
Available online at www.sciencedirect.com

ScienceDirect

Comput. Methods Appl. Mech. Engrg. 381 (2021) 113843
www.elsevier.com/locate/cma

Symplectic Hamiltonian finite element methods for linear
elastodynamics

Manuel A. Sáncheza,⇤,1, Bernardo Cockburnb,2, Ngoc-Cuong Nguyenc,3, Jaime Perairec,3

a
Institute for Mathematical and Computational Engineering, School of Engineering and Faculty of Mathematics, Pontificia Universidad Católica

de Chile, Santiago, Chile

b
School of mathematics, University of Minnesota, Minneapolis, MN 55455, USA

c
Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

Received 24 September 2020; received in revised form 26 March 2021; accepted 29 March 2021
Available online 23 April 2021

Abstract

We present a class of high-order finite element methods that can conserve the linear and angular momenta as well as the
energy for the equations of linear elastodynamics. These methods are devised by exploiting and preserving the Hamiltonian
structure of the equations of linear elastodynamics. We show that several mixed finite element, discontinuous Galerkin, and
hybridizable discontinuous Galerkin (HDG) methods belong to this class. We discretize the semidiscrete Hamiltonian system
in time by using a symplectic integrator in order to ensure the symplectic properties of the resulting methods, which are
called symplectic Hamiltonian finite element methods. For a particular semidiscrete HDG method, we obtain optimal error
estimates and present, for the symplectic Hamiltonian HDG method, numerical experiments that confirm its optimal orders of
convergence for all variables as well as its conservation properties.
c� 2021 Elsevier B.V. All rights reserved.
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1. Introduction

Elastodynamics is a Hamiltonian system endowed with crucial properties such as symplectic structure and
Hamiltonian preservation. In addition, in the absence of external loading and dissipation, elastodynamics exhibits
fundamental conservation properties in linear momentum and angular momentum as well as the total energy.
These fundamental properties of elastodynamics play a key role both in mathematics and engineering applications.
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Numerical discretizations of elastodynamics need not, and in general will not, inherit the Hamiltonian structure as
well as the conservation of both momentum and energy. Discretization schemes that do not conserve momentum
and energy often suffer from error accumulation for long time-integration. Therefore, it is of considerable interest to
develop numerical methods that inherit these crucial properties of elastodynamics. Significant attention has been paid
to the development of time-integration schemes that conserve momentum and energy for elastodynamics [1–5,5–7].
In order for the fully discrete system resulting from temporal and spatial discretizations of elastodynamics to inherit
its Hamiltonian structure, the spatial discretization method must result in a Hamiltonian semidiscrete system and
the time-integration scheme must be symplectic. When such space discretization is a finite element method, we call
the resulting numerical method a symplectic Hamiltonian finite element method.

Pioneering works on numerical methods based on finite element discretizations which took advantage of the
Hamiltonian structure of the equations of elastodynamics are the 2001 method in [8] and the 2005 method proposed
in [9]. Although the time-marching method proposed in [8] was dissipative and only second-order accurate, the
time-marching method proposed in [9] was exactly non-dissipative and could achieve high-order accuracy of any
order. The authors managed to prove, through remarkable manipulations, that their time-marching method defines a
Hamiltonian system which conserves the discrete Hamiltonian. On the other hand, it is interesting to note that the
time-marching method is equivalent to a Runge–Kutta Gauss method and is symplectic. So, in hindsight, it is not
a surprise that the resulting method defines a Hamiltonian dynamical system. The method proposed in [9] seems
to be, to the best of our knowledge, the first symplectic Hamiltonian finite element method.

The second symplectic Hamiltonian finite element method was proposed in 2008, [10]. It used the discontinuous
Galerkin (DG) method for the space discretization of some linear hyperbolic systems like the rotating shallow water
equations, and the acoustic wave and 2D Maxwell equations. The resulting DG method coincided with the classic
DG method with alternating fluxes devised back in 2002 in [11] in the case in which the material parameters are
constant. However, a crucial difference is that in the method proposed in [10], the discretization in time is carried out
by means of a symplectic method in order to prevent the drifting of the energy. In 2013, this approach was applied
to the linearized incompressible Euler equations [12]. In 2015, a third symplectic Hamiltonian finite element method
was proposed in [13]. The discretization by the mixed method was proven to preserve the Hamiltonian structure
of the acoustic wave equation. The resulting semidiscrete scheme was then discretized in time with symplectic
methods [13]. Also in 2015, a new DG method was introduced by using the Lagrangian structure of the acoustic
wave equation in [14]; no mention of symplectic time-marching schemes was made though. In 2018, a similar
construction was carried out for the equations of elastodynamics in [15].

In 2017, we proposed the first symplectic Hamiltonian finite element method using the HDG method to discretize
in space the acoustic wave equation [16]. In this paper, we extend that work and show how to devise symplectic
Hamiltonian finite element methods for the equations of elastodynamics on a domain ⌦ in Rd , d = 2, 3, namely,

⇢ ü � r·(C ✏(u)) = f , in ⌦ , 8t 2 (0, T ], (1a)

with boundary and initial conditions

u = uD on �D ⇥ (0, T ], C ✏(u)n = � N on �N ⇥ (0, T ], (1b)
u(0) = u0, u̇(0) = v0 in ⌦ . (1c)

For simplicity, we discretize the above equations in space by using mixed (using the compliance tensor), DG
and HDG (using the stiffness tensor) methods. The DG and HDG methods, can be viewed as stabilized mixed
methods, [17], like the mixed methods constructed by the Hu–Washizu variational principle, see, for example,
[18–20].

We show that, as a direct consequence of the Hamiltonian structure of these methods, the linear and angular

momenta, and the total energy remain constant in time whenever �D = ;, and f and � N are zero.

In the equation of motion (1a), the vector displacement is denoted by u, the linearized strain tensor is denoted
by ✏(u) := (ru + ruT)/2, and the divergence operator acting on tensor-valued functions is denoted by r·. We
assume that ⌦ is a bounded polygonal domain in Rd with Lipschitz boundary @⌦ =: �D [ �N and �D \ �N = ;,
the density ⇢ = ⇢(x) is a positive and bounded function, the stiffness tensor C = C(x) is a symmetric, positive
definite as bounded linear operator, and the data f (t), uD(t) and � N (t) lie in [L

2(⌦ )]d , H
1/2(�D)d and H

�1/2(�N )d ,
respectively, for all t � 0. We omit the space dependence of the variables and only display their time dependence.
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We use the dot (Newton’s) notation for the time derivatives and the standard notation of differential operators for
spatial differentiation [16].

This paper can be considered as a stepping stone toward devising symplectic Hamiltonian finite element methods
for the equations of large deformation. Here, our goal is to devise methods for linear elastodynamics which conserve
the linear and angular momenta as well as the energy. We have three main contributions. The first is that we show
how to achieve this not only for the HDG method but for a wide variety of finite element discretizations. The
second is that we switch from the canonical Hamiltonian formulation used in [16] to the formulation using Poisson
brackets and prove that they are equivalent. The third is that we obtain optimal error estimates for all the approximate
variables of the HDG method. Therefore, the approximate stress and strain of the HDG method converges one order
higher than those of traditional finite element methods such as DG methods [10] and continuous Galerkin (CG)
methods.

Our approach is different from the one used in [10,12] because we do not obtain the space discretization by
constructing a suitable discrete Poisson bracket which would guarantee the Hamiltonian structure of the resulting
discretization. Instead, we directly verify that several schemes, mixed, HDG and DG, do have such a structure. A
similar difference can be made between our work and that in [14,15] since they use the Lagrangian formulation of
the equations instead of the Hamiltonian one, and since they do not advocate the use of symplectic time-integrators.
Finally, let us point out that our approach is closest to the one carried out in [13] but we do use a different
Hamiltonian, and we show how to handle the case in which the Neumann condition is different from zero.

The organization of the paper is as follows. In the next section, we give the modern definition of a Hamiltonian
dynamical system and we show that the equations of elastodynamics define one. We also show the three conservation
laws we are interested in by using the Hamiltonian structure of the equations. In Section 3, we display examples
of Hamiltonian finite element methods. In Section 4, we prove that these spatial discretizations yield semidiscrete
schemes with a Hamiltonian structure. We also show that, as a consequence, the three conservation laws under
consideration also hold. In Section 5, we obtain the symplectic Hamiltonian finite element method by discretizing
in time with a symplectic method. In Section 6, we carry out several numerical experiments which confirm the
high-order accuracy and the conservation properties of the so-called HDGk+ method. We end briefly discussing
some extensions and ongoing work.

2. The Hamiltonian structure of elastodynamics

In this section, we describe the main properties of the exact solution which we want to preserve under discr-
etization. We start by showing that, when the data f , � N and uD are independent of time, the equations of
elastodynamics define a Hamiltonian dynamical system. We then use this information to deduce the conservation
laws of linear elastodynamics, namely, those of the linear and angular momenta, and that of the energy.

2.1. A Hamiltonian formulation

We rewrite the boundary-value problem for the equation of elastodynamics as a first-order system as follows:

u̇ = v in ⌦ ⇥ (0, T ], (2a)

⇢ v̇ = r·
�
C✏(u)

�
+ f in ⌦ ⇥ (0, T ], (2b)

u = uD on �D ⇥ (0, T ], (2c)

C✏(u)n = � N on �N ⇥ (0, T ]. (2d)

If we consider that the mappings t 7! (u(t), v(t)) are orbits on a smooth manifold M, the above boundary-value
problem can be considered as a dynamical system. We want to show that this is a Hamiltonian dynamical system.

To define such a system, we use a slight extension of the definition of a Hamiltonian system used in [21], see
also [22]. We say that the above system is a Hamiltonian dynamical system (or that it has a Hamiltonian formulation
or that it has a Hamiltonian structure) if we can rewrite it as

Ċ = {C, H}, (3)
3
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for the coordinates functionals C , defined on the phase affine space M, which are identified with a space of test
functions T . Here H is the Hamiltonian, a functional on M; {·, ·} is the Poisson bracket, a bilinear form on the
space of linear functionals on M which satisfies the so-called Jacobi identity.

In [21], the triple (M, {·, ·}, H ) is called a Hamiltonian dynamical system. With our definition, we also have to
specify the coordinates functionals C and the space of test functions T . This is the only, slight difference between
the original definition of a Hamiltonian dynamical system in [21] and the one used here. We find this addition
useful when dealing with weak formulations of the equations and with those of their discretizations.

Let us show that the equations of elastodynamics define a Hamiltonian dynamical system. We first consider the
case in which the data f , � N and uD are independent of time. In this case, the Hamiltonian is

H (u(t), v(t)) =1
2

Z

⌦

�
⇢ v(t) · v(t) + C✏(u(t)) : ✏(u(t))

�
(4a)

�
Z

⌦
f · u(t) �

Z

�N

� N · u(t)

Note that the Hamiltonian coincides with the energy only when f and � N are zero. The Poisson bracket is

{F, G} =
Z

⌦
⇢�1

✓
�F

�u
· �G

�v
� �F

�v
· �G

�u

◆
, (4b)

for F = F(u, v) and G = G(u, v) functionals on M, where �F

�u and �F

�v
denote the functional derivatives of the

functional F . We then have that

�H = lim
"!0

1
"

⇣
H (v + "�v, u + "�u) � H (v, u)

⌘

=
Z

⌦

�
⇢ v · �v + C✏(u) : ✏(�u)

�
�

Z

⌦
f · �u �

Z

�N

� N · �u,

that the phase manifold and the space of test functions are given by

M = {! 2 L
2(⌦ )d : r · (C✏(!)) 2 L

2(⌦ )d , ! = uD on �D} ⇥ L
2(⌦ )d , (4c)

T = C
1(⌦ )d ⇥ {⌘ 2 C

1(⌦ )d : ⌘ = 0 on �D}, (4d)

and the coordinates functionals are

Cu(�) =
Z

⌦
⇢ u · �, Cv( ) =

Z

⌦
⇢ v ·  , (4e)

for (�, ) 2 T . Now, by taking C := Cu(�) and C := Cv( ) in Eq. (3), we obtain
Z

⌦
⇢ u̇ · � = Ċu(�) = {Cu(�), H} =

Z

⌦
⇢�1 �Cu(�)

�u
· �H

�v
=

Z

⌦
⇢ v · �, (5a)

Z

⌦
⇢ v̇ ·  = Ċv( ) = {Cv( ), H} = �

Z

⌦
⇢�1 �Cv( )

�v
· �H

�u
(5b)

= �
Z

⌦
C✏(u) : ✏( ) +

Z

⌦
f ·  +

Z

�N

� N ·  , (5c)

for all (�, ) test functions in T . Since this is a weak formulation of the first two equations of elastodynamics
(2), a standard argument shows that Eq. (5a) gives Eq. (2a), and that Eq. (5c) gives Eq. (2b) as well as Eq. (2d).
Eq. (2c) is automatically satisfied by the definition of the phase manifold M. This shows that Eqs. (2) define a
Hamiltonian dynamical system.

Let us now consider the case in which the data f , � N and uD do depend on time. In this case, a direct differ-
entiation with respect to time gives that

Ḣ (u(t), v(t), t) = �
Z

⌦
ḟ (t) · u(t) �

Z

�N

�̇ N (t) · u(t) +
Z

�D

u̇D(t) · (C✏(u(t))n). (6)

Hence, it is necessary to have the data independent of time for the equations of elastodynamics to be a Hamiltonian
dynamical system. Since we are interested in the case in which the Hamiltonian is constant in time, in view of the

4
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above identity, in the remaining of the paper, we assume that the data uD , f and � N are independent of time. Of
course, all the schemes we consider can be trivially extended to the case in which the data depend on time.

2.2. Conservation laws

We next state the classical conservation laws of linear elastodynamics for the linear and angular momenta, and
the energy. We show that they are a direct consequence of the fact that, if J = J (u(t), v(t)) is a functional defined
on the orbits t 7! (u(t), v(t)) of a Hamiltonian dynamical system, then

J̇ = {J, H}. (7)

Proposition 2.1. Let (u, v) be any solution of the boundary-value problem (2). Then the linear momentum I(v) =R
⌦ ⇢ v, the angular momentum J(v) =

R
⌦ x ⇥ ⇢ v, and the total energy E(u, v) =

R
⌦

� 1
2⇢ v · v + 1

2 C✏(u) : ✏(u)
�

are constant in time whenever �D = ;, and f and � N are zero.

Proof. These conservation laws can be deduced by using the Hamiltonian structure of the equations in question.
Indeed, by (7), to show that the functional J = J (u, v) is constant in time, we only have to show that {J, H} = 0.

Take J := ⌘ · I(v) where ⌘ is any three-dimensional constant vector. Then, since �D = ;, we have that
T = C

1(⌦ ) ⇥ C
1(⌦ ) and we can write that J = Cv( ) where  = ⌘. As a consequence, {J, H} = 0 by Eq. (5c)

and the fact ⌘ is a constant vector. Since the vector ⌘ was arbitrary, this proves the conservation of the first quantity
in time.

Now, take J := ⌘ · J(v) where ⌘ is again any three-dimensional constant vector. Then, by a similar argument,
we see that J = Cv( ) where  = ⌘ ⇥ x. As a consequence, {J, H} = 0 by Eq. (5c) and the fact ⌘ is a constant
vector. Since the vector ⌘ was arbitrary, this proves the conservation of the second quantity.

Finally, for J := E , the conservation in time follows from the fact that, when f and � N are zero, E = H and
from the fact that {H, H} = 0, by the antisymmetry of the Poisson bracket.

This completes the proof. ⇤

3. The semidiscrete Finite element methods

In this section, we describe the finite element methods we are going to consider for the space discretization
of the equations of elastodynamics. So, after introducing the notation, we describe the semidiscrete method for
mixed methods, and for both the HDG and DG methods. For simplicity, we restrict our attention to methods using
symmetric approximate stresses. We end by describing the HDG method we are going to use in our numerical
results.

3.1. Notation

Let Th = {K }, for 0 < h < 1, be a family of conforming triangulations of ⌦ . Let hK be the inner diameter of
an element K in Th and we define by h the maximum over the elements.

We assume that the triangulation Th is shape-regular, see [23], and define the following sets

@Th : the set of @K for all elements K of the triangulation T h,
Fh : the set of all the faces of the triangulation Th ,
F

0
h
: the set of the interior faces of the triangulation Th ,

F
N

h
: the set of faces lying on the boundary �N ,

F
D

h
: the set of faces on the boundary �D .

Now we introduce some notation for inner products. Let D 2 Rd , we denote by (·, ·)D the inner product for
vectors w, v 2 [L

2(D)]d and tensors � , � 2 [L
2(D)]d⇥d , that is,

(w, v)D =
Z

D

w · v, (� , � )D =
Z

D

� : � .

5



M.A. Sánchez, B. Cockburn, N.-C. Nguyen et al. Computer Methods in Applied Mechanics and Engineering 381 (2021) 113843

Similar definitions for the inner products in (d � 1)-dimensional domains are considered. Then, we define the inner
products over the triangulation Th and the sets of boundary and faces of Th

(� , � )Th
=

X

K2Th

(� , � )K , (w, v)Th
=

X

K2Th

(w, v)K

hw, viE =
X

F2E
hw, viF , hw, vi@Th

=
X

K2Th

hw, vi@K

where E denotes a collection of faces, for instance E = @K ,Fh,F
0
h
,F D

h
,F N

h
.

Furthermore, we introduce some standard discontinuous Galerkin notation for the averages and jumps over faces.
For an interior face F 2 F

0
h
, we have two elements K

� and K
+ such that F = @K

+ \ @K
�, and denoting the

trace of a scalar, vector, or tensor valued function � to the boundary of K
± by �±. Then, we define the average

and jump on F 2 Fh of a vector function w and its exterior trace wext by

{{w}} :=
⇢ 1

2 (w+ + w�) if F 2 F
0
h
,

w if F 2 F
D

h
[ F

N

h
,

[[w ⌦ n]] :=
⇢

w+ ⌦ n+ + w� ⌦ n� if F 2 F
0
h
,

w ⌦ n � wext ⌦ n if F 2 F
D

h
[ F

N

h
.

We take as the exterior trace wext a boundary data. For example, on �D , we take uext

h
:= uD . There is no need to

define the exterior trace on �N .
Similarly, we define the average and jump on F 2 Fh of a tensor function � and its exterior trace � ext by

{{�}} :=
⇢ 1

2 (�+ + ��) if F 2 F
0
h
,

� if F 2 F
D

h
[ F

N

h
.

[[� n]] :=
⇢
�+n+ + ��n�, if F 2 F

0
h

�n � � ext n if F 2 F
D

h
[ F

N

h
.

We take as the exterior trace � n a boundary data. For example, on �N , we take � ext

h
:= � N . There is no need to

define the exterior trace on �D .
Next, we define the finite element space for symmetric tensors, and the space for vectors by

V M

h
= {� 2 [L

2(⌦ )]d⇥d \ S, r · � 2 [L
2(⌦ )]d : � |K 2 V (K ), 8K 2 Th}, (8a)

V
h

= {� 2 [L
2(⌦ )]d⇥d \ S : � |K 2 V (K ), 8K 2 Th}, (8b)

W h = {w 2 [L
2(⌦ )]d : w|K 2 W (K ), 8K 2 Th}, (8c)

where V (K ) and W (K ) are local finite element spaces which determine the numerical method. By S we denote the
set of symmetric-valued matrices.

3.2. Mixed finite element methods

3.2.1. For steady-state

The mixed methods for the steady-state problem

� r·(� ) = f , A� = ✏(u) in ⌦ , u = uD on �D, and �n = � N on �N ,

seek approximations of (u, � ), (uh, � h
), in the space W h ⇥ V M

h,� N
, where

V M

h,� N
= {� 2 V M

h
: �n = � N on �N }.

They are determined as the solution of

�(r· �
h
, w)Th

= ( f , w)Th
8 w 2 W h, (9a)

(A �
h
,� )Th

+ (uh, r·� )Th
= huD,�ni�D

8 � 2 V M

h,0. (9b)

Here A = C
�1 is the compliance tensor. Examples of these mixed methods can be found in [24–28].

6
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3.2.2. The semidiscrete scheme

We define the semidiscrete scheme in a way which will be suitable to uncovering its Hamiltonian structure.
Thus, the semidiscrete scheme defines the approximation to (u(t), v(t)), (uh(t), vh(t)), as the element of the space
W h ⇥ W h satisfying the equations

(u̇h(t), w)Th
= (vh(t), w)Th

8 w 2 W h, (10a)
(⇢ v̇h(t), w)Th

= (r· �
h
(t), w)Th

+ ( f , w)Th
8 w 2 W h, (10b)

where �
h
(t) is the element of V M

h,� N
which solves the equation

(A�
h
(t),� )Th

+ (uh(t), r·� )Th
= huD,�ni�D

8 � 2 V M

h,0. (10c)

We complete the definition of the scheme by setting the initial condition as follows:

(uh(0), v(0)) := (⇧ (u0), P(v0)),

for some projections ⇧ , P into W h .
To be able to define the Hamiltonian for this semidiscrete scheme in the case in which � N is not zero, we must

introduce an approximation to u(t)|�N
. So, we take buh(t) as the element of {�n|�N

: � 2 V M

h
} which solves the

equation

hbuh(t),�ni�N
= (A�

h
(t),� )Th

+ (uh(t), r·� )Th
� huD,�ni�D

8 � 2 V M

h
. (11)

Using the fact that �
h

and uh solve Eq. (10c), it is not difficult to show that buh(t) is well defined. Moreover, the
function buh(t) can be computed in a face-by-face manner.

3.3. The HDG and DG semidiscrete methods

3.3.1. For steady-state

The HDG and DG methods for the steady-state problem

� r·(� ) = f , � = C✏(u) in ⌦ , u = uD on �D, and �n = � N on � ,

define (uh, � h
, ✏

h
) as the solution of

(�
h
, rw)K � hb�

h
n, wi@K = ( f , w)K 8w 2 W (K ), (12a)

(�
h
,� )K � (C ✏

h
,� )K = 0 8� 2 V (K ), (12b)

(✏
h
,� )K + (uh, r·� )K �hbuh,�ni@K = 0 8� 2 V (K ). (12c)

The definition of the method is completed by the choice of the local finite element spaces V (K ) and W (K ), and
by the definition of the numerical traces b�

h
n and buh .

For the HDG methods, the numerical trace buh is a new variable and b�
h

is given by

b�
h
n = �

h
n � ⌧ (PM uh �buh) on @Th, (13)

where ⌧ is the so-called stabilization function which we take to be constant on each face of @K for any K 2 Th .
When the operator PM in (13) is not the identity, it is L

2 projection onto the space Mh . In this case the resulting
stabilization is usually called the Leherenfled–Schöberl stabilization, see [29, Remark 1.2.4] and [30].

The numerical trace buh lies in the space

Mh = {µ 2 L
2(Fh)d : µ|F 2 M(F), 8F 2 Fh},

and is defined as the solution of

hb�
h
n, µi@Th\�D

= h� N , µi�N
,

hbuh, µi�D
= huD, µi�D

for all µ 2 Mh . Examples of these methods can be found in [31–36].
7
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For the DG methods, the numerical traces are defined by

b�
h

=

8
><

>:

{{�
h
}} + C11[[uh ⌦ n]] � [[�

h
n]] ⌦ C12 if F 2 F

0
h
,

�
h
+ C11[[uh ⌦ n]] if F 2 F

D

h
,

� N if F 2 F
N

h
,

(14a)

buh =

8
><

>:

{{uh}} + [[uh ⌦ n]] · C12 + C22[[�
h
n]] if F 2 F

0
h
,

uD if F 2 F
D

h
,

uh + C22(�
h
n � � N ) if F 2 F

N

h
.

(14b)

An example is the DG method proposed in [37]. When C22 = 0, the method is called an LDG method. Some of
these DG methods can become HDG methods when the parameters C11, C12 and C22 are suitably defined as was
shown in [17] in the framework of steady-state diffusion.

3.3.2. Semidiscrete schemes

The HDG and DG schemes approximate (u(t), v(t)) by the element (uh(t), vh(t)) of W h ⇥ W h which solves the
equations

(u̇h(t), w)Th
= (vh(t), w)Th

8 w 2 W h, (15a)
(⇢ v̇h(t), w)Th

= �(�
h
(t), rw)Th

+ ( f , w)Th
+ hb�

h
(t)n, wi@Th

8 w 2 W h, (15b)

where (✏
h
(t), �

h
(t)) is the element of V

h
⇥ V

h
solution of

(✏
h
(t),� )Th

+ (uh(t), r·� )Th
� hbuh(t),�ni@Th

= 0 8� 2 V
h
, (15c)

(�
h
(t),� )Th

� (C ✏
h
(t),� )Th

= 0 8� 2 V
h
, (15d)

and buh(t) is the element of Mh which solves

hb�
h
(t)n, µi@Th\�D

= h� N , µi�N
(15e)

hbuh(t), µi�D
= huD, µi�D

, (15f)

for all µ 2 Mh . The initial condition is of the form

(uh(0), v(0)) := (⇧ (u0), P(v0)),

for some projections ⇧ , P into W h . To complete the scheme, the numerical traces buh(t) and b�
h
(t)n are chosen as

described in the previous subsection.

3.4. The HDGk+ semidiscrete scheme

To end this section, we describe the HDG method we are going to use in our numerical experiments. It is denoted
by HDGk+ and uses the local spaces introduced in [38], namely,

V (K ) = [Pk(K )]d⇥d \ S, W (K ) = [Pk+1(K )]d , M(F) = [Pk(F)]d . (16)

for any element K 2 Th and face F 2 Fh .
To be able to prove optimal error estimates, we take the initial data uh(0) as the first component of the

approximate solution (uh(0), ✏
h
(0), �

h
(0)) given by the HDGk+ method applied to

�r · � (0) = �r· (C ✏(u0)), � (0) = C ✏(0) in ⌦ ,

u(0) = uD on �D, � (0)n = � N on �N .

The initial approximation of the velocity vh(0) is taken as the L
2-projection onto the space W h of v0.

We also need to assume that the following elliptic regularity condition

k�k
H2(⌦)d + kC✏(�)k

H1(⌦)d⇥d  Cregkr · (C✏(�))k
L2(⌦)d , (17)

holds for any � 2 H
1(⌦ )d and finite right-hand side of the above inequality.

8
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Theorem 3.1. We have, for k � 1,

kC(✏(T ) � ✏
h
(T ))k

L2(⌦)d⇥d + k⇢(v � vh)k
L2(⌦)d  C ⇥ h

m(1 + T ),

for 1  m  k, where ⇥ := P3
i=0 sup

t2[0,T ]
�
k� (i)k

Hm (⌦)d⇥d + ku(i)k
Hm+1(⌦)d

�
.

Moreover, if the elliptic regularity inequality (17) holds, then

ku(T ) � uh(T )k
L2(⌦)d  C⇥ h

m+1(1 + T ),

for 1  m  k + 1.

The proof of this result is extremely similar to that provided in [39] for a related scheme. Indeed, in [39],
new techniques were provided for the analysis of an HDGk+ method proposed in [38] for the equations of linear
elasticity. These techniques were used to analyze the semidiscrete scheme resulting from the space discretization of
the equations of elastodynamics (formulated with a second order-time derivative and with the compliance tensor)
by the HDGk+ method.

This new analysis allows to simplify the quasi uniformity assumption on the mesh of the original paper [38]. The
main differences between the semidiscrete scheme in [39] and the scheme under consideration is that they use a
formulation with two time derivatives whereas we use a first-order system, and that they use the compliance tensor
A = C

�1 whereas we use the stiffness tensor C tensor. When both tensors are well defined, the differences between
these two formulations are really minor and can even produce superclose approximate solutions, as proved in [40]
for the steady-state diffusion problem.

4. The Hamiltonian structure of the semidiscrete methods

In this section we present the main results. We prove that, under space discretization by the mixed, DG and HDG
methods, the resulting dynamical system is Hamiltonian. We do this in two equivalent ways. In Section 4.1, we use
the approach using Poisson brackets sketched in Section 2, and in Section 4.2, the canonical approach for finite
dimensional ODEs. We end in Section 4.3, by proving the conservation properties of the semidiscrete schemes.

4.1. The Poisson brackets approach

We prove the Hamiltonian structure of the semidiscrete schemes by using the approach sketched in Section 2.
Indeed, we claim that the three semidiscrete methods define a Hamiltonian dynamical system for which

(i) the phase space is Mh = W h ⇥ W h ,
(ii) the Poisson bracket is

{F, G}h = (⇢�1 �F

�uh

,
�G

�vh

)Th
� (⇢�1 �F

�vh

,
�G

�uh

)Th
.

(iii) The Hamiltonians, for each of the methods, are

H
M

h
(uh, vh) = 1

2
�
(⇢vh, vh)Th

+ (A � h, � h)Th

�
� ( f , uh)Th

� h� N ,buhiFN

h

,

H
H DG

h
(uh, vh) = 1

2
�
(⇢vh, vh)Th

+ ( C ✏
h
, ✏

h
)Th

�
� ( f , uh)Th

� h� N ,buhiFN

h

+ 1
2
h⌧ (PM uh �buh), PM uh �buhi@Th

,

H
DG

h
(uh, vh) = 1

2
�
(⇢vh, vh)Th

+ ( C ✏
h
, ✏

h
)Th

�
� ( f , uh)Th

� h� N ,buhiFN

h

� 1
2

C11h[[uh ⌦ n]], [[uh ⌦ n]]iF0
h
[FD

h

� 1
2

C22h[[� h
n]], [[�

h
n]]iF0

h
[FN

h

,

(iv) the coordinates functionals are Cuh
= (⇢ uh, �)⌦ and Cvh

= (⇢ vh,  )⌦ ,
(v) the space of test functions is Th = W h ⇥ W h .

Let us prove the claim.
9
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4.1.1. The semidiscrete mixed method

Theorem 1 (Hamiltonian Structure of the Semidiscrete Mixed Methods). The semidiscrete mixed finite element

method (10) defines a Hamiltonian dynamical system.

Proof. Using the definition of H
M

h
, we get that

�H
M

h
= (�vh, ⇢ vh)Th

+ (��
h
,A�

h
)Th

� (�uh, f )Th
� h�buh, � N iFN

h

.

We now need to write the variations of �
h

and buh in terms of the variation of uh . So, by Eq. (11) relating �
h
, buh

and uh , we have that

h�buh(t),�ni�N
= (A��

h
(t),� )Th

+ (�uh(t), r·� )Th
8 � 2 V M

h
,

and taking � := �
h
, we obtain

h�buh(t), � N i�N
= (A��

h
(t), �

h
)Th

+ (�uh(t), r· �
h
)Th

,

This implies that

�H
M

h
= (�vh, ⇢vh)Th

� (�uh, r· �
h
)Th

� (�uh, f )Th
.

As a consequence, by the definition of the discrete Poisson bracket, we get that

(⇢ u̇h, w)Th
= Ċuh

(w) = {Cuh
(w), H

M

h
}h = (

�H
M

h

�vh

, w)Th
= (⇢ vh, w)Th

,

(⇢ v̇h, w)Th
= Ċvh

(w) = {Cvh
(w), H

M

h
}h = �(

�H
M

h

�uh

, w)Th
= (r· �

h
, w)Th

+ ( f , w)Th
,

for all w 2 W h . In other words, the equations defining the semidiscrete mixed methods define a Hamiltonian dyna-
mical system. This completes the proof. ⇤

4.1.2. The semidiscrete HDG method

Theorem 2 (Hamiltonian Structure of the Semidiscrete HDG Methods). The HDG method defined in (15) with

numerical traces given by (13) defines a Hamiltonian dynamical system.

Proof. Taking the variation of the functional H
H DG

h
, we obtain

�H
H DG

h
= (⇢vh, �vh)Th

+ (C✏
h
, �✏

h
)Th

� ( f , �uh)Th
� h� N , �buhiFN

h

+ h⌧ (PM uh �buh), �(PM uh �buh)i@Th
.

From Eq. (15d) with � := �✏
h
, we have that (C✏

h
, �✏

h
)Th

= (�
h
, �✏

h
)Th

. If we now take the variation in Eq. (15c)
and set � := �

h
, we obtain

(C✏
h
, �✏

h
)Th

= �(r·�
h
, �uh)Th

+ h�
h
n, �buhi@Th

= (�
h
, r�uh)Th

� h�
h
n, �(uh �buh)i@Th

.

Hence, �H
H DG

h
equals to

(⇢vh, �vh)Th
+ (�

h
, r�uh)Th

� h�
h
n, �(uh �buh)i@Th

� ( f , �uh)Th
� h� N , �buhiFN

h

+ h⌧ (PM uh �buh), �(PM uh �buh)i@Th

= (⇢vh, �vh)Th
+ (�

h
, r�uh)Th

� hb�
h
n, �(uh �buh)i@Th

� ( f , �uh)Th
� h� N , �buhiFN

h

+ h⌧ (PM uh �buh), �(PM uh �buh)i@Th
+ h(b�

h
� �

h
)n, �(uh �buh)i@Th

= (⇢vh, �vh)Th
+ (�

h
, r�uh)Th

� hb�
h
n, �uhi@Th

� ( f , �uh)Th

+ h⌧ (PM uh �buh), �(PM uh �buh)i@Th
+ h(b�

h
� �

h
)n, �(uh �buh)i@Th

.

10
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by Eq. (15e) with µ := �buh and since, by Eq. (15f), �buh = 0 on �D . Finally, by definition of PM , we get

�H
H DG

h
=(⇢vh, �vh)Th

+ (�
h
, r�uh)Th

� hb�
h
n, �uhi@Th

� ( f , �uh)Th

+ h(b�
h
� �

h
)n + ⌧ (PM uh �buh), �(PM uh �buh)i@Th

.

Note that, until now, we have not used the particular form of the numerical traces. Next, we insert the definition of
the HDG numerical trace for the flux, (13), to get

�H
H DG

h
= (⇢vh, �vh)Th

+ (�
h
, r�uh)Th

� hb�
h
n, �uhi@Th

� ( f , �uh)Th
.

Thus, using the definition of the discrete Poisson bracket, we get that

(⇢ u̇h, w)Th
= Ċuh

(w) = {Cuh
(w), H

H DG

h
}h = (

�H
H DG

h

�vh

, w)Th
= (⇢vh, w)Th

,

(⇢ v̇h, w)Th
= Ċvh

(w) = {Cvh
(w), H

H DG

h
}h = (

�H
H DG

h

�uh

, w)Th
= (�

h
, rw)Th

� hb�
h
n, wi@Th

� ( f , w)Th
,

for all w 2 W h . Therefore, semidiscrete HDG methods define a Hamiltonian dynamical system. This completes the
proof. ⇤

4.1.3. The semidiscrete DG method

Theorem 3 (Hamiltonian Structure of the Semidiscrete DG Methods). The DG method defined in (15) with

numerical traces given by (14) defines a Hamiltonian dynamical system.

Proof. The variation of the functional H
DG

h
is

�H
DG

h
=(⇢vh, �vh)Th

+ (C✏
h
, �✏

h
)Th

� ( f , �uh)Th
� h� N , �buhiFN

h

� C11h[[uh ⌦ n]], [[�uh ⌦ n]]iF0
h
[FD

h

� C22h[[� h
n]], [[��

h
n]]iF0

h
[FN

h

Proceeding as in the previous proof, we get

�H
DG

h
=(⇢vh, �vh)Th

+ (�
h
, r�uh)Th

� hb�
h
n, �uhi@Th

� ( f , �uh)Th
+ ⇥h,

where

⇥h :=�h � C11h[[uh ⌦ n]], [[�uh ⌦ n]]iF0
h
[FD

h

� C22h[[� h
n]], [[��

h
n]]iF0

h
[FN

h

,

�h :=h�(uh �buh), (b�
h
� �

h
)ni@Th

.

We claim that, if we insert the definition of the numerical traces, (14), we get that ⇥h = 0. In this case, we then
obtain

�H
DG

h
= (⇢vh, �vh)Th

+ (�
h
, r�uh)Th

� hb�
h
n, �uhi@Th

� ( f , �uh)Th
,

and we proceed exactly as in the proof of the semidiscrete HDG method to conclude that the semidiscrete DG
method defines a Hamiltonian system.

It remains to prove the claim. By Lemma A.1 with w := �(uh �buh) and � := (b�
h
� �

h
), we have that

�h =h{{�(uh �buh)}}, [[(b�
h
� �

h
)n]]iF0

h

+ h[[�(uh �buh) ⌦ n]], {{(b�
h
� �

h
)}}iF0

h

+ h�(uh �buh), (b�
h
� �

h
)niFD

h
[FN

h

.

= � h�({{uh}} �buh), [[�
h
n]]iF0

h

+ h�([[uh]] ⌦ n), (b�
h
� {{�

h
)}}iF0

h

+ h�(uh �buh), (b�
h
� �

h
)niFD

h
[FN

h

,

11
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since the numerical traces are single-valued. Inserting the definition of the numerical traces (14), we get

�h =h�([[uh ⌦ n]] · C12 + C22[[�
h
n]]), [[�

h
n]]iF0

h

+ h�[[uh ⌦ n]], C11[[uh ⌦ n]] � [[�
h
n]] ⌦ C12iF0

h

+ h�[[uh ⌦ n]], C11[[uh ⌦ n]]iFD

h

+ hC22�[[� h
n]], [[�

h
n]]iFN

h

,

and the result follows. This proves the claim and completes the proof. ⇤

4.2. The canonical approach

Here, we consider the semidiscrete schemes under consideration as defining a finite dimensional system of ODEs
and show that it has the form of a canonical Hamiltonian dynamical system.

We begin by considering a basis of W h , {�
i
}i2J , such that (⇢�

i
,�

j
)Th

= �i, j for i, j 2 J = {1, . . . , dim W h}.
Then, we define the coefficients ui (t) and vi (t) associated to the basis {�

i
}i2J of the approximations to the

displacement uh and the velocity vh , respectively, that is,

uh(t, x) =
X

i2J
ui (t)�i

(x), vh(t, x)=
X

i2J
vi (t)�i

(x). (18)

The canonical coordinates are (qi , pi ) := (ui , vi ) for i 2 J . They are nothing but the degrees of freedom of the
approximate solution (uh, vh), and coincide with the coordinates functionals of the modern approach because we
have that (qi , pi ) = (Cuh

(�i ), Cvh
(�i )). This justifies calling the functionals Cuh

(�i ) and Cvh
(�i ) the coordinates

functionals.

Theorem 4 (Canonical Hamiltonian Structure of the Semidiscrete Methods). The canonical Hamiltonian system:

ṗi = � @
@qi

H(p, q), q̇i = @

@pi

H(p, q) i 2 J ,

holds for

H(p, q) := H
M

h
(uh, vh), (uh, vh) solution of the semidiscrete mixed scheme,

H(p, q) := H
H DG

h
(uh, vh), (uh, vh) solution of the semidiscrete DG scheme,

H(p, q) := H
DG

h
(uh, vh), (uh, vh) solution of the semidiscrete HDG scheme.

Proof. Since, for H(pi , qi ) := Hh(uh, vh), we have
@

@qi

Hh(pi , qi ) = @

@qi

Hh(uh, vh) = d

d⌘
H (uh + ⌘�

i
, vh)|⌘=0 = (�

i
,
�Hh

�uh

)Th
,

@

@pi

Hh(pi , qi ) = @

@pi

Hh(uh, vh) = d

d⌘
Hh(uh, vh + ⌘�

i
)|⌘=0 = (�

i
,
�Hh

�vh

)Th
,

we get, for each of the three Hamiltonians Hh under consideration, by Theorems 1–3, respectively, that

ṗi = Ċuh
(�

i
) = {Cuh

(�
i
), Hh}h = �(�

i
,
�Hh

�vh

)Th
= � @

@qi

H(p, q),

q̇i = Ċvh
(�

i
) = {Cvh

(�
i
), Hh}h = (�

i
,
�Hh

�uh

)Th
= @

@pi

H(p, q).

This completes the proof. ⇤

4.3. Conservation properties of the semidiscrete schemes

In this section, we prove a discrete version of the conservation properties of Proposition 2.1.

12
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Proposition 4.1. Let (uh, vh) be any solution of the semidiscrete schemes under consideration. Then the total

linear momentum I(vh) =
R
⌦ ⇢ vh, the total angular momentum J(vh) =

R
⌦ x ⇥ ⇢ vh, and the total energy

E(uh, vh) =

8
>>>>>>>>><

>>>>>>>>>:

1
2

�
(⇢vh, vh)Th

+ (A � h, � h)Th

�
, mixed method,

1
2

�
(⇢vh, vh)Th

+ ( C ✏
h
, ✏

h
)Th

�

+ 1
2 h⌧ (PM uh �buh), PM uh �buhi@Th

, HDG method,
1
2

�
(⇢vh, vh)Th

+ ( C ✏
h
, ✏

h
)Th

�

� 1
2 C11h[[uh ⌦ n]], [[uh ⌦ n]]iF0

h
[FD

h

� 1
2 C22h[[� h

n]], [[�
h
n]]iF0

h
[FN

h

DG method,

are constant in time whenever �D = ;, and f and � N are zero. For this to happen for the total angular momentum,

the space W h must include the functions x ⇥ a for every constant vector a 2 R3
.

The proof is identical to the proof of the conservation laws for the exact case, Proposition 2.1. It is based on the
fact that, if J = J (uh(t), vh(t)) is a functional defined on the orbits t 7! (uh(t), vh(t)) of a Hamiltonian dynamical
system, then J̇ = {J, Hh}h, where Hh is the Hamiltonian. This holds for the three semidiscrete schemes we are
considering by Theorems 1–3.

5. Symplectic Hamiltonian finite element methods: Fully discrete schemes

In this section, we discuss the properties we want our symplectic time-marching scheme to have, and argue that
the Explicit Symplectic Partitioned Runge–Kutta (ESPRK) methods fulfill them. We then give two examples of
fully discrete schemes, one for the semidiscrete HDG method and the other for the Local Discontinuous Galerkin
method.

5.1. Properties of the symplectic methods

Let us briefly discuss the three properties we want the symplectic time marching methods to have.
The first concerns the invariants of the Hamiltonian dynamical system. We know that, when �D = ;, and f and

� N are zero, the linear and angular momenta remain constant. In other words, the linear and angular momenta are
linear invariants of the Hamiltonian system defined by the semidiscrete method. Moreover, when the data uD , f
and � N are independent of time, the Hamiltonian is also constant. In other words, the Hamiltonian is a (separable)
quadratic invariant of the Hamiltonian system. This implies that, when picking a symplectic time-marching scheme,
we want to ensure that it maintains constant linear invariants and quadratic invariants of the original Hamiltonian
system. The second property concerns the accuracy of the methods. Since we are using high-order accurate finite
elements to discretize in space, the time-marching methods must match their high-order accuracy. The third property
is about implementation. Since explicit schemes are very easy to code, and quite efficient for hyperbolic problems,
we are interested in choosing explicit time-marching schemes.

The so-called explicit symplectic partitioned Runge–Kutta (ESPRK) methods we use in our numerical experi-
ments, see Appendix C, satisfy all of the above properties except the conservation of quadratic invariants. However,
the methods approximate the Hamiltonian without drift in time. We will observe in our computational experiments in
Section 6.2 that these oscillations are minute, in theory of order �t

k+2. Hence, it pays to sacrifice exact conservation
for efficiency in the implementation.

5.2. Explicit symplectic partitioned Runge–Kutta methods (ESPRK)

Let us now define the ESPRK methods for the Hamiltonian system

ṗ = �@H
@q

(p, q, t), q̇ = @H

@p
(p, q, t).

We consider ESPRK methods for the general case of Hamiltonians which depend on time. In our setting, this
corresponds to the case in which the data uD , f and � N depend on time.

13
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So, we define an step (pn, qn) ! (pn+1, qn+1) of an s-stages partitioned Runge–Kutta method with coefficients
(ai j , bi , ci ) and (ãi j , b̃i , c̃i ), for i, j = 1, . . . , s by

pn+1 = pn +
sX

i=1

bi ki , qn+1 = qn +
sX

i=1

b̃i k̃i

ki = �@H
@q

(pn,i , qn,i , t
n + ci�t

n), k̃i = @H

@p
(pn,i , qn,i , t

n + c̃i�t
n),

pn,i = pn + �t
n

sX

j=1

ai j k j qn,i = qn + �t
n

sX

j=1

ãi j k̃ j

In order to define explicit schemes, we consider an explicit and diagonally implicit Runge–Kutta methods of the
form

ai j =
⇢

0, if i < j

b j , if i � j
ãi j =

⇢
0, if i  j

b̃ j , if i > j.

For the separable Hamiltonian of elastodynamics, the explicit symplectic partitioned Runge–Kutta scheme reads as
follows:

pn,i = pn +
iX

j=1

b j k j , qn,i = qn +
i�1X

j=1

b̃ j k̃ j

k j = �@H
@q

(qn, j , t
n + c j�t

n), k̃ j = @H

@p
(pn, j , t

n + c̃ j�t
n),

for i = 1, . . . , s. The next step is obtained by setting pn+1 := pn,s and qn+1 := qn,s . See Appendix C for the
Butcher tableau of the ESPRK methods of order of accuracy from 3 to 6 we use in our numerical experiments.

5.3. Fully discrete HDG method

We consider the HDG semidiscrete scheme (15) with numerical traces given by the numerical traces (13) and
spaces V

h
, W h and Mh . We assume that for a given time t

n the values of the variables are known, we denote these
by (un

h
, vn

h
, ✏n

h
, � n

h
,bun

h
), and they correspond to the 0-stage of an ESPRK scheme. Then, the i-stage of the method,

for a time step �t
n is defined by the equations

(⇢ vn,i
h

, w)K = (⇢ vn,i�1
h

, w)K + bi�t
n
�
(� n,i�1

h
, rw)K + hb� n,i�1

h
n, wi@K

+ ( f (tn + ci�t
n), w)K

�
,

(un,i
h

, w)K = (un,i�1
h

, w)K + b̃i�t
n(vn,i

h
, w)K ,

for all w 2 W (K ), where the numerical trace of the stress is

b� n,i�1
h

= � n,i�1
h

� ⌧ (PM un,i�1
h

�bun,i�1
h

) on @K ,

and i = 1, . . . , s. Observe that this procedure will only allow us to advance to the (i)-stage the variables vn,i
h

and
un,i

h
. From the equations above is clear that we also need to obtain at least � n,i

h
and b� n,i

h
. In order to advance

the other variables we need to solve the following global system for (✏n,i
h

, � n,i
h

,bun,i
h

), which are obtained from the
steady-state part of the scheme (15), namely,

(✏n,i
h

,� )Th
� hbun,i

h
,�ni@Th\�D

= �(un,i
h

, r · � )Th
+ hbuD(tn + ci�t

n),�ni
�D

,

(� n,i
h

,� )Th
� (C✏n,i

h
,� )Th

= 0,

hb� n,i
h

, µi@Th\�D
= h� N (tn + ci�t

n), µi� ,

for all � 2 V
h
, and µ 2 Mh . The solution of this system exists and is unique, and can be easily computed, as we

argue in Appendix B.
14
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5.4. Fully discrete local discontinuous Galerkin (LDG) method

We consider the DG semidiscrete scheme in (15) and DG fluxes defined in (14). We set C22 = 0, that is, we
consider a local discontinuous Galerkin method. We assume that for a given time t

n the values of the variables are
known, we denote these by (un

h
, vn

h
, ✏n

h
, � n

h
), and they correspond to the 0-stage of the ESPRK algorithm. Then, the

i-stage of the method, for a time step �t
n is defined by the local equations

(⇢ vn,i
h

, w)K = (⇢ vn,i�1
h

, w)K + bi�t
n
�
(� n,i�1

h
, rw)K + hb� n,i�1

h
n, wi@K ,

+ ( f (tn + ci�t
n), w)K

�
,

(un,i
h

, w)K = (un,i�1
h

, w)K + b̃i�t
n(vn,i

h
, w)K ,

for i = 1, . . . , s and for all w 2 W h and numerical trace

b� n.i�1
h

=

8
><

>:

{{� n,i�1
h

}} + C11[[un,i�1
h

⌦ n]] � [[� n,i�1
h

n]] ⌦ C12, if F 2 F
0
h

� n,i�1
h

+ C11[[un,i�1
h

⌦ n]], if F 2 F
D

h

� N (tn + ci�1�t
n), if F 2 F

N

h
.

As in the previous case, in order to advance to the next stage is necessary to compute � n,i
h

(the numerical trace b� n,i
h

is obtained from un,i
h

and � n,i
h

). To do that, we solve the local system

(✏n,i
h

,� )K = hbun,i
h

,�ni@K � (un,i
h

, r · � )K ,

(� n,i
h

,� )K = (C✏n,i
h

,� )K ,

for all � 2 V (K ), where

bun,i
h

=

8
><

>:

{{un,i
h

}} + [[un,i
h

⌦ n]]C12, if F 2 F
0
h
,

uD(tn + ci�t
n) if F 2 F

D

h
,

un,i
h

if F 2 F
N

h
.

Therefore, we obtain a fully discrete DG scheme, which is explicit in time and local in space.

6. Numerical experiments

In this section, we test the properties of the ESPRK(k + 2)-HDGk+ numerical scheme introduced in Section 5.3.
We use an ESPRK method of order (k + 2) when polynomials of degree k are used in the HDGk+ method. In this
way, we match the expected rate of convergence of the error of the displacement variable. We consider isotropic
materials with stiffness tensor C✏ = 2µ✏+�tr(✏) I , where � and µ are the Lamé constants. In Section 6.1, we provide
numerical evidence of the approximation properties of the numerical methods showing the optimal convergence of
order k + 2 for the L

2-errors of the displacement and velocity variables and of order k + 1 for the L
2-errors of

the stress and strain variables. In Section 6.2, we present numerical examples illustrating the energy-conserving
property of our method.

6.1. History of convergence tests

In the following numerical experiments, we provide evidence of the optimal approximation properties of the
numerical scheme ESPRK(k + 2)-HDGk+. For each of the approximations uh , vh , ✏

h
and �

h
, we compute the

maximum over the time steps t
n of the L

2-errors of the corresponding error, and then estimate their orders of
convergence (e.o.c.). For instance, for the displacement approximation we compute

errorh = max
tn

ku(tn) � un

h
k

L2(⌦)2 , e.o.ch = log(errorh/errorh0 )
log(h/h0)

,

where h
0 corresponds to the previous mesh size parameter used in the computations. The experiments are carried

on the unit square domain ⌦ = (0, 1)2 using uniform triangulations with mesh-size parameter h = 2�l . As exact
solution we take

u(x, y, t) =
✓ �x

2
y(2y � 1)(x � 1)2(y � 1) sin(⇡ t)

y
2
x(2x � 1)(y � 1)2(x � 1) sin(⇡ t)

◆
.
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Fig. 1. Left: uniform crisscross triangulation (l = 3) used in our computations. Right: approximate solution (uh )1 for k = 1 and l = 4. Num-
erical example in Section 6.1(a) Compressible case.

Table 1

History of convergence of the numerical approximations of the linear elastodynamics equations by the scheme ESPRK(k +2)-HDGk+. Comp-
utations were performed up to a final time T = 0.5. Compressible case E = 2.5 and ⌫ = .25.

k l uh vh � h ✏h

error e.o.c. error e.o.c. error e.o.c. error e.o.c.

1

0 3.4e�3 – 1.1e�2 – 2.0e�2 – 8.3e�3 –
1 5.5e�4 2.61 2.4e�3 2.19 7.1e�3 1.47 2.9e�3 1.51
2 6.6e�5 3.05 3.5e�4 2.78 2.1e�3 1.77 8.6e�4 1.76
3 8.3e�6 3.00 4.6e�5 2.93 5.4e�4 1.94 2.2e�4 1.95
4 1.0e�6 3.02 5.9e�6 2.98 1.4e�4 1.98 5.7e�5 1.98

2

0 1.1e�3 – 3.7e�3 – 6.6e�3 – 2.8e�3 –
1 7.6e�5 3.91 3.8e�4 3.28 1.6e�3 2.02 6.8e�4 2.04
2 4.8e�6 3.99 2.7e�5 3.83 2.3e�4 2.83 9.5e�5 2.84
3 2.9e�7 4.05 1.7e�6 4.00 2.9e�5 2.97 1.2e�5 2.98
4 1.8e�8 4.02 1.0e�7 4.00 3.7e�6 2.98 1.5e�6 2.99

3

0 3.4e�4 – 1.1e�3 – 2.8e�3 – 1.2e�3 –
1 1.2e�5 4.84 6.7e�5 4.11 2.6e�4 3.42 1.1e�4 3.43
2 3.6e�7 5.03 2.0e�6 5.03 1.7e�5 3.97 6.9e�6 3.98
3 1.1e�8 5.06 6.3e�8 5.02 1.0e�6 4.00 4.3e�7 4.00
4 3.4e�10 5.02 2.0e�9 5.01 6.5e�8 3.99 2.7e�8 3.99

4

0 1.1e�4 – 3.9e�4 – 8.2e�4 – 3.5e�4 –
1 1.0e�6 6.75 5.9e�6 6.04 2.2e�5 5.21 9.3e�6 5.22
2 1.6e�8 5.97 9.1e�8 6.02 6.9e�7 5.01 2.9e�7 5.02
3 2.4e�10 6.07 1.4e�9 6.00 2.1e�8 5.01 9.0e�9 5.01
4 3.7e�12 6.02 2.2e�11 6.00 6.7e�10 5.00 2.8e�10 5.00

We approximate the linear elastodynamics Dirichlet problem, i.e. �D = @⌦ and �N = ;, with homogeneous
boundary condition uD = 0, and data f and initial conditions u0 and v0 so that Eq. (1a) and initial (1c) are
satisfied. We compute up to final time T = 0.5.

We consider two tests on homogeneous media ⇢ = 1, compressible and nearly incompressible materials.

(a) Compressible case

We use as material parameters Young’s modulus E = 2.5 and Poisson ratio ⌫ = .25, equivalently Lamé constants
� = 1, µ = 1. We summarize the results in Table 1. We observe optimal convergence of order k + 2 for the
approximation error of the displacement and velocity variables and optimal convergence of order k + 1 for the
approximation error of the strain and stress variables (see Fig. 1).
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Table 2

History of convergence of the numerical approximations of the linear elastodynamics equations by the scheme ESPRK(k +2)-HDGk+. Comp-
utations were performed up to a final time T = 0.5. Near incompressible case E = 3002/1001 and ⌫ = 500/1001.

k l uh vh � h ✏h

k l error e.o.c. error e.o.c. error e.o.c. error e.o.c.

1

0 5.4e�03 – 2.0e�02 – 1.4e�02 – 3.7e�02 –
1 1.1e�03 2.28 4.2e�03 2.27 3.7e�03 2.14 8.5e�03 1.92
2 1.6e�04 2.82 8.2e�04 2.37 1.8e�03 0.95 4.4e�03 1.06
3 2.0e�05 3.01 9.7e�05 3.07 4.8e�04 1.87 1.2e�03 1.88
4 2.4e�06 3.04 1.2e�05 2.97 1.2e�04 2.00 3.0e�04 2.01

2

0 3.1e�03 – 1.1e�02 – 4.7e�03 – 1.0e�02 –
1 1.6e�04 4.27 7.4e�04 3.91 1.3e�03 1.62 3.3e�03 1.89
2 1.2e�05 3.68 6.2e�05 3.57 2.1e�04 2.62 5.3e�04 2.61
3 7.4e�07 4.06 3.8e�06 4.03 2.6e�05 2.98 6.7e�05 2.98
4 4.5e�08 4.06 2.4e�07 3.97 3.3e�06 3.00 8.4e�06 3.00

3

0 6.6e�04 – 2.3e�03 – 2.5e�03 – 6.6e�03 –
1 3.4e�05 4.27 1.7e�04 3.74 2.4e�04 3.41 6.1e�04 3.36
2 9.9e�07 5.10 5.2e�06 5.00 1.5e�05 4.04 3.7e�05 4.03
3 3.0e�08 5.07 1.6e�07 5.01 9.3e�07 3.99 2.4e�06 3.99
4 9.0e�10 5.04 4.6e�09 5.14 5.8e�08 3.99 1.5e�07 3.99

4

0 3.2e�04 – 1.1e�03 – 7.6e�04 – 1.9e�03 –
1 3.2e�06 6.66 1.7e�05 5.99 2.1e�05 5.12 5.4e�05 5.14
2 4.5e�08 6.14 2.7e�07 5.97 6.6e�07 5.02 1.7e�06 5.02
3 7.3e�10 5.96 4.2e�09 6.00 2.1e�08 5.01 5.2e�08 5.01
4 1.1e�11 6.04 2.7e�11 7.24 6.5e�10 4.99 1.6e�09 4.99

(b) Near incompressible case

We use as material parameters Young’s modulus E = 3002/1001 and Poisson ratio ⌫ = 500/1001, equivalently
Lamé constants � = 1000, µ = 1. We summarize the results in Table 2. We observe optimal convergence of order
k +2 for the approximation error of the displacement and velocity variables and optimal convergence of order k +1
for the approximation error of the strain and stress variables.

6.2. Conservation properties tests

We present three examples showing the energy-conserving properties of the numerical scheme ESPRK(k +
2)-HDGk+.

(a) Plane waves

We consider the exact solution u(x, y, t) = Ae exp(((x, y) · d � c t)), where A is the amplitude, e displacement
direction, d propagation direction, and c propagation speed on the two-dimensional domain ⌦ = (0, 3) ⇥ (0, 1)
with periodic boundary conditions. We solve two cases, first e = d = (0, 1) (P-wave) and second e = (1, 0)
and d = (0, 1) (S-wave). Computations are performed until final time T = 100. We take the following material
parameters: A = .1, ⇢ = 1.0, E = 3.0, ⌫ = 0.3. We also use h = 6.25 ⇥ 10�2, �t = 7.775 ⇥ 10�3, k = 1 and
⌧ = 1/h. Mesh deformation plots were performed on a coarser mesh (2h) to improve visualization.

In Fig. 2, we plot the resulting deformations of the criss-cross triangulation and the plot of the error of the energy
Eh (or, equivalently, in the free body case the Hamiltonian functional H

H DG

h
), that is,

Eh(uh, vh) = 1
2

�
(⇢ vh, vh)Th

+ (C ✏
h
, ✏

h
)Th

+ h⌧ (PM uh �buh), PM uh �buhi@Th

�
. (19)

We also plot the error of the energy resulting of neglecting the terms on the skeleton, that is,

Ẽh(uh, vh) = 1
2

�
(⇢ vh, vh)Th

+ (C ✏
h
, ✏

h
)Th

�
. (20)
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Fig. 2. Plot of approximate solution and energy errors of example (a) Plane waves. First row: Mesh deformation under plane waves. Left:
P-wave (e = d = (0, 1)). Right: S-wave (e = (0, 1) and d = (1, 0)). Second row: Plots of the errors |E � Eh | (blue straight line) and
|E � Ẽh | (red oscillatory line) of the discrete approximate energies defined in (19) and (20) for the P-wave (left) and S-wave (right). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

We observe that the error of Eh remains practically constant in time, as expected, by the construction of the
method. We also observe that the error of Ẽh oscillates but seems constant in average.

(b) Traveling wave pulse

We consider the exact solution

u(x, y, t) =
✓
�(x � ct) + �(y � ct)

0

◆
, �(s) = (2s � 2)10(2s)10.

on the domain ⌦ = (0, 1)2 with periodic boundary conditions and material parameters E = 2.5 and ⌫ = 0.25. We
compute until final time T = 30. We take h = 6.25 ⇥ 10�2, �t = 4.511 ⇥ 10�3, k = 2 and ⌧ = 1/h.

In Fig. 3, we plot the first component of the displacement, (uh)1, and the first component of the velocity, (vh)1.
We also plot the error of the energy Eh and Ẽh with respect to time. We observe no energy dissipation in time.

(c) Plane stress cantilever beam

We consider the two dimensional domain ⌦ = (0, 1)⇥ (0, 0.05). We consider the linear elastodynamics problem
with f = 0, boundary conditions

u = 0 at x = 0, � · n = 0 at y = 0, y = 0.05, at x = 1,

and initial conditions

u(x, y, t = 0) = 0, v(x, y, t = 0) =
✓

0
x

◆
.

We compute until final time T = 10 and with material parameters Young’s modulus E = 20, Poisson’s ratio ⌫ =
1/3. We take h = 6.25 ⇥ 10�3, �t = 2.853 ⇥ 10�4, k = 1 and ⌧ = 1/h.
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Fig. 3. Plot of approximate solution and energy error of example (b) Traveling wave pulse. First row: from left to right, approximate solutions
(uh )1 and (vh )1. Second row: the errors |E � Eh | (blue straight line) and |E � Ẽh | (red oscillatory line) of the discrete approximate energies
defined in (19) and (20), respectively. The zoom of the blue line indicates that the approximate energy Eh is not maintained constant by
the ESPRK(3) method, as expected. However, it clearly stays oscillating around a constant, as a consequence of the symplecticity of the
method ESPRK(3). Moreover, the oscillations of the blue line are of the size of 5 ⇥ 10�10. So, for all practical purposes, the energy Eh

remains essentially constant. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

In Fig. 4, we plot the approximate solutions (uh)2, (�
h
)11, (�

h
)12, and (�

h
)22. Finally, in Fig. 4, we plot the

evolution of the error in the energy of Eh and of Ẽh in time. We observe no energy dissipation in time.

7. Extensions

What we have presented here can be extended to many other finite element methods including the continuous
Galerkin method, mixed methods arising from the application of the Hu–Washizu variational principle, and to DG
and HDG methods presented in non-mixed form like in [41,42]. It can also be extended to other equations of
mathematical physics displaying Hamiltonian structure. The extension to nonlinear elastodynamics and Maxwell’s
equations constitute the subject of ongoing work.
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Fig. 4. Plot of approximate solution and energy error of example (c) Plane stress cantilever beam at final time T = 10. First row: Plot
of the approximations (uh )2 (left) and (�

h
)11 (right). Second row: Plot of the approximations (�

h
)12 (left), and (�

h
)22 (right). Third row:

Plot of the discrete approximate energies Eh (blue straight line) and Ẽh (red oscillatory line) defined in (19) and (20), respectively. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Appendix A. An auxiliary result

Lemma A.1. Let w 2 Rd
and � 2 Rd⇥d

. Then

hw,�ni@Th
= h{{w}} · [[�n]] + [[w ⌦ n]] : {{�}}, 1iF0

h

+ hw,�niFD

h
[FN

h

.

Proof. We use the definition of the product h·, ·i@Th
and decompose it into a sum over the faces in Fh . For an

interior face F 2 F
0
h
, there exist K1, K2 2 Th with F = @K1 \ @K2. With this notation, we have

hw|K1 ,� |K1 n|K1iF + hw|K2 ,� |K2 n|K2iF

= hw|K1 + 1
2

�
w|K2 �w|K2

�
,� |K1 n|K1iF +hw|K2 + 1

2
�
w|K1 �w|K1

�
,� |K2 n|K2iF

= h{{w}},� |K1 n|K1 + � |K2 n|K2iF + h1
2

�
w|K1 � w|K2

�
,� |K1 n|K1 � � |K2 n|K2iF

= h{{w}}, [[�n]]iF + hw|K1 ⌦ n|K1 + w|K2 ⌦ n|K2 ,
1
2
� |K1 + 1

2
� |K2iF

= h{{w}}, [[�n]]iF + h[[w ⌦ n]], {{�}}iF ,

which gives the first term of the identity. The second term is straightforward evaluation on boundary faces F
D

h
and

F
N

h
. ⇤
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Table C.3

Butcher tableaux of s-stages partitioned Runge–Kutta methods.

b1 0 . . . 0 b1

b1 b2
. . .

.

.

. b1 + b2
.
.
.

.

.

.
. . . 0

.

.

.

b1 b2 . . . bs

sX

i=1

bi

b1 b2 . . . bs

0 0 . . . 0 0

b̃1 0
. . .

.

.

. b̃1

b̃1 b̃2
. . . b̃1 + b̃2

.

.

.
.
.
.

. . . 0 0
.
.
.

b̃1 b̃2 . . . b̃s�1 0
s�1X

i=1

b̃i

b̃1 b̃2 . . . b̃s�1 b̃s

Appendix B. Solving the global system for the fully discrete HDG method

Here, we show that the global system of the fully discrete HDG method of Section 5.2 has a unique solution
and can be easily solved.

To alleviate the notation, we drop the superscript n,i . We begin by noting that the third equation is satisfied when
b� hn = � N on �N and if, on F

0
h

we have

buh = euh � [[�
h
n]]

2{{⌧ }}
where

euh := ⌧+

2{{⌧ }} PM u+
h

+ ⌧�

2{{⌧ }} PM u�
h

and {{⌧ }} = 1
2

(⌧+ + ⌧�).

Then, if we set euh := uD on �D , the remaining two equations of the global system in question read

(✏
h
,� )Th

+ ⇣h(�
h
,� ) = �(uh, r · � )Th

+ heuh,�niF0
h
[�D

+ h� N

⌧
,�ni�N

,

(�
h
,� )Th

= (C✏
h
,� )Th

.

for all � 2 V
h
, where

⇣h(�
h
,� ) := h [[�

h
n]]

2{{⌧ }} , [[�n]]iF0
h

+h� h
n
⌧

,�ni�N
.

We can now see that the global system is uniquely solvable since the bilinear form ⇣h only adds a non-negative,
symmetric matrix to the mass matrix. The global system can be computed at the very beginning of the simulation
and can be solved easily at each inner step of the time-marching method. For example, for the HDGk+ used in our
numerical experiments, ⌧ is of order 1/h and a simple block-Jacobi iteration converges with a number of iterations
independent of the mesh.

Appendix C. The ESPRK methods we use

Partitioned RK methods satisfying the condition

bi ãi j + b̃ j a ji � bi b̃ j = 0 for i, j = 1, . . . , s,

are symplectic when applied to separable Hamiltonians, see [43, Theorem 2.1]. The Butcher tableaux associated
with the ESPRK schemes we use in our experiments have the structure displayed in Table C.3. So, a simple
computation shows that they satisfy the above condition; see also [43, (6.1)]. In other words, they are symplectic
when applied to the semidiscrete methods for the elastodynamics equations.

The methods do preserve linear invariants, but not quadratic invariants like our Hamiltonians. Instead, as they
are symplectic, they approximate the Hamiltonian of the corresponding semidiscrete method with no drift in time
whenever ud , f and � N are independent of time.

In Table C.4, we display the coefficients of the Explicit Symplectic Partitioned Runge–Kutta schemes, of s-stages
and p-order, ESPRK(s, p), used in our computations. In the section of numerical experiments, we refer to them
simply by ESPRK(p).
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Table C.4

i bi b̃i i bi b̃i

1 7/24 2/3 1 7/48 1/3
2 3/4 �2/3 2 3/8 �1/3
3 �1/24 1 3 �1/48 1

4 �1/48 �1/3
5 3/8 1/3
6 7/48 0

i bi b̃i

1 0.1193900292875672758 0.339839625839110000
2 0.6989273703824752308 �0.088601336903027329
3 �0.1713123582716007754 0.5858564768259621188
4 0.4012695022513534480 �0.6030393565364911888
5 0.0107050818482359840 0.3235807965546976394
6 �0.0589796254980311632 0.4423637942197494587

i bi b̃i

1 0.0502627644003922 0.148816447901042
2 0.413514300428344 �0.132385865767784
3 0.0450798897943977 0.067307604692185
4 �0.188054853819569 0.432666402578175
5 0.541960678450780 �0.016404589403618
6 �0.725525558508690 �0.016404589403618
7 0.541960678450780 0.432666402578175
8 �0.188054853819569 0.067307604692185
9 0.0450798897943977 �0.132385865767784
10 0.413514300428344 0.148816447901042
11 0.0502627644003922 0
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