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Abstract—Acanthaceae is a family of tropical flowering plants with approximately 4900 species. Despite remarkable variation in morpho-
logical traits, research on patterns of character evolution has been limited by uncertain relationships among some of the major lineages. We
sampled 16 taxa from these major lineages to estimate a phylogenomic framework using a combination of five newly sequenced shotgun
genome skims plus seven new and four publidy available transcriptomes. We used OrthoFinder2 to infer a spedies tree with strong branch
support. Except for the placement of Crabbea, our results corroborate the most recent chloroplast and nrITS sequence-based topology. Of 587
single copy loci, 10 were recovered for all 16 species; a RAXML tree estimated from these 10 loci resulted in the same topology as other data-
sets assembled in this study, with the exception of relationships among three sampled species of Barleria; however, branch support was lower
compared to the tree reconstructed using more data. ABBA-BABA tests were conducted to investigate patterns of introgression involving
Crabbea; few nucleotides supported alternative topologies. SplitsTree networks of the 587 loci and 6136 orthogroup trees revealed conflict
among the branches leading to Andrographideae, Whitfieldieae, and Neuracanthus. A principal components analysis in treespace found no
distinct clusters of trees. Our results based on combined genome skim and transcriptome sequences strongly corroborate the previously pub-
lished chloroplast and nr-ITS-based phylogeny of Acanthaceae with increased resolution among Barlerieae, Andrographideae, Whitfieldieae,
and Neuracanthus. This advance in our knowledge of Acanthaceae relationships will allow us to investigate character evolution and other phe-

nomena within this diverse group of plants in studies with increased taxon sampling.

Keywords—Angiosperms, high throughput sequencing, Lamiales, phylogenetics.

Acanthaceae (Lamiales) is a family of herbs, shrubs, lianas,
and trees with an estimated 4900 species (McDade et al.
2008). A revised classification of the family recognizes 191
genera, 19 subtribes, 10 tribes, and four subfamilies and
includes Avicennia mangroves (Tripp et al. 2022). Most mem-
bers of Acanthaceae have a woody capsule that is explosively
dehiscent (absent in some early-diverging members). Acan-
thoideae (the “retinaculate clade”) have hook-like structures
that propel seeds as the fruit dehisces and this is a synapo-
morphy for the clade (McDade and Moody 1999; McDade
et al. 2008; Cooper et al. 2018; Tripp et al. 2022). A great deal
remains to be learned about morphology, anatomy, and
physiology in the family, in particular with respect to pollina-
tion biology and patterns of floral evolution (see McDade and
Weeks 2004; Tripp 2007, 2008; Tripp and Manos 2008; Much-
hala et al. 2009; Ortegén-Campos et al. 2009; Tripp and Tsai
2017; Zhuang and Tripp 2017b).

As new sequencing and phylogenetic methods have
become available, knowledge of Acanthaceae phylogeny and
understanding of morphological evolution have increased
(McDade et al. 2005; Daniel et al. 2008; Kiel and McDade
2014; Fisher et al. 2015; Kiel et al. 2018; Darbyshire et al. 2019).
Yet, there has been no family-wide investigation of phyloge-
netic relationships since McDade et al. (2008; see also Tripp
and McDade 2014). McDade et al. (2008) used four chloro-
plast regions and nuclear n1ITS, and sampled all major line-
ages across the family. These authors recovered a strongly
supported tree, except for relationships among the clades that
comprise “BAWN” (i.e. Barlerieae, Andrographideae, Whit-
fieldieae, Neuracanthus; Fig. 1). In particular, the placement of
Neuracanthus as sister to the remainder of “BAWN” was
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weakly supported (Bayesian posterior probability [BPP] =
0.72; parsimony bootstrap [PB] < 50%; Decay Index = 1).
Tripp and McDade (2014) used nrITS and added two cp
regions for a total of six; these authors recovered a tree with
all branches > 99% BPP. McDade et al. (2008) found a BAWN
clade that is sister to a strongly supported Justicieae + Ruel-
lieae (Fig. 1). In contrast, Tripp and McDade (2014) found that
Neuracanthus is sister to BAW + (Justicieae + Ruellieae).
Although recent studies have advanced our knowledge of
evolutionary relationships within a number of lineages
(McDade et al. 2005, 2012, 2018; Kiel et al. 2006, 2017, 2018;
Tripp 2007; Daniel et al. 2008; Tripp et al. 2013, 2017; Tripp
and Darbyshire 2017; Grall and Darbyshire 2021), lack of res-
olution along the backbone of the Acanthaceae phylogeny is
a hindrance to understanding molecular and morphological
evolution across the family (McDade et al. 2008; Tripp and
McDade 2014). To date, there is one publicly available
genome (Ruellia speciosa; Zhuang and Tripp 2017a) and 17
transcriptomes of Acanthaceae (Huang et al. 2014; Garg et al.
2015; Yang et al. 2015; Cherukupalli et al. 2016; Zhuang and
Tripp 2017b, 2022; Lyu et al. 2018; Morais et al. 2019).

We took a phylogenomic approach to estimate a new phy-
logeny for Acanthaceae. Our sequencing strategy combines
the benefits of genome skims and the benefits of transcrip-
tomes. Major advances in sequencing technology and meth-
ods of sub-sampling the genome have enabled the use of
thousands of unlinked nuclear loci for phylogenomic studies.
While the cost of genome sequencing has decreased over
time (Loman et al. 2012), it remains resource-intensive to
sequence entire genomes for most plant species, particularly
because plants have some of the largest genomes known to
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Fic. 1. Phylogenetic estimate of Acanthaceae based on four chloroplast
lod and nr-ITS, adapted from McDade et al. (2008), pruned to indude only
taxa sampled in the present study. Parsimony bootstrap and Bayesian pos-
terior probability values for major dades are shown. The three branches
that had low ML bootstrap support in the chloroplast and nr-ITS study are
shown with red support values.

date (Dodsworth et al. 2015). An efficient alternative is to
sequence and assemble the transcriptome, effectively sam-
pling a subset of the genome. For example, the transcriptome
is estimated to compose less than 5% of the total genome in
humans (Frith et al. 2005; Eldem et al. 2017; Ungaro et al.
2017). Transcriptome sequences can be mined for orthologous
loci (Morais et al. 2019) and used to estimate nuclear phyloge-
nies, whether they were initially sequenced for that purpose
or not (Rothfels et al. 2013; Wickett et al. 2014; Garg et al.
2015; Cherukupalli et al. 2016; Hodel et al. 2016; White et al.
2016; Wu et al. 2016). A drawback of transcriptome sequenc-
ing is that it must begin with RNA purification and RNA
degrades quickly. Homebrew and commercial kits (Salehi
and Najafi 2014) are available to preserve RNA from fresh tis-
sue for later extraction, but each species that a researcher
wishes to sample must be grown or collected in the field with
some forethought to using the tissue for transcriptome
sequencing.

When no RNA from living tissue of a plant is available and
sequencing transcriptomes is not possible, a convenient alter-
native is to sequence genome skims from dried plant tissue.
In genome skimming, a library of the total genomic DNA is
multiplexed with many genomic libraries on a sequencing
flow cell, therefore restricting the number of sequence frag-
ments generated for each library. Genome skimming is a rela-
tively inexpensive and efficient method to generate data for
phylogenetic studies of non-model organisms (Richter et al.
2015). DNA for genome skimming can be extracted and
sequenced from dried leaves, including plant tissue pre-
served as herbarium specimens (Ripma et al. 2014; Washburn
et al. 2015). DNA can be successfully extracted from speci-
mens that are many decades old (Weif et al. 2016; Yeates et al.
2016; Funk 2018; Jordon-Thaden et al. 2020). Although DNA
in leaves has been estimated to decay exponentially (Hart
et al. 2016), this loss can be mitigated using modern library
preparation and next-generation sequencing (NGS) methods.
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Other methods to sub-sample the genome include restric-
tion site-associated sequencing (RAD-seq; Gnirke et al. 2009)
and Hyb-seq (Lemmon et al. 2012; Weitemier et al. 2014).
These are relatively low-cost skimming methods that have
been successfully used for plant phylogenomic studies (Eaton
and Ree 2013; McKain et al. 2018; Dodsworth et al. 2019; Hale
et al. 2020), including studies of Acanthaceae (Tripp et al.
2017; Daniel and Tripp 2018; Comito et al. 2022; Darbyshire
et al. 2020; Tripp and Darbyshire 2020). While RADseq and
Hyb-seq are effective at generating sequence data from across
the genome for multiple samples, data can only be combined
if the same restriction enzymes or baits are used to prepare
the samples. This may make it difficult to add new samples
later or to combine data across studies, whereas this is rela-
tively easy to do with data from transcriptomes and genome
skimming.

Genome skimming, transcriptomes, RADseq, and Hyb-seq
have been compared in terms of their costs and efficacy (Wen
et al. 2015; Yu et al. 2018; Zimmer and Wen 2015). Transcrip-
tomes are often sequenced to guide the identification of cod-
ing sequences for targeted sequencing (Gnirke et al. 2009;
Pavey et al. 2015; Washburn et al. 2015; Fisher et al. 2016;
Tripp et al. 2017; An et al. 2019; Darbyshire et al. 2020).
Sequences generated through genome skimming can be used
to compare organellar phylogenetic signals to nuclear signals
(Schmickl et al. 2016; Washburn et al. 2017). However, if
homologous loci can be identified directly from both genome
skims and transcriptomes, then these sequences may be com-
bined in a single matrix to maximize species sampling that
may be otherwise constrained by the availability of living tis-
sue for RN A extraction.

To take advantage of data from both transcriptomes and
genome skimming, we trialed an approach to combine the two
sequencing types to estimate a phylogeny of Acanthaceae. We
sequenced seven new transcriptomes and five genome skims,
identified orthologous loci across sampled taxa, and estimated
a nuclear phylogeny of Acanthaceae. We used this phylogeny
to test the topologies of previous studies that used Sanger
sequencing (McDade et al. 2008; Tripp and McDade 2014), par-
ticularly for those branches of the tree that had low support in
earlier studies. We then determined support for the topology
using maximum likelihood (ML) bootstrapping, networks, and
treeshape similarity analyses. We compared conflicts between
our tree and prior trees based on chloroplast + nrITS loci
(McDade et al. 2008; Tripp and McDade 2014) using ML con-
straint analyses and ABBA-BABA tests for introgression.

MaTeR1ALS AND METHODS

Sampling—Sixteen species of Acanthaceae were sampled in the pre-
sent study to trial a method of combining genome skims and transcrip-
tomes for phylogenetic analysis. Taxa were chosen to represent the major
lineages of Acanthaceae based on McDade et al. (2008) and summarized
in Tripp et al. (2022) with an emphasis on sampling representatives from
the BAWN clade (10 species) to test for monophyly of Barleria and guide
our research in this group (Comito et al. 2022). Six sampled taxa represent
other major lineages of Acanthaceae whose phylogenies have been
recently studied in greater detail, with the exception of Acanthus (Tripp
2007; Tripp et al. 2013; Fisher et al. 2015; Kiel et al. 2017, 2018). Avicennia
marina was used as the out-group (Appendix 1). Transcriptomes for three
species (Acanthus leucostachys, Andrographis paniculata, Avicennia marina)
were downloaded from GenBank (Table 1; note that since the cumrent
study was completed, five additional transcriptomes have been released;
Morais et al. 2019). The transcriptome for Ruellia simplex was sequenced
and assembled in E. Tripp's lab at the University of Colorado Boulder
(Zhuang and Tripp 2022). New sequences were generated for 12 species
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Tase 1. Taxa sampled and sequence data collection method. Three transcriptomes were downloaded from public databases. E. Tripp provided a
Ruellia simplex transcriptome assembly and seven additional transcriptomes were sequenced for this study. Five spedies were sequenced from dried
leaf material using shotgun genomic skimming (Gen. skim). NA means the voucher information was not available in the publication or GenBank
record. GenBank accession numbers are listed in Appendix 1.

Species

Voucher

Sequencing

Acanthus leucostachys Wall. ex Nees
Andrographis paniculata Nees

Avicennia marina (Forssk.) Vierh.
Barleria albostellata S. Moore

Barleria oenotheroides Dum. Cours.
Barleria rotundifolia Oberm.

Blepharis diversispina (Nees) C. B. Clarke
Blepharis spinifex Merxm.

Crabbea velutina S. Moore
Justicia pacifica (Oerst.) A. Gray
Lankesteria elegans (P. Beauv.) T. Anderson

Lepidagathis dulcis Nees

Lepidagathis sessilifolia (Pohl) Kameyama ex
Wassh. & J.R.I. Wood

Neuracanthus africanus T. Anderson ex S.
Moore

Ruellia simplex C. Wright

Whitfieldia elongata (P. Beauv.) DeWild. &

NA

NA

NA

J.D. Arias 3 (LOB)

J.D. Arias 1 (LOB)

A.E. Fisher 412 (LOB)

M. Stata & R. Sage s.n.

S. Loots et al. s.n. (WIND) Millennium Seed
Bank # 248224

Manktelow 670 (UPS)

A.E. Fisher 447 (LOB)

Etuge & Thomas 466 (K)

Suddee et al. 999 (BKF)
Daniel et al. 10106 (CAS)
MecDade & Balkwill 1258 (ARIZ)

UC Boulder greenhouse
A.E. Fisher 443 (LOB)

Transcriptome (Yang et al. 2015)
Transcriptome (Garg et al. 2015)
Transcriptome (Huang et al. 2014)
Transcriptome; University of California, Irvine
Transcriptome University of California, Irvine
Transcriptome; University of California, Irvine
Transcriptome; University of California, Irvine
Transcriptome; University of California, Irvine

Gen. skim.; University of California, Riverside

Transcriptome; University of California, Irvine

Gen. skim.; Beijing Genomics Institute,
Cambridge, MA

Gen. skim.; Beijing Genomics Institute,
Cambridge, MA

Gen. skim.; Beijing Genomics Institute,
Cambridge, MA

Gen. skim.; University of California, Riverside

Transcriptome (Zhuang & Tripp 2022)
Transcriptome; University of California, Irvine

T. Durand.

(Appendix 1). Of these, mMRNA was extracted from fresh tissue of seven
species for transcriptome sequendng (Barleria albostellata, B. oenotheroides,
B. rotundifolia, Blepharis diversispina, Blepharis spinifex, Justicia pacifica, Whit-
fieldia elongata). DNA was extracted for shotgun genome skim sequencing
for five species for which only dried leaf tissue was available (Crabbea
velutina, Lankesteria elegans, Lepidagathis dulcis, Lepidagathis sessilifolia, Neu-
racanthus africanus).

Nucleic Acid Extraction—mRNA was extracted using the BrAD-seq
(Breath Adapter Directional Sequencing) method from fresh leaves of
seven samples grown in the Califomia State University Long Beach green-
house. Voucher specdimens of these plants were deposited in the Long
Beach Herbarium (LOB). We followed Townsley et al.’s (2015) protocol
except that we used 500 pL of lysate binding buffer and washed
streptavidin-bound beads with 200 pL buffer A, buffer B, and low salt
buffer. The mRNA was quantified using a Synergy H1 Hybrid Reader
(Biotek, Winooski, Vermont).

Genomic DNA was extracted from herbarium samples using a modified
CTAB method (Doyle and Doyle 1987). Dried leaf tissue was flash-frozen
in liquid nitrogen and added to 3 g of sand in a mortar and ground into a
fine powder, then added to 500 pL of extraction buffer in a tube. Tubes
were incubated for 15 min in a 37°C dry plate, then in a 65°C water bath
for 3040 min and inverted every 5 min. Next, 5 pL of RNAse A was added
to the tube which was then incubated for 30 min in a 37°C dry plate. Next,
500 pL of cold chloroform was added and tubes were centrifuged for
10 min at 12,000 rpm. Next, 400 pL of the supematant was removed and
DNA was precipitated in 1 mL of cold 95% EtOH for 2-3 wk in a —20°C
freezer. Finally, samples were spun in a refrigerated (4°C) centrifuge for
15 min at 12,000 rpm to form a pellet, washed in 1 mL cold 95% EtOH, and
spun for 5 min at 12,000 rpm. Any remaining supernatant was evaporated
using a speed-vacuum centrifuge for 20 min on medium heat. Pellets were
resuspended in 100 pL ultra-pure Millipore water. Quality was checked on
a 1% agarose gel run for ~45 min at 120 mV and quantified using a
Synergy H1 Hybrid Reader (Biotek, Winooski, Vermont).

Library Preparation and Sequencing—Once extracted, the mRNA was
fragmented, ¢DNA was synthesized, and barcode adapters were
annealed. The mRNA (7.5 pL.) was fragmented in a solution of RT Buffer
and 3’ priming adapter, incubated at 25°C for 1 s, 94°C for 1.5 min, and
4°C for 5 min. Of this mRNA solution, 5 uL. was mixed with reverse tran-
scriptase. Next, cDNA was synthesized at 25°C for 10 min, 42°C for 50
min, 50°C for 10 min, 70°C for 10 min. The cDNA was isolated using 5 pL.
of 50-mM EDTA (pH 80) and 30 uL. Agencourt AMPure XP beads (Beck-
man Coulter, Brea, California). Clumped beads were washed twice with
300 pL 80% EtOH. Illumina barcode adapters were annealed by adding
DNA Polymerase solution, incubating at room temperature for 15 min
then adding 10 pL 50-mM EDTA pH 80 and 30 pL of new AMPure XP
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Bead Resuspension Buffer, and washing twice with 300 pL 80% EtOH.
¢DNA was quantified using a Synergy H1 Hybrid Reader (Biotek, Winoo-
ski, Vermont), and by running 2 uL of product on a 1% agarose gel. Only
samples that displayed long, bright smears in the gel were submitted
for sequencing.

c¢DNA libraries for seven species (Table 1) were prepared and sent to
the University of California-Irvine (UCI) Genomics High-Throughput
Facility for sequencing on an llumina HiSeq 4000 (San Diego, California).
Library quality was assessed at UCI with a BioAnalyzer (Agilent, Santa
Clara, California) and samples were then multiplexed in one lane for 150
bp, paired-end sequencing.

Total DNA was extracted for Lankesteria elegans, Lepidagathis dulcis, and
L. sessilifolia (Table 1) using the modified CTAB protocol described above
and quality was checked with an agarose gel and a Synergy Hybrid
Reader. Extractions were sent to the Beijing Genomics Institute
Next-Generation Sequencing Lab (Philadelphia, Pennsylvania) where
Tlumina libraries were sequenced on an Illumina HiSeq 5000 (San Diego,
California) for 100 bp, paired-end sequencing. Total DNA was extracted
for Neuracanthus africanus and Crabbea velutina using the modified CTAB
protocol and sent to the University of California-Riverside (UCR), Insti-
tute for Integrative Genome Biology for Nllumina library preparation.
Libraries were sequenced on an lllumina NextSeq500 (San Diego, Califor-
nia) with 100 bp, paired-end sequencing.

Sequence Fragment Pre-Processing, De Novo Sequence Assembly,
and Quality Assessment—All commands, scripts, and parameters used
for the steps below are available at https://github.com /jdarias93/
slurmScripts. Qutput files for 12 newly sequenced species were uploaded
to the CyVerse cyberinfrastructure (Merchant et al. 2016). Forward and
Reverse reads were trimmed and filtered separately. Sequencing adapters
were trimmed using Scythe v. 0.991 (Buffalo 2011). Poor quality reads
were filtered using PRINSEQ v. 0.20.4 (Schmieder and Edwards 2011).
FastQC v. 0.11.7 (Andrews 2010) was used to ensure that adapters and
low quality reads were successfully removed. Sequences were then
uploaded to Indiana University’s (IU) Galaxy (Afgan et al. 2018) instance
for Trinity v. 2.4.0 (Grabherr et al. 2011) de novo transcriptome assembly,
which is available at https://galaxy ncgas-trinity.indiana.edu/. Each
sequence file was assembled individually using these parameters:
“Trinity -max_memory 240G -CPU 8 —seqType Paired -left <left file>
-right <right_file>.” Assembled transcriptomes were downloaded from
TU-Galaxy and uploaded to CyVerse for quality assessment.

For five spedies, de novo assembler SPAdes v. 3.12.0 (Bankevich et al.
2012) was used to assemble contiguous sequences from the raw read
genome skim data with k-mer sizes 21, 33, 55, 77, and 99. For each species,
contigs assembled with different k-mer sizes were concatenated into a sin-
gle file.
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Combining Transcriptome and Genome Skim Data—Putative coding
regions were identified and translated into amino acid sequences to iden-
tify orthologous loci across the transcriptome and genome skim assemblies.
For the 11 transcriptome assemblies, TransDecoder v. 2.0 (Haas and Papa-
nicolaou 2012) was used to translate the Trinity assemblies into amino acdds
using the universal genetic code option and identify coding regions using
peptides of 100 nucleotides minimum length. CD-HIT v. 4.6 (Fu etal. 2012)
removed duplicate amino add sequences and those with 90% similar
global sequence identity. To prepare the five genome skim assemblies,
SPAdes contig output files were used for gene prediction in AUGUSTUS v.
3.1 (Stanke and Morgenstern 2005; Keller et al. 2011) trained on Arabidopsis
thaliona and Solanum lycopersicum. Amino add FASTA files were taken
from AUGUSTUS GFF gene predictions using the script “getAnnoFasta.pl”
(Stanke 2007). Gene predictions were concatenated and redundant sequen-
ces were removed with CD-HIT v. 4.6 (Fu et al. 2012) using 90% global
sequence identity. Transcriptome and genome skim completeness was
assessed with BUSCO (Benchmarking Universal Single-Copy Orthologs;
Simao et al. 2015; Waterhouse et al. 2018).

Identifying Orthologous Loci and Phylogenetic Tree Inference—
FASTA metadata were standardized to the format “><species_name>_
<gene_id#>" for all species. OrthoFinder v. 2.27 (Emms and Kelly 2015,
2019) was used to identify orthologous loci for phylogenetic analysis. This
was done by identifying orthogroups that may contain multiple gene cop-
ies for each species. Orthogroups are used to infer rooted orthogroup trees
and, through an iterative process, a spedies tree is inferred from the set of
orthogroup trees. The orthogroup trees and multiple sequence alignments
(MSAs) are then reconciled with the species tree so that they contain a
single sequence for each species. Amino add sequences were analyzed
in OrthoFinder v. 2.2.7 (Emms and Kelly 2015, 2019) on the UCR
High-Performance Computing Center cluster using sequence similarity
determined by Diamond v. 0.9.22 (Buchfink et al. 2014) and two tree esti-
mation approaches: (Run 1) a distance matrix-based approach that uses
DendroBLAST (Kelly and Maini 2013) with FastME v. 2.1.5 (Lefort et al.
2015), and (Run 2) an alignment-based approach that uses MAFFT v.
7.271 (Katoh and Standley 2013) with FastTree v. 2.1.10 (Price etal. 2010).

An unrooted species tree was estimated for all OrthoFinder2 analyses
using STAG v. 1.0 (Emms and Kelly 2018). This is done within Ortho-
Finder2 when DendroBLAST is used (Run 1 above). For Run 2, orthogroup
trees were analyzed with the standalone STAG software. STAG filters the
orthogroup trees and only uses loci for which all spedies have at least one
sequence. A STAG species tree is estimated from the no-missing-species
orthogroup trees using a greedy consensus method. STAG support values
are different from bootstrap support values in that they are calculated as
the proportion of orthogroup trees that contain a specific bipartition
(a clade) out of the total number of orthogroup trees that contain at least
one sequence per species. We rooted the STAG spedies tree with Avicennia
marina (McDade et al. 2008).

An ML phylogeny was estimated using the OrthoFinder2 MAFFT
amino acid alignment of 587 lod that were present for at least 9/16 (56%)
species. The lod induded in this alignment are single-copy or almost
single-copy, using a tree-based assessment of orthology and copy num-
ber. OrthoFinder2 (Emms and Kelly 2018) automatically trims positions
in the alignment with > 50% missing data. ProtTest v. 3.4.2 (Abascal et al.
2005; Darriba et al. 2011) was used to determine the suitable amino acid
substitution models using Akaike Information Criterion (AIC). RAXML v.
8.2.10 (Stamatakis 2014) was accessed in CIPRES (Miller et al. 2010) using
the amino acid substitution model JTT+I+G+F with 1000 bootstrap repli-
cates. The analysis was repeated with three sub-optimal models from
ProtTest (JTT+G+F, WAG+I+G+F, LG+I+G+F) to assess the robust-
ness of the phylogeny to the model. Maximum likelihood bootstrap sup-
port values were considered strong if > 90%, moderate if 80-89%, low if
70-79%, and unsupported if < 70% (Hillis and Bull 1993).

Testing the Robustness of the Species Tree—A neighbor-net network
of the 587 locus MSA was constructed in SplitsTree v. 4.14.4 (Huson and
Bryant 2006) to graph the character splits in the MSA to identify conflict-
ing characters or alternative branching patterns. The initial networks used
all 16 species; to check for conflict in the alignment caused by a specific
sample, networks were re-created after sequentially removing Crabbea
velutina and Avicennia marina. Crabbea velutina was removed due to its
alternative placement in the nuclear tree compared to earlier results using
chloroplast and nr-ITS data. Removing Avicennia marina was trialed
because it was the smallest transcriptome and the initial network showed
conflict where it attached to the rest of the network.

Additionally, Newick files of the 6136 orthogroup trees were merged
into a single file and imported into SplitsTree4 v. 4.14.4 (Huson and Bry-
ant 2006) in order to construct a tree super-network, assess conflict, and

Downloaded From: https://bioone org/joumals/Systematic-Botany on 22 Mar 2023
Terms of Use: hitps://bicone orgfterms-of-use Access provided by The Claremont Colleges Library

ARIAS ET AL.: ACANTH PHYLOGENOMICS 719

locate alternative signals among the branches in the set of trees. The first
iteration of the super network identified Avicennia marina and Crabbea
velutina as introducing conflict; these taxa were sequentially removed and
the network analysis was repeated.

The R package treespace (Jombart et al. 2017) was used to further assess
conflict among the STAG orthogroup trees, and distances between the
STAG orthogroup trees, the STAG species tree, and the cp + nr-ITS tree
of McDade et al. (2008). The merged STAG orthogroup tree files were
rooted with Avicennia marina and analyzed with a principal component
analysis (PCA) using the tree distance measure treeVec (Kendall and Col-
ijn 2015). treeVec, like tree distance metrics such as Robinson-Foulds (RF;
Robinson and Foulds 1981), quantifies tree topologies using weighted
branch lengths; it differs in how it defines distance between a root and the
most recent common ancestor, rather than between tips and their most
recent common ancestor. This method is potentially an improvement,
since RF metrics might lead to high, counter-intuitive distance measures
between trees that differ in the placement of even a single tip (Kendall
and Colijn 2015). A dendrogram of the PCA groups was used to define 20
clusters of trees and a median consensus tree was constructed to represent
each cluster.

To further compare the relationship between Crabbea velutina and Barle-
ria, the ML score of the 587 loci ML tree was compared with a ML tree
that constrained Crabbea velutina to be sister to the three sampled Barleria
species as in McDade et al. (2008). RAXML-HPC Black Box on CIPRES
(Miller et al. 2010) was used to estimate an ML tree with the constraint
topology. The 587 loci alignment, 587 loci ML tree, and the ML constraint
tree were imported into PAUP v. 4.0a165 (Swofford 1998) and likelihood
scores calculated for a RELL distribution of 1000 replicates. These scores
were used for a one-tailed Shimodaira-Hasegawa test (SH; Shimodaira
and Hasegawa 1999) and an Approximately Unbiased test (AU; Shimo-
daira 2002). The -InL difference between the two trees and p values were
calculated to test the null hypothesis that there is no significant difference
between the tree likelihoods.

Additionally, ABBA BABA tests in evobiR (Blackmon and Adams
2015) were used to test for potential introgression between lineages. The
unexpected placement of Crabbea velutina sister to the rest of Barlerieae
led us to assess the possibility of introgression between it and Barleria and
Lepidagathis. For 10 combinations of species, alignments were reduced to
four taxa and all columns containing gaps were removed. ABBA BABA as
implemented in evobiR uses jackknife tests and we chose 1000 replicates,
removing a block of 1000 sites each replicate.

Phylogeny Based on Single Copy Nuclear Loci with No Missing
Data—We also estimated a phylogeny using 10 nuclear loci that were
recovered for all species as a single sequence, leading to the easiest assign-
ment of homology across sequences. The Ruellia simplex orthologs for
each single-copy locus were the query for a non-redundant BLASTp
search to identify the closest matches in GenBank. Amino acid alignments
for these loci were trimmed on the 5" and 3’ ends and concatenated in
Geneious v. 11.1.5. ProtTest v. 34.2 (Abascal et al. 2005; Darriba et al
2011) was used to find AIC values and choose the best-fit models for a
partitioned alignment. RAXML (HPC2 on XSEDE) on CIPRES (Miller et al.
2010) was used to estimate a ML phylogeny using the JTT+I+G model
for each partition with 1000 ML bootstrap replicates.

ResuLts

SequencelAssembly Statistics and Quality Assessment—
For the 12 newly sequenced Acanthaceae species (Table 1),
transcriptome and genome skim sequencing resulted in an
average of 38,924,165 raw read pairs per newly sequenced
species (minimum 20,534,431 raw read pairs in Lankesteria ele-
gans; maximum 72,165,270 raw read pairs in Neuracanthus
africanus; Table 2). Raw sequence reads are available in Gen-
Bank (Table 2). For genome skim and transcriptome data
combined, there was an average of 317,636 contigs per species
after assembly (minimum 61,540 contigs in Andrographis pani-
culata; maximum 1,063,996 contigs in Crabbea velutina). Trinity
de novo transcriptome assembly and TransDecoder amino
acid translation resulted in an average of 110,045 contigs per
transcriptome with an average N50 of 1185 (i.e. at least half
of the nucleotides in the transcriptome assembly are found
in contigs of = 1185). SPAdes genome skim assembly and
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TasLE 2. Statistics for transcriptomes and genome skims. Reads were
measured using FastQC (Andrews 2010) before (raw read pairs) and
after cleaning and filtering with Scythe (Buffalo 2011) and PRINSEQ
(Schmieder and Edwards 2011). Genome skimming samples are in gray
rows. GC%, number of contigs, and N50 were measured with
“Compute Contig Statistics.” The upper and lower numbers in the
Filtered Reads column for some species are the paired forward and
reverse reads, respectively.

Species Raw read pairs Filtered reads GC% Contigs N50
Acanthus leucostachys 23,444,377 23,426,349 47 136,292 1365
23,391,691
Andrographis paniculata NA NA NA 61,540 2620
NA NA NA
Avicennia marina NA NA NA 89,238 532
NA NA NA
Barleria oenotheroides 36,877 487 36,719869 46 138,937 1726
36,510,792
Barleria rotundifolia 41744166 41,140846 48 104,131 435
39,063,165
Barleria albostellata 43640293 43,457,038 47 159,291 1675
43,208,248 46
Blepharis diversispina 51,012971 50231649 47 99449 442
48,083,943
Blepharis spinifex 58704594 57,686086 48 110,113 459
55,820,618
Crabbea velutina 48,751,507 47,839355 36 115749 175
47,581,991
Justicia pacifica 33,484,158 33349030 47 78,137 1858
33,160,332
Lankesteria elegans 20534431 20483792 37 145280 214
14,368,248
Lepidagathis dulcis 20,512,122 20493988 38 351,484 184
20,473,610
Lepidagathis sessilifolia 20,540,453 20,504,642 37 330,240 174
20,479,807
Neuracanthus africanus 72,165,270 70,411,714 36 95,509 1136
69,931,939
Ruellia simplex NA NA NA 76,276 989
NA NA NA
Whitfieldia elongata 34,573,993 34418469 47 80,058 1703
34,216,538 46

AUGUSTUS amino acid prediction resulted in an average of
789,703 contigs per genome skim with an average N50 of 377.
The average BUSCO score was 74.88% complete for transcrip-
tomes and 73.42% complete for genome skims (Table 3).

Ortholog Inference, Multiple Sequence Alignment, and
GenelSpecies-Tree Estimation—Across all species, 76.8% of
loci were placed in an orthogroup (Fig. 2; Table 4) and Ortho-
Finder2 yielded 1,257,148 orthogroups. Of these, 6136
orthogroups contained at least one sequence for all 16 species.
Only 10 loci were present as only one sequence for all 16 spe-
cies; these are putative single copy orthogroups (SCOGs).
There were 587 single-copy orthogroups with one sequence
present for at least nine (56.2%) species (i.e. allowing for = 7
species to be missing or to have multiple sequences for that
locus; this data set is referred to as Single-Copy locus with
Missing Data [SCMD]). The 587 SCMD loci MSAs were
concatenated, and the resulting alignment had an average
un-gapped length of 105,926 amino acids (minimum length =
51,181; maximum length = 133,413), 877 (0.5%) identical
sites), a mean pairwise identity of 39.5%, and 36% missing
data (952,548 missing amino acids). The alignments are avail-
able in Dryad (Arias et al. 2022).

A RAXML tree based on the 587 loci SCMD MSA and
rooted with Avicennia marina recovered Acantheae as sister to
the cystolith clade (Fig. 3). Justicia + Ruellia are sister and
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together are sister to the BAWN clade. Barlerieae are mono-
phyletic and Crabbea is sister to Lepidagathis + Barleria. All
branches in the RAXML tree had strong ML bootstrap sup-
port (> 98%). The 6136 orthogroup trees were used to esti-
mate a STAG species tree in OrthoFinder2 (Fig. S1, Arias et al.
2022); this tree had the same topology as the SCMD RAXML
tree. A STAG species tree (Fig. 52, Arias et al. 2022) from
28,316 FastME trees using the DendroBLAST distance matrix
of 6136 orthogroups returned a topology with Crabbea velutina
sister to Lepidagathis, and these together sister to Barleria,
within which B. oenotheroides and B. albostellata were sister
(Fig. S2).

Single Copy Loci with No Missing Data—OrthoFinder2
found 10 single copy loci with no missing data (SCOGs); the
top three BLAST hits for each SCOG locus are presented in
Table 5. The RAXML tree of the 10 SCOGs (Fig. 4) corrobo-
rated the topology of the 6136 loci STAG (Fig. S1) and of the
587 loci SCMD RAxML trees (Fig. 3), except that Barleria rotun-
difolia is sister to B. oenotheroides + B. albostellata in the 10
SCOG tree (Fig. 4) and B. oenotheroides is sister to B. rotundifolia +
B. albostellata in the STAG (Fig. S1) and SCMD trees (Fig. 3).

Phylogenetic Robustness Tests—Three sub-optimal mod-
els of amino acid evolution were used for RAXML estimation
with the 587 loci SCMD MSA: JTT+G+F, WAG+I+G+F, and
LG+I+G+F, which were the second, ninth, and 24th best
models rated by ProtTest, respectively. Each model returned
the same topology as the best model (Fig. S3, Arias et al. 2022).

The 587 loci data set rejects the alternative topology of Crab-
bea velutina sister to Barleria (p < 0.001) via both the SH and
AU tests. An ABBA BABA test found relatively few positions
supporting ABBA or BABA splits (Table S1, Arias et al. 2022).
The results of the introgression analysis varied depending on
which species of Barleria was used for the test. Using Barleria
oenotheroides or B. albostellata (as P1) led to a finding of signifi-
cant introgression between Crabbea and Lepidagathis, but the
test was not significant when Barleria rotundifolia was used.

SplitsTree networks from the 587 loci SCMD MSA (Fig. 54,
Arias et al. 2022) and 6136 trees (Fig. S5, Arias et al. 2022)
found long, thin branches leading to Acantheae and Barler-
ieae (arrows in Fig. S5), suggesting little character conflict.
The networks found a “net” of character conflict among Ruel-
lia + Justicia and ‘"AWN’ (Figs. 54, S5). Independent taxon
removal analyses of Crabbea velutina and Avicennia marina
found no substantial reduction in character conflict among
the remaining taxa for the species MSA (Figs. 56, S7, Arias
etal. 2022) or the STAG trees (Figs. S8,59, Arias et al. 2022).

A PCA based on treeVec distances created from 6,136
STAG trees reconciled with the species tree did not show dis-
tinct clusters of trees (Fig. 5). Instead, there is one large cluster
of trees with little variation in principal components across
the possible tree topologies. Although some tree topologies
are distant from each other in the PCA, the pattern in the
PCA suggests there are no distinct, competing evolutionary
signals among the trees. There were 23 trees with the same
topology as the 6136 loci STAG tree. There were no trees with
the same topology as the McDade et al. (2008) tree. Median
consensus trees were found for 20 different clusters in the
PCA (Fig. 5). Trees that were most similar to the STAG tree
and the McDade et al. (2008) tree were from clusters 10 and
16 (n = 499 and 797 trees, respectively; Fig. 5), and both
of these consensus trees had a topology that matched the
STAG topology, which places Crabbea sister to Barleria +
Lepidagathis.
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Taste 3. BUSCO completeness scores. BUSCO (Simao et al. 2015) assesses the completeness of genome and transcriptome assemblies using hidden
Markov model profiles from a curated database of universal and highly-conserved single-copy orthologs. Genome skimming samples are in gray
rows. We assessed each assembly with the BUSCO v. 3 land plant (Embryophyta) database (odb9) of 1440 orthologs. High-identity protein matches
between the assembly and the 1440 orthologs in the database are considered complete, partial matches are fragmented, and low-identity matches (or

lack thereof) against database proteins are missing from the BUSCO v. 3 database.

Species % Complete + fragmented Complete (% complete) # Fragmented # Missing
Acanthus leucostachys 85.6 1159 (80.5%) 74 207
Andrographis paniculata 87.7 1197 (83.1%) 67 176
Avicennia marina 51.8 351 (24.4%) 395 694
Barleria oenotheroides 90.7 1230 (85.4%) 76 134
Barleria rotundifolia 497 388 (26.9%) 328 724
Barleria albostellata 90.1 1221 (84.8%) 77 142
Blepharis diversispina 51.7 462 (32.1%) 283 695
Blepharis spinifex 48.3 415 (28.8%) 281 744
Crabbea velutina 894 1176 (81.7%) 111 153
Justicia pacifica 89.9 1199 (83.3%) 95 146
Lankesteria elegans 936 1309 (90.9%) 39 92
Lepidagathis dulcis 773 878 (61.0%) 235 327
Lepidagathis sessilifolia 65.8 684 (47.5%) 264 492
Neuracanthus africanus 90.7 1239 (86.0%) 67 134
Ruellia simplex 67.5 785 (54.5%) 187 468
Whitfieldia elongata 89.9 1217 (84.5%) 78 145

Discussion

We here present a well-supported phylogeny among major
lineages of Acanthaceae subfamily Acanthoideae by combin-
ing predicted coding sequences derived from transcriptomes
with sequences from shotgun genome skimming. We used de
novo assembly and translation to compare amino acid
sequences and find orthogroups. This study shows that sam-
ples from these two sequencing methods can be combined,
increasing our ability to include taxa for which tissues are
available only from herbarium specimens and subsampling
the genome for conserved regions (Morais et al. 2019). Morais

FiG. 2. Percentage of transcriptome and genome skim loci sorted into
orthogroups by OrthoFinder2 for each species. Black bars = percent of
loci sorted into orthogroups, white bars = percent unassigned loci. The
letters below each bar indicate whether the species was a transcriptome
sequenced for the present study (T), a genome skim sequenced for the pre-
sent study (GS), or a publicly-available transcriptome from GenBank (GB).
Samples with genome skim sequences had a higher percentage of unas-
signed loci (white) than transcriptomes, but still had 30-50% of loci sorted
to orthogroups.
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et al. (2019) used MarkerMiner (Chamala et al. 2015) on eight
Acanthaceae transcriptomes to find 1619 low copy nuclear
genes with an average of four species per gene. In compari-
son, we found 6136 gene trees and 587 single copy loci pre-
sent for at least nine of 16 species.

The tree estimated from 587 loci (Fig. 3) largely corroborates
the chloroplast + nrITS based phylogeny (McDade et al. 2008)
with greatly increased branch support for the placement of
Whitfieldieae and Neuracanthus. All of the trees estimated using
a multiple sequence alignment approach, including the RAXML
trees reconstructed using 587 loci (Fig. 3), corroborate McDade
et al’s (2008) cp + nr-ITS topology, except for the placement of
Crabbea (discussed below); branching order within Barleria also
differed in the SCOGs tree (Fig. 4). Recovery of the same topol-
ogy using primarily chloroplast (McDade et al. 2008) and pri-
marily nuclear data (this study), and different estimation
methods suggests that there is strong phylogenetic signal for
these relationships that is genome independent and neither ran-
dom nor based on sampling error (Penny and Hendy 1986).
Corroboration of the chloroplast + nr-ITS topology with

TasLE 4. Distribution of orthologous loci within orthogroups and loci not

assigned to orthogroups for each spedes. Overall, genome-skimming
(gray rows) resulted in more loci in orthogroups and more unassigned
lod.

Number of loci Number of
Species in orthogroups unassigned lod
Acanthus leucostachys 33,934 7733
Andrographis paniculata 24,176 2153
Avicennia marina 27,358 2301
Barleria albostellata 42,399 6229
Barleria oenetheroides 39,847 4076
Barleria rotundifolia 33,480 2224
Blepharis diversispina 30,697 2209
Blepharis spinifex 32,338 2631
Crabbea velutina 61,783 37,426
Justicia pacifica 27,052 3452
Lankesteria elegans 56,342 69,318
Lepidagathis dulcis 96,985 187,873
Lepidagathis sessilifolia 106,815 174,733
Neuracanthus africanus 45,702 37,777
Ruellia simplex 24,745 2234
Whitfieldia elongata 28,736 2390
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Fic. 3. Most likely tree for Acanthaceae derived from RAXML analysis and based on 587 nuclear loci for which sequences were present for at least
nine species (model of evolution = JTT+I1+G+F); support values are from 1000 ML bootstrap replicates. The same topology was recovered with FastTree
(Fig. 51), 6136 gene trees (Fig. 52), and three alternative models of protein evolution (Fig. 53).

phylogenomic data suggests that low support values in the cp
+ nr-ITS tree (McDade et al. 2008) were the result of too few
loci, although the sequences sampled were among the fastest
evolving markers available at the time. The cp + nr-ITS
five-loci dataset was 5518 nucleotides long, with 0.1-31.7% pair-
wise identity (McDade et al. 2008). In contrast, the 587 lodi

phylogenomic dataset used in our study was 30x longer
(166,335 amino acids), with a mean of 39.5% pairwise identity.
It is not clear whether low MP bootstrap support (< 50%) for a
few branches in McDade et al. (2008) was due to low numbers
of potentially informative characters or conflicting phylogenetic
signal possibly caused by hybridization or incomplete lineage

TabLe 5. Top BLASTYp hits for the 10 single copy orthogroups (SCOGs) that were present in all species as identified by OrthoFinder2. The Ruellia locus
from each SCOG was searched against the nr database and the top three hits are shown. Note that “chloroplastic” and “mitochondrial” means nuclear
encoded and expressed in the chloroplast or mitochondria. “PREDICTED” sequences contain an open reading frame that would produce a protein if
they are translated, but they have not yet been experimentally verified to produce the described protein.

SCOG Accession Description E-value

259 PIN18591.1 Hypothetical protein CDL12_08745 [Handroanthus impetiginosus] 3.00e-92
XP_011092637.1 Uncharacterized protein LOC105172756 [Sesamum indicum] 4.00e-89
XP_022870794.1 Uncharacterized protein LOC111390040 [Olea europaea var. sylvestris] 9.00e-06

267 XP_011101381.1 Protein MITOFERRINLIKE 1, chloroplastic [Sesamum indicum] 0
PIN10553.1 Mitochondrial carrier protein PET8 [Handroanthus impetiginosus] 0
XP_012829567.1 PREDICTED: protein MITOFERRINLIKE 1, chloroplastic [Erythranthe guttata] 0

323 XP_011098347.1 UDP-sulfoquinovose synthase, chloroplastic isoform X1 [Sesamum indicum] 0
XP_011098411.1 UDP-sulfoquinovose synthase, chloroplastic isoform X2 [Sesamum indicum] 0
PIN13226.1 UDP-glucose 4-epimerase /UDP-sulfoquinovose synthase [Handroanthus impetiginosus| 0

338 XP_(22897574.1 Probable 3-hydroxyisobutyrate dehydrogenase-like 1, mitochondrial [Olea europaea var. sylvestris] 2.00e-73
XP_011093637.1 Probable 3-hydroxyisobutyrate dehydrogenase-like 1, mitochondrial [Sesamum indicum) 3.00e-73
PIN04844.1 Putative dehydrogenase [Handroanthus impetiginosus] 4.00e-71

369 KZV29525.1 Hypothetical protein F511_00803 [Dorcoceras hygrometricum] 7.00e-59
XP_011097904.1 Uncharacterized protein LOC105176708 [Sesamum indicum] 9.00e-51
XP_009781954.1 PREDICTED: uncharacterized protein LOC104230777 [Nicotiana sylvestris) 7.00e-50

408 XP_022871722.1 Serine hydroxymethyltransferase 4 [Olea europaea var. sylvestris) 0
TEY91911.1 Glycine hydroxymethyltransferase [Salvia splendens] 0
XP_011084218.1 Serine hydroxymethyltransferase 4 [Sesamum indicum] 0

410 PIN14942.1 Hypothetical protein CDL12_12417 [Handroanthus impetiginosus] 2.00e-175
PIN09737.1 Hypothetical protein CDL12_17684 [Handroanthus impetiginosus] 2.00e-174
XP_020552957.1 Probable transcription factor At3g04930 [Sesamum indicum] 3.00e-169

425 XP_011096504.1 Uncharacterized protein LOC105175673 [Sesamum indicum] 0
PIN13816.1 Hypothetical protein CDL12_13544 [Handroanthus impetiginosus] 0
XP_012849311.1 PREDICTED: probable methyltransferase PMT4 [Erythranthe guttata) 0

47 XP_011079822.1 Protein ROOT PRIMORDIUM DEFECTIVE 1 [Sesamum indicum) 5.00e-96
XP_022890569.1 Protein WHAT'S THIS FACTOR 1 homolog [Olea europaea var. sylvestris] 9.00e-94
KZV18513.1 Protein ROOT PRIMORDIUM DEFECTIVE 1 [Dorcoceras hygrometricum] 1.00e-92

483 PIN(4627.1 Hypothetical protein CDL12_22836 [Handroanthus impetiginosus] 7.00e-156
PIN20300.1 Hypothetical protein CDL12_07016 [Handroanthus impetiginosus] 9.00e-142
EYU34960.1 Hypothetical protein MIMGU_mgv1a026890mg [Erythranthe guttata) 4.00e-135
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Fic.4. RAxML phylogeny of Acanthaceae based on 10 single-copy orthologs (SCOGs) as identified by OrthoFinder2 and present for all species sampled.
ML bootstrap support is above branches. The topology is similar to trees using more loci (Fig. 3; Fig. S52); however, the branching order within Barleria is dif-
ferentand the branches leading to Neuracanthus and Whitfieldieae have low bootstrap support.

sorting (Page and Holmes 1998; Susko 2015), but in light of our
phylogenomic data, the McDade et al. (2008) phylogenetic
hypothesis is here confirmed as a good estimate of the species
phylogeny. We did not find any support for Neuracanthus as sis-
ter to BAW + (Justicieae + Ruellieae) as in Tripp and McDade
(2014), which was based on a BEAST analysis of Sanger sequen-
ces that did not sample as densely from BAWN as did McDade
et al. (2008). It may be that taxon sampling differences or the
additional parameters of the BEAST analysis led to the alterna-
tive placement of Neuracanthus. The tree presented here (Fig. 3)
is a framework that can be used to estimate better-sampled
phylogenies of the family.

Combined transcriptome and GSS data increased support
for some branches along the backbone of McDade et al's
(2008) phylogeny that were weakly supported. Notably, the
branches leading to the BAWN clade, the BAW clade and the
Whitfieldeae are here more strongly supported. As in the cp +
nr-ITS tree, the 10 single-copy loci RAXML tree returned mod-
erate to no support for these branches, and the branching
order of Barleria (Fig. 4) is inconsistent with topologies from
the 587 loci data set (Fig. 3), as well as with other studies of
Barleria (Darbyshire et al. 2019; Comito et al. 2022). Ten
single-copy loci do not adequately resolve this part of the tree.

In phylogenetic studies using large numbers of loci, boot-
strap values can become artificially inflated when data sup-
porting alternative topologies are present at low levels (Seo
2008; Narechania et al. 2012). We tested for the possibility that
our ML bootstrap values (Fig. 3) were inflated by changing
the model of amino acid evolution used to estimate a tree in
RAxML (Fig. S3) and by using networks and trees to explore
conflict among branches (Figs. 54-59). We also explored tree
space with a PCA based on tree-distances (treeVec; Fig. 5).
Changing the model of evolution had no effect on the topol-
ogy and the PCA suggested that there were not distinct evolu-
tionary signals in the data that would support different and
conflicting tree topologies. If there were distinct, competing
tree topologies, one should see more pockets of disparate trees
(“tree islands”) in the PCA; instead there is one large, homoge-
nous cluster of trees, as would be expected from estimating
the phylogeny based on different nuclear loci.
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Networks of alignments (Figs. S4-59) and the Ortho-
Finder2 trees with STAG support (Figs. S1, S2) suggest some
degree of conflict in the branching order of Andrographis,
Neuracanthus, and Whitfieldieae. Removing potentially prob-
lematic taxa in the networks, namely Avicennia marina (low-
est-quality transcriptome used in this study) and Crabbea
velutina (because it changes position in the chloroplast and
nuclear topologies), did not visibly reduce conflict in the net-
works (Figs. 54-59). The presence of conflict in these branches
suggests that denser species sampling in Andrographideae,
Neuracanthus, and Whitfieldieae may stabilize the topology.
We also found that Ruellia simplex and Justicia pacifica did not
have as many characters supporting their sister relationship
as did the branches leading to Barlerieae and Acantheae
(Figs. 54-59). This may be because we sampled only a single
species of each of these large lineages.

The Acanthaceae phylogenomic tree (Fig. 3) disagrees with
McDade et al.’s (2008) chloroplast + nr-ITS topology in the
placement of Crabbea. This genus of 16 species of perennial
herbs and shrublets is distributed across Africa (Bidgood and
Brummitt 1985; Thulin 2004; Darbyshire et al. 2010, 2015). De
Gouveia et al. (2017) sampled seven Crabbea species from
South Africa and assembled data from two chloroplast loci
and morphology. Using Barleria repens, Andrographis panicu-
lata, and Thunbergia erecta as outgroups and rooting the tree
on the branch leading to the outgroups, these authors recov-
ered a monophyletic Crabbea. Crabbea velutina was sister to the
rest (De Gouveia et al. 2017). In McDade et al.’s (2008) cp +
nr-ITS topology, C. acaulis is strongly supported as sister to
Barleria. We sampled C. velutina and found it to be sister to
the rest of Barlerieae (Barleria + Lepidagathis) when we used
an alignment-based approach (MAFFT, Fig. S1), but not
when we used a distance-matrix approach (DendroBLAST,
Fig. S2). Neither the DendroBLAST nor MAFFT trees resolve
C. velutina sister to Barleria, as was C. acaulis in McDade et al.
(2008). Additionally, a RADseq study of Barleria (Comito et al.
2022) sampled C. hirsuta and a second, unidentified Crabbea
species. These were together sister to the rest of sampled Bar-
lerieae (Barleria + Lepidagathis), as in our trees. It is possible
that nuclear and chloroplast data disagree about the
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placement of Crabbea owing to introgression between the
ancestors of this genus and other Barlerieae lineages (repre-
sented here by Barleria, Lepidagathis) and our ABBA-BABA
test found few alignment positions supporting C. velutina as
sister to Barleria (Table S1). It is also possible that Crabbea is
not monophyletic: one or more Crabbea species may be sister
to Barleria, whereas others are sister to all Barleriecae. The
results of De Gouveia et al. (2017) suggest otherwise, but
their sampling outside of Crabbea was limited and mono-
phyly of the genus was not tested. Phylogenetic resolution
of Crabbea will require increased sampling of Crabbea and
Lepidaguathis s.1., and of Malagasy genera of Barlerieae (Boutonia,
Lasiocladus, Pericalypta, Podorungia, Pseudodicplitera) to deter-
mine the limits of Crabbea and consider its relationships to other
Barlerieae.

In our study, low taxon sampling may have affected resul-
tant topologies. Increased taxon sampling has not necessarily
provided high bootstrap support in previous studies of this
group using chloroplast + nr-ITS Sanger sequences, but
increased sampling may provide a stable phylogeny with
larger nuclear datasets. We limited taxon sampling in this
study to focus on generating more loci and to trial the
approach of combining transcriptome and genome skim data.
Now that these genomic sequences are available, they can be
used for future studies involving more species in each of these
lineages to further refine the phylogeny of Acanthaceae.

A highly resolved and strongly supported phylogeny of
Acanthaceae will help guide reclassification of the family
(Tripp et al. 2022), identify potential synapomorphies for
clades, and better understand morphological evolution (e.g.
explosive seed capsules, hygroscopic trichomes on seeds,
corolla morphology). Our results suggest that the placement
of Crabbea warrants further consideration and future studies
should increase taxon sampling across the BAWN lineages of
Barlerieae, Andrographideae, Whitfieldeae, and Neuracan-
thus, as these groups have not yet been well sampled in any
molecular phylogenetic study.
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Newly sequenced genome skims:

Crabbea velutina S. Moore; SRR7806557; Tanzania, Manketelow 670
(UPS); Barlerieae. Lankesteria elegans (P. Beauv.) T. Anderson;
SRR7806555; Cameroon, Etuge & Thomas 466 (K); Whitfieldieae. Lepida-
gathis dulcis Nees; SRR7798775; Kew Botanic Garden, Suddee et. al. 999
(K); Barlerieae. Lepidagathis sessilifolia (Pohl) Kameyama ex Wassh.
& J.RIL Wood (= Lophostachys pubiflora Lindau); SRR7806564; Bolivia,
Daniel et. al. 10106 (CAS); Barlerieae. Neuracanthus africanus T. Ander-
son ex 5. Moore; SRR7806563; South Africa, McDade & Balkwill 1258
(ARIZ); Neuracanthus.

Newly sequenced transcriptomes:

Barleria albostellata S. Moore; SRR7806560; cultivated at Long Beach
State University, |.D. Arias 3 (LOB); Barlerieae. Barleria oenotheroides
Dum. Cours; SRR7806562; cultivated at Long Beach State University,
J.D. Arias 1 (LOB); Barlerieae. Barleria rotundifolia Oberm.; SRR7806561;
cultivated at Long Beach State University, A.E. Fisher 412 (LOB); Barler-
ieae. Blepharis diversispina (Nees) C. B. Clarke; SRR7806559; M. Stata &
R. Sage sn.; Acantheae. Blepharis spinifex Merxm.; SRR7806558; Millen-
nium Seed Bank #248224, S. Loots et. al. s.n. (WIND); Acantheae. Justicia
pacifica (Oerst.) A. Gray; SRR7806556; cultivated at Long Beach State
University, A.E. Fisher 447 (LOB); Justicieae. Whitfieldia elongata (P.
Beauv.) DeWild. & T. Durand; SRR7806565; cultivated at Long Beach
State University, A.E. Fisher 443 (LOB); Whitfieldieae.

Publicly available transcriptomes:

Acanthus leucostachys Wall. Ex Nees; SRR1793319; Wenchang, Hai-
nan, China; Acantheae. Andrographis paniculata Nees; SRR1519324;
Andrographideae. Avicennia marina Wall. Ex Nees; SRR6533719; Wen-
chang, Hainan, China; Avicennieae. Ruellia simplex C. Wright;
SRR7124544; Ruellieae.
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