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ABSTRACT

Database applications frequently use weaker isolation levels, such
as READ COMMITTED, for better performance, which may lead to
bugs that do not happen under SER1ALIZABLE. Although a number
of works have proposed methods to identify such isolation-related
bugs, the difficulty of analyzing reported bugs is often underesti-
mated, since these bugs often involve multiple complicated trans-
actions interleaved in a specific order and they often require users’
feedback to improve the accuracy of bug analysis.

This paper presents IsoBugView, a tool to visualize isolation
bugs and incorporate users’ feedback: to address the challenge
that a complicated bug may include much information and thus
is hard to present, IsoBugView displays a high-level overview of
the bug first and displays further information of individual pieces
if the developer needs further investigation. To incorporate users’
feedback, IsoBugView embeds hook functions into the backend
analysis tool to preprocess a dependency graph and postprocess
a found cycle and further allows a user to apply predefined hook
functions in its graphic user interface. Our experience shows that
IsoBugView has greatly improved our productivity of analyzing
isolation bugs.
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1 INTRODUCTION

Database systems provide different isolation levels to regulate how
concurrent transactions may interleave. Among them, SERIALIZ-
ABLE, which means the database guarantees that concurrent ex-
ecution of multiple transactions is always equivalent to a serial
execution of them, provides strong correctness guarantees so that a
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database application developer does not need to reason about con-
currency. However, multiple studies have shown that, in practice,
many database applications are using weaker isolation levels, such
as READ CoMMITTED and SNAPSHOT ISOLATION, probably to gain
better performance [2, 9]. As a trade-off, this may lead to anom-
alies (called isolation bugs in this paper) that do not happen under
SERIALIZABLE, and even security issues [11].

A number of prior works have developed theories and algo-
rithms to identify isolation bugs [1, 3, 5-7, 10, 11]. Most of them
rely on the dependency graph theory, which models transactions
as vertices, models dependencies among transactions as edges, and
models isolation bugs as certain types of cycles in the graph. How-
ever, we observe the difficulty of analyzing the reported cycles is
often overlooked. First, real-world applications often have long
and complicated transactions and an isolation bug often involves
multiple transactions interleaved in a specific order. As a result, in
our experience, interpreting the text output of prior works usually
involves manually drawing the dependency graphs on a board and
frequently going back and forth between the graph and the original
SQL transactions. Second, such procedure often needs application-
specific knowledge from the developers to improve the accuracy of
bug finding, and we often need to modify the source code of corre-
sponding tools to incorporate such application-specific knowledge.

This paper presents IsoBugView, a tool to visualize isolation
bugs and incorporate developers’ knowledge. To address the chal-
lenge that a complicated bug may include much information and
thus is hard to visualize, IsoBugView displays a high-level overview
of the bug first and displays further information if the developer
needs further investigation. To incorporate developers’ knowledge,
IsoBugView has refactored the underlying analyzer tool so that it
can introduce users’ knowledge into the analysis without changing
its source code. We further integrate several types of mostly com-
monly used knowledge into IsoBugView’s graphic user interface.

We have applied IsoBugView to a number of database applica-
tions, and found it greatly improves our productivity of analyzing
reported bugs.

2 BACKGROUND AND RELATED WORK

Suppose an online shopping application has provided a transaction
to purchase an item: it uses a select statement to read the item count,
checks the item count is positive, and then uses an update statement
to decrement the item count. Suppose two purchase transactions
are executed concurrently and the isolation level of the database is
set to READ CoMMITTED, which asks that read operations retrieve
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a committed value. It is possible that both transactions execute
their “select” statements at the same time, confirm that the item
count is positive, and both decrement the item count, which means
that the final item count becomes negative. This will never happen
under SERIALIZABLE, but is allowed by READ COMMITTED since both
“select” statements indeed see committed values.

To identify such issues, the de facto theoretical foundation is the
definition of isolation levels by Adya et al. [1] which many other
works adopt to identify non-serializable executions [1, 3, 6, 7, 10, 11].
The Adya et al. definition models the execution of transactions as
a dependency graph, in which nodes are transactions and edges
represent dependencies across transactions; isolation levels are
defined based on whether they prevent different types of cycles in
the dependency graph.

Following this definition, prior works try to identify potential
non-serializable executions by searching for cycles that are not
allowed by SERIALIZABLE but are allowed by the target isolation
level. For example, for READ CoMMITTED, we should search for
cycles with at least one read—write dependency edge; for SNAPSHOT
IsoLaTION, we should search for cycles with at least two consecutive
read-write dependency edges [3, 6].

3 DESIGN AND IMPLEMENTATION OF
ISOBUGVIEW

While the theoretical foundation of identifying non-serializable
executions is well studied, we find understanding the output of
existing tools is a challenging task due to the following reasons: to
understand a detected cycle, we often need to convert it from a text
format into a figure, usually by drawing it on a board. However, for
complicated transactions, we often need to go back and forth from
the figure to the original SQL statements to understand how the
cycle may be generated at application level. On top of this, not all
pertinent information regarding how a database is used in practice
can be deduced from its state or logs. For instance, an application
may enforce additional constraint (e.g., two customers cannot have
the same ID) to prevent non-serializable executions, and without
such application-specific knowledge, existing analysis often incurs
false positives. As a result, we often need to change the source code
of the tool in an application-specific manner to filter certain cycles.
All are affecting our productivity when analyzing isolation bugs.

To address these challenges, we have built IsoBugView, a tool to
visualize isolation bugs and incorporate users’ feedback.

3.1 Overview of IsoBugView

The IsoBugView system is comprised of two distinct parts: a back-
end that enumerates and checks cycles leveraging a modified ver-
sion of the IsoDiff tool [5] (Section 3.2), and a novel frontend GUI,
that presents tools to assist developers in understanding and de-
bugging the cycles found in the backend (Section 3.3).

All that must be provided to IsoBugView is an SQL log file of
running the target application and a corresponding schema CSV
file that outlines the structure of the database that was operated on.
The user needs to submit these two files through the IsoBugView
GUI, which will transfer these files to the IsoBugView backend.

On submission the IsoBugView backend will perform the analy-
sis in the background while the user is brought to the main status
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page that encompasses the majority of IsoBugView’s functionality.
Until the search is complete there will be no cycles present and
there will be a loading screen shown. On completion of the graph
search, the developer will be able to view all cycles and perform
detailed examination of each cycle through its frontend GUIL
When examining a certain cycle, if the user finds it is a false
positive, s/he can provide feedback to IsoBugView. For example,
s/he could indicate that a certain dependency edge will not exist
because of an application constraint, or a certain transaction does
not need to be analyzed because it is always executed serially, etc.
The IsoBugView GUI will submit such feedback to the backend,
which will re-run the analysis with the additional information.

3.2 IsoBugView Backend

We implement IsoBugView backend based on IsoDiff [5], but with
major modifications to support the functions of IsoBugView.

IsoDiff takes the logs and schema files provided by the DBMS as
the input, and can develop a dependency graph of the transactions
that were executed in the log. Using the dependency graph, IsoDiff
can begin to enumerate cycles that represent potentially problem-
atic executions by the application, that are not serializable but are
allowed by the database’s weaker isolation level (READ COMMITTED
and SNAPSHOT ISOLATION are currently supported).

To facilitate the building of the IsoBugView GUI, we have modi-
fied the implementation of IsoDiff to enrich its output. To be con-
crete, IsoDiff and similar tools model complicated SQL statements as
lists of READ/WRITE operations and output found non-serializable
executions as a list of involved READ/WRITE operations together
with the dependencies or partial orders among these operations.
To help a developer better understand a non-serializable execution,
IsoBugView needs to map such READ/WRITE operations back to
their original SQL statements. To accomplish this goal, we have
modified IsoDiff to connect READ/WRITE operations to original
SQL statements when parsing these statements and to carry such
connection throughout the analysis to the final output.

To incorporate a user’s application-specific feedback, we have
modified IsoDiff to add two hook functions: The first hook func-
tion is executed after a dependency graph is generated but before
cycle search is performed. This hook function can manipulate the
generated dependency graph to add/delete nodes, edges, etc. The
second hook function is executed after a cycle is found to determine
whether the cycle should be filtered out. By providing an implemen-
tation of these two hook functions to IsoDiff, a user can provide
feedback to IsoDiff without changing the source code of IsoDiff.
We have provided some predefined hooks through the IsoBugView
GUIL. In practice, we expect a common user should be able to use
the predefined hooks in most of the cases and an experienced user
could implement his/her own hooks when necessary.

3.3 IsoBugView GUI

We implement IsoBugView GUI as a web service. After an analysis
is complete, IsoBugView will show a web page like Figure 1. A
sidebar on the left is populated with a list of isolation bugs, each
named by the transactions they contain (). Looking at the entry of
the list in Figure 1 are a few buttons that serve to help a user notate
the analysis and build their knowledge of the graph: the middle
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Figure 1: An example analysis of a TPC-C Read Commited execution using IsoBugView

"tag" button allows a user to add a tag or short note underneath the
cycle in case it is of specific interest, an example of which can be
seen in the (2 entry of the list; the right star button gives a user
the ability to favorite a cycle so they may quickly recognize it later;
the leftmost "eyeball" button generates the graph visualization of
the cycle in the graph area to the right.

Bug visualization. The bug visualization is the main tool that
empowers a developer to diagnose the problematic ways their ap-
plication is interacting with the database. On clicking the view
button, a graph is drawn, with nodes ordered from left to right
following their timing order during the execution. To compute the
order, IsoBugView GUI performs a topological sort based on the or-
der of operations within a transaction and the dependencies among
different operations.

In the figure, nodes on the same row are from the same transac-
tion, whose name is shown on the left side of the row. For example,
the nodes shown by () is a part of the "StockLevel" transaction.
Every node maps to either a read or write operation on a specific col-
umn in one of the tables of the database (e.g., @). The directed edges
that connect the nodes correspond to a dependency between the
operations (e.g., ®). The destination of an edge has a dependency
on the source node. IsoBugView GUI colors a dependency edge
based on its type: a solid black line indicates a normal dependency
edge that is part of the cycle in the transaction dependency graph;
a yellow line indicates a correlated edge, which always happens
together with a normal edge [5]; a dotted line indicates a shadow
edge, which should not be used during cycle detection but should
be used during correlation analysis [4]. Note that an edge can be
both correlated and shadow (e.g., ®).

The figure may be further dissected by clicking different ele-
ments of the graph. Selecting any one of the nodes generates a list,
just below the visualization, of all of the SQL statements that make
up the transaction the node is a part of and puts the statement the
operation originates from in bold. References to the columns of
interest are also highlighted in yellow in the statement. In addition
to the nodes the edges of the graph can also reveal more informa-
tion. By selecting any one of the edges, the SQL statements that
contain the corresponding source and destination operations will
be listed underneath the visualization (e.g., ©®), and the referenced
columns will be highlighted in yellow (e.g., d_next_o_id in (®).
Providing the raw SQL code that corresponds to the dependencies
and operations of interest let developers map the executions that
IsoBugView generates directly back to their own application code.
They can observe the statements and functions that have poten-
tially worrisome executions, then begin to determine if they need
to write safer code that is in line with the isolation level used by
their application’s database.

Incorporate users’ feedback. In addition, as discussed above,
IsoBugView has predefined a few commonly used hooks and allows
a user to use these predefined hooks through the IsoBugView GUIL
To be concrete, a user can “delete” an edge in the graph, maybe
because a certain application-level constraint prevents the corre-
sponding dependency edge from happening in practice; a user can
also “delete” a transaction in the graph, maybe because that trans-
action can tolerate non-serializable result. We plan to expand the
list of predefined hooks in the future.

To give a concrete example, by right clicking on an edge, as
shown in (9), a user can remove the edge from the analysis. The
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Figure 2: A potential isolation bug reported by IsoBugView.
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Figure 3: Another potential isolation bug reported by
IsoBugView.

drop down list provided with (® gives a breakdown of which edges
are marked to be removed. By clicking the "rerun" button, the
rightmost button shown by (9, the IsoBugView backend will run
the analysis again with the original parameters, but the desired
edges deleted. Once the new analysis is done, a user can observe the
new result, which not only avoids the execution shown in Figure 1,
but also other executions that involve the deleted edge.

4 APPLICATION EXAMPLES

In this section, we show examples of how IsoBugView helps us
understand potential bugs of running TPC-C under the REap Com-
MITTED isolation level. We run the TPC-C implementation from the
OLTPBench [8] upon a MySQL database, configure MySQL to log
SQL traces, and also record the schema information from MySQL.
We then submit the schema and log to the IsoBugView GUL

Figure 2 shows a potential bug involving two NewOrder trans-
actions. By clicking the first normal dependency edge and viewing
the corresponding SQL statements, we can know that the first
NewOrder transaction reads the d_next_o_id value, which is up-
dated by the second NewOrder transaction; by checking the second
normal dependency edge, we can see that the second NewOrder
transaction reads the d_next_o_id value, which is then read by
the first NewOrder transaction. By looking at the logic of the
whole NewOrder transaction, we see that NewOrder reads the
d_next_o_id, increments it by 1 and uses it as the ID of the new or-
der, and then updates the d_next_o_id value to reflect the increment.
Therefore, if two NewOrder transactions read the d_next_o_id value
at the same time, they may end up using the same ID for different
orders, which is problematic. This problem could be fixed by adding
the “for update” keyword for the select statement.

Figure 3 shows another potential bug reported by IsoBugView,
which is the same as the one shown in Figure 1. It involves a
NewOrder transaction and a StockLevel transaction. By clicking
the left normal edge, we can know that the NewOrder transaction
updates the d_next_o_id value and the StockLevel transaction will
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read the updated d_next_o_id; by clicking the right normal edge,
we can know that the StockLevel transaction reads the ol_i_id value
and then the NewOrder transaction updates that value. In this case,
the StockLevel transaction reads the updated d_next_o_id value
but still the stale ol_i_id, which will not happen under a serializable
execution. However, the TPC-C specification indicates that serializ-
able result is not required for the StockLevel transaction. This is
a typical example of how application-level constraint or require-
ment can introduce false positives into the analysis. Therefore, we
use IsoBugView to remove StockLevel transaction and re-run the
analysis, which results in a shorter list of potential bugs.

5 CONCLUSIONS

To improve the productivity of analyzing isolation bugs, we have
built IsoBugView, a tool to visualize isolation bugs and incorpo-
rate users’ feedback. IsoBugView visualizes an isolation bug using
the dependency graph and further allows a user to view detailed
information of each node and edge in the graph. IsoBugView em-
beds hook functions into the underlying analysis tool to express
application-specific feedback and further allows a user to submit
such hook functions through the GUI Our experience shows that
such a tool is critical to the productivity of analyzing isolation bugs.
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