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Abstract—Design of microwave circuits require extensive sim-
ulations, which often take significant computational time due
to design complexity. This can be addressed through neural
networks (NNs) that provide predictive capability. Predictions
often come with uncertainties that need to be quantified. More-
over, optimization and inverse designs are better done using
probabilities. This article describes the use of Bayes theorem and
machine learning (ML) for solving complex microwave design
problems.

Index Terms—Bayes theorem, Gaussian processes (GPs),
invertible neural networks, neural networks (NNs).

I. INTRODUCTION

AYES theorem had an early beginning in 1740 through

the Bayes’ rule proposed by an amateur mathematician
Rev. Thomas Bayes. This was discovered later by Pierre Simon
Laplace in 1774 and worked on for the next 40 years. The
Bayes’ rule came into prominence many years later when
Alan Turing used it to break Enigma, during the second world
war [1].

So, what is Bayes theorem and why apply it to microwave
design? Bayes theorem is based on subjective probability
as opposed to objective probability practiced by frequentists.
In mathematical form it can be written as follow:

P(H|E) = P(E%;(H) e

where H is the hypothesis, E the evidence, P(H|E) is the
conditional probability of the hypothesis when the evidence is
considered (posterior), P(E|H) is the conditional probability
of the evidence given the hypothesis is true (likelihood), P (H)
is the probability of the hypothesis before the evidence is
considered (prior), and P (E) is the probability of the evidence
under any circumstance (marginal probability) given as follow:

P(E) = P(E|H)P(H) + P(E|H")P(H') 2
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Fig. 1. Updating prior to obtain the posterior after seeing the likelihood
according to (1). Here, prior P(H) is assumed to be a Gaussian distribution
with large variance. After observing the evidence based on the hypothesis,
the prior is updated to the posterior P(H |E) with less variance, and hence
with more confidence [2]. Note: This is shown for illustration purposes only
since the distributions can be arbitrary.

where P(H') = 1— P(H) is the probability of the hypothesis
not being true and P(E|H’) is the conditional probability of
the evidence when the hypothesis is untrue. The denominator
term in (1) is generally a normalizer to ensure that the result
in (1) is always a probability that is bounded between 0 and 1.

As an example, in Fig. 1, the prior is assumed to be a
Gaussian distribution with large variance, where the random
variable is the parameter x. By making use of the likelihood
and the prior, the posterior is computed with less variance.
A smaller variance translates into a better confidence in
the prediction, or in other words smaller uncertainty. Being
subjective Bayes theorem allows for guesses where the prior
distribution can be assumed, making it powerful and applicable
in several areas.

In complex microwave designs, the parameter space can be
large leading to high-dimensional problems [3]. As a result, the
probabilities in (1) become intractable and therefore cannot be
computed analytically. Therefore, Bayes theorem needs to be
integrated into a computational environment for the estimation
of probabilities. In machine learning (ML), the goal is to
learn the mapping between the input and output parameters
to be able to predict the output for a given input. This can
be enabled by combining Bayes theorem with ML, also called
Bayesian learning in this article. This approach can be used
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to develop a surrogate model with confidence bounds (uncer-
tainty quantification), used to solve non-convex optimization
problems, and address nonuniqueness in inverse problems,
as described in Fig. 2 and discussed in Sections II-IV.
Due to high frequencies, microwave designs rely on circuit
and electromagnetic (EM) simulations for achieving success.
Due to high dimensionality and design complexity, simulators
are time consuming and therefore their use as part of the
optimization process has only had limited success. With the
advent of artificial neural networks (ANNs), the large com-
putational time can be addressed through a onetime training
process where the neural network (NN) [4] can be used to
map between the input and output parameters. NNs allow for
accurate linear and nonlinear mapping between the parameters,
where the architecture of the networks can be constructed
based on the data patterns being learned. However, such
NNs tend to produce a discrete output for a set of input
parameters. Like any model, NNs are prone to errors and
therefore capturing these errors around the predictions become
necessary. In optimization, the objective is to converge to
the global optimum. This can become extremely difficult if
the optimization is being conducted on a non-convex surface.
With Bayes theorem, the problem can be reposed such that
the computed probabilities provide a direction for the optima
as opposed to an exact solution at intermediate points and
therefore this property can be used to rapidly find the global
optimum. Finally, solutions to inverse problems provide an
elegant method for creating designs based on the output
objectives. However, these problems are often-times ill-posed.
We address these three areas in the context of microwave
design in this article. Our hope is that this article will get
more researchers and designers interested and motivated to
work in this upcoming area of ML.

This article is organized as follows. We discuss, in detail,
the three scenarios of uncertainty quantification, optimization
and inverse design, in the subsequent Sections II-IV, respec-
tively, with corresponding examples from literature and recent
advances. In Section V, we provide conclusion.

II. UNCERTAINTY QUANTIFICATION

NNs are deterministic and therefore provide a point esti-
mate. These networks are generally considered to be always
correct, implying that the predictions have no errors in them.
This obviously cannot be true since the model parameters and
data samples used in the NNs can generate errors. Hence quan-
tifying these uncertainties in the predictions become necessary.
We describe two networks here for uncertainty quantification
namely the Bayesian NN (BNN) and the other constructed
using the Gaussian process (GP).

A. Bayesian NN (BNN)

We start by defining a NN before to converting it to
the BNN. As an example, consider the spectral transposed
convolution NN (S-TCNN) described in [5] which is useful for
the prediction of frequency responses. As the name implies,
S-TCNN transposes a Convolution NN (CNN) such that
low dimensional features can be mapped to high-dimensional
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frequency responses. The input parameters are first mapped
to a latent space through a fully connected NN. The features
are then learned using transposed 1-D convolution where the
output y is related to input x by the relation as follow:

y = f(h+"x)
= f(H"x) 3)

where f(-) is the non-linear activation function, 7 =
[wy, w2, ..., w;]" is the matrix convoluted with input x, x*
stands for the convolutional operator while %’ stands for the
transposed convolutional operator and
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The 1-D kernel has k weights (wy) that are slid across
the flattened frequency response to learn the features such as
resonance behavior, sharpness of the peaks etc. This procedure
is illustrated in Fig. 3. S-TCNN has been shown to pre-
dict the output frequency response accurately with an output
dimensionality exceeding 1M, where each frequency point is
considered a dimension. Causality and passivity of the data
can be addressed as part of S-TCNN as well, as described
in [6]. We will assume here that S-TCNN (or any other NN)
is used to predict the frequency response of a microwave
structure. The objective is to quantify the uncertainty around
these predictions.

Let W and b denote the weights and bias of a fully
connected NN. For an input X, the output Y can be written
as follow:

Y = f(WX +b) (5

where f(-) is the non-linear activation function.
Using Bayes’ theorem from (1) the nonlinear mapping
between X and Y can be written in the form as follow:

p(Y|X,0)p©®)
pOIX,Y) = —————— (6)
p(Y[X)
where p(0) is the prior, p(Y|X,#) is the likelihood and
p(Y|X) is the normalizer, also called model evidence. In (6),

6 = {W, b} represents the parameters that need to be learned.
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Using (6), the output y* given a new observed input vector x*
can be written as follow:

Py x*, D) = / POy x", 0) p(O1D)d0 ™

where D = {X, Y} represents the dataset. This process is
referred to as inference. Computing the full posterior distrib-
ution over all possible parameter settings is called Bayesian
learning. The integration in (7) can be analytically calculated
for some simple models, such as Bayesian linear regression.
However with more complicated models, the parameter pos-
terior is analytically intractable. We therefore approximate the
posterior distribution for the model parameters via variational
inference (VI). The goal of VI is to learn a fast-to-compute
approximate distribution, ¢ (#), which is as close as possible
to the intractable parameter posterior. This can be achieved by
minimizing the Kullback-Leiber (KL) divergence [8] between

Bayesian learning scenarios. (a) Uncertainty quantification. (b) Optimization. (c) Inverse design.

the two distributions as follow:

L =KL(¢g(©®)Ip@ID))

/ ) log q()

(GID)
KL divergence minimization is also equivalent to maximizing
the evidence lower bound by applying Jensen’s inequality [9]
as follow:

®)

L= / 4(0)log p(¥ X, 0)d0 — KL(q(0)| p(©0))

< log p(Y|X) ©)
where p(#) is the prior distribution over NN parameters. The
first term in (9) is approximated using Monte Carlo (MC)
integration. The second term in (9) can be calculated using
the closed-form KL divergence between the true prior and its
approximation. This works as an Occam Razor [10] term and
penalizes the complexity of ¢(@) [11]. Through the training
process, the inference equation in (7) can be rewritten as an
approximation in the form [7] as follow:

00", D) = [ pO7 I 0)q@iDIe. (10
We still need to choose the type of g(-) to train the models.
If we choose a Bernoulli distribution [12] for ¢(-), this forms
the basis for Bayesian dropout which can be used to establish
confidence bounds. The Bayesian dropout process is described
in Fig. 4 where the neurons within a network are dropped
randomly during each inference. We make use of the S-TCNN
to implement the Bayesian dropout process.
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Fig. 4. Bayesian dropout [7].

Using the Bayesian dropout process, the predictions and
confidence interval can be calculated as [7] as follow:

|
=5 ; Vi (1n
where 1, is the mean of N predictions, and
2 IS 2
o=~ ; (i — 1) (12)

where o, is the variance. The range of the confidence interval
provides information about any uncertainties related to the NN
model used.

B. Gaussian Process (GP)

GP is the extension of standard multivariate Gaussian dis-
tribution to infinitely many variables, where any finite number
of samples form a joint Gaussian distribution [7]. The prior
of GP is defined by two quantities, namely a mean ¢ and a
covariance matrix K, given as follow:

y=fx)~NuX), Kx)

where N represents a GP. From (13) the mapping between
the input and output is enabled through the GP. For general
nonlinear regression, a constant mean function u(x) = m is
used [13]. The kernel function K (x) that describes the relation
between points in the function is written as follow:

k(xy,x1) k(xy,x;)
K(x) = :

13)

(14)

k(x,,x1) k(x,,x;)

Appropriate kernel functions can be applied to capture dif-
ferent patterns in the dataset. For example, Matern kernels can
be used when the function is less smooth. A commonly used
kernel is the automatic relevance determination (ARD) [13]
Matern 5/2 function given by [14]

5 .
k(xi,x;) = aj%(l +/5r + §r2)e‘/§’

1

)

d=1 Oa

15)

where o and o, are the hyperparameters of K (x). These
hyperparameters are updated during the training process by
minimizing the negative log marginal likelihood of the GP to
improve learning.
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Fig. 5. Different GP kernels and their combinations.

We can also combine different standalone kernels to con-
struct new kernels, which can then be applied to capture more
complicated function behaviors, as illustrated in Fig. 5. Further
details on kernels are provided in [15].

Once the GP model is trained using the dataset D = {X, Y},
it can be used to predict the unknown response y* for a new
set of input data x* € RM*? using the relationship as follow:

K Ky
p(y*,Y|x*,X,e>=N(["X}[KTX KXD (16)

Hx * X, x*
where 6 is the set of hyperparameters used as part of the
training process.

During the training process, our goal is to find the best
hyperparameters, 6, that fits the data and model. Fixing
6 can create a combination of data and parameter related
uncertainties due to any inaccuracies related to the model used
for prediction. Therefore, we integrate over all possible § and
use a weighted sum of confidence intervals where the bounds
obtained with multiple 6 values affect the final confidence
bound. This can be written as [16] as follow:

p(y*IX*,Dt)=/p(y*IX*,Dz,9)p(0|Dt)d9 (17)

where D, = (X,,Y;) is the data at the rth iteration of
the training process. At a test point x*, the model predicts
a distribution, p(y*|x*, D;), that no longer depends on 6
and is a weighted sum of all possible distributions corre-
sponding to fixed hyperparameter p(y*|x*, D;, ). We can use
Markov chain MC (MCMC) [17] to learn the analytically
intractable distribution p(6|D;). Once the GP is trained, the
predictions and confidence intervals that also accounts for
parameter-related uncertainties can be obtained as in [18].

C. Comparison of BNN and GP

To compare BNN and GP, we consider a differential plated
through hole (PTH) pair in a package core along with the
microvias in the build-up layers [6]. The 13-D input space
and their corresponding range are provided in Fig. 6.

Here, the goal is to map 13 input parameters to their cor-
responding four-port S-parameters from DC to 100 GHz with
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Parameters of differential PTH in package core [16].

TABLE I
PTH COMPARISON

Base S-TCNN  Bayesian S-TCNN GP

Validation NMSE 0.033 0.037 0.034
Training Time 118.52s 121.72s 63.58s
Inference Time - 0.91s 25.12s

100-MHz steps, corresponding to an output dimensionality of
12000. To create the predictive model, 680 samples based on
Latin hypercube sampling (LHS) are first determined. These
are then fed into a full-wave EM solver to generate their cor-
responding S-parameters. After the data are collected, 550 out
of 680 samples are used for the training of the model and
the remaining are used for testing. The testing platform used
is Intel Core i7-8750H, NVIDIA GeForce GTX 1070 Max-
Q and 16GB RAM. All programming is performed with
PyTorch [19]. The results are summarized in Table I.

The predictions and uncertainty around the predictions of
S21 for the PTH problem in Fig. 6 is shown in Fig. 7.
As shown in Fig. 7(a) and (b), the BNN and GP provide
uncertainties around the predictions, where the dashed line
represents the mean. The BNN provides for a more general
method as compared to GP which depends on the kernels used.
Irrespective of the method used, both these techniques help
establish confidence bounds around the predictions. Note that
the time for prediction for the base and the Bayesian version
is similar, but the Bayesian S-TCNN also provides confidence
bounds in the same inference time. It is important to note
from Fig. 7 that the EM simulator result [high-frequency
structure simulator (HFSS)] in general falls within the mean
and confidence bounds established by the NN.

III. DESIGN OPTIMIZATION

We next address optimization using Bayesian learning in
two forms namely: 1) a generic Bayesian optimization (BO)
method widely used in the ML community and 2) a customized
optimization method specifically targeted for microwave struc-
tures. These are then compared with other ML and non-ML-
based methods.
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with Bayesian dropout. (b) GP.

A. Bayesian Optimization

The mathematical optimization problem can be written as
follow:

max f(x) stxeX (18)
where x is the vector of input parameters, f(x) is the cost
function, and X is the feasible range of input parameters,
also called the design space. Linear and convex optimization
problems (LP and CP) can be solved efficiently using iterative
methods [20], [21] due to the properties of simple response
surfaces. However, in several microwave design scenarios,
the response surface is often nonconvex with many local
minima and maxima, making optimization challenging. During
the design of microwave structures, the function evaluation
f(x) often requires EM simulation which can take lengthy
computations. In addition, due to the black-box nature of the
problem, the gradient information is not available. Gradient-
free global optimization algorithms have been proposed to
solve optimization problems using heuristic methods [22].
For example, genetic algorithm (GA) has been used for 3-D
integrated circuit design [23]. These algorithms mimic the
process of natural selection and improves the performance
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using mutation, crossover, and selection from a population
of design solution candidates. This method has also been
used to optimize the shape and topology of EM structures
and has shown promising results [24]. Similarly, in particle
swarm optimization (PSO) algorithm, a number of candidates,
denoted as particles, are updated iteratively using the infor-
mation of the global optimal particle position and the local
optimal particle positions. The particles are guaranteed to
converge to the global optima with sufficiently large number
of particles and iterations [25]. Several applications of PSO in
microwave design are discussed in [26], [27], and [28].

The majority of the microwave design problems require
CPU-intensive simulations of multiscale and multiphysics
structures, making the simulation time increase even more.
BO is a well-known method for optimizing expensive
black-box functions where a closed-form expression or surro-
gate model is unavailable [29], [30], [31]. The function to be
optimized is treated as a GP where the posterior distribution
of the function is obtained from the prior knowledge using
the previously sampled points as mentioned in (13)—(15). This
GP model is then used with an acquisition function u(x) to
determine the next evaluation point x,4.

There are three commonly used acquisition functions,
namely the probability of improvement (PI), expected
improvement (EI), and upper confidence bound (UCB) given
as follow:

S _ k@) - ¢ 19
o(x)
up; = O(Z) (20)
gt = (u(x) = f* = )®(2) +o(0)$(2) 2D
uycs = pu(x) + Ko (x)
K = /21n(2x M2/ (121)) 22)

where f* is the minimum cost evaluated so far, ¢ is a
hyperparameter, M is the number of function evaluations,
(1 — n) is the probability of zero regret, and ®(-) and ¢(-)
is the cumulative distribution function and probability density
function of the normal distribution, respectively [30], [32]. The
set of input parameters that maximizes u(x) is selected as the
next sampling points, x,;. Since u(x) is no longer a black-
box function, the maximization procedure can be performed
easily. The graphical illustration of BO is shown in Fig. 8.
In summary, BO modifies the original optimization problem
into a series of smaller and easier optimization problems in
an alternate space to enable fast convergence to the optimum
point in the original response surface.

B. BO Applied to Beamformer Design

Consider a patch antenna subarray design optimization
problem. A Butler matrix subarray consisting of four
microstrip antennas is shown in Fig. 9(a) [34]. The Butler
matrix subarray is designed such that every four elements
have eight phase shift combination options controlled by
the phase shifter switch. These switches are implemented
by sending power to the corresponding ports. Each phase
shift combination creates a beam pointing along a certain
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Fig. 9. Microstrip patch antenna beamformer array. (a) Geometrical config-
uration of subarray. (b) Signal flow.

direction. Each subarray along with a power amplifier (PA) is
connected to a beamformer chip, as shown in Fig. 9(b). The
PAs are used to amplify signals while maximizing the power
efficiency. The beamformers provide continuous phase shifts
which are tunable according to the desired beam direction.
Several subarrays as in Fig. 9(b) are connected together to
steer the beam along a 2-D direction.
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The optimization problem can be defined as follow:

/ J (9,1; p)d@d
(CF]

min
p

(23)

where p € RP is the geometrical configuration parameter
vector. In this example, L = 7 represents the number of
geometrical configuration parameters, 8, € R? is the desired
beam direction in spherical coordinates, and ®, is the set
of possible desired beam directions. In (23), J(6,) is the
cost function that captures the performance degradation due
to the radiation toward undesired angles when the desired
beam direction is 6, which needs to be minimized. J(6,; p)
is defined as follow:

maxg,co, |G(O., &, ¥; p)I*
|G (0a, &, ¥ p)I?

where & € CX is the beamformer vector, K is the number of
beamformers (same as the number of subarrays), ¥ indicates
the positions of the phase shifter switches, 6, € R? is the
interference direction in spherical coordinates, ®,. is the set
of interfering directions given 6,, and G(0, &, ¢¥; p) is the
complex response of the antenna along the direction 6 using
beamformers & and phase shifter switches ¥ given as follow:

SO, 8.9 p) = (24)

K
GO:£.9.p) = D gunk(0. ¥y, p)e /O (25)
k=1

(xsub,kc, d9)) 26)

Taubk (0) = —

where gaun.« (0, ¥, p) is the radiation pattern of the kth sub-
array (computed using EM simulators such as Ansys HFSS)
given the subarray structure in (25). In (25), ¥, is the phase
shifter switch of the kth subarray, o« (@) is the time delay
between the signal transmitted from the kth subarray and the
center of the entire array, X« is the position of the center of
the kth subarray, d () is the unit vector of the angle direction
6 transformed to the Cartesian coordinate, and ¢ represents the
speed of light and (-, -) is the standard inner product in R3.

We repose (23) for numerical computations in the form as
follow:

1
in — J(Oy;
min — > J (0 p)

3d€®d

27)

where N is the number of desired beam angle samples in @.
In this example, we apply the same phase shifter switches to
all Butler matrices, and set the switches to maximize the Butler
matrix response along the desired beam direction. In addition,
the beamformers are assumed to compensate for the delays
due to the position difference of the subarrays. In other words

¥100) = ¥20)
= =¥x0)
= V@) (28)
¥l @) = argmax |gan (O Voo ) 29)
Gc(Oa) = e/ mne0), (30)

In our experiment, K is set to 16 corresponding to the
4 by 4 subarrays, N = 19 indicating 5° increment sampling
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TABLE 11
DESIGN PARAMETERS FOR BEAMFORMER ARRAY

Parameters Values

Hand-tuned  Optimized

Patch width w 870 pm 753.4 pm
Patch length l 580 pum 538.6 pm

Cu thickness t 20 pm 20.2 pm

Via diameter d1 75 pm 81.6 um

Via diameter do 160 pum 109.6 pm
Cu-plate hole diameter  da 285 pm 213.8 pm
Pad diameter ds 135 p m 138.8 um

between 0°~90° azimuth while keeping the elevation as 30°,
where UCB is chosen as the acquisition function and the
iteration count is 50. By simply applying BO, the optimized
parameters reduce the cost function significantly. Since the
result of BO depends on the predetermined bound of the search
space, we further modify BO by adopting an adaptive bound
where the bound gradually shrinks as the iteration increases
centering at the latest optima. The adaptive bound can be
defined as follow:

1 1

[” ' ey T 2exp<r/a>} Gh
where p, is the optima obtained so far within 7 iterations, and
o is the hyperparameter representing the negative shrinking
rate of the bound. This helps the algorithm focus on a smaller
region, and center the region around the current optima.
The cost [based on (27)] comparison between the manual
design [34], the design using PSO, the conventional BO,
and the modified BO is shown in Fig. 10 indicating the
advantage obtained using the modified BO. Fig. 11 shows the
comparison between the beam patterns from the optimization
methods described where the mainbeam is pointing toward
6, = [30, 90]. The radiation power is normalized with respect
to the mainbeam of the original design. The result shows
that the power of the mainbeam is increased and the sidelobe
is reduced after optimization. The comparison between the
optimized design and the original hand-tuned design from [34]
is shown in Table II.

C. Deep-PFartitioning Tree BO

In the previous section, a typical BO approach was illus-
trated where the optimization is done on the acquisition
function. When the dimensionality increases manifold, this
optimization process can become computationally expensive
by itself. In addition, a specific acquisition function (EI) was
selected, that may not be the appropriate one if the design
problem changes. In this section, a high-dimensional BO
method is illustrated, called BO with deep partitioning tree
(DPT-BO) [35], which uses an additive GP (ADD-MES-G)
to approximate a high-dimensional objective function. In addi-
tion, the additive structure used preserves the interaction
between parameters to capture various classes of design prob-
lems that can be addressed. This makes the DPT-BO method
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Fig. 10. Cost comparison between the manual design, the design from PSO,
the conventional BO, and modified BO. Manual here refers to the design
process without the use of optimization.
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Fig. 11. Antenna beam pattern comparison.

particularly applicable to high-frequency electronic design
problems.

Preserving such interactions makes the auxiliary optimiza-
tion of acquisition function in BO very challenging. Therefore,
a deep partitioning tree method is used, that completely
eliminates the optimization of the auxiliary function and uses
instead sensitivity of input parameters to determine where
to query the function next. The sensitivities are learned by
utilizing ARD kernels for the GP as described in [35].

As an example, we present an inductive coupling-based
wireless power transfer (WPT) system operating at 1 GHz that
consists of a layout and circuit components. The architecture
of the WPT system is shown in Fig. 12 consisting of embedded
rectangular RF coils connected to transmit (TX) and receive
(RX) matching networks, a full-bridge diode rectifier, and a
buck converter (BC) for DC regulation.

The control parameters for the WPT system are shown in
Table III. The multiobjective optimization problem can be
posed as follow:

fx)= z:,‘3=1wiyi

where y;, y», and y; are the rectifier efficiency (Poy/Pin),
minimum input voltage of the BC, and area of RX coil with
w; =7, wy = —3.5, and w3 = —3 being the corresponding
weights, chosen to prioritize efficiency over area. The data

(32)
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TABLE III
DESIGN PARAMETERS FOR WPT SYSTEM (FI1G. 12)
Parameter Unit Min Max
Inner Height of TX coil 9y, TX mm 1 5
Inner Height of RX coil 9y, RX mm 1 5
Inner Width of TX coil 9z, TX mm 1 5
Inner Width of RX coil 9z, RX mm 1 5
Line Width of TX coil lw, X mm 0.5 3
Line Width of RX coil lw,RX mm 0.5 3
Feeding Gap for TX coil 9f,TX mm 0.5 3
Inner Height of RX coil 9f RX mm 0.5 3
TX Vertical GND Cut-out Ratio sloty Tx 0.8 1.2
RX Vertical GND Cut-out Ratio sloty rx 0.8 1.2
TX Horizontal GND Cut-out Ratio sloty Tx 0.8 1.2
RX Horizontal GND Cut-out Ratio sloty Rx 0.8 1.2
Capacitor I C pF 0.1 10
Capacitor 1T Cy pF 0.1 10
Capacitor IIT C3 pF 0.1 10
Capacitor IV Cy pF 0.1 10
Inductor I L1 nH 0.1 10
Inductor IT Lo nH 0.1 10
Input Power Prr 1N dBm 5 15
Widths of all TLINs wrTris--sTL13 mil 15 45

Differential
Ports

slot, = el

slot,, = 1,1,
‘,

(b) (©)

Diode Bridge Rectifier =
RF Coils for WPT )
1 T2 TL3 | TL4 TL5 TL6  TL7 TL8
RF, L ¢ G lnf
kol g L
L9 TL1O TL11 TL12  TL13 T
DC/DC Regulation
TX Matching Network RX Matching Network (fixed)
(d)
Fig. 12.  (a)—(c) Geometry of the embedded RF coils defined by the control

parameters. (d) Schematic of the WPT-based power delivery architecture [36].

samples are chosen from the output of a EM simulator (Ansys
HESS). The convergence of DPT-BO is compared with ADD-
MES-G (another generic BO method), and PSO along with
the final results in Table IV. From Fig. 13, both DPT-BO
and ADD-MES-G have a sharp convergence over the first
few iterations which is typical of BO type algorithms as
compared to PSO. Due to the customization of the DPT-BO
algorithm to such type of RF problems, the system efficiency

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on March 18,2023 at 05:39:10 UTC from IEEE Xplore. Restrictions apply.



4628

==DPT-BO
——PS0
==ADD-MES-G

250 300

50 100 150 200
Function Queries

Fig. 13. Performance comparison of the proposed algorithm on maximizing
objective function in (32).

TABLE IV
OPTIMIZATION RESULTS FOR WPT SYSTEM

PSO ADD-MES-G DPT-BO
RX Coil Area (mm?)  7.48 19.26 11.04
Rectifier Efficiency 53.25 65.72 66.96
Input Voltage of BC (V)  3.24 2.61 2.72
System Efficiency 45.83 58.86 59.57
AUC (Normalized) 1.50 1.07 1.00

achieved though similar to ADD-MES-G, results in smaller
RX coil area. In comparison, though PSO results in smaller
RX area, the resulting efficiencies are much smaller than
the BO methods. The normalized AUC values show that
DPT-BO converged 1.50 x and 1.07 x faster than PSO and
ADD-MES-G, respectively.

IV. INVERSE DESIGN

The aforementioned ML techniques learn the relationships
between the input and output parameters through a model,
where the output response is predicted given the input para-
meters. Inverse design represents the process of estimating the
input parameters based on a set of desired output parameters.
In this section, we introduce inverse design techniques and
apply them to microwave design.

A. Techniques for Inverse Design

Inverse problems are inherently ill-posed and intractable.
The problem of invertibility poses three questions. 1) Does the
inverse exist? 2) If the inverse exists, is it unique? and 3) Is
the inverse stable? Several architectures have been proposed to
address the problem of invertibility. Inverse methods have been
introduced using space-mapping (SM) [37], where, rather than
apply optimization directly to an expensive high fidelity or fine
model, a low fidelity or coarse model is used to achieve the

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 70, NO. 11, NOVEMBER 2022

same results using information from the coarse model. A lin-
ear inverse SM (LISM) optimization algorithm is described
in [38] for designing microwave circuits in the frequency-
or time-domain transient state. LISM provides a simplified
implementation with respect to the neural inverse SM (NISM)
by approximating the inverse of the mapping function at each
iteration. It continues to state that LISM follows an aggressive
formulation in the sense of not requiring up-front fine model
evaluations. This method has been applied to CMOS drivers to
find the optimal channel widths that result in the desired output
voltage specifications. In [39], Simsek and Sengor propose a
method based on SM with inverse difference (SM-ID) to solve
inverse problems. They modify the SM with difference (SM-
D) method using a well-known feedforward NN structure to
obtain an inverse coarse model, and refine the space mapping
function by building a mapping between the inverse coarse
model output, the inverse coarse model design parameters, and
fine model design parameters. This has been applied to the
shape reconstruction of a conducting cylinder.

Physics-based surrogates exhibit excellent generalization
but require an underlying low-fidelity model which is not
always available or sufficiently reliable [40]. In [41], a ML
surrogate model is introduced for the inverse problem that
relies on the least-squares support vector machine (LS-SVM)
to provide an accurate relationship among the desired eye
features and the geometrical parameters of a high speed link.
In [40], a metamodel-based procedure for design closure
acceleration is presented, involving two kriging interpolation
surrogates: an inverse model that provides a good initial point
for subsequent optimization, which is further augmented by the
Jacobian matrix estimated using the forward model. Pietrenko-
Dabrowska et al. [40] implement this procedure using a com-
pact three-section impedance matching transformer and report
that their approach permits reliable optimization at a low cost
of a few EM simulations of the structure at hand.

In recent years, ANNs have been deployed as an effective
tool for microwave design and modeling problems [42]. The
NN models that have been proposed to solve the inverse
problem fall largely into two categories: 1) evaluating models
iteratively to find the optimal solutions for the specified
output response and 2) training the input and output nodes
by transposing them [42]. In [43], the applicability of NNs in
search of a design solution is proposed by implementing an
optimization routine through a learning process. This method
aims to convert conventional circuit models into NN models
where the method is demonstrated with the design of hetero-
junction bipolar transistor amplifiers with 11 parameters with
the frequency response as the output specification. In [42], the
problem of non-uniqueness in inverse modeling is addressed
through multivalued solutions using adjoint NN derivative
information to separate training data into groups. This inverse
modeling methodology has been applied to waveguide filter
design and validated by comparing the NN solutions with
measurements from the filters. In [44], a lifelong learning
architecture is proposed using deep learning where multiple
predictions and classifications are done jointly and applied
for inverse mapping of transmission line geometries based on
eye characteristics desired. To address the non-uniqueness
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Shuffling
block

Fig. 14.  Architecture of the invertible NN (INN) (X: input, Y: output, Z:
latent variable) [47].

problem of inverse design, a multivalued NN inverse modeling
method is proposed in [45] where the model learns multiple
solutions of geometrical parameters at the output from the
electrical response at the input. The method in [45] uses a
training error function to associate the output—input tuples in
a unique fashion, which is demonstrated on microwave filters.

In addition, the state-of-the-art generative models have been
developed to output posterior conditional distributions instead
of a deterministic design solution. In this section, we provide
cursory look at how we leverage the use of Bayes’ update in
generative modeling for inverse design.

In generative modeling, we utilize the full Bayesian
approach described in (7) by marginalizing (summing) over
parameter 6. Given input x and output y, the full Bayesian
approach is expressed as [46] as follow:

_ p(y,x)
pOylx) = ()

~ Jyp(y,x,0)do
)
_ Sy pOlx,0)p01x) p(x) dO
a p(x)

using the chain rule. Here, (y, x) represents the output-input

data tuple, and 8 represents the set of parameter defining the
relationship between x and y. This leads to [46]

pOyl) = /0 p(y1x.0)p(@]x) do.

(33)

(34)

We adapt some novel approaches in generative modeling from
Bayesian learning, and redefine them here for microwave
design.

B. Invertible NN (INN)

The questions bordering on existence, uniqueness, and sta-
bility of inverse solutions can be addressed in flow-based
generative models, such as the INN [48], [49]. Given a sample
x from design space X and its probability density px(x), the
corresponding y from the response space Y and its unknown
probability density py(y) related through the transformation
Y = f(X), we can form a relationship between their proba-
bility densities through the change-of-variables technique [48],

[50] as follow:
d —l
pr(v10) = px(f; ' () - det(—f; )‘

(35)

4629

@ @ @ @) Element-wise operations

Fig. 15.
tion [48].

Computational graphs for (a) forward and (b) inverse propaga-

where we define all the composition of the INN architecture
in a single function fjy, where @ is the set of all network
parameters. The INNs are made of reversible blocks, and they
can be trained in both directions simultaneously, as shown
in Fig. 14. In addition to the outputs y of the system, a set
of latent variables z can be defined which encode the lost
information in the forward direction. Variables z can be
sampled from a standard normal distribution, which, when
passed through the trained network in the reverse direction,
conditioned on an output y, result in the conditional posterior
distributions p(x|y). The INN is made up of stacks of affine
coupling blocks as shown in Fig. 15. The block’s input vector
is halved into [x;, x»], and they are transformed by an affine
function with coefficients ¢* and ¢, given by [48], [49]

yir =X

y2 = x30e" ) 4 1(x)). (36)

Given the block’s output [y, y2], these expressions are invert-
ible through [48], [49]

X1 = )1

X2 = (y2 —t(y1)) o eV (37)

where (36) represents the forward mapping while (37) repre-
sents the inverse mapping (see Fig. 15 for a graphical illustra-
tion). The use of element-wise additive (4+) and multiplicative
(o) operations allows the inverse of the transformation to be
easily computed without requiring the scale s(-) and shift #(-)
networks to be inverted. The bijectivity of the INN model
allows for bidirectional operation and training, and therefore
both forward and inverse processes can be well learned [51].
The losses in the forward direction are: 1) supervised loss,
which is the mean square error (MSE) between the true
observations and predicted values; 2) unsupervised loss on the
joint distributions of the network outputs and the product of
marginal distributions of the simulation outputs and known
latent distributions; and 3) unsupervised loss on the distribu-
tion of the backward predictions and known prior distribution.
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Fig. 16.  Structure of a second-order SIW filter [52].

TABLE V
SIW FILTER DESIGN SPACE [52]

Parameter Unit Min Max
Slot width ~ wgo  pm 40 120
Slot Depth  dgjot um 150 300

TABLE VI

PERFORMANCE OF INVERSE DESIGN CANDIDATES [52]

Parameter Performance
Wslot dstot .f c Max
pm pm GHz dB/GHz
Design target - - 142 2.6
Candidate 1 51 261 141.4 2.61
Candidate 2 106 176 142.6 2.93
TABLE VII

DESIGN PARAMETERS OF GILBERT CELL MIXER

Parameter Unit Min Max Step
Collector resistor R. Q 50 450 50
Tail resistor Ry Q 20 220 50
Base resistor (top) Ry1 Q 10 160 30

Base resistor (bottom)  Rpo Q 10 90 20
Coupling capacitor Ce n3 0.4 1.2 0.2
Bypass capacitor Ch n3 0.4 1.2 0.2

C. Example 1—Inverse Design of SIW Filters in D-Band

We apply the INN method to a substrate-integrated
waveguide (SIW) filter used in D-band. Here, the geometry
of the structure is shown in Fig. 16, which constitutes a
second-order SIW filter with polymer-coated glass substrate
and has a total thickness of 130 um. Permittivity and loss
tangent of the polymer and the glass material are €, =
(3.2,4.9) and tand = (0.044, 0.0056), respectively. The width
of the filter is 755 wm. The input design space parameters are
the slot width wgo; and slot depth dg, of the feeding structure
as shown in Table V. The output specifications are the center
frequency f. of the passband, and the roll-off which is the
slope of Sy; in dB at lower cut-off frequency where

0521(dB)
ofrequency(GHz)
We construct an INN model using eight reversible blocks

with permutation layers between them. In each reversible
block, the scale s(-) and shift 7(-) networks are made of

roll-off = (38)
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Fig. 17. Predicted conditional posterior distribution of the design parameters
from the trained INN model. Candidate points are marked as red stars [52].
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Fig. 18. Insertion loss for the two candidate designs obtained with INN [52].

fully connected NNs with one hidden layer of 54 neurons
and rectified linear unit (ReLLU) activation functions. For better
modeling capability, the inputs (wgoc and dg) are zero-padded
to 16 dimensions. The output variables consist of the target
characteristics (center frequency and roll-off) and 2-D latent
variables z sampled from a standard normal distribution, and
are zero-padded to 16 dimensions as well. To create the
training data, we randomly generate 150 samples from the
uniform distributions of the input parameters and feed into
an EM solver, Ansys HFSS, for the simulation of the SIW
filter [51]. The INN training takes a few seconds for the
150 samples. For the training samples, f, falls into the range
of 136.8-163.1 GHz, and roll-off falls into the range of 1.51—
5.28 dB/GHz.

The trained model generates joint posterior distributions
of the input design space parameters, as shown in Fig. 17,
for a desired response of f, = 142 GHz and roll-off =
2.6 dB/GHz. We identify multiple candidate design regions.
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TABLE VIII
BAYESIAN LEARNING TABLE

Tasks Base model Bayesian Technique Application
Optimization PSO, DPT-BO GP, acquisition function Buttler matrix [34], Integrated system design [32],
Wireless power transfer [35]
Uncertainty Quantification STCNN GP, Dropout PTH [4]
High-speed channel design [58],
Inverse Design INN Jacobian Update, Normalizing flows Substrate Integrated Waveguide (SIW) filter [51]

Active mixer

To verify our trained model, we pick two candidate designs
that correspond to the peak distribution density points in the
two regions, marked as red stars in Fig. 17. We simulate the
candidate points in Ansys HFSS and display their responses in
Table VI, while their S»; plots are shown in Fig. 18. We find
that design candidate two shows typical characteristics of a
second-order filter, a two-notch passband with the desired
cut-off frequency and roll-off performance. As for design
candidate one, it shows a significantly higher Q-factor and roll-
off performance without any ripples in the passband. These
inverse solutions demonstrate the validity of INN. The two
designs give desired performance: 1) an intuitive solution with
the expected characteristics and impedance matching and 2)
an unintuitive design with a significantly higher Q-factor that
is obtained by changing the input impedance of the SIW.

D. Example 2—Inverse Design of Active Mixer

We further validate the INN method with an inverse design
of active mixer, which is a nonlinear device used for summing
and subtracting frequencies. They are characterized by their
conversion gain or loss and how much noise they introduce
in the circuit. Consequently, accurate nonlinear modeling of
mixers are crucial to getting good performance. Consider the
TAM-81018 Gilbert cell mixer [53], [54], [55], shown in
Fig. 19. The mixer is a down converter, with an RF of 2 GHz
and a 250 MHz IF, operating from a 5 V DC supply. The
objective here is to obtain the mixer design parameters that
satisfy a given specification of gain and noise figure. The
design parameters of the mixer are the passive components
as shown in Fig. 19, and their range of values are given
in Table VII. The target characteristics investigated are the
conversion gain G and the noise figure NF, given as [55],
[56], [57] as follow:

G (dB) = P — Pgr (39)

and
NF = kTBG + NO(mixer)
kTBG

where P and Prp are the powers at the IF and RF ports,
respectively, kT BG and Nomixery are the source noise and
noise added by the mixer (both referred to the IF port),
respectively.

We generate 27000 training samples in a uniform fashion
using keysight ADS [55], and obtain the gain and noise figure

(40)
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Fig. 19. TAM-81018 Gilbert cell mixer schematic [53], [54], [55].

Region of interest
with G = 6.6 dB
and NF < 14.5dB

Conversion Gain, dB

14 15 16 17 18
Noise Figure, dB

Fig. 20. Joint distribution of the conversion gain G and noise figure NF. It is
partitioned into a grid of 4 cells based on the target specification G > 6.6 dB
and NF < 14.5 dB.

for the corresponding mixer configuration. Fig. 20 shows the
joint distribution of the gain and noise figure. The goal of
the mixer design is to meet an arbitrary specification of a
minimum gain of 6.6 dB and a maximum noise figure of
14.5 dB. Based on this desired target, the output space of the
joint distribution of the gain and noise figure can be partitioned
into a grid of smaller cells (four in total), as shown in Fig. 20.
Using one-hot vector, output y can be represented using one of
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Fig. 21. INN model setup for mixer design.
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Fig. 22.  Predicted conditional posterior distributions p(x|yarger = {G =

6.6 dB, NF = 14.5 dB}) of mixer design parameters, when passed through
a smoothing window such as the kernel density estimator [46]. Light green
indicates the actual distributions, light orange indicates the generated INN
distributions, and tan indicates the overlap between the actual and INN
distributions.

four values of a four-bit one-hot vector from the set as follow:

{1000}, G > 6.6 dB and NF < 14.5 dB
{0100}, G > 6.6 dB and NF > 14.5 dB
{0010}, G < 6.6 dB and NF > 14.5 dB
{0001}, G < 6.6 dB and NF < 14.5 dB.

(41)

In this example, the proposed model setup is shown in Fig. 21.
The INN model is constructed using eight reversible blocks
with shuffling layers between them. In each reversible block,
the scale s(-) and shift 7(-) networks are made of fully
connected NNs with one hidden layer of 64 neurons and
ReLU activation functions. On the input side of the model
setup, there are 6 mixer design parameters, zero-padded to ten
dimensions. The output variables consist of the four-bit one-
hot vector [as described in (41)] based on the desired mixer
specifications (G and NF) and 6-D latent variables z sampled
from a standard normal distribution, with no zero-padding.
With this model setup, we train the INN for 300 epochs
with 10 iterations per epoch. During the inference process,
we generate rich conditional posterior distributions of the
mixer design parameters as shown in Fig. 22, which gives
the designer latitude when sampling from the solutions and
also complying with the process rules and other constraints.
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We overlay the INN distributions with the actual distributions
for comparison in Fig. 22. From the figure, we find that there
is good correlation between the actual distributions and the
distributions generated by INN, with the INN revealing some
non-intuitive regions of higher densities.

V. CONCLUSION

As shown through the examples related to microwave design
and analysis, the application of Bayes theorem combined with
ML referred to here as Bayesian learning, provides advantages
and opportunities for both forward and inverse modeling. Since
quantifying uncertainties, high-dimensional optimization, and
inverse problem modeling play an important role in microwave
design, we believe that Bayesian learning has an important
role to play in these areas. We summarize on a task basis,
Bayesian learning scenarios in Table VIII. We enlist the base
models as well as the technique used for approximate or exact
Bayesian inference. We also mention the different applications
where such approaches have been used. Bayesian learning
involves updating the belief based on observed data, which
when combined with ML can provide a powerful framework
for microwave design and optimization.

Besides the illustration of various Bayesian learning scenar-
ios in this work, the authors feel that there is still a long way
to go for improvements in Bayesian learning in the context of
microwave devices, components and integrated systems. This
article highlights some initial work in this area.
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