. Within GORE, early work by Sabetzadeh
and Easterbrook described stakeholder views, in terms of
i* models, as annotated graphs [11]. Feng et al. looked at
merging decomposition patterns (e.g., and/or decomposition)

rackmg
App

Share Data

Public "; -
A Health reate .
7 Predictive é—and
J/ Models

S Collect ‘++ with Public

Location 4
Predict Staffing Data Health o ) UD
— Share Al
- Collect Test 4 Data
L Result Data S \\\ &hare Places
s e . \to Avoid ’
e “\R u f <o
:

Legend
[Soft Goal s
S " A AvoidStigma | \ -
@o Resourcel| ™.

Fig. 1: Model-A showing the perspective of state officials.

in goal models [12]. More recently, Baslyman and Amyot
explored merging model fragments into system models within
UNR [13]. Peng et al. worked towards building goal models
piecemeal by adapting fragments of a model for another
domain based on a goal in the subject domain of the model
under consideration [14]. Grubb and Chechik proposed a
manual process to enable the piecemeal creation of Tropos
goal models with evolutionary information [15]. Alwidian and
Amyot created a merged representation of families of goal
models in URN [16]. The vast majority of this work considers
the problem of model merging in terms of matching model
elements, creating a reference model, and merging (i.e., a
three-way merge [17]); thus, the problem of model matching
with traceability is well understood. However, once model
elements are matched, prior work does not give sufficient
intuition into how to resolve conflicts between the attributes of
each element in Tropos. In this paper, we extend the work of
Grubb and Chechik [15]. In their approach, whenever a conflict
is detected, the algorithm prompts the user to manually resolve
the conflict. In reality, this approach is repetitive and requires
users to interact with every step of the merge process; instead,
we aim to automatically merge the majority of model attributes
once elements are matched, prompting user involvment only
at the end of the merge process in the case of an unresolvable
conflict. To illustrate the types of conflicts that may exist in
this approach, we introduce a motivating example.

Illustrative Example: Contact Tracing App (CT-App). We
consider the example of a COVID-19 contact mobile phone
tracing app for a fictitious client CSoft, who is evaluating
options and implications of sharing data. Modelers meet with
stakeholders to elicit and document their needs. Modeler-
A meets with state officials and app developers looking at



Veggie
Market

/' Minimize Sk
y Exposure >
/ \
/ Y
+ S—
! Practice j Stay Informed\< " i
1+ ¢ Social v about Risk '
\ \ Distancing / Y

E
\ Share ' ztermlne PP Ji
Exposure qulrements
A D ¢ i)

Share Places \

\ Avoid Stigma
to Avoid —-S

Y of Exposure

Fig. 2: Model-B showing the views of individual stakeholders.

the technical aspects. Modeler-B wants to understand the
benefits to users. Once goal models are constructed (see Fig. 1
and Fig. 2, see also Sect. II for an overview of the notation),
CSoft wants to answer the question: “What are the impacts
of each of the alternatives for Share Data with Individuals?”
Analyzing either model results in incomplete answers because
neither model sufficiently describes the intentions of the stake-
holders and Tracking App. To fully answer questions in this
scenario, we need to merge the models in Fig. 1 and Fig. 2,
resulting in the model shown in Fig. 3. Although this is trivial
in our CT-App example, this is an arduous task for realistic
goal models due to the conflicts among element attributes.

For example, Share Exposure and Share Places to Avoid are
modeled as tasks in Model-A (see Fig. 1) and goals in Model-B
(see Fig. 2). Share Exposure is assigned an initial valuation of
Partially Satisfied (P, 1) in one model, but assigned the value
None (L, 1) in the other. Both models contain a link from
Share Places to Avoid to Avoid Stigma of Exposure, but this is
modeled as a —— link in Model-A and a —-S link in Model-
B. Finally, Veggie Market is modeled as an actor in Model-A
and an agent in Model-B. In the manual algorithm presented
in [15], each of these decisions would require prompting the
user to make a choice. Other approaches from the literature
require this information to be added to the reference model.
In order to save time and minimize possible errors, we aim to
create an algorithm for goal model merging that automates or
streamlines the majority of these decisions.

Contributions. In this technical solution paper, we support
modelers’ ability to collaborate in GORE activities, specifi-
cally the creation of goal models. We are motivated by our
central research question: (RQ) Given a minimal reference
model (i.e., matched element names), to what extent can we
automatically merge the remaining attributes to create a single
goal model? We investigate static models and those with
evolutionary information (see Sect. II for an overview). For
static models, element attributes include intention and actor
types, relationship types, and intention valuations. Evolving
models contain additional attributes for how the valuations of
intentions and types of relationships change over time.

We contribute a semi-automated approach for merging Tro-
pos goal models with and without evolutionary information.
Our implementation has traceability of the decisions, which
enables stakeholders to verify the automated portions of the
merge. We demonstrate the effectiveness and scalability of our
approach by evaluating it with a variety of models.

Organization. In Sect. II, we introduce relevant goal mod-
eling background, including the manual algorithm from [15].

Public | /
Health // Create

Predictive Y<—2"d
++5— \ Models

Collect

N Share Data
<++-_ With Public
/‘, Health (G4

and Location
Data
. Data
‘\ Share Places
N \{o Avoid
R (L) ~ey N
Transparency

Share
Exposure

ub

Collect Test
Result Data

Practice
Social
Distancing

Stay Informed
about Risk

— — . /,. -
= -S

Fig. 3: Results of merging Model-A and Model-B.

Sect. III lays a foundation for our approach and defines the
concepts of gullibility and consensus. Sect. IV and Sect. V
describes our merge algorithm for static and evolving models,
respectively. Sect. VI reports on the effectiveness and scal-
ability of our approach and tooling. Sect. VII connects our
approach to related work. We conclude in Sect. VIIIL.

II. BACKGROUND

In this section, we review the modeling notation and the
manual algorithm we extend and automate.
Goal Modeling. In Tropos, goal models are directed graphs
of intentions and links [18], [19]. Intentions may belong to an
actor and are one of four types: goals, tasks, resources, and
soft-goals (see legend in Fig. 1). Intentions can be decom-
posed, where a node requires the satisfaction of all (and) or
one (Or) of its children. In Model-A of the CT-App example
(see Fig. 1), the top-level goal of the Tracking App actor is
to Share Data with Individuals, which is Or-decomposed into
three alternative tasks. Intentions can also contribute to each
other using contribution links (e.g., +, —, ++, ++S, =S, etc.).

Each intention can be evaluated using an evidence pair
(s,d), where s € {F,P, 1} is the level of evidence for and
d € {F,P, L} is the level of evidence against the fulfillment
of an intention, with | < P < F. Thus, goals can have
one of five values: Satisfied (F, L), Partially Satisfied (P, 1),
Partially Denied (L,P), Denied (L,F), and None (L,L1);
as well as four conflicting values: (F,F), (F,P), (P,F), and
(P,P). F [resp. P] means there is full [resp. partial] evidence
for or against the fulfillment of an intention, while L repre-
sents null evidence. In Fig. 1, Share Data with Public Health is
assigned by the user the value Satisfied (F, L) because CSoft
has already formed an agreement with public health officials.
In the Public Health actor, there is a ++S contribution link
between Create Predictive Models and Predict Staffing Needs.
The ++S link only propagates when Create Predictive Models
has F or P for its s value of the evidence pair. See [18] and [19]
for additional propagation details.
Specifying Evolving Information. We use the Evolving
Intentions framework [20] to explore merging models with
evolution. Evidence pairs in Tropos form a partial order from
most satisfied to most denied. In this framework, evolution is
specified using step-wise functions (i.e., evolving functions),



where over any time interval, the valuations of a intention can
INCREASE, DECREASE, remain CONSTANT, or not be con-
strained by a defined pattern, which is known as STOCHASTIC.
In the CT-App example, Modeler-A specifies Share Exposure
as STOCHASTIC for a period while the app is being developed,
then CONSTANT at Denied (L, F) for the next period of time,
followed by an INCREASE function up to the value of Satisfied
(F,L). Fig. 6(a) illustrates this function for Share Exposure.

An evolving goal model is a tuple M = (A,G,R,EF,
MC,maxTime), where A is a set of actors, G is a set of
intentions, R is a set of relationships, E'F' is a set of evolving
functions, M C' is a set of constraints over time points in the
model, and maxTime is the maximum absolute time [20].

Prior Manual Merge Algorithm. As part of the Evolving
Intentions framework, Grubb and Chechik proposed a manual
algorithm for merging goal models with evolutionary informa-
tion [15]. The procedure consists of six steps: (GC1) Create
the timeline for the merged model. (GC2) Update absolute
values assigned to the symbolic constants in each model.
(GC3) Union merge actors and intentions based on element
names. (GC4) Merge relationships in the model. (GC5) Prompt
the user to define presence conditions over the model. Update
evolving functions for regions with presence conditions. (GC6)
Merge evolving functions. This algorithm is a helpful starting
point for merging goal models with evolution; however, as
demonstrated with the CT-App example in Sect. I, the algo-
rithm does not merge any conflicts in attributes and would
instead repeatedly prompt the user to intervene throughout
GC3, GC4, and GC6. We extend the algorithm in terms of
merging the goal model elements and their attributes (i.e., GC3
and GC4), and merging the evolutionary information in the
Evolving Intentions framework (i.e., GC1, GC2, and GC6).
Since the goal of this work is to merge models created by
different stakeholders, usually over similar time periods, we
exclude the consideration of presence conditions (i.e., GCS5),
which was specific to merging a single modeler’s perspective
over vastly different time periods where actors did not exist
in the time period of some models [15].

The existing portions of the manual procedure [15] are
essentially gullible, which means the goal set G of the merged
model is equal to the union of the candidate goal sets.
Alternatively, a consensus approach would instead take only
the goals found in both models—the intersection of their goal
sets. A consensus approach defeats the purpose of merging,
which is to paste together mostly discrete sub-models into a
larger model. In our simplified match, we take the union of
goals and actors (based on element name).

With regards to merging evidence pairs and evolving
functions, the algorithm essentially uses gullibility-up-to-
contradiction. This means that for intentions only present in
one model, or attributes only given values in one model, the
algorithm accepts the values assigned to them. The previous
manual algorithm is not yet able to assign values to inten-
tions that have user-assigned values in both source models—
values that may disagree. Our strategy for merging element

attributes is to use gullibility-up-to-contradiction and then
require consensus. In the next three sections, we further define
the meaning of this strategy and describe how it applies to each
kind of attribute, enabling us to automate the merge process.

III. MERGE PROCEDURE & PRINCIPLES

In this section, we give an overview of our approach.

High-level Approach. We list the high-level steps of merge
in Algo. 1. Merge unifies information from two evolving goal
models at the same level of abstraction, specified over two
absolute time periods. The inputs to merge are two (evolv-
ing) goal models My, My = (A,G,R, EF, MC, maxTime)
(see Sect. II). The output of the merge process is an evolving
goal model M. Our approach also produces a list of deleted
elements, and an intermediate list of model constraints to
ensure that the timelines are matched appropriately.

The process begins with a pre-computation step (see Lines
1-3 in Algo. 1) whereby we determine the updated timeline,
as described in Sect. V-A. Since the model timeline affects the
rest of the process, we compute the new timeline and have the
user verify its correctness and update any timeline information
before proceeding with the rest of the merge process.

To keep our investigation focused on merging element
attributes, our approach simply matches intention and actor
names to create a union of model elements (see Line 4 in
Algo. 1). Other approaches (see Sect. VII) use a reference
model to make these connections. We consider the matching
portion of the algorithm to be outside the scope of our
investigation in this paper. Other matching functions can be
inserted into our algorithm, if desired, to match elements with
different naming conventions (see Sect. VIII).

Once the new timeline has been created and the actors
and intentions are matched, we proceed with merging the
remaining attributes in the model. First, on Line 5 of Algo. 1,
we merge the actors and their relationships (i.e., attributes
of A), as described in Sect. IV-A. Second, we merge the
attributes of the intentions on Lines 6-8. We initially merge
only the intention types (see Sect. IV-B), then we merge
the evolving functions associated with each intention, as
described in Sect. V-B and Sect. V-C. Additionally, we resolve
any intention valuations not included in evolving functions
(see Sect. IV-C). There is no dependency between the or-
dering of merging actors (Line 5) and intentions (Lines 6-
8 in Algo. 1). Finally, we merge intention relationships,
which include both static (see Sect. IV-B) and evolving
(see Sect. V-D) links (Line 9). After this process completes,
the modeler may review each automated decision in the merge
algorithm and manually resolve any remaining conflicts.

To merge static models, EF' and MC' are empty sets and
maxTime is assigned to zero. In this case, only Lines 4, 5, 6,
8, and 9 are required in Algo. 1. All the details required to
merge static models are described in Sect. IV.

We map the steps in our merge process with the manual
algorithm (see Sect. IT). GC1-2 map onto Lines 1-3 in Algo. 1,
while GC3 maps onto Lines 4-6, & 8. GC4 is accomplished



(F’ F) Input:
L /N P
(P.F) (F,P)
SN/ N\ Output:
(LF) (PP (F1)
N SN/
(LP)  (P1) 1
NS 5
(L7 J*) 3:
4.
¢ S:
6
Fig. 4: Bilattice of knowledge (k) and truth 7:
(t) orderings of s ® d. g

by Line 9 and GC6 is completed by Line 7. As mentioned in
Sect. II, we do not consider GC5 (i.e., presence conditions).

Our strategy to merge element attributes is to use gullibility-
up-to-contradiction and then require consensus. To implement
this strategy, we need to first explicitly define what it means
for intention valuations to be gullible, or be in consensus.

Defining Gullibility and Consensus for Evidence Pairs.
Next, we define operators for gullibility and consensus for
evidence pairs used in Tropos. Evidence pairs are used as
valuations for intentions (i.e., an attribute of ¢ € G). Ad-
ditionally, they are used to describe how the valuation of an
intention evolves or changes over time (e.g., used in E'F’). We
use these new operators in Sect. IV and Sect. V when merging
intention valuations and evolving functions, respectively.

Using the evidence pair (s,d) introduced in Sect. II, we
create a bilattice of the product of s and d (i.e., s ® d), by
considering the knowledge (k) and truth (¢) orderings. The set
of this bilattice is the Cartesian product s x d = {(L, L),
(L,P), (L.F), (P, 1), (P,P), (P,F), (F. 1), (F.P), (F,F)},
which are the values in Sect. II. Its ¢ and k& orderings are
defined for any two elements (s1,d;) and (s2,d2) in s X d,

(s1,d1) <p (s2,d2) iff 51 < 59 and dy < dp
(Slydl) St (527(12) lff S1 S S92 and dQ § dl

For example, (L, 1) < (L,P) means that (L, P) represents
more evidence than (L, 1), while (L,P) <; (L,Ll) means
that (L, L) indicates more satisfaction/less denial than (L, P).
If for two values a and b in s X d it is neither the case that
a <g b nor that b <j, a, then the two values are considered
incomparable k-wise—(P, F) and (F, P) are two such values.
The same rule holds in the ¢ ordering. Comparing all pairings
in s x d in this way yields the bilattice pictured in Fig. 4. A
lattice is a partially ordered set in which any two elements
within it have a greatest lower bound (glb), or meet, and a
least upper bound (/ub), or join. With this bilattice, we define
A and V as the meet/glb and join/lub of the t-ordering, while
® and @ are defined as the meet and join of the k-ordering.
We describe these operations in terms of the meet (M) and join

Models M1, M2 = (A,G, R, EF, MC, maxTime)
Initial start values: M, .start = 0, Ms.start

: Pre-compute Model Timeline
: User verifies timing file and updates any model constraints in MC, R, EF.
Update Timeline Information M C
Match Actors A, and Intentions G based on element name.
Merge Actors & Actor Relationships A
: Resolve Intentions Types G

Merge Evolving Functions EF'

: Resolve Intention Valuations G

: Merge Intention Relationships R

Algorithm 1: High-level Merge Process

> See Sect. II.

Merged Model My = (A, G, R, EF, MC, maxTime)
Log files with deletions list.
Timing file with updated model constraints MC.

> See Sect. V-A
> See Sect. V-A

> See Sect. IV-A

> See Sect. IV-B

> See Sect. V-B-V-C

> See Sect. IV-C

> See Sect. IV-B & Sect. V-D

(U) of each component lattice, s and d [21]. For all (s1,d;)
and (82, dg),

(s1,d1) A (82,d2) = (81 M s2,dy Udy) (Min-Sat)
(s1,d1) V (s2,d2) = (s1 U s2,d1 Mda) (Max-Sar)
(s1,d1) ® (S2,d2) = (81 M s2,d; Mdy) (Consensus)
(s1,d1) ® (s2,d2) = (s1 U sa,dy Uds) (Gullibility)

In English, A returns the minimum s value and the maximum d
value, while V returns the maximum s value and the minimum
d value. ® returns the minimum s and d values (which we de-
fine as consensus in this paper), while & returns the maximum
s and d values (defined as gullibility). Prior work used Max-Sat
and Min-Sat for forward and backward propagation [18], [19].
The evolving functions E'F use the ¢ ordering to describe
how the valuations of intentions change over time [20]. The
bilattice structure in Fig. 4 provides us with two metaphorical
and technical approaches to information conflict: consensus,
represented by ® (i.e., meet over k ordering); and gullibility,
represented by & (i.e., join over k ordering).

IV. MERGING STATIC GOAL MODELS

In this section, we describe how, using the principle of
gullibility-up-to-contradiction, we merge the attributes in static
goal models. At this point we assume all actors and intention
elements have been matched.

A. Merging Actors & Actor Relationships

Actors may be assigned one of three types (i.e., Actor,
Role, and Agent), and may be connected to each other via
actor links (i.e., participates-in or is-a relationship). Using
gullibility-up-to-contradiction, if an entity (i.e., actor) exists in
only one model, we accept that entity through gullibility. In
merging actors, a contradiction may occur in two attributes: (a)
a matched pair of actors with different types, or (b) a matched
pair of actor links with different link types. Through resolving
these contradictions, we may generate an invalid combination
of actor type and link type (see Table I for a full list).

In elicitation, some modelers may refine the scenario more
than others and we want to take this in to account when



TABLE I: Invalid Actor Links

Link Type Source Destination
is-a Actor Role

is-a Role Actor

is-a Agent any type
is-a any type | Agent
participates-in | Actor Agent
participates-in | Role Agent

merging actor types. Roles are an abstract refinement over
actors. Agents are concrete instantiations of an Actor or Role.
Since Roles and Agents are refinements of actors, we gullibly
accept the maximum type within this refinement relationship:

Actor < Role < Agent 1)

For example, if two actors have the same name but one
is of type Actor and the other is of type Role, then it is
acceptable to assign the merged actor as a Role. In the
case of different actor link types, we choose to prioritize
parficipates-in over the is-a relationship, because it is a
more general relationship, presenting any kind of association
(other than generalization) [22].

Completing these steps separately may result in one of the
invalid actor relationships listed in Table I; thus, there are two
possible solutions to this conflict: (1) prioritize links over actor
types, and (2) prioritize actor types over links.

If we prioritize actor links, we update the actor type to
result in a valid link. When an invalid relationship is created
(see Table I), then we identify the actor type that results in the
invalid relationship and revert the actor type of the conflicting
element(s) to that of the source model.

If we prioritize actor types, we remove conflicting links.
When an invalid link is created (see Table I), then the rule
presented in Equation 1 holds and we delete the conflicting
link, adding it to the list of deleted entities for the stakeholder
to review upon completion of the algorithm.

We use the second option in our implementation because
every actor has an actor type, but not all actors are connected
with an actor relationship.

B. Merging Intentions & Intention Relationships

Next, we consider merging intentional elements and
their relationships. Given the principle of gullibility-up-to-
contradiction, if an intention or intention attribute exists in
only one model then we gullibly accept this information into
the merge model. Once intentions are matched, conflicts may
arise between the type of the intention, as well as between the
link types that connect intentions. Unlike actors, intentions
have no formal restriction between their type and the type of
link by which they are connected; thus, we can merge the
intention types and relationships separately.

Resolving Intention Types. As introduced in Sect. II, inten-
tions can have one of four types. Unlike actors, there is no

TABLE II: Consensus rules for positive and negative contri-
bution links.

++ + ++S +S ++D +D
++ ++
+ + +
++S | +4S  +S 445
+S +S +S +S +S
++D | ++D +D ++ + ++D
or N0 or ho
+D +D  +D + + +D  +D
or N0 or ho
-= - --S -S --D -D
-S| --S -§S --S
-S -S -S -S -S
--D|--D -D - - --D
or N0 or ho
-D -D -D - - -D -D
or N0 or ho

refinement relationship between intention types in our goal
model language. In this case, we accept the maximum type:

Goal < Task < Softgoal < Resource 2)

Equation 2 is based on heuristics of how each type is used [23],
[22]. We establish this equation considering the possible
choices made by modelers. For example, Goals are sometimes
considered the default type, meaning that they are chosen in
cases where the type is not well articulated, often to be updated
later as the model is developed. Resources, on the other hand,
are only selected in narrowly defined cases where modelers
want to identify resources.

Resolving Contribution Relationships. In forward propaga-
tion, contribution links define how evidence pairs are propa-
gated via evidence predicates [18]. A contradiction between
the contribution types of two links means that there are
opposing rules over the evidence predicates in propagation.
For example, in forward propagation, a + link propagates
partial satisfaction in the source intention as partial satisfaction
in the destination intention, where as a — propagates partial
satisfaction in the source intention as partial denial in the
destination intention. These links are in direct conflict, with no
consensus between them, and cannot be resolved. Using the
rules of propagation, we defined the meaning of consensus
between contribution links for when a contradiction is found.

Consider two generic models: M; and Ms. Given a pair
of intentions M;.g1l, M;.g2 from the first model and the same
pair of intentions Ms.g1, M.g2 from the second model, there
may exist at most two intention relationships Mj.g1 RN
M;i.g2 and Ms.g1 ELEEN Ms.g2. In this scenario there may
exist a conflict between the relationship types (i.e., M;.r and
Ms.r). If a relationship exists in only one model, we accept
that relationship through gullibility. If a relationship exists



Create
Predictive
Models

Create
Independent
Model
Collect Test Collect
Result Data Collect Test
Result Data

Location
Fig. 5: Model fragments of a conflicting decomposition.

Create
Predictive
Models

Create
Predictive
Models

or

Create
Independent
Model

Collect
Location
Data

Data

in each model, we use a consensus approach to merge the
relationships. If M;.r equals Ms.r, then the relationships are
already in consensus. If the signs are opposite (e.g., M;.r = +
and Ms.r = —), then there is an unresolvable conflict. In this
case, the relationship is kept, but the type is changed to the
binary type NO, which indicates to the user that a conflict must
be resolved in the relationship type without deleting the entire
link. For two relationships with the same sign (e.g., M;.r =
+S and Ms.r = ++), consensus gives us the minimal operator
both links agree on. We list these combinations for the positive
and negative relationships in Table II. Merging a +S link with
a ++ link results in a +S link.

An interesting property emerges with respect to merging a
‘S’ and ‘D’ relationship with the same sign. For example, as
listed in Table II, +S and +D have no consensus in propagation,
so they should result in a NO relationship. However, given that
they do not conflict, a semi-gullible approach would allow for
merging them into a + link, which we implement, see Table II.

Resolving Decomposition Relationships. Decomposition
(i.e., n-ary) relationships are used to refine intentions into
subcomponents (ONd) or alternatives (Or). Each intention can
have at most one incoming n-ary relationship type. Merging
results in a conflict when a target intention becomes connected
via both and and or links. Conflicts between n-ary rela-
tionship types cannot be resolved automatically and require
modeler intervention. In many cases, further elicitation and
specification is required. For example, in Fig. 5(a), Create
Predictive Model is decomposed into Collect Test Result Data
and Collect Location Data using and, but is also or de-
composed into Adapt National Model and Create Independent
Model in Fig. 5(b), resulting in a conflict. Choosing one of the
decomposition types will not result in a meaningful model.
Instead, after the merge algorithm is complete, the modelers
may update the resulting model according to the needs of
stakeholders, which may require further elicitation. In the case
of the model in Fig. 5(c), an intermediate intention is manually
added by the user to resolve this conflict. Thus, we leave all
source intentions connected and change the n-ary relationship
type to NO.

C. Merging Intention Valuations

Finally, we merge intention valuations, in terms of evidence
pairs. Recall that we introduced the gullibility @ and consen-
sus ® operators for evidence pairs in Sect. III. When two
intentions are matched, but only one is assigned an evidence

pair, we gullibly accept the assignment. When both intentions
are assigned an evidence pair, we determine the consensus
between the two values by applying the ® operator.

Again consider two generic models M and M5 that contain
the intention g. The value assigned to intention g in M; is
defined as M;.g,, and in My it is Ms.g,. Then the merged
value, Mys.g,, will be M;.g, ® Ms.g,. In English, the sat
and den values assigned to g in the merged model will be
the minima of the sat and den values assigned to g by the
source models. These are the maximum satisfaction and denial
values about which we can be reasonably certain, since the two
models agree that at least that level of evidence is present.

For example, if M;.g, = (L, F) and Ms.g, = (L, P), then
Mps.g, will be (L, F) ® (L,P) = (L,P). M; and M, agree
that there is no evidence indicating that g is satisfied; so, the
same holds true in Mj;. M; and M- disagree about the exact
amount of evidence indicating the g is denied, but they agree
that there is at least partial evidence; thus, M), will indicate
that there is partial evidence against g’s satisfaction.

Using ®, the merged model is more likely to result in inten-
tions with a valuation of None (L, 1 ). Instead, a gullibility ap-
proach (i.e., @) results in conflicting intention valuations (e.g.,
(P, F)). While conflicting values are built into the language, in
practical terms, they are intended to be the result of analysis.
Given the intent of the merge operation is to create a large
model for further elaboration and analysis, an approach that
results in these conflicting valuations is less optimal. Instead,
we use a consensus approach to merge valuations.

V. MERGING GOAL MODELS WITH EVOLUTION

In this section, we describe how, using the principle of
gullibility-up-to-contradiction, we merge the evolutionary el-
ements in the model. Specifically, we demonstrate how to
merge multiple timelines and how to resolve conflicts between
evolving functions and between relationships.

A. Merging Timeline Information

When two models are merged, they may be defined over
different time intervals. Before we can merge the evolutionary
information for each element, we require a consistent timeline
between them. The proposed manual algorithm in [15] as-
sumed that the models were defined over separate time scales.
We relax this constraint to allow for models defined over the
same time period. Note that both models must use the same
scale (i.e., semantic meaning of a tick in time) to give the
resulting merged model any real-world meaning.

As inputs to the algorithm, the user specifies absolute start
time points for each model based on the real-world values.
The start time for one of the models must be zero. For each
model, we define stop = start + maxTime. Using these values,
the timeline for the merged model is defined as M j;.start = 0
and My .stop = max (M .stop, Ms.stop).

With a merged timeline, we can update absolute values
assigned to the symbolic constants in each model. Symbolic
constants are used in M C, EF, and R (see Sect. II). Prior to
merging, all absolute assignments to symbolic constants were



(F, L) (F, L) _

(P, 1) (P, L)

(L,1) (L, 1)

(L,P) (L,P)

(J"F)\ | | (J—’F)\ | |
£ s g £ o208

(a) Function from Model-A (b) Function from Model-B

(F,1) —
(P, 1) —
(L, 1)
(L,P)
(J"F)\ \ \ \ \
S
i
&
(c) Case 1: The timelines are contiguous.
(F,1) —
(P, 1) —
(L,1)
(L,P)
(l’F)\ | | | | | |

(d) Case 2: There exists a gap between the timelines.

(F, 1) —

(P, L)

(L,1) —

(L,P)

(J"F)\ | | |
Foo&

(e) Case 3: The timelines overlap.

Fig. 6: Proposed evolving functions from Model-A and Model-B
for Share Exposure in the CT-App example, and the resulting
merged function given the three possible timelines.

specified relative to 0 and maxTime of the source models. We
update any absolute time assignments to make them relative
to the start and stop times for Mj,. Finally, we assign the
maxTime value for the merged model to be My, .stop.

B. Merge Evolving Function Timelines

As introduced in Sect. II, evolving functions are step-wise
atomic functions over disjoint neighboring intervals, where
the atomic functions are CONSTANT, INCREASE, DECREASE,
and STOCHASTIC. Suppose we are merging the functions for
Share Exposure, which we describe in Fig. 6. In Model-A,
see Fig. 6(a), Share Exposure is defined by a STOCHASTIC
function until ¢y, followed by a period of Denied (L,F)

(CONSTANT) and then an INCREASE function. In Model-B
(see Fig. 6(b)), Share Exposure is defined by two CONSTANT
functions, assigning the intention a Partially Satisfied (P, L)
value until ¢5 followed by a Satisfied (F, L) value. Specifying
the resulting model depends on the underlying timeline over
which each model is defined. For example, if £4, < tpg, (see
Fig. 6(a) and Fig. 6(b)), then there exists an unspecified gap
in the function. If £4, > tp, then there exists an overlap in
the function, which may result in a conflict.

Let us consider two generic models, M; and M, and
assume that both models contain an evolving function for
intention g. The timeline for ¢ is defined in both models
such that there is a total order over the time points used
to define g¢’s evolution. ¢’s timeline in model M; covers
the time interval [M;.ty, Mi.ty). In model My, g’s timeline
covers [My.ty, Ma.ty). There are three possibilities for the
interactions between these intervals:

Case 1: M.ty and M>.ty are simultaneous, meaning that the
timelines are contiguous.

M, .ty occurs before M., meaning that there is a
gap between the timelines.

M, .ty occurs after Mo.to, meaning that the timelines

overlap (and may overlap completely).

Case 2:

Case 3:

Cases 1 and 2 are straightforward because there is no points
at which the timelines actively disagree. We propose that the
merge algorithm continue the gullibility-up-to-contradiction
approach and simply accept both timelines. In Case 1, the
timelines are contiguous; thus, g’s timeline in the merged
model M)y, is the timeline in M, followed by its timeline in
Ms. An example of this case for Share Exposure is shown in
Fig. 6(c), where the source timelines are copied into the merge
timeline verbatim. In Case 2, the merged timeline contains a
gap. Thus, g¢’s timeline in the merged model will begin with
its timeline in M, then an empty interval is added via a
STOCHASTIC function, followed by the timeline from M,.
This case is shown for Share Exposure in Fig. 6(d), where a
STOCHASTIC function is added over the period [t4,, t5,).

Case 3 is more challenging in part because there are many
ways for the timelines in M; and M5 to overlap. It may be
that only the terminal and initial intervals, for M; and M,
respectively, overlap; or their functions may overlap across
multiple intervals. In the latter case, the user must specify
which intervals overlap through the timing file we generate,
see Line 2 of Algo. 1 discussed in Sect. III. In the next
subsection, we describe how to merge individual conflicting
atomic functions. If more than one interval overlaps, each
interval is considered separately. Following our policy of
gullibility-up-to-contradiction, the non-overlapping intervals
on the timeline are included verbatim in the merged model.
For example, in Fig. 6(e), the function definitions for Share
Exposure overlap in the interval [to=tp,, t3=ta f). Thus, the
functions from M, are copied verbatim over the interval [t 4,,
t2) and the last function from M, is copied for the final interval
[t3, tB,). We explain the function for the overlapping interval
in the next subsection.



TABLE III: Rules for merging individual atomic evolving functions for a given intention g between two generic models M,
and Ms. Note that the order of My and M is interchangeable. If M1 has an INCREASE function and Ms has a CONSTANT
function, the resulting model My; will use the rule on Line 5 with the model numbers reversed.

Model M; Model Mo Merged Model My,
M.g, — My.gy | Ma.gx — Ma.g, My.g9o — Mgy

1 || STOCHASTIC STOCHASTIC STOCHASTIC

2 CONSTANT CONSTANT CONSTANT  M;.g, @ Ms.g,

3 INCREASE INCREASE CONSTANT  M;.g, ® Ms.g, iff Mi.gx ® Ma.g, = M;.gy ® Ma.g,
INCREASE M., ® Mo.g, — Mi.gy @ Mo.gy

4 DECREASE DECREASE CONSTANT M;.9, ® Ms.g, iff Mi.g. ® Ma.g, = M;.gy ® Ma.g,
DECREASE  M;.g9; ® Ms.g, — My.gy ® Ms.gy

5 CONSTANT INCREASE CONSTANT M;.9, ® Ms.g, iff Mi.g. ® Ma.g, = My.gy ® Ma.g,
INCREASE  Mj.g9; ® Ms.g, — M1.gz ® Ma.gy,

6 CONSTANT DECREASE CONSTANT  M;.9, ® Ms.g, ifft  My.g, ® My.g, = My.gy ® Ms.gy
DECREASE  Mi.g9; ® Ms.g, — M1.g; ® Ms.g,

7 INCREASE DECREASE CONSTANT M;.9, ® Ms.g, iff  My.g, ® Ms.g, = My.gy ® Ms.g,
INCREASE  Mi.9, ® Ms.g, — My.gy @ Ma.g, iff  Mi.g, ® Ms.g, <; My.gy ® Ms.gy
DECREASE  M;.g; ® Ms.gy — My.gy ® Ma.gy iff  Mi.gy ® Ma.gy <¢ Mi.gz @ Ms.g,

8 || STOCHASTIC CONSTANT CONSTANT Ms.g,

9 || STOCHASTIC INCREASE INCREASE ~ Ms.g, — Ms.gy

10 || STOCHASTIC DECREASE DECREASE  Ms.g, — Ms.gy

C. Merge Conflicting Evolving Functions

As introduced above, over any individual time interval, if
the evolving function for an intention is specified in one input
model but not specified in the other, we gullibly accept the
specified function. When matched intentions have evolving
functions defined in both models, we need to resolve any
contradiction. Recall from Sect. II that there are four types of
change in the valuation of an intention over an interval, called
atomic evolving functions. In order to create generic rules that
apply to any time interval, we first update the definition of
an atomic function by adding a reference value for the start
of the interval. With two reference values we determine the
consensus of the start and end of the interval and discern the
updated atomic function accordingly. We list all combinations
of merging atomic evolving functions in Table III.

Throughout this discussion, we consider two generic mod-
els, M; and M, and assume that both models contain the
intention g, which has evolving functions defined over the
interval [¢;, 7). The resulting merge function depends on the
function type from each of the source models, M; and Ms.

Updated Atomic Function Definitions. The lack of a starting
value in the INCREASE and DECREASE functions makes the
intervals vague. If a user enters an INCREASE interval with a
maximum value of Satisfied (F, L) followed by a DECREASE
interval with a minimum value of Denied (L, F) for intention
g, presumably they mean that g becomes fulfilled during the
first interval, then is unfulfilled. Yet a situation where g stayed
at None (L, 1) throughout follows this pattern. In a timeline
that begins with an INCREASE or DECREASE function, it
is unclear from where the valuation of g is increasing or
decreasing. These ambiguities are theoretically problematic
and cause technical problems during merging.

We propose that the INCREASE [resp. DECREASE] func-

tions now contain two reference points, g,, a closed starting
value, and g,, an open maximum [minimum] value. For an
INCREASE function g, <; g, must hold, and g, >; g, must
hold for a DECREASE function. This revised definition better
corresponds with their intended meanings, as the valuation of
¢ must actually increase or decrease by at least one step during
the interval, and the initial valuation of g is no longer unclear
when the interval occurs at the beginning of a goal’s timeline.
The initial and final value of a CONSTANT function is already
known and is the same as the reference point, thus g, = gy.

Merging Reference Values for Functions. Before we merge
the types of the atomic functions, we first find the consensus
among the reference evidence pairs. Since we updated the
definitions for the atomic functions, each interval contains a
starting evidence pair g,, and an ending evidence pair g,.
Thus, we use the ® operator defined in Sect. III, which
determines the consensus between two evidence pairs. In each
of these cases, Myr.g: = Mi.gr» ® Ms.g, and Mys.g, =
M;.gy ® Mj.g,, meaning that the new starting and ending
reference pair for the merged model are the meet (or minimum
available knowledge) from each of the input models.

Functions with the Same Source Type. With updated refer-
ence values, we determine the resulting atomic function. We
start with the cases where both source models have the same
function type—both M; and M, define g as evolving with
the same function type. If the type is STOCHASTIC, nothing
further is needed (see Line 1 in Table III); otherwise, we use
® to find a consensus from the given reference values. If both
source models, M; and Ms, contain a CONSTANT function,
then the resulting model M, will contain a CONSTANT at
Mi.g; ® Ms.g, (see Line 2 in Table III). If both models
contain an INCREASE [resp. DECREASE] function, then in
the merge model Mj;, g will have an INCREASE [resp.




DECREASE] function from Mjs.g, to Mps.g, (see Line 3
[resp. Line 4] in Table III). In the rare case that the new starting
and ending values are equal (i.e., Mys.g, = Mys.gy) for an
INCREASE or DECREASE function, we change the function
type to be CONSTANT (see again Lines 3 and 4).

Resolving Different Source Types. Next, we consider the
cases where source models have different types. If the function
type in M, is different from the function type in M5, we must
consider their reference points first. As mentioned above, the
resulting starting and ending reference evidence pairs for the
merged model My, will be My;.g, = Mi.9, ® Ms.g, and
Myr.gy = My.gy ® Ms.g,. Using these values, we determine
the resulting functions for each combination (see Lines 5-7 in
Table II). If My;.g, = Mys.gy, then the merged function type
for g is CONSTANT. Similarly, if Mys.g, < Mjs.gy, then the
type is INCREASE, and if Mjr.g. < Mysr.gy, then the type is
DECREASE. When the function for g is CONSTANT in one of
the models, the resulting function for g in the merged model
will typically have the function type from the other model,
although in a minority of cases it will be CONSTANT.

The scenario where the function for g is STOCHASTIC in
M and is a different type in M> has two possible solutions.
First, the merged model could be assigned a STOCHASTIC
function because we do not know how g evolves in M;
during that period; thus, the consensus between the models
is unknown (i.e., STOCHASTIC). Second, the merged model
could be assigned the function from M5 because a STOCHAS-
TIC function is equivalent to no data. This is supported
by gullibility-up-to-contradiction to accept the only definite
information about g, that is, the information provided by Mo.
We choose the second approach, where the non-stochastic
function dominates (see Lines 8-10 in Table III).

Resolving the Merge Conflict in the CT-App Example. In
Fig. 6(e), Share Exposure is specified as having a conflict in
the overlapping interval [to=tp,, t3=t4,). In Model-A, Share
Exposure is specified by an INCREASE function from Denied
to Satisfied: M4.g; = (L,F) and M 4.g, = (F, L). In Model-
B, Share Exposure is specified by a CONSTANT function at
the level of Partially Satisfied: Mp.g, = Mp.gy, = (P,L).
Applying the ® operators to each of the g, and g, values gives
the merged model the reference values Mys.g, = (L, L) and
Mps.gy = (P, L). From Line 5 of Table III, we see that the
resulting function is INCREASE, shown in Fig. 6(e).

D. Merging Evolving Links

Finally, we merge evolving relationships between intentions.
In Sect. IV-B, we merged static links and considered two
generic links: M;.g1 LN M;.g2 and Ms.g1 ELERN Ms.g2.
The intuition for resolving evolving relationships is the same
as for static links. The main difference between static and
evolving links is that for evolving links one or both of M;j.r
and Ms.r may include evolutionary information or be ‘“Not
Both” links (see [20] for details). Since evolving relationships
are limited to two time intervals, we merge each interval
separately using the rules described in Sect. IV-B. These rules

apply for contribution and decomposition links. If there is a
conflict where the link cannot be resolved (i.e., mixing decom-
position types), we change the link type to NO and document
the conflict for the user to resolve after the completion of
the algorithm. If both AM;.r and Ms.r are evolving links,
there may also be a conflict between their defined intervals. In
this case, we create a new symbolic constant to represent the
merged interval, assigning a new time point for this transition.

Not Both links are unique to the Evolving Intentions
framework and used exclusively to describe an evolutionary
decision. They have a limited use case and appear with low-
frequency in the models in the literature. In our approach, if
a Not Both link is merged with any other link or evolving
function and creates a conflict, the Not Both link is removed;
otherwise, we preserve it in the merged model.

VI. VALIDATION & TOOLING

In this section, we validate the effectiveness of our merge
algorithm and implementation. To support the independent
verification of our work, we provide a replication package:
https://doi.org/10.35482/csc.001.2022
Tooling. Our implementation of Algo. 1 is a Java program that
takes as input two models created using BloomingLeaf (Rel.
2.0) and the timing offset between start times. The output is a
model that can be loaded into BloomingLeaf for visualization.
First, PreMerge takes the two models and the timing offset as
input to examine intentions with ambiguous evolving function
timelines. Cases where intentions have multi-segmented over-
lapping evolving functions are outputted to a timing file for the
user to update (see Lines 1-2 in Algo. 1). Second, Merge takes
the two models and the timing file as input and outputs the
merge of the two models and a traceability file detailing the
source models for each element, deleted elements, and conflict
messages (see Lines 3-9 in Algo. 1).

Validation. We collected a set of models from the GORE
literature, listed in Table IV. Models 1-8 were collected from
a study by Cebula et al., where, for a given scenario, one model
was created by study subjects and one model was created by
researchers [24]. We updated the names of some elements in
Models 1-8 to enable matching (e.g., self vs. student). Models
9-14 were taken from other papers in the literature [15],
[20], [25], [26], [27]. To establish ground truth, we asked
eight non-author researchers in our lab, called inspectors,
to manually merge together the models for each scenario.
Inspectors were trained modelers familiar with evolving goal
models but had no information about the proposed merge
algorithm. Each scenario had up to two inspectors, and each
inspector reviewed three to four scenarios. When only one
model existed, inspectors created a second model from the
scenario.

Table IV lists counts of actors, intentions, and relationships
for the source models (and their matches) and the merged
model, as well as evaluation criteria. We successfully merged
all models. The Conflicts/Deletions column of Table IV lists
the number of elements that must be updated by the user
after merge completes. With values less than five, we greatly



TABLE IV: Validation Study Data. Correctness & Completeness Scale: All, Almost all, Most, Half, Some, Few, None.

Model Model A Model B Matched Merged Conflicts/ Evaluation

Value A G R EF/IA G R EF|A G |A G R EF| Deletions | Correctness | Completeness | Runtime (ms)
1. S1 2 17 16 0|2 20 21 O |2 6 2 30 36 0 0 All Almost All 2
2. 52 2 18 16 0 |6 28 33 0 |1 8 7 38 45 0 1 Almost All Almost All 2
3.83 3 19 20 0|2 29 4 0 |2 6 3 42 60 O 1 Almost All Almost All 2
4. 54 1 16 17 0|2 22 31 0 |1 8 2 30 46 O 0 All All 2
5. S5 2 15 18 0 |3 24 26 0 |2 4 3 35 43 0 0 Almost All All 2
6. S6 1 16 19 0 |2 29 56 0 |1 3 2 42 74 0 0 All All 2
7. 87 4 17 13 0|3 24 37 0|2 3 5 38 50 O 0 Almost All All 2
8. S8 3 30 37 0|2 17 16 0 |2 8 3 40 50 O 1 Most Almost All 2
9. Bike-lanes 0 29 26 190 22 22 8 |0 10 |0 41 42 25 0 Almost All Almost All 4
10. GRAD 3 19 20 102 14 14 9|2 13 |3 20 25 13 0 Almost All All 5
11. Scheduler 3 18 13 9|3 14 13 8 |3 7 3 25 25 14 0 Most Almost All 4
12. WME 2 14 11 10}2 18 23 132 10 |2 21 31 15 2 Most Almost All 5
13. Spadina-plan-pro | 5 43 34 18 |5 28 15 13| 2 4 8 67 47 31 0 All Almost All 3
14. Spadina-pro-opp | 5 28 15 13 |6 37 28 16 |3 10 | 8 54 41 25 1 Almost All Almost All 4

reduced the effort required by users over the approach in [15],
even for large-scale models (see Models 13-14 in Table IV).
Common conflicts included matched intentions belonging to
different actors in the source models and unresolvable decom-
position link types.

Models 13 and 14 in Table IV were created using the three
scenario models (i.e., plan, pro, and opp) from [15]. We found
merge to be associative by comparing two versions of the
Spadina model: (1) a merge between the plan and the pro
model and (2) a merge between the pro and the opp model.

Correctness: For any given pair of models M; and M and
a set of matched elements in those models, a correct merge
operation is one that produces a series of attribute merge
answers for which an inspector produces the same results.
Table IV lists the inspectors’ ratings of correctness, using a
common rubric of how many decisions were in agreement: all,
almost all, most, half, some, few, none. As shown in Table IV,
most models were rated as Almost All. Inspectors expected all
links to be merged and deemed no links as incorrect.

Completeness: For any given pair of models M; and My and
a set of matched elements in those models, a complete merge
will produce all reasonable merges of the model attributes,
in the resulting model M};, where reasonable is defined by
inspectors expectations of which attributes should be merged.
Using the same scale as correctness, inspectors answered the
question, “for all the attributes you merged manually, how
many did the automated procedure merge?”’. From the results
listed in Table IV, all models were found to be complete
or almost complete. Both correctness and completeness were
measured relative to the inspectors’ manually created models
without knowledge of the merge algorithm. Incomplete models
were the result of inspectors’ expectations that the procedure
would remove redundant links and add additional links.

Scalability: Algo. 1 terminates and has a theoretic worst
case runtime of O(n*), where n is the number of intentions
in Mjys. This runtime is dominated by the match operation
(Line 4 in Algo. 1), where for every intention g € M;.G, we
loop over every intention g € M».G and then loop over every
link » € My.R (where |R| < n?) for each matched intention.
We list runtimes measured on a 2.7GHz Quad-Core Intel i7

10

processor (16GB RAM) in Table IV. With runtimes <10ms,
our tool is scalable for human-in-the-loop operations.

Threats & Limitations: There is a risk that the inspectors,
as lab members, were biased in-favor of our approach. Our
initial validation of effectiveness is limited by our inability
to resolve all merge conflicts. We used a coarse rubric for
inspectors to evaluate correctness and completeness. Future
work can mitigate these threats through empirical validation
with more precise metrics.

VII. RELATED WORK

As introduced in Sect. I, software and model merging has
been extensively studied in the literature. Merge is one of a
few operators, identified by Bernstein [28], to manage and
maintain design models. In most cases, merge is performed
by combining two models using a reference model (i.e., a
three-way merge [17]).

Early work can be found within the view points litera-
ture [29]. Richards investigated matching view points within
UML models [30]. Sabetzadeh and Easterbrook proposed
a framework for merging views, by describing connections
between models as annotated graphs [11]. They demonstrated
their work by merging i* goal models. Khatwani et al. com-
pleted a replication of the work by Sabetzadeh and Easterbrook
and found that view point merging, with i* models, leads
to better requirements, and that merge traceability focused
discussions [6]. In our approach, we take this once step further
by resolving inconsistencies between model attributes.

The Model Driven Engineering community has made a
concerted effort to generalize model management operators.
Brunet et al. generalized definitions of model operators, in-
cluding merge, based on algebraic properties [31]. Dam et al.
built on this work to merge models with arbitrary syntactics
given a strict meta-model [32]. More recently, Schultheif3 et
al. proposed a solution to n-way model matching, which
would enable merging n-models [33]. In future work, we can
investigate incorporating our merge procedure as a domain
specific operator for merging attributes.

Within GORE, Feng et al. considered merging decomposi-
tion patterns (e.g., and/or) in goal models [12]. In our work



we do not merge contradicting decomposition links. Feng et
al.’s work provides insights for resolving these conflicts in
the future. Baslyman and Amyot investigated merging for the
purpose of evaluating the impacts of adopting new technology,
by merging UNR model fragments describing new features
into preexisting project models [13]. In later work, Alwidian
and Amyot created a merged representation of goal model
families, called union models, which enabled tracking model
element changes as design-time artifacts and automating anal-
ysis across multiple versions of a scenario [16]. In many
respects, Alwidian and Amyot built on the work of Sabetzadeh
and Easterbrook [11], but across both the time and space
dimensions. In this paper, we look at the initial creation of
a goal model through merge, rather than tracking the models
evolution over time through a merged representation.

Grubb and Chechik proposed a manual procedure for the
piecemeal creation of models from different time periods [15].
We extend their work to automatically merge model attributes.
Peng et al. looked at building goal models piecemeal by adapt-
ing fragments of a model from another domain based on a goal
in the subject domain of the model under consideration [14].
This work differs from our investigation in that it merges a
model fragment with a single candidate goal; nonetheless, their
model repository may be beneficial for evaluating our work.

Finally, La Rosa et al. investigated merging business pro-
cess models [9], which offers insights for improving element
matches. Dhaouadi et al. used an uncertainty framework
to connect goal models with Bayesian networks [34]. This
work differs from our approach in that it manually connects
elements of different model types rather than merging models
of the same type; hence, a complementary approach.

VIII. CONCLUSIONS, LIMITATIONS, AND FUTURE WORK

In this paper, we presented a semi-automated approach for
merging Tropos goal models with and without evolutionary
information. We return to our central research question: given
a minimal reference model (i.e., matched element names),
to what extent can we automatically merge the remaining
attributes to create a single goal model? Using a minimal ref-
erence model, we automatically merge most model attributes.
For the few that we are unable to merge automatically (e.g.,
decomposition), we report these required updates to the user.
Our approach is complementary to the state of the art in model
merging, as we propose a novel approach to merging attributes
in goal models, once elements have been matched. Our imple-
mentation allows for the traceability of each decision, which
enables stakeholders to verify the automated portions of the
merge. We demonstrated the effectiveness and scalability of
our approach on a variety of models from the literature.
Limitations. Since we used the Evolving Intentions frame-
work [20], our approach is limited to this version of Tropos.
This approach could be adapted to other GORE languages
(e.g., 1*, URN), which have the same types for actors and
intentions. The main difference between languages is the link
types and intention valuations; thus, our approach can be
applied with the addition of rules for the language specific

11

link types and valuations. As introduced in Sect. II, the manual
merge algorithm originally contained a mechanism for denot-
ing presence conditions in the model. Since the approach was
originally created for merging models across vastly different
time scales, we did not include the investigation of presence
conditions in this paper and leave this as potential future work.

Future Work. We intend to connect our approach with an
automatic layout algorithm to improve the resulting visual-
ization of the merged model. Once this is complete, we will
conduct further empirical validation as described in Sect. VI.
As discussed in Sect. III, our merge operation is based on
matching element names. In future work, we will explore
replacing Line 4 in Algo. 1 with various state of the art
matching algorithms (e.g., NLP-based approaches) to merge
elements with different naming systems based on semantic
meaning.

Other future work includes implementing presence condi-
tions and exploring language specific versions of our approach
as described above. To improve users’ confidence in the
algorithm, we could provide automated proofs of correctness
for each merge operation and facilitate the post-hoc review of
merge decisions by adding a visualization for the output logs.
Finally, future work could explore using learning approaches
to enable our algorithm to resolve more conflict types and give
users suggestions on how to update the model.

Acknowledgments. We thank Isabel Montesanto and Yilin
Lucy Wang for their early contributions to this work, as
well as the other researchers in our lab who participated
as inspectors in our validation. This material is based upon
work supported by the National Science Foundation under
Award No. 2104732, as well as the Smith College STRIDE
Scholarship program.

REFERENCES

[1] J. Horkoff, F. B. Aydemir, E. Cardoso, T. Li, A. Maté, E. Paja,
M. Salnitri, L. Piras, J. Mylopoulos, and P. Giorgini, “Goal-oriented
Requirements Engineering: An Extended Systematic Mapping Study,”
Requirements Engineering, vol. 24, no. 2, pp. 133-160, Jun 2019.

A. van Lamsweerde, “Goal-oriented Requirements Engineering: A
Guided Tour,” in Proceedings Fifth IEEE International Symposium on
Requirements Engineering, 2001, pp. 249-262.

J. Horkoff, T. Li, F-L. Li, M. Salnitri, E. Cardoso, P. Giorgini,
J. Mylopoulos, and J. Pimentel, “Taking Goal Models Downstream: A
Systematic Roadmap,” in Proc. of RCIS’14, May 2014, pp. 1-12.

D. Amyot, S. Ghanavati, J. Horkoff, G. Mussbacher, L. Peyton, and
E. Yu, “Evaluating Goal Models Within the Goal-Oriented Requirement
Language,” Int. J. of Intelligent Sys., vol. 25, no. 8, pp. 841-877, 2010.
S. Debnath, P. Spoletini, and A. Ferrari, “From ideas to expressed needs:
an empirical study on the evolution of requirements during elicitation,”
in Proc. of RE’21, 2021, pp. 233-244.

C. Khatwani, X. Jin, N. Niu, A. Koshoffer, L. Newman, and
J. Savolainen, “Advancing viewpoint merging in requirements
engineering: a theoretical replication and explanatory study,”
Requirements Engineering, vol. 22, no. 3, pp. 317-338, 2017.
[Online]. Available: https://doi.org/10.1007/s00766-017-0271-0

M. Sabetzadeh, S. Nejati, S. Easterbrook, and M. Chechik, “A
Relationship-Driven Framework for Model Merging,” in Proc. of
MiSE 07, 2007.

S. Nejati, M. Sabetzadeh, M. Chechik, S. Easterbrook, and P. Zave,
“Matching and merging of statecharts specifications,” in 29th Interna-
tional Conference on Software Engineering (ICSE’07). 1EEE, 2007,
pp. 54-64.

[2]

[3]

[4]

[5]

[6]

[7]

[8]



[9]

[10]

(1]

[12]

[13]

[14]

[15]

(16]

[17]

[18]

[19]

[20]

M. La Rosa, M. Dumas, R. Uba, and R. Dijkman, “Business

Process Model Merging: An Approach to Business Process
Consolidation,” ACM  Transactions on Software  Engineering
Methodologies, vol. 22, no. 2, Mar. 2013. [Online]. Available:

https://doi.org/10.1145/2430545.2430547

S. Ben-David, M. Chechik, and S. Uchitel, “Merging partial behaviour
models with different vocabularies,” in International Conference on
Concurrency Theory. Springer, 2013, pp. 91-105.

M. Sabetzadeh and S. Easterbrook, “View merging in the presence of
incompleteness and inconsistency,” Requirements Engineering, vol. 11,
no. 3, pp. 174-193, 2006.

Z. Feng, K. He, R. Peng, J. Wang, and Y. Ma, “Towards merging
goal models of networked software.”” in Proceedings of the Twenty-
First International Conference on Software Engineering & Knowledge
Engineering, 2009, pp. 178-184.

M. Baslyman and D. Amyot, “Goal model integration: Advanced
relationships and rationales documentation,” in System Analysis and
Modeling. Languages, Methods, and Tools for Industry 4.0, P. Fonseca i
Casas, M.-R. Sancho, and E. Sherratt, Eds. Cham: Springer Interna-
tional Publishing, 2019, pp. 183-199.

Y. Peng, B. Li, J. Wang, and Z. Liu, “An approach of crossover
service goal convergence and conflicts resolution,” in 2020 IEEE World
Congress on Services (SERVICES), 2020, pp. 225-230.

A. M. Grubb and M. Chechik, “Reconstructing the past: the case of
the Spadina Expressway,” Requirements Engineering, vol. 25, no. 2,
pp. 253-272, 2020. [Online]. Available: https://doi.org/10.1007/s00766-
019-00321-0

S. Alwidian and D. Amyot, “”Union is Power”: Analyzing Families
of Goal Models Using Union Models,” in Proceedings of the 23rd
ACM/IEEE International Conference on Model Driven Engineering
Languages and Systems (MODELS ’20), 2020, pp. 252-262.

T. Mens, “A State-of-the-Art Survey on Software Merging,” [EEE
Transactions on Software Engineering, vol. 28, no. 5, pp. 449-462, May
2002.

P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani, “Formal
Reasoning Techniques for Goal Models,” Journal of Data Semantics,
no. 1, pp. 1-20, 2003.

R. Sebastiani, P. Giorgini, and J. Mylopoulos, “Simple and Minimum-
Cost Satisfiability for Goal Models,” in Proceedings of the International
Conference on Advanced Information Systems Engineering (CAiSE’04),
2004, pp. 20-35.

A. M. Grubb and M. Chechik, “Formal Reasoning for Analyzing Goal
Models that Evolve over Time,” Requirements Engineering, 2021.

12

[21]
[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

(32]

[33]

(34]

M. Fitting, “Bilattices and the Semantics of Logic Programming,”
Journal of Logic Programming, no. 11, pp. 91-116, 1991.

F. Dalpiaz, X. Franch, and J. Horkoff, “iStar 2.0 Language Guide,”
arXiv:1605.07767, 2016.

M. Santos, C. Gralha, M. Goulao, J. Aratjo, A. Moreira, and J. Cam-
beiro, “What is the Impact of Bad Layout in the Understandability of
Social Goal Models?” in Proc of RE’16, 2016, pp. 206-215.

N. Cebula, L. Diao, and A. M. Grubb, “A Preliminary Investigation of
the Utility of Goal Model Construction,” in Proceedings of the 13th
International i* Workshop, 2020, pp. 67-72.

B. C. Hu and A. M. Grubb, “Support for User Generated Evolutions of
Goal Models,” in Proc. of MiSE’19, 2019, pp. 1-7.

A. M. Grubb and M. Chechik, “Looking into the Crystal Ball: Re-
quirements Evolution over Time,” in Proceedings of the 24th IEEE
International Requirements Engineering Conference (RE’16), 2016.

R. Salay, M. Chechik, J. Horkoff, and A. D. Sandro, “Managing Re-
quirements Uncertainty with Partial Models,” Requirements Engineering,
vol. 18, no. 2, pp. 107-128, Jun. 2013.

P. A. Bernstein, “Applying model management to classical meta data
problems.” in CIDR, vol. 2003, 2003, pp. 209-220.

B. Nuseibeh, J. Kramer, and A. Finkelstein, “A framework for expressing
the relationships between multiple views in requirements specification,”
IEEE Transactions on Software Engineering, vol. 20, no. 10, pp. 760-
773, 1994.

D. Richards, “Merging Individual Conceptual Models of Requirements,”
Requirements Engineering, vol. 8, no. 4, pp. 195-205, 2003.

G. Brunet, M. Chechik, S. Easterbrook, S. Nejati, N. Niu, and
M. Sabetzadeh, “A Manifesto for Model Merging,” in Proceedings of the
2006 International Workshop on Global Integrated Model Management,
ser. GaMMa ’06. Association for Computing Machinery, 2006, pp.

5-12. [Online]. Available: https://doi.org/10.1145/1138304.1138307
H. K. Dam, A. Egyed, M. Winikoff, A. Reder, and R. E. Lopez-

Herrejon, “Consistent Merging of Model Versions,” Journal of Systems
and Software, vol. 112, pp. 137-155, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S016412121500134X
A. Schulthei, P. M. Bittner, L. Grunske, T. Thiim, and T. Kehrer,
“Scalable n-way model matching using multi-dimensional search trees,”
in 2021 ACM/IEEE 24th International Conference on Model Driven
Engineering Languages and Systems (MODELS), 2021, pp. 1-12.

M. Dhaouadi, K. M. B. Spencer, M. H. Varnum, A. M. Grubb, and
M. Famelis, “Towards a Generic Method for Articulating Design-time
Uncertainty,” Journal of Object Technology, vol. 20, no. 2, 2021.



