

Corticospinal drive is associated with temporal walking adaptation in both healthy young and older adults

Sumire D. Sato ^{1,2} and Julia T. Choi ^{1,2,*}

¹ Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA

² Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA

Running title: EMG coherence and locomotor adaptation

*Corresponding Author:

Julia T. Choi

PO BOX 118205

Gainesville, FL 32611-8205

juliachoi@ufl.edu

19 **ABSTRACT**

20 Healthy aging is associated with reduced corticospinal drive to leg muscles during walking.

21 Older adults also exhibit slower or reduced gait adaptation compared to young adults. The

22 objective of this study was to determine age-related changes in the contribution of

23 corticospinal drive to ankle muscles during walking adaptation. Electromyography (EMG)

24 from the tibialis anterior (TA), soleus (SOL), medial and lateral gastrocnemius (MGAS,

25 LGAS) were recorded from 20 healthy young adults and 19 healthy older adults while they

26 adapted walking on a split-belt treadmill. **We quantified EMG-EMG coherence in the beta-**

27 **gamma (15-45 Hz) and alpha-band (8-15 Hz) frequencies. Young adults demonstrated**

28 **higher coherence in both the beta-gamma band coherence and alpha band coherence,**

29 **although effect sizes were greater in the beta-gamma frequency.** The results showed that

30 slow leg TA-TA coherence in the beta-gamma band was the strongest predictor of early

31 adaptation in double support time. In contrast, early adaptation in step length symmetry was

32 predicted by age group alone. These findings suggest an important role of corticospinal

33 drive in adapting interlimb timing during walking in both young and older adults.

34

35 **Keywords:** Corticospinal, aging, EMG coherence, Split-belt treadmill, locomotion,

36 adaptation

37

38 **INTRODUCTION**

39 Human walking involves sequential activation of muscles during different phases of
40 the gait cycle to control limb movement in a precise manner, and to coordinate left-right
41 alternation between limbs. The timing and amplitude of muscle activation during walking is
42 regulated in part by sensory feedback (Rossignol et al., 2006). Gait modifications in more
43 challenging walking tasks (e.g., stepping over an obstacle) also requires a high degree of
44 corticospinal input (Drew and Marigold, 2015). Specifically, the phasic drive to leg muscles
45 from the motor cortex has been shown to increase during precision walking (Petersen et al.,
46 2012;Jensen et al., 2018;Spedden et al., 2019). In older adults, this corticospinal drive is
47 reduced during walking (Roeder et al., 2018;Spedden et al., 2019), which may impact one's
48 ability to adapt and make anticipatory adjustments to their walking pattern.

49 Older adults have impaired gait adaptation compared to younger adults (Bruijn et al.,
50 2012;Nemanich and Earhart, 2015), which may lead to an increased risk of falling (Tinetti et
51 al., 1988;Berg et al., 1997). During split-belt treadmill walking, where one leg moves faster
52 than the other leg, healthy young adults adapt interlimb walking parameters by altering their
53 spatial (step length) as well as temporal control (double support period) on each leg (Dietz
54 et al., 1994;Reisman et al., 2005). Older adults can adapt interlimb parameters to the same
55 level as young adults (Malone and Bastian, 2016;Ducharme et al., 2019;Iturralde and
56 Torres-Oviedo, 2019;Vervoort et al., 2019a). However, the rate of adaptation is reduced in
57 older adults greater than 70 years old (Bruijn et al., 2012;Sombric et al., 2017). The neural
58 mechanisms that underlie age-related changes in walking control and adaptation is an
59 active area of research (e.g., reviewed in Fettrow et al., 2021;Sato and Choi, 2021).

60 **EMG** coherence analysis has demonstrated a common neural drive at 15-45 Hz to
61 the tibialis anterior that is modulated during walking adaptation (Sato and Choi,
62 2019;Oshima et al., 2021;Kitatani et al., 2022). **During normal walking, a significant amount**

63 of coherence can be found between EMG recorded from the proximal and distal ends of the
64 tibialis anterior in the alpha (8-15 Hz), beta (15-30 Hz) and gamma (30-45 Hz) frequencies
65 during the swing phase of gait. Beta-gamma band EMG oscillations are thought to originate
66 in the motor cortex and has been used as a marker of corticospinal drive (Farmer et al.,
67 1993;Farmer et al., 1997;Brown et al., 1998;Halliday et al., 1998;Halliday et al., 2003). In
68 healthy young adults, beta-band coherence **in** the tibialis anterior muscle is increased early
69 during split-belt treadmill adaptation compared to baseline symmetrical walking **at the slow**
70 **or fast speed** (Sato and Choi, 2019). Alpha-band coherence is important in slow, periodic
71 movements (Vallbo and Wessberg, 1993), and suggested to be olivo-cerebellar in origin
72 (Llinas and Volkind, 1973;Llinas, 2013). **However**, we did not observe any changes in
73 alpha-band coherence during split-belt walking in healthy young adults (Sato and Choi,
74 2019), suggesting that coherence modulation during walking adaptation are specific to the
75 **beta-gamma range**. Furthermore, we previously showed that beta-band intramuscular
76 coherence was associated with double support time asymmetry but not with step length
77 asymmetry, suggesting that corticospinal control may play a functional role in temporal
78 control during split-belt treadmill adaptation (Sato and Choi, 2019). Therefore, we
79 hypothesize that decreased corticospinal drive during walking older adults would have an
80 impact on adaptation of double support time symmetry during split-belt walking.

81 The objective of this study was to determine the impact of aging on the contribution
82 of corticospinal drive during split-belt locomotor adaptation. This study was a cross-
83 sectional study between two cohorts: young (23 ± 4.6 yrs) and older (75 ± 4.4 yrs) adults.
84 Corticospinal drive during split-belt walking adaptation was quantified by the amount of
85 beta-gamma frequency range (15-45 Hz) coherence in the tibialis anterior (TA-TA) and
86 plantarflexors (SOL-MGAS, MGAS-LGAS). **Similar to our previous study** (Sato and Choi,
87 2019), **we also examined EMG-EMG coherence in the alpha-band (8-15 Hz)** to determine if

88 coherence modulation were frequency-specific. The overall findings were that: (1) Early
89 change in step length asymmetry during adaptation are reduced in older adults, (2)
90 corticospinal drive to ankle muscles is less in older adults compared to young adults, and
91 (3) corticospinal drive to ankle muscles is associated with early changes in double support
92 asymmetry, independent of age.

93

94 **METHODS**

95

96 *Participants*

97 20 healthy young adults and 19 healthy older adults participated in this study (Table
98 1). Sample size was determined based on previous studies that examined age-related
99 differences in EMG-EMG coherence (Spedden et al., 2018;Spedden et al., 2019;Roeder et
100 al., 2020), and power calculation with preliminary data collected prior to this study (not
101 published). Our desired power for age-related differences in beta-gamma coherence was
102 0.8 with an alpha level of 0.05. Inclusion criteria were no previous history of neurological
103 disorder, no current orthopedic injury, ability to walk without walking aids (including ankle-
104 foot orthoses) for at least 10 minutes. Participants were characterized for: physical activity
105 using the Short Physical Performance Battery (SPPB) (Guralnik et al., 1994) and the
106 Advanced SPPB (Simonsick et al., 2001), cognitive status using the Telephone Interview for
107 Cognitive Status (TICS) (Brandt et al., 1988), recent subjective experience of fatigue using
108 Fatigue Severity Scale (Krupp et al., 1988), physical activity levels using the Godin Leisure
109 Time Questionnaire (Godin and Shephard, 1985), and leg-dominance using the Waterloo
110 Footedness Questionnaire (Elias et al., 1998). All participants gave informed written

111 consent before the study in accordance with the protocol approved by the Institutional
112 Review Board of University of Florida, Gainesville, FL (Protocol # 202000764).

113

114 *Data collection*

115 Participants walked on an instrumented split-belt treadmill (Bertec, Columbus, OH,
116 USA). Reflective markers were placed bilaterally on the anterior superior iliac spine
117 (pelvis), greater trochanter (hip), joint line of the knee (knee) and lateral malleolus (ankle),
118 and 5th metatarsal (toe) (Figure 1A). Pairs of surface electrodes were placed on the muscle
119 belly of the distal and proximal ends of the tibialis anterior (TA), medial (MGAS) and lateral
120 (LGAS) gastrocnemius, and the soleus (SOL) on each leg (Figure 1B).

121 The experimental paradigm consisted of 5 walking conditions (Figure 1C): (1) 5
122 minutes at 0.5 m/s with tied-belt (same left and right speed) for familiarization on the
123 treadmill, (2) 5 minutes at 1.0 m/s with tied-belt (“pre-fast”), (3) 5 minutes at 0.5 m/s with
124 tied-belt (“pre-slow”), (4) 10 minutes split-belt, with one treadmill belt going at 0.5 m/s and
125 the other at 1.0 m/s (“adaptation”), and (5) 10 minutes at 0.5 m/s with tied-belt (“post-slow”).

126 The leg on the fast belt during split-belt adaptation (from here on referred to as the “fast
127 leg”), and the leg on the slow belt (from here on referred to as the “slow leg”) was
128 randomized between participants with the same leg dominance (i.e., equal number of right
129 leg dominant participants with the fast leg on the left and right sides), as leg dominance may
130 alter the rate of adaptation (Kong et al., 2011; Bulea et al., 2017). During the course of the
131 experiment, subjective experience of fatigue was quantified by the Visual Analog Fatigue
132 Scale (Figure 1C) (Lee et al., 1991).

133 Lower limb kinematics were recorded at 100 Hz using an 8-camera Miquus system
134 (Qualisys, Gothenburg, Sweden). Force data from the treadmill (Bertec, Columbus, OH)

135 and EMG signals from a wired amplifier (MA300, Motion Lab Systems, Baton Rouge, LA,
136 USA) were collected at 1000 Hz. EMG, force plate and kinematic data was synchronized
137 using Qualisys Track Manager (Qualisys, Gothenburg, Sweden).

138

139 *Gait analysis*

140 Ground reaction force data was low-pass filtered (3rd order Butterworth) with a 15
141 Hz cut-off frequency. Heel-strike and toe-off events for each leg were identified when the
142 vertical ground reaction force crossed a threshold of 15 N (Sato and Choi, 2019). Time of
143 heel-strike and toe-off was visually inspected and manually corrected if necessary.

144 Step length was calculated as the anterior-posterior distance between the ankle
145 markers at time of heel strike. Fast and slow step lengths correspond to the leading leg
146 being on the fast or slow belt, respectively, at heel strike (i.e., fast step = fast leg heel strike
147 – slow limb heel-strike). Double support time was calculated as the duration when both legs
148 were on the treadmill. Fast leg double support time correspond to the double support
149 occurring at the beginning of the fast leg's stance (i.e., fast leg double support = the time
150 from fast leg heel-strike to slow leg toe-off) and the slow leg's stance (i.e., fast leg toe-off –
151 slow leg heel-strike), respectively. Step length asymmetry, and double support asymmetry
152 were defined as the normalized difference between legs for each stride (Eq. 1)

$$153 \quad \text{Asymmetry} = \frac{\text{Fast leg} - \text{Slow leg}}{\text{Fast leg} + \text{Slow leg}} \quad \text{Eq 1.}$$

154 Averaged values were calculated over three different epochs during adaptation and
155 post-adaptation: (1) Initial (mean of first 5 strides), (2) Early adaptation/post-adaptation
156 (mean of strides #6-30), and (3) plateau (mean of last 30 strides) (Leech and Roemmich,
157 2018; Leech et al., 2018). Baseline asymmetry was calculated from the first 5 strides of pre-
158 slow and pre-fast. Overall change in adaptation and post-adaptation was identified as the

159 asymmetry difference between plateau and initial epochs during split-belt adaptation and
160 post-adaptation, respectively. Similarly, early change was identified as the asymmetry
161 difference between early and initial epochs during split-belt adaptation and post-adaptation.

162

163 *Coherence analysis*

164 Coherence between EMG pairs (denoted x and y) was characterized based on
165 previously described methods and MATLAB functions from NeuroSpec
166 (<http://www.neurospect.org>). EMG signals were high-pass filtered at 8 Hz, rectified, and
167 normalized to have unit variance (Halliday et al., 1995). Discrete Fourier transformation
168 analysis was applied to short sections of the EMG taken at a fixed offset time to estimate
169 their average autospectras, f_{xx} and f_{yy} , and cross-spectrum f_{xy} . Based on preliminary data,
170 we used 0-400 ms after toe-off to calculate TA-TA coherence, and 500-100 ms before toe-
171 off to calculate SOL-MGAS (plantarflexor) coherence and MGAS-LGAS (gastrocnemius)
172 coherence (Figure 1D). For each Fourier frequency (λ), the resulting coherence value
173 provides a measure of association of the x and y processes on a scale from 0 to 1 (Eq. 3). A
174 coherence value of 0 signifies no synchrony between the two EMG signals and a coherence
175 value of 1 signifies perfect synchrony between the two EMG signals.

176
$$|R_{xy}(\lambda)|^2 = \frac{|f_{xy}(\lambda)|^2}{f_{xx}(\lambda)f_{yy}(\lambda)}$$
 Eq. 3

177 To characterize coherence modulation over the course of locomotor adaptation,
178 coherence was calculated over the first 100 strides during each baseline condition (pre-
179 slow, pre-fast), and over the first and last 100 strides during split-belt adaptation (early and
180 late adaptation) and post-adaptation (early and late post-adaptation) period.

181 The natural logarithm of the cumulative sum of coherence was calculated for the
182 beta-gamma band (15-45 Hz) to quantify corticospinal drive to the lower limb muscles for

183 each condition. Since EMG-EMG coherence in the alpha-band is thought to originate from a
184 different central nervous system source compared to the beta-gamma band (although there
185 are some studies that challenge this view; Salenius et al., 1997; Mima and Hallett,
186 1999; Graziadio et al., 2010), we also calculated coherence in the alpha band (8-15 Hz) to
187 examine if alpha band modulation is different from beta-gamma band modulation. All
188 together, there were a total of 12 coherence measures (2 legs x 3 EMG pairs x 2 frequency
189 bands) for each condition.

190

191 *Statistical analysis*

192 Age group differences in overall and early changes in kinematic adaptation were
193 assessed through independent t-tests. Effect sizes for paired comparisons were calculated
194 with Cohen's d; defined as small < 0.499, moderate = 0.500-0.799 and large > 0.800. Since
195 group characteristics demonstrated that physical function was different between groups
196 (Table 1, for Advanced SPPB and SPPB), we used an analysis of covariate to examine
197 group differences in kinematic changes controlling for physical function.

198 Two-way mixed measures ANOVA was performed to determine the effects of Age
199 (Young vs. Older) and Condition (pre-fast, pre-slow, early adaptation, late adaptation, early
200 post-adaptation, and late post-adaptation) on each coherence measure. **Greenhouse-**
201 **Geisser** corrections were applied when the assumption of sphericity was violated
202 (Mauchly's test: $p < 0.005$) and epsilon was less than 0.75. Huynh-Feldt corrections were
203 applied when the assumption of sphericity was violated (Mauchly's test: $p < 0.005$) and
204 epsilon was greater than 0.75. Post-hoc pairwise comparisons were conducted with
205 Bonferroni corrections. Effect sizes for ANOVAs were determined by partial eta-squared
206 (η^2_p); defined as small < 0.059, moderate = 0.060-0.139 and large > 0.140.

207 Forward stepwise regression was used to determine which coherence measures
208 best predicted individual differences in kinematic adaptation (early change in step length
209 and double support). Age group and six beta-gamma coherence measures from early
210 adaptation were included as co-variates.

211 All statistical significance was established with an alpha level = 0.05. Statistical
212 analyses were performed using JASP v0.14.1 (University of Amsterdam, Amsterdam,
213 Netherlands).

214

215 **RESULTS**

216

217 *Aging influences kinematic changes during split-belt locomotor adaptation*

218 Participants walked with symmetrical spatial and temporal kinematics during pre-
219 slow and pre-fast; there was no evidence of age group differences during baseline
220 conditions for any kinematic asymmetry variables (Table 2). In general, VAFS showed an
221 increase in fatigue during the protocol in both young and older adults, but there were no
222 group differences ($F(1,36) = 0.44$, $p = 0.511$, $\eta^2_p = 0.012$).

223 During initial split-belt treadmill adaptation, participants had longer step lengths on
224 the slow leg compared to the fast leg, leading to negative asymmetry (Figure 2A).

225 Participants gradually adapted and reached a plateau. During post-adaptation, there was an
226 after-effect in which participants took longer steps on the fast leg and gradually de-adapted
227 to reach a plateau. Overall change in step length asymmetry (Δ plateau phase – initial
228 phase) during adaptation was not different between age groups ($p = 0.079$; Figure 2C,
229 Table 3), but early change in step length asymmetry was greater in younger adults
230 compared to older adults ($p = 0.009$; Figure 2D). Overall and early change in step length

231 asymmetry during post-adaptation was not significantly different between age groups
232 (Overall Δ : $p = 0.111$; Early Δ : $p = 0.464$; Figure 2E-F). After controlling for physical
233 function, overall change in step length asymmetry during adaptation was not different
234 between groups, but there was a significant effect of age groups in early change in step
235 length asymmetry even when adjusting for SPPB-A scores (Overall Δ : $F(1, 36) = 2.20$, $p =$
236 0.146 , $n^2_p = 0.058$; Early Δ : $F(1, 36) = 9.30$, $p = 0.004$, $n^2_p = 0.205$), which was consistent
237 with the results above. Comparisons for post-adaptation step length asymmetry changes
238 were consistent with reported above and was not statistically significant after adjusting for
239 SPPB-A scores (all p 's > 0.100).

240 Participants had longer double support time on the fast leg compared to the slow leg,
241 during initial split-belt treadmill adaptation, leading to positive asymmetry. Participants
242 gradually adapted and reached a plateau close to symmetry. During post-adaptation, there
243 was an after-effect in which participants took longer double support time on the slow leg and
244 gradually de-adapted to reach a plateau (Figure 3A). Overall and early change in double
245 support time asymmetry during adaptation were different between age groups (Overall Δ : p
246 $= 0.021$; Early Δ : $p = 0.026$). Older adults adapted more overall, and demonstrated greater
247 early change (i.e., more negative) in double support asymmetry during split-belt treadmill
248 adaptation compared to younger adults (Figure 3C-D). During post-adaptation, overall and
249 early change in double support asymmetry were not significantly different between age
250 groups (Overall Δ : $p = 0.657$; Early Δ : $p = 0.382$; Figure 3E-F). When controlled for physical
251 function, overall and early change in double support asymmetry during adaptation was not
252 different between groups when adjusting for SPPB-A scores (Overall Δ : $F(1, 36) = 1.68$, $p =$
253 0.203 , $n^2_p = 0.045$; Early Δ : $F(1, 36) = 3.00$, $p = 0.092$, $n^2_p = 0.077$). Comparisons for post-
254 adaptation double support asymmetry changes were consistent with reported above and
255 was not statistically significant after adjusting for SPPB-A scores (all p 's > 0.100).

256

257 *EMG-EMG coherence differences between age-groups*

258 Figure 4 shows the EMG-EMG coherence from a representative young and old
259 participant. Mixed-measures ANOVA statistics are summarized in Tables 4-5. All coherence
260 had significant main effect of age groups. All coherence except fast leg plantarflexor beta-
261 gamma coherence and gastrocnemius beta-gamma coherence had a significant main effect
262 of conditions. Since treadmill speed may influence coherence, only speed-equivalent
263 comparisons (i.e., Fast leg: pre-fast vs. split-belt, pre-slow vs. post-slow, Slow leg: pre-slow
264 vs. split-belt and pre-slow vs. post-slow) are reported in the text and highlighted in bold
265 brackets in Figures 5-6.

266 In both the fast and slow leg, beta-gamma TA-TA coherence swing phase was
267 different between conditions and between groups, but condition x group interaction was not
268 significant (Figure 5A Fast leg; Condition: $p = 0.034$; Group: $p < 0.001$; **Interaction**: $p =$
269 0.336) (Figure 5B Slow leg; Condition: $p < 0.001$; Group: $p < 0.001$; **Interaction**: $p = 0.227$).
270 Beta-gamma TA-TA coherence during swing phase was lower in older adults compared to
271 younger adults. In the fast leg, speed-equivalent conditions did not show any statistically
272 significant differences. In the slow leg, early split-belt coherence was higher compared to
273 baseline pre-slow, late split-belt, and early and late post-adaptation, and late split-belt
274 adaptation was higher compared to early post-adaptation.

275 For plantarflexor (SOL-MGAS) coherence, beta-gamma coherence in the fast leg
276 during stance phase was different between groups, but not between conditions, and
277 condition x group effect was not significant (Figure 5C; Condition: $p = 0.317$; Group: $p <$
278 0.001 ; **Interaction** $p = 0.063$). While in the slow leg, beta-gamma plantarflexor coherence
279 during stance phase was different between conditions and between groups, and condition x

280 group effect was not significant (Figure 5D; Condition: $p = 0.044$; Group: $p < 0.001$;
281 **Interaction**: $p = 0.088$). Beta-gamma plantarflexor coherence was lower in older adults
282 compared to younger adults in both legs. Post-hoc between condition tests for the slow leg
283 showed that coherence during early split-belt was higher compared to baseline pre-slow.

284 In both legs, beta-gamma-band gastrocnemius (MGAS-LGAS) coherence in the fast
285 leg during stance phase was different between groups, but not between conditions, and
286 condition x group effect was not significant (Figure 5E; **Fast leg**; Condition: $p = 0.173$;
287 Group: $p < 0.001$; **Interaction**: $p = 0.323$) (Figure 5F; **Slow leg**; Condition: $p = 0.143$; Group:
288 $p < 0.001$; **Interaction**: $p = 0.929$). Beta-gamma-band gastrocnemius coherence in both legs
289 were lower in older adults compared to younger adults.

290 For all alpha band coherence, there was a significant difference between conditions
291 and between groups (younger adults $>$ older adults), but condition x group effect was not
292 significant (Figure 6; **Tables 4-5**). Post-hoc tests between conditions showed that pre-fast
293 alpha-band coherence in the tibialis anterior in the fast leg was higher compared to all the
294 other conditions. In the slow leg, TA-TA alpha band coherence was higher during early split-
295 belt compared to baseline-pre-slow and early and late post-adaptation. Slow leg TA-TA
296 alpha coherence during late split-belt coherence was not significantly higher compared to
297 pre-slow, but was higher compared to early and late post-adaptation.

298 Post-hoc between condition tests showed that baseline pre-fast plantarflexor alpha-
299 band coherence during pre-fast was higher compared to pre-slow, and early and late post-
300 adaptation. Fast leg plantarflexor alpha-band coherence during pre-slow was lower
301 compared to early and late post-adaptation. In the slow leg, post-hoc between condition
302 tests showed that plantarflexor alpha-band coherence increased during split-belt adaptation
303 in which during early adaptation coherence was higher compared to late post-adaptation,

304 and late adaptation coherence was higher compared to pre-slow and early and late post-
305 adaptation conditions.

306 For fast leg gastrocnemius alpha band coherence, post-hoc between condition tests
307 showed that coherence during pre-slow was lower compared to early post-adaptation. In the
308 slow leg, gastrocnemius alpha band coherence during early and late adaptation was higher
309 compared to early post-adaptation.

310

311 *Coherence predicts early changes in double support time adaptation*

312 Early change in step length asymmetry was predicted by Age group alone ($\beta = -$
313 0.084 , $F(1, 37) = 7.70$, $p = 0.009$). None of the coherence values during early adaptation
314 contributed to the model for early changes in step length asymmetry during adaptation
315 (Table 6). For early change in double support asymmetry during adaptation, $>30\%$ of the
316 variance can be accounted for by 2 variables ($r^2 = 0.303$, $F(2,36) = 7.82$, $p = 0.002$): slow
317 leg tibialis anterior beta-gamma coherence was the strongest predictor (Slow leg TA: $\beta =$
318 0.046 , $p < 0.001$), followed by fast leg plantarflexor coherence (Fast leg PF: $\beta = -0.028$, $p =$
319 0.009).

320

321 **DISCUSSION**

322

323 *Aging influences both spatial and temporal control during split-belt locomotor adaptation*

324 Older adults adapted the same amount of step length asymmetry, but early changes
325 during adaptation were less compared to younger adults. In addition, the effect size in
326 overall change in step length asymmetry was moderate ($d = 0.578$), which may suggest that
327 older adults have a slightly smaller overall change in step length asymmetry compared to

328 younger adults. The smaller early change in step length asymmetry in older adults agrees
329 with previous split-belt studies that evaluated similar age-groups and showed a slower rate
330 of adaptation (Bruijn et al., 2012; Sombrio et al., 2017).

331 Both overall and early changes in double support asymmetry adaptation were
332 different between older and younger adults. Our results on overall adaptation on double
333 support asymmetry are in contrast with previous studies on aging (Vervoort et al., 2019a;b).
334 This difference in outcome may reflect a variety of factors that can contribute to aging that
335 impact the study population (e.g., level of daily physical activity, cognitive function, etc.) but
336 it is important to note that our participant group was older compared to the other studies
337 (Vervoort et al., 2019a older adults age: 55.3 ± 2.9 yrs; Vervoort et al., 2019b older adults
338 age: 67.8 ± 5.8 yrs). Here we found a larger early change in double support asymmetry
339 during adaptation in older adults compared to younger adults. However, when adjusted for
340 physical function (Advanced SPPB scores), the age-group differences in double support
341 asymmetry were not statistically significant. This may suggest that the strategy to alter
342 double support asymmetry is a compensatory strategy in older adults with decreased
343 physical function.

344

345 *Aging influences corticospinal drive during split-belt locomotor adaptation*

346 Corticospinal drive quantified by beta-gamma coherence was lower in older adults
347 compared to younger adults. This is in agreement with previous studies that examined
348 EMG-EMG coherence in older and younger adults during walking (Spedden et al.,
349 2019; Dos Santos et al., 2020; Gennaro and de Bruin, 2020). This finding is interesting and
350 important because multiple studies have reported increased demand in cortical brain
351 resources, especially during walking in older adults compared to younger adults (Chen et
352 al., 2017; Mirelman et al., 2017; Hawkins et al., 2018). This may suggest that even though

353 older adults may engage more cortical resources during walking compared to younger
354 adults, the output from the motor cortex that reaches the muscle is reduced, which may be
355 due to the physiological changes in the corticospinal structures (e.g., decrease in the
356 number of motor units, decrease in the innervation ratio of muscle fiber:motor neuron
357 (Deschenes, 2011)).

358 In general, older adults also demonstrated less modulation in corticospinal drive
359 compared to younger adults. The increase in slow leg beta-gamma TA-TA coherence from
360 baseline pre-slow to early split-belt adaptation observed in younger adults is **less** in older
361 adults. **This is in agreement with a previous study that** also demonstrated a reduced
362 modulation in plantarflexor intramuscular coherence during different standing balance tasks
363 in older adults compared to younger adults (Watanabe et al., 2018). **Increase in age has**
364 **been associated with altered transcranial magnetic stimulation output that signify**
365 **corticospinal excitability** (Rossini et al., 2007), **and intra-** (Peinemann et al., 2001;Fujiyama
366 et al., 2012) **and inter-cortical inhibition** (Talelli et al., 2008;Fling and Seidler, 2012), **which**
367 **may affect the ability for older adults to modulate corticospinal drive during walking**
368 **adaptation.** Fatigue can also modulate beta-band EMG-EMG coherence (Dos Santos et al.,
369 2020), which may have influenced the changes in coherence during this study. However,
370 **we did not observe consistent beta-gamma coherence differences between pre-slow and**
371 **post-slow that would be explained by fatigue.** Alternatively, reduced modulation in beta-
372 gamma coherence during split-belt adaptation may reflect less cortical involvement, due to
373 greater reliance on implicit processes (Kitatani et al., 2022).

374 Older adults also demonstrated lower alpha-band coherence compared to younger
375 adults, but effect size was generally smaller compared to beta-gamma coherence group
376 differences. In contrast to beta-gamma coherence, where older adults showed less
377 modulation in coherence compared to younger adults, older adults modulated alpha-band

378 coherence more compared to younger adults (as indicated by the significant interaction
379 effect in the alpha band coherence in the plantarflexors). Corticomuscular coherence in the
380 alpha band has been suggested to be related to processing of sensory feedback (Hansen
381 and Nielsen, 2004), **and error processing** (Mehrkanoon et al., 2014) which is in line with the
382 cerebellum's importance with sensorimotor processing (For review: Manto et al.,
383 2012; Baumann et al., 2015; Sokolov et al., 2017).

384

385 *Corticospinal drive is associated with temporal adaptation*

386 None of the coherence measures during early adaptation predicted step length
387 adaptation. Only the age grouping variable significantly contributed to predict early change
388 in step length asymmetry adaptation. Statistically, this is equivalent to an independent t-test
389 and is consistent with the group comparisons. This suggests that corticospinal drive to the
390 major lower limb ankle muscles is not associated with the early changes in step length
391 asymmetry. Previous studies have demonstrated intact step length adaptation during split-
392 belt walking even after cerebral lesions (Choi et al., 2009; Reisman et al., 2013). Together,
393 this suggest that reduced corticospinal drive could be compensated by other neural
394 mechanisms to adapt step length symmetry.

395 Slow leg tibialis anterior beta-gamma coherence and fast leg plantarflexor beta-
396 gamma coherence significantly contributed to predict early change in double support
397 asymmetry. Larger beta-gamma coherence in the slow leg tibialis anterior and smaller beta-
398 gamma coherence in the fast leg plantarflexors was related to smaller (i.e., less negative)
399 early change in double support asymmetry during adaptation. Higher intermuscular
400 coherence in the beta-gamma band has been shown to be indicative of functional
401 coordination (i.e., synergy), while lower intermuscular coherence has been indicative of

402 greater individual muscle control (Laine and Valero-Cuevas, 2017). Therefore, in addition to
403 the corticospinal drive to the tibialis anterior, synergy in the plantarflexor may be important
404 for changes in double support asymmetry during split-belt adaptation. This suggests that
405 more corticospinal drive is not necessarily always “better”; to make appropriate gait
406 adjustments, but there should be a balance of corticospinal drive to each muscle or muscle
407 groups which is specific to the desired outcome.

408

409 **CONCLUSIONS**

410

411 During split-belt locomotor adaptation, corticospinal drive was less in older adults
412 compared to younger adults. In both age groups, the corticospinal drive to the tibialis
413 anterior during the swing phase was the strongest predictor of early temporal changes. This
414 suggests that corticospinal drive plays an important role in locomotion adaptation, and that
415 age-related changes in corticospinal drive may necessitate different locomotor adaptation
416 strategies with increased age.

417

418 **Author contribution**

419 SS and JC designed the experiment. SS collected, processed, and analyzed the data. SS
420 and JC interpreted the results. SS prepared the figures and tables and wrote the first draft
421 of the manuscript. All authors revised and approved of the final manuscript.

422

423 **Conflict of Interest**

424 The authors have no competing interests to report.

425

426 **Acknowledgement**

427 This study was supported by the National Science Foundation (# 1753026, 2001222) and
428 the American Society of Biomechanics Graduate Student Grant-In-Aid.

REFERENCES

Baumann, O., Borra, R.J., Bower, J.M., Cullen, K.E., Habas, C., Ivry, R.B., Leggio, M., Mattingley, J.B., Molinari, M., Moulton, E.A., Paulin, M.G., Pavlova, M.A., Schmahmann, J.D., and Sokolov, A.A. (2015). Consensus paper: the role of the cerebellum in perceptual processes. *Cerebellum* 14, 197-220.

Berg, W.P., Alessio, H.M., Mills, E.M., and Tong, C. (1997). Circumstances and consequences of falls in independent community-dwelling older adults. *Age Ageing* 26, 261-268.

Brandt, J., Spencer, M., and Folstein, M. (1988). The Telephone Interview for Cognitive Status. *Cognitive and Behavioral Neurology* 1, 111-118.

Brown, P., Salenius, S., Rothwell, J.C., and Hari, R. (1998). Cortical correlate of the Piper rhythm in humans. *J Neurophysiol* 80, 2911-2917.

Bruijn, S.M., Van Impe, A., Duysens, J., and Swinnen, S.P. (2012). Split-belt walking: adaptation differences between young and older adults. *J Neurophysiol* 108, 1149-1157.

Bulea, T.C., Stanley, C.J., and Damiano, D.L. (2017). Part 2: Adaptation of Gait Kinematics in Unilateral Cerebral Palsy Demonstrates Preserved Independent Neural Control of Each Limb. *Front Hum Neurosci* 11, 50.

Chen, M., Pillemer, S., England, S., Izzetoglu, M., Mahoney, J.R., and Holtzer, R. (2017). Neural correlates of obstacle negotiation in older adults: An fNIRS study. *Gait Posture* 58, 130-135.

Choi, J.T., Vining, E.P., Reisman, D.S., and Bastian, A.J. (2009). Walking flexibility after hemispherectomy: split-belt treadmill adaptation and feedback control. *Brain* 132, 722-733.

Deschenes, M.R. (2011). Motor unit and neuromuscular junction remodeling with aging. *Curr Aging Sci* 4, 209-220.

Dietz, V., Zijlstra, W., and Duysens, J. (1994). Human neuronal interlimb coordination during split-belt locomotion. *Exp Brain Res* 101, 513-520.

Dos Santos, P.C.R., Lamothe, C.J.C., Barbieri, F.A., Zijdewind, I., Gobbi, L.T.B., and Hortobagyi, T. (2020). Age-specific modulation of intermuscular beta coherence during gait before and after experimentally induced fatigue. *Sci Rep* 10, 15854.

Drew, T., and Marigold, D.S. (2015). Taking the next step: cortical contributions to the control of locomotion. *Curr Opin Neurobiol* 33, 25-33.

Ducharme, S.W., Kent, J.A., and Van Emmerik, R.E.A. (2019). Comparable Stride Time Fractal Dynamics and Gait Adaptability in Active Young and Older Adults Under Normal and Asymmetric Walking. *Front Physiol* 10, 1318.

Elias, L.J., Bryden, M.P., and Bulman-Fleming, M.B. (1998). Footedness is a better predictor than is handedness of emotional lateralization. *Neuropsychologia* 36, 37-43.

Farmer, S.F., Bremner, F.D., Halliday, D.M., Rosenberg, J.R., and Stephens, J.A. (1993). The frequency content of common synaptic inputs to motoneurones studied during voluntary isometric contraction in man. *J Physiol* 470, 127-155.

Farmer, S.F., Halliday, D.M., Conway, B.A., Stephens, J.A., and Rosenberg, J.R. (1997). A review of recent applications of cross-correlation methodologies to human motor unit recording. *J Neurosci Methods* 74, 175-187.

Fettrow, T., Hupfeld, K., Tays, G., Clark, D.J., Reuter-Lorenz, P.A., and Seidler, R.D. (2021). Brain activity during walking in older adults: Implications for compensatory versus dysfunctional accounts. *Neurobiol Aging* 105, 349-364.

Fling, B.W., and Seidler, R.D. (2012). Fundamental differences in callosal structure, neurophysiologic function, and bimanual control in young and older adults. *Cereb Cortex* 22, 2643-2652.

Fujiyama, H., Hinder, M.R., Schmidt, M.W., Garry, M.I., and Summers, J.J. (2012). Age-related differences in corticospinal excitability and inhibition during coordination of upper and lower limbs. *Neurobiology of Aging* 33, 1484.e1481-1484.e1414.

Gennaro, F., and De Bruin, E.D. (2020). A pilot study assessing reliability and age-related differences in corticomuscular and intramuscular coherence in ankle dorsiflexors during walking. *Physiol Rep* 8, e14378.

Godin, G., and Shephard, R.J. (1985). A simple method to assess exercise behavior in the community. *Can J Appl Sport Sci* 10, 141-146.

Graziadio, S., Basu, A., Tomasevic, L., Zappasodi, F., Tecchio, F., and Eyre, J.A. (2010). Developmental tuning and decay in senescence of oscillations linking the corticospinal system. *J Neurosci* 30, 3663-3674.

Guralnik, J.M., Simonsick, E.M., Ferrucci, L., Glynn, R.J., Berkman, L.F., Blazer, D.G., Scherr, P.A., and Wallace, R.B. (1994). A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. *J Gerontol* 49, M85-94.

Halliday, D.M., Conway, B.A., Christensen, L.O., Hansen, N.L., Petersen, N.P., and Nielsen, J.B. (2003). Functional coupling of motor units is modulated during walking in human subjects. *J Neurophysiol* 89, 960-968.

Halliday, D.M., Conway, B.A., Farmer, S.F., and Rosenberg, J.R. (1998). Using electroencephalography to study functional coupling between cortical activity and electromyograms during voluntary contractions in humans. *Neurosci Lett* 241, 5-8.

Halliday, D.M., Rosenberg, J.R., Amjad, A.M., Breeze, P., Conway, B.A., and Farmer, S.F. (1995). A framework for the analysis of mixed time series/point process data--theory and application to the study of physiological tremor, single motor unit discharges and electromyograms. *Prog Biophys Mol Biol* 64, 237-278.

Hansen, N.L., and Nielsen, J.B. (2004). The effect of transcranial magnetic stimulation and peripheral nerve stimulation on corticomuscular coherence in humans. *J Physiol* 561, 295-306.

Hawkins, K.A., Fox, E.J., Daly, J.J., Rose, D.K., Christou, E.A., Mcguirk, T.E., Otzel, D.M., Butera, K.A., Chatterjee, S.A., and Clark, D.J. (2018). Prefrontal over-activation during walking in people with mobility deficits: Interpretation and functional implications. *Hum Mov Sci* 59, 46-55.

Iturralde, P.A., and Torres-Oviedo, G. (2019). Corrective Muscle Activity Reveals Subject-Specific Sensorimotor Recalibration. *eNeuro* 6.

Jensen, P., Jensen, N.J., Terkildsen, C.U., Choi, J.T., Nielsen, J.B., and Geertsen, S.S. (2018). Increased central common drive to ankle plantar flexor and dorsiflexor muscles during visually guided gait. *Physiol Rep* 6.

Kitatani, R., Maeda, A., Umehara, J., and Yamada, S. (2022). Different modulation of oscillatory common neural drives to ankle muscles during abrupt and gradual gait adaptations. *Experimental Brain Research* 240, 871-886.

Kong, P.W., Candelaria, N.G., and Smith, D. (2011). Comparison of longitudinal biomechanical adaptation to shoe degradation between the dominant and non-dominant legs during running. *Hum Mov Sci* 30, 606-613.

Krupp, L.B., Alvarez, L.A., Larocca, N.G., and Scheinberg, L.C. (1988). Fatigue in Multiple Sclerosis. *Archives of Neurology* 45, 435-437.

Laine, C.M., and Valero-Cuevas, F.J. (2017). Intermuscular coherence reflects functional coordination. *J Neurophysiol* 118, 1775-1783.

Lee, K.A., Hicks, G., and Nino-Murcia, G. (1991). Validity and reliability of a scale to assess fatigue. *Psychiatry Res* 36, 291-298.

Leech, K.A., and Roemmich, R.T. (2018). Independent voluntary correction and savings in locomotor learning. *J Exp Biol* 221.

Leech, K.A., Roemmich, R.T., and Bastian, A.J. (2018). Creating flexible motor memories in human walking. *Sci Rep* 8, 94.

Llinas, R., and Volkind, R.A. (1973). The olivo-cerebellar system: functional properties as revealed by harmaline-induced tremor. *Exp Brain Res* 18, 69-87.

Llinas, R.R. (2013). The olivo-cerebellar system: a key to understanding the functional significance of intrinsic oscillatory brain properties. *Front Neural Circuits* 7, 96.

Malone, L.A., and Bastian, A.J. (2016). Age-related forgetting in locomotor adaptation. *Neurobiol Learn Mem* 128, 1-6.

Manto, M., Bower, J.M., Conforto, A.B., Delgado-Garcia, J.M., Da Guarda, S.N.F., Gerwig, M., Habas, C., Hagura, N., Ivry, R.B., Marien, P., Molinari, M., Naito, E., Nowak, D.A., Ben Taib, N.O., Pelisson, D., Tesche, C.D., Tilikete, C., and Timmann, D. (2012). Consensus Paper: Roles of the Cerebellum in Motor Control-The Diversity of Ideas on Cerebellar Involvement in Movement. *CEREBELLUM* 11, 457-487.

Mehrkanoon, S., Breakspear, M., and Boonstra, T.W. (2014). The reorganization of corticomuscular coherence during a transition between sensorimotor states. *NeuroImage* 100, 692-702.

Mima, T., and Hallett, M. (1999). Electroencephalographic analysis of cortico-muscular coherence: reference effect, volume conduction and generator mechanism. *Clin Neurophysiol* 110, 1892-1899.

Mirelman, A., Maidan, I., Bernad-Elazari, H., Shustack, S., Giladi, N., and Hausdorff, J.M. (2017). Effects of aging on prefrontal brain activation during challenging walking conditions. *Brain Cogn* 115, 41-46.

Nemanich, S.T., and Earhart, G.M. (2015). How do age and nature of the motor task influence visuomotor adaptation? *Gait Posture* 42, 564-568.

Oshima, A., Wakahara, T., Nakamura, Y., Tsujiuchi, N., and Kamibayashi, K. (2021). Time-series changes in intramuscular coherence associated with split-belt treadmill adaptation in humans. *Exp Brain Res* 239, 2127-2139.

Peinemann, A., Lehner, C., Conrad, B., and Siebner, H.R. (2001). Age-related decrease in paired-pulse intracortical inhibition in the human primary motor cortex. *Neurosci Lett* 313, 33-36.

Petersen, T.H., Willerslev-Olsen, M., Conway, B.A., and Nielsen, J.B. (2012). The motor cortex drives the muscles during walking in human subjects. *J Physiol* 590, 2443-2452.

Reisman, D.S., Block, H.J., and Bastian, A.J. (2005). Interlimb coordination during locomotion: what can be adapted and stored? *J Neurophysiol* 94, 2403-2415.

Reisman, D.S., Mclean, H., Keller, J., Danks, K.A., and Bastian, A.J. (2013). Repeated split-belt treadmill training improves poststroke step length asymmetry. *Neurorehabil Neural Repair* 27, 460-468.

Roeder, L., Boonstra, T.W., and Kerr, G.K. (2020). Corticomuscular control of walking in older people and people with Parkinson's disease. *Sci Rep* 10, 2980.

Roeder, L., Boonstra, T.W., Smith, S.S., and Kerr, G.K. (2018). Dynamics of corticospinal motor control during overground and treadmill walking in humans. *J Neurophysiol* 120, 1017-1031.

Rossignol, S., Dubuc, R., and Gossard, J.P. (2006). Dynamic sensorimotor interactions in locomotion. *Physiol Rev* 86, 89-154.

Rossini, P.M., Rossi, S., Babiloni, C., and Polich, J. (2007). Clinical neurophysiology of aging brain: From normal aging to neurodegeneration. *Progress in Neurobiology* 83, 375-400.

Salenius, S., Portin, K., Kajola, M., Salmelin, R., and Hari, R. (1997). Cortical control of human motoneuron firing during isometric contraction. *J Neurophysiol* 77, 3401-3405.

Sato, S., and Choi, J.T. (2019). Increased intramuscular coherence is associated with temporal gait symmetry during split-belt locomotor adaptation. *J Neurophysiol* 122, 1097-1109.

Sato, S., and Choi, J.T. (2021). Neural Control of Human Locomotor Adaptation: Lessons about Changes with Aging. *Neuroscientist*, 10738584211013723.

Simonsick, E.M., Newman, A.B., Nevitt, M.C., Kritchevsky, S.B., Ferrucci, L., Guralnik, J.M., Harris, T., and Health, A.B.C.S.G. (2001). Measuring higher level physical function in well-

functioning older adults: expanding familiar approaches in the Health ABC study. *J Gerontol A Biol Sci Med Sci* 56, M644-649.

Sokolov, A.A., Miall, R.C., and Ivry, R.B. (2017). The Cerebellum: Adaptive Prediction for Movement and Cognition. *TRENDS IN COGNITIVE SCIENCES* 21, 313-332.

Sombrio, C.J., Harker, H.M., Sparto, P.J., and Torres-Oviedo, G. (2017). Explicit Action Switching Interferes with the Context-Specificity of Motor Memories in Older Adults. *Front Aging Neurosci* 9, 40.

Spedden, M.E., Choi, J.T., Nielsen, J.B., and Geertsen, S.S. (2019). Corticospinal control of normal and visually guided gait in healthy older and younger adults. *Neurobiol Aging* 78, 29-41.

Spedden, M.E., Nielsen, J.B., and Geertsen, S.S. (2018). Oscillatory Corticospinal Activity during Static Contraction of Ankle Muscles Is Reduced in Healthy Old versus Young Adults. *Neural Plast* 2018, 3432649.

Talelli, P., Ewas, A., Waddingham, W., Rothwell, J.C., and Ward, N.S. (2008). Neural correlates of age-related changes in cortical neurophysiology. *NeuroImage* 40, 1772-1781.

Tinetti, M.E., Speechley, M., and Ginter, S.F. (1988). Risk factors for falls among elderly persons living in the community. *N Engl J Med* 319, 1701-1707.

Vallbo, A.B., and Wessberg, J. (1993). Organization of motor output in slow finger movements in man. *J Physiol* 469, 673-691.

Vervoort, D., Den Otter, A.R., Buurke, T.J.W., Vuillerme, N., Hortobagyi, T., and Lamothe, C.J.C. (2019a). Do gait and muscle activation patterns change at middle-age during split-belt adaptation? *J Biomech*, 109510.

Vervoort, D., Den Otter, A.R., Buurke, T.J.W., Vuillerme, N., Hortobagyi, T., and Lamothe, C.J.C. (2019b). Effects of Aging and Task Prioritization on Split-Belt Gait Adaptation. *Front Aging Neurosci* 11, 10.

Watanabe, T., Saito, K., Ishida, K., Tanabe, S., and Nojima, I. (2018). Age-Related Declines in the Ability to Modulate Common Input to Bilateral and Unilateral Plantar Flexors During Forward Postural Lean. *Front Hum Neurosci* 12, 254.

Table 1. Participant characteristics.

	Young (n = 20)	Old (n = 19)	p-value
Age (yrs)	23 ± 4.6	75 ± 4.4	< 0.001
Sex (M:F)	9:11	11:9	0.752
Height (cm)	169.9 ± 9.5	171.5 ± 9.0	0.581
Weight (kg)	68.2 ± 14.4	76.7 ± 16.0	0.088
BMI (kg/m ²)	23.5 ± 3.9	26.0 ± 4.9	0.082
SPPB	11.95 ± 0.2	11.5 ± 0.9	0.049
SPPB-A	3.4 ± 0.3	3.0 ± 0.4	0.001
FSS	29.0 ± 7.8	28.1 ± 13.6	0.801
Godin	106.6 ± 112.1	191.4 ± 160.5	0.063
Waterloo	0.7 ± 0.6	0.7 ± 0.7	0.991
TICS	36.1 ± 1.7	36.2 ± 2.2	0.928

SPPB = Short Physical Performance Battery (Max score = 12; Higher score = higher physical function); SPPB-A = Advanced Short Physical Performance Battery (Max score = 4; Higher score = higher physical function); ; FSS = Fatigue Severity Scale (Max score = 63; Higher score = greater fatigue severity); Godin = Godin Physical Activity Questionnaire (Higher score = more physical activity); Waterloo = Waterloo Footedness Questionnaire (2 = Strong right dominance, -2 = Strong left dominance); TICS = Telephone Interview Cognitive Status (Max score = 41; Score greater than 32 = nonimpaired cognitive status).

Table 2. Age group differences in baseline kinematic asymmetry.

Condition	Asymmetry variables	p-value	95% Confidence interval for difference in group means		Effect size
			Lower	Upper	
Pre-fast	Step length	0.078	-0.003	0.05	0.580
	Double support	0.121	-0.04	0.01	-0.508
Pre-slow	Step length	0.806	-0.03	0.03	-0.079
	Double support	0.342	-0.05	0.02	-0.308

Group differences are analyzed with a student t-test, and effect size is given by Cohen's d.

Table 3. Age group differences in kinematic asymmetry during adaptation and post-adaptation.

Condition	Asymmetry variables	Difference	p-value	95% Confidence interval for difference in group means		Effect size
				Lower	Upper	
Adaptation	Step length	Overall change	0.079	-0.01	0.14	0.578
		Early change	0.009	0.02	0.15	0.887
	Double support	Overall change	0.021	0.01	0.12	0.770
		Early change	0.026	0.01	0.09	0.742
Post-adaptation	Step length	Overall change	0.111	-0.09	0.01	-0.523
		Early change	0.464	-0.07	0.03	-0.237
	Double support	Overall change	0.657	-0.06	0.09	0.143
		Early change	0.382	-0.09	0.04	-0.283

Group differences were analyzed with a student t-test, and effect size is given by Cohen's d.

Table 4. Main effect of condition and group x condition interaction for coherence.

		Main effect of condition				Interaction effect				Residuals	
		df	F	p	η^2_b	df	F	p	η^2_b	df	
Beta-gamma	Tibialis Anterior	Fast leg*	2.49	3.24	0.034	0.081	2.49	1.13	0.336	0.030	92.10
	Slow leg ⁺	4.35	11.86	< 0.001	0.243	4.35	1.42	0.227	0.037	160.96	
Plantarflexors	Fast leg*	3.07	1.19	0.317	0.031	3.07	2.48	0.063	0.063	113.60	
	Slow leg*	2.47	3.00	0.044	0.075	2.47	2.37	0.088	0.060	91.22	
Gastrocnemius	Fast leg*	2.88	1.70	0.173	0.044	2.88	1.17	0.323	0.031	106.70	
	Slow leg*	2.62	1.89	0.143	0.049	2.62	0.12	0.929	0.003	97.06	
Alpha	Tibialis Anterior	Fast leg	5.00	7.60	< 0.001	0.170	5.00	0.52	0.762	0.014	185.00
	Slow leg ⁺	4.27	9.99	< 0.001	0.213	4.27	1.37	0.246	0.036	157.80	
Plantarflexors	Fast leg*	4.32	7.91	< 0.001	0.176	4.32	4.95	< 0.001	0.118	159.94	
	Slow leg*	2.81	9.98	< 0.001	0.212	2.81	3.12	0.032	0.078	103.94	
Gastrocnemius	Fast leg*	3.09	4.55	0.004	0.110	3.09	1.13	0.339	0.030	114.031	
	Slow leg*	2.73	4.47	0.007	0.108	2.73	1.03	0.337	0.027	101.14	

* = Greenhouse-Geisser correction was applied; ⁺ = Huynh=Feldt correction was applied.

Table 5. Main effect of age groups for coherence.

			Main effect of group					Residuals
			df	F	p	η^2_p	Cohen's d	
Beta-gamma	Tibialis Anterior	Fast leg	1	19.29	< 0.001	0.343	0.703	37
		Slow leg	1	25.52	< 0.001	0.408	0.809	37
	Plantarflexors	Fast leg	1	22.82	< 0.001	0.381	0.765	37
		Slow leg	1	24.82	< 0.001	0.401	0.798	37
	Gastrocnemius	Fast leg	1	14.29	< 0.001	0.279	0.605	37
		Slow leg	1	19.39	< 0.001	0.344	0.705	37
Alpha	Tibialis Anterior	Fast leg	1	11.05	0.002	0.230	0.532	37
		Slow leg	1	9.96	0.003	0.212	0.505	37
	Plantarflexors	Fast leg	1	9.10	0.005	0.197	0.483	37
		Slow leg	1	10.88	0.002	0.227	0.528	37
	Gastrocnemius	Fast leg	1	6.55	0.015	0.150	0.410	37
		Slow leg	1	7.00	0.012	0.159	0.424	37

Table 6. Multiple linear regression models.

Early change in SL adaptation (Δ Early - Initial)					
<i>Coefficients entered in model</i>	<i>Unstandardized β</i>	<i>Standard error</i>	<i>p</i>	<i>95% confidence interval</i>	
				<i>Upper</i>	<i>Lower</i>
Intercept	0.179	0.047	< 0.001	0.083	0.276
Group	-0.084	0.03	0.009	-0.145	-0.022
Early change in DS adaptation (Δ Early - Initial)					
<i>Coefficients entered in model</i>	<i>Unstandardized β</i>	<i>Standard error</i>	<i>p</i>	<i>95% confidence interval</i>	
				<i>Upper</i>	<i>Lower</i>
Intercept	-0.120	0.013	< 0.001	-0.147	-0.094
Slow leg TA beta-gamma band coherence	0.046	0.012	< 0.001	0.021	0.071
Fast leg PF beta-gamma band coherence	-0.028	0.01	0.009	-0.049	-0.008

RMSE = Root mean square error; SL = Step length; DS = Double support; TA = Tibialis anterior; PF = plantarflexors.

FIGURE CAPTIONS

Figure 1. Experimental methods.

A. Reflective markers used to measure lower limb kinematics. B. Electrode placement for EMG measurements. C. Split-belt treadmill walking protocol. Double lines indicate treadmill speed during tied-belt conditions. Single lines indicate the different left and right speeds during split-belt condition. Down arrows indicate when participants were asked to indicate their fatigue level (VAFS). Fam. = Familiarization. D. Example of processed tibialis anterior and plantarflexor EMG from a representative participant. To calculate coherence during swing phase, we used EMG signals from the proximal (black) and distal (gray) muscle belly of the tibialis anterior 0-400 ms (shaded area) after toe-off (thick black lines). To calculate coherence during stance phase, we used EMG signals from the medial gastrocnemius (black) and soleus (gray) muscle 500-100 ms (shaded area) before toe-off (thick black line).

Figure 2. Step length asymmetry changes during split-belt adaptation.

A. Stride-by stride changes in step length asymmetry plotted for young (in black) and older adults (in red). Shaded areas are standard errors. For baseline ("pre-") conditions the first 30 strides are plotted. For adaptation and post-adaptation conditions, the first 100 and last 30 strides are plotted. Thick dotted lines are for stride numbers 5, 30, and 100/30 strides before the last stride to indicate the different epochs (Epochs indicated at top of A: Initial (I) = Strides #1-5, early (E) = Strides #6-30, plateau (P) = Last 30 strides). B-F. Age group means and standard error bars for (B) baseline-fast and pre-slow conditions, (C) Overall change during adaptation (Δ plateau– initial), (D) early change during adaptation (Δ early– initial), (E) Overall change during post-adaptation (Δ plateau– initial), (F) early change during post-adaptation (Δ early– initial).

Figure 3. Double support asymmetry changes during split-belt adaptation.

A. Stride-by stride changes in double support asymmetry plotted for young (in black) and older adults (in red). B-F. Age group means and standard error bars for (B) baseline-fast and pre-slow conditions, (C) Overall change during adaptation (Δ plateau– initial), (D) early change during adaptation (Δ early– initial), (E) Overall change during post-adaptation (Δ plateau– initial), (F) early change during post-adaptation (Δ early– initial). See Figure 2 caption for description of epochs.

Figure 4. Example coherence from a representative young and old participant. A-F.

Pre-slow coherence in the tibialis anterior (A-B), plantarflexors (C-D), and gastrocnemius (E-F). A-F. Early adaptation coherence in the tibialis anterior (A-B), plantarflexors (C-D), and gastrocnemius (E-F). Dashed horizontal lines indicate the 95% confidence limit. Black = Young; Red = Old; Darker shaded areas = alpha-band frequency (8-15 Hz); Darker shaded areas = beta-gamma-band frequency (15-45 Hz).

Figure 5. Cumulative beta-gamma EMG-EMG coherence.

Intramuscular coherence between the distal and proximal tibialis anterior during swing phase (A-B), intermuscular coherence between the medial gastrocnemius and soleus during stance phase (B-C), and coherence between the medial and lateral gastrocnemius during stance phase (E-F) in the fast (A, C, E) and slow leg (B, D, F). Black = Young; Red = Old; X = group means; Error bars = standard error. Brackets indicate between-condition comparisons where $p < 0.05$. Thick brackets indicate speed-matched between-condition comparisons where $p < 0.05$. * indicates between-groups comparisons within condition where $p < 0.05$. All comparisons were corrected for multiple comparisons using the Bonferroni method.

Figure 6. Cumulative alpha EMG-EMG coherence.

Intramuscular coherence between the distal and proximal tibialis anterior during swing phase (A-B), intermuscular coherence between the medial gastrocnemius and soleus during stance phase (B-C), and coherence between the medial and lateral gastrocnemius during stance phase (E-F) in the fast (A, C, E) and slow leg (B, D, F). See Figure 5 caption for description of symbols.