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ABSTRACT
GitHub, as the largest social coding platform, has attracted an in-

creasing number of cybercriminals to disseminate malware by post-

ing malicious code repositories. To address the imminent problem,

some tools were developed to detect malicious repositories based on

the code content. However, most of them ignore the rich relational

information among repositories and usually require abundant la-

beled data to train the model. To this end, one effective way is to

exploit unlabeled data to pre-train a model which considers both

structural relation and code content of repositories, and further

transfer the pre-trained model to the downstream tasks with labeled

repository data. In this paper, we propose a novel model adversarial
contrastive learning on heterogeneous graph (CLA-HG) to detect

malicious repository in GitHub. First of all, CLA-HG builds a het-

erogeneous graph (HG) to comprehensively model repository data.

Afterwards, to exploit unlabeled information in HG, CLA-HG in-

troduces a dual-stream graph contrastive learning mechanism that

distinguishes both adversarial subgraph pairs and standard sub-

graph pairs to pre-train graph neural networks using unlabeled data.

Finally, the pre-trained model is fine-tuned to the downstream ma-

licious repository detection task enhanced by a knowledge distilla-

tion (KD) module. Extensive experiments on two collected datasets

from GitHub demonstrate the effectiveness of CLA-HG in compar-

ison with state-of-the-art methods and popular commercial anti-

malware products.

CCS CONCEPTS
• Security and privacy→ Social network security and privacy;
• Computing methodologies→ Machine learning algorithms; •
Networks → Online social networks.
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1 INTRODUCTION
As of November 2021, with more than 73 million registered develop-

ers and over 200 million repositories [44], GitHub has become the

largest social coding platform where it enables global developers to

host open-source projects and develop software collaboratively. Due

to high openness and convenience, developers can easily upload and

download public projects for program development. Meanwhile,

GitHub has also attracted an increasing number of cybercriminals

to perform cyberattacks and disseminate malware by aggressively

uploading malicious repositories. Once repositories with malicious

code are downloaded by legitimate developers, the attacked equip-

ment will be infiltrated and compromised, which will cause huge

losses to individuals and organizations. Hence, destroying the dis-

semination of malware is very urgent. To this end, in this paper, we

develop a novel model to detect malicious repositories on GitHub.

To maintain safe and productive social coding platforms, some

methods [8, 28, 32] have been proposed to analyze the malicious ac-

tivities in GitHub. However, these methods merely analyze the code

content but ignore the rich relational information among nodes

in graphs, which is not sufficient enough to address the security

problem in GitHub. For instance, GitHub offers two vulnerabil-

ity detection products LGMT [35] and CodeQL [34] to generate

automatic code vulnerability reports based on the code content.

However, such kinds of security policies are very limited because

tens of thousands of malicious repositories still can be detected.

Although some recent methods [32, 59] have improved the per-

formance in detecting malicious activities, they require a lot of

time and resources to obtain sufficient labeled repository data yet

ignore the valuable and handy unlabeled information. For exam-

ple, SourceFinder [32] labeled almost ten thousand repositories to
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train a supervised classifier but the classification performance is

not promising enough.

Therefore, in this paper, we develop a novel framework called

CLA-HG (Figure 1) which not only considers code content infor-

mation and rich relations in GitHub but also exploits the handy

unlabeled data for malicious repository detection. Specifically, we

first construct a heterogeneous graph (HG) to depict the code con-

tent of repositories and relations among entities (e.g., repository and

user) in GitHub. Instead of directly utilizing graph neural networks

(GNN) to fuse the content information and structural relations, we

develop a self-supervisedmodule to pre-train an expressive GNN en-

coder with unlabeled data. In particular, we introduce a dual-stream

graph contrastive learning mechanism that defines heterogeneous

subgraph pairs discrimination as the contrastive learning task. To

obtain a better pre-trained encoder, we leverage adversarial attacks

to generate more challenging positive and more effective nega-

tive pairs in heterogeneous subgraph contrastive learning. Thus,

our proposed dual-stream graph contrastive learning framework

aims to distinguish adversarial subgraph instance pairs (adversarial

stream) and standard subgraph instance pairs (standard stream).

Finally, the pre-trained model is fine-tuned to the downstream ma-

licious repository detection task, where the optimization process

is further augmented with a knowledge distillation module. To

conclude, the major contributions of our work include:

• To solve the imminent problem of malicious repositories detec-

tion, we develop a novel model called CLA-HG which compre-

hensively models content information and structural relations as

well as unlabeled data in GitHub.

• To the best of our knowledge, CLA-HG is among the earliest work

integrating contrastive learning and adversarial training on graph

to generate challenging samples for representation learning.

• We collect one general dataset from GitHub and conduct compre-

hensive experiments. The results demonstrate the effectiveness

of CLA-HG by comparison with state-of-the-art methods and

commercial anti-malware products.

2 RELATEDWORK
This work is closely related to the studies of graph neural networks,

Contrastive learning on graph, adversarial learning on graph, and

malicious repository detection.

Graph Neural Networks. Our graph repesentation learning is

inspired by graph neural networks (GNNs). Existing GNNs can be

generally divided into two streams, spectral-based GNNs [2, 5, 10]

and spatial-based GNNs [9, 24, 40, 45, 55]. Spectral-based GNNs aim

to present nodes in graph and perform convolution in the spectral

space. For instance, Henaff et al. extended the spectral networks to

learn the node embedding in graph [10]. Spatial-based GNNs usu-

ally consider the relational structure information between nodes

and aggregate the information of nodes based on the local struc-

tural information. For example, GCN [18] implements layer-wise

propagation rule to learn the node embedding. In this paper, we

employ GCN as our base model to learn the node representation.

Contrastive Learning on Graph. Existing contrastive learning
on graph models [31, 37, 46, 52, 53, 62] usually train an encoder to

learn the graph representation by discriminating positive pairs and

negative pairs (e.g., subgraph) generated from graph. For instance,

GCC [31] proposes the subgraph instance discrimination as the

contrastive learning task to learn the graph representation. In addi-

tion, GraphCL [52] introduces four types of graph augmentations to

generate graphs in different views to conduct contrastive learning.

In heterogeneous domain, HeCo [43] employs a cross-view (schema

view and meta-path view) contrastive mechanism to learn node

embedding. The performance of graph contrastive learning relies

heavily on the quality of positive pairs and negative pairs instances.

Hence, to compensate for the above limitation, we aim to devise a

graph contrastive learing framework by generating more effective

positive pairs and challenging negative pairs.

Adversarial Learning on Graph. Motivated by the strength of

adversarial learning on image and text, some recent works have

started to study adversarial learning on graphs to enhance the net-

work robustness in supervised learning [14, 58, 60]. For instance,

Zhang et al. proposed GNNGUARD which absorbs the adversarial

perturbations using Gaussian distributions as node representations

in each layer of the network [58]. Recently, some works [15, 52]

extend to improve the model robustness with adversarial transfor-

mations during self-supervised learning. For instance, GROC [15]

aims to build a contrastive learning algorithm with adversarial

attacks to improve the network robustness. In addition, some re-

cent works implement adversarial attacks to generate powerful

contrastive pairs for graph contrastive leanrning. For examples,

GASSL [50] leverages adversarial attacks to inject perturbations to

graph features for generating more challenging contrastive pairs,

and further train the graph encoder. AD-GCL considers adversarial

attacks as a graph augmentation strategy to automatically learn

useful data augmentations for graph dataset. However, the afore-

mentioned works focus on homogeneous graphs and ignore the

heterogeneity property in HG. In addition, existing works directly

apply adversarial attacks to graph may be too risky and overloaded

for graph encoders. Accordingly, we leverage adversarial attacks

to generate more challenging positive and negative pairs for het-

erogeneous graph contrastive learning. To alleviate the workload

of graph encoder, we propose dual-stream heterogeneous graph

contrastive learning to train graph encoders over both adversarial

subgraph instance pairs and standard subgraph instance pairs.

Malicious Repository Detection. Most existing studies about

malicious repository detection mainly focus on analyzing the code

content [8, 32, 51]. For example, La et al. [19] analyzed the content

information of PE file in repository to detect malicious reposito-

ries in GitHub. However, these methods ignore the rich relational

structure information among entities in social coding platforms.

Besides, some existing works focus on collecting and utilizing la-

beled data but ignore the valuable unlabeled information [29, 59].

For instance, GitCyber [59] integrates both code-based content and

relational structure information in GitHub but ignores the valuable

unlabeled information among collected data. Unlike existing works,

we aim to integrate relational structural information, code content,

and unlabeled data to detect malicious repositories in social coding

platforms.
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Figure 1: The overall framework of CLA-HG: (a) It defines five types of entities and six kinds of relationships among entities;
(b)Then it constructs a HG based on the graph schema to depict data in GitHub; (c) Afterwards, it employs adversarial attacks
to sample adversarial heterogeneous subgraphs for generating more challenging positive and negative pairs and further train
GCN via optimizing standard-stream and adversarial-stream contrastive losses. (d) The pre-trained model 𝑓 ∗ (·) from (c) is
fine-tuned to the downstream task with labeled repository data and the optimization process is augmented by a knowledge
distillation module.

3 PRELIMINARY
In this section, we introduce three related definitions of this paper

(i.e., heterogeneous graph, meta-path, graph convolutional net-

works, and adversarial training) and further define the problem of

malicious repository detection.

Definition 3.1. Heterogeneous Graph. To comprehensively de-

pict the repository data, we build a heterogeneous graph (HG) [20,

21, 49], 𝐺 = (V, E,X), where V is the set of different types of

nodes, E ⊆ V × V is the set of edges, and X is the attributed

feature set. They are associated with a node type mapping function

𝜙 : V → T and an edge type mapping function 𝜙 : E → R, where

T and R is the set of node types and the set of relation types with

|T | + |R| > 2. The graph schema for 𝐺 is a graph with nodes from

V and edges from E. As we can see from Figure 1.(a), there are five

types of nodes (i.e., repository, user, keyword, file, and filetype) and

six types of relations (e.g., repository-contain-keyword) in HG.

Definition 3.2. Meta-Path. A meta-path [56, 57] P is a path

defined on the graph schema, which is denoted in the form of

𝑇1
𝑅1−−→ 𝑇2

𝑅2−−→ ...
𝑅𝐿−−→ 𝑇𝐿+1 where 𝑅 = 𝑅1 · 𝑅2 · . . . · 𝑅𝐿 (𝑇𝑖 ∈ T ) is

the composite relation between node types 𝑇1 and 𝑇𝐿+1, and 𝐿 is

the length of P. Figure 1.(b) shows three meta-paths (i.e., 𝑃1, 𝑃2,

𝑃3) manually defined by semantic relations among different types

of entities based on domain knowledge.

Definition 3.3. Graph Convolutional Network.As GCN [18] is

powerful to learn node representation by considering both structure

of graph 𝐺 and node features X, we employ GCN as the encoder

in this paper. It is a layer-wise propagation rule-based model to

learn the node embedding ℎ𝑖 ∈ R𝑑 (𝑑 : embedding dimension) cor-

responding to repository node 𝑣𝑖 . In particular, GCN is formulated

as follows:

𝐻 𝑙+1 = 𝜎 (𝐴𝐻 𝑙𝑊 𝑙 ), (1)

where 𝐻 𝑙+1
denotes the node representations at 𝑙 + 1 layer and

𝐻0 = 𝑋 represents the original attribute feature of the node. 𝐴 is a

symmetric normalization of 𝐴 with self-loop, i.e., 𝐴 = 𝐷̂− 1

2𝐴𝐷̂− 1

2

with 𝐴 = 𝐴 + 𝐼𝑁 . 𝐴, 𝐼𝑁 , 𝐷̂ are the adjacency matrix, the identity

matrix, and the diagonal node degree matrix of 𝐴 respectively.𝑊 𝑙

denotes the weight matrix at 𝑙-th layer, and 𝜎 is the activation

function. For simplicity, we use h = GCN(𝑋,𝐴) to denote the GCN
model and h is the node embedding.

Definition 3.4. Adversarial Training. Inspired by the power of

adversarial training, we aim to utilize adversarial perturbation to

facilitate the contrastive learning by generating more challenging

positive pairs and negative pairs, which is formulated as:

𝛿 = argmax

∥𝛿 ′ ∥∞≤𝜖

𝐿(𝜃, 𝑋 + 𝛿 ′), (2)

where𝛿 is the adversarial perturbation,𝑋 is the node feature,𝜃 is the

model parameters and 𝐿 is the loss with parameter 𝜃 . Adversarial

training tries to solve the following optimization problem:

min

𝜃
E (𝐿(𝜃, 𝑋 + 𝛿)) . (3)

Problem 1. Malicious Repository Detection. Given a HG 𝐺 =

(V, E,X) along with repository labels 𝑌 = (𝑦1, . . . , 𝑦𝑁 ) (𝑦𝑖 = 1

means malicious and 𝑦𝑖 = 0 means benign), we aim to build a self-
supervised learning model over unlabeled data, which can be fine-
tuned to the downstream malicious repositories detection task with
labeled data.
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4 METHODOLOGY
In this section, we present the details of CLA-HG (Figure 1) which

includes three key steps: (1) heterogeneous graph construction on

GitHub data (Figure 1.(b)); (2) adversarial heterogeneous graph

contrastive leaning for model pre-training (Figure 1.(c)); (3) model

fine-tuning with knowledge distillation (Figure 1.(d)).

4.1 Heterogeneous Graph Construction
To identify whether a repository in GitHub is malicious or benign,

we consider both the semantic content of repositories and the rich

relations among entities for characterizing repositories comprehen-

sively. The content-based features and rich structural relations are

described below.

4.1.1 Content-based Features. For each repository, we extract five

related elements (considered as five types of entities in HG), includ-

ing repository content, corresponding user profile, keywords in the

repository, file, and file type, to effectively describe the repository.

To obtain the feature vector of repository, we extract and combine

the information of introduction and description, and then apply

BERT [6] to convert the text information to a fixed-length feature

vector. For the corresponding user, we extract the user profile and

also convert it to a feature vector. Besides, each repository has

several files and each file has the corresponding file type (e.g., .exe,

.C, and .java). Hence, we encode the file name and the type of file

as the feature vector of file and file type, respectively. To obtain

the keyword feature vector, we first extract a set of keywords from

all repositories and implement CHI statistic [54] to select effective

keywords by considering the level of independence among key-

words and the class label. To conclude, we acquire 30,000 effective

keywords for GitHub-Malware dataset and 52,530 effective key-

words for GitHub-Corona dataset (introduced in Section 5.1). After

keyword extraction, each selected keyword is considered as a node

in HG and we implement BERT to acquire the feature vectors.

4.1.2 Relations. Besides extracting the content information of each

entity, we also consider the rich relations among different types

of entities, which is also very essential to judge the legitimacy

of repositories: (1) R1: the user-own-repository relation indicates

that a user owns or has contribution to a repository; (2) R2: the
repository-contain-keyword relation denotes that a repository con-

tains a specific keyword; (3) R3: the repository-have-filetype rela-
tion shows that a file in a repository has a specific file type; (4)

R4: the repository-include-file relation indicates that a repository

includes a specific file; (5) R5: the file-belong-filetype relation de-

picts that a file belongs to a specific file type. (6) R6: the file-hold-
keyword relation denotes that a file holds a specific keyword; To

better describe the relatedness over repositories, we manually de-

fine three meta-paths (i.e., 𝑃1, 𝑃2, 𝑃3 in Figure 1) to extract the

rich connection among different type of entities. For example, 𝑃1:

repository

𝑅2−−→ keyword

𝑅−1
2−−−→ repository denotes two repositories

are connected if they contain the same keyword.

To summarize, as the graph schema shown (Figure 1), we build

a HG by integrating both semantic content of repositories and rich

structure relation among different entities (i.e., R1-R6 among five

types of nodes). Each entity is attached with the feature vector.

Table 1: Content and relation information from GitHub.

Content Feature

Repository title, topic, program language, read.me

User user name, bio info, bio description

Keyword keyword extracted from code files

File filename, file description, SHA-1

File type types of files (e.g., exe file, C file, and java file)

Relation

R1: user-own-repository R2: repository-contain-keyword

R3: repository-have-filetype R4: repository-include-file

R5: file-belong-filetype R6: file-hold-keyword

4.2 Adversarial Heterogeneous Graph
Contrastive Learning

Motivated by the recent success of graph contrastive learning [31,

52] which implements different data augmentations to generate

contrastive instances, we propose a novel heterogeneous graph

contrastive learning model with adversarial perturbation to gen-

erate more challenging positive pairs and negative pairs so that

we can obtain a better pre-trained model for node representations.

As shown in Figure 1.(c), CLA-HG has four consecutive compo-

nents: adversarial heterogeneous subgraph sampling, adversarial

subgraph encoding, embedding projection, and dual-stream graph

contrastive learning.

Adversarial Heterogeneous Subgraph Sampling.Most existing

graph contrastive learning methods employ random walk, node

dropping, and edge dropping/adding to sample subgraphs [31, 52].

However, these methods ignore the rich heterogeneous structural

relations in HG. To this end, we propose a hybrid strategy to sample

heterogeneous subgraphs by considering the rich heterogeneous

structure information. Specifically, given a set of root nodes S𝑞
and meta-paths set P, we aim to generate heterogeneous subgraph

𝐺P
𝑞 = (V𝑞, E𝑞,X𝑞), where V𝑞 is the node set of S𝑞 including all

𝑚-hop node neighbors; E𝑞 ⊆ V𝑞 × V𝑞 is the edge set; X𝑞 is the

attribute feature set of all nodes in V𝑞 . For each node 𝑣𝑖 in S𝑞 , we
employ random walk with restarted guided by P and obtained a

set of nodes 𝑆P
𝑖
. After that, we adopt a hybrid sampling strategy to

sample fixed-size neighbors. If the neighbor number of node 𝑣𝑖 in

𝑆P
𝑖

is less than the fixed-size number, we first sample neighbors in

𝑆P
𝑖

without replacement and then sample neighbors out of 𝑆P
𝑖
. Oth-

erwise, we only sample neighbors in 𝑆P
𝑖

to generate heterogeneous

subgraphs. By repeating the previous two steps, we obtain a pair of

heterogeneous subgraph instance (𝐺P
𝑞 ,𝐺P

𝑘
) which can be regarded

as a similar pair if they are generated by the same root nodes (

S𝑞 = S𝑘 ). Otherwise they are considered as dissimilar instance pair

(S𝑞 ≠ S𝑘 ).
In order to generate more challenging positive pairs and negative

pairs for the above graph contrastive learning task, we propose

to perform adversarial attacks to subgraph pairs. For each sub-

graph pair (𝐺P
𝑞 ,𝐺P

𝑘
), based on Eqution 2, we first generate (𝛿𝑞, 𝛿𝑘 )

as adversarial perturbations for the attribute feature (𝑋𝑞, 𝑋𝑘 ) of
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subgraph pair, using the PGD attack algorithm [23]. Then the ad-

versarial subgraph pair can be denoted as (𝐺P
𝑞 ,𝐺P

𝑘
), where 𝐺P

𝑞 =

(V𝑞, E𝑞,X𝑞 + 𝛿𝑞) and 𝐺P
𝑘

= (V𝑘 , E𝑘 ,X𝑘 + 𝛿𝑘 ).

Adversarial Subgraph Encoding. Given a set of sampled ad-

versarial subgraphs, CLA-HG aims to train an encoder 𝑓 (·) to learn
the representation of subgraphs. In this paper, we apply GCN to

learn node embeddings:

h̃ = GCN(𝑔(𝑋 + 𝛿), 𝐴) = 𝐴 ReLU (𝐴(𝑋 + 𝛿)𝑊𝑇 𝑊
0)𝑊 1, (4)

where 𝑔(𝑋 ) = (𝑋 +𝛿)𝑊𝑇 is the function to transform the feature of

different types of nodes in 𝐺P
to a common space; After obtaining

node embeddings, we employ a READOUT layer to get the graph

embedding for 𝐺P
:

H̃ = READOUT(𝐺P ) =
∑︁

𝑣𝑖 ∈V′
h̃𝑖 , (5)

where V′
is the node set of 𝐺P

.

Projection. After obtaining the embeddings of adversarial sub-

graphs, we aim to apply the nonlinear projection heads to convert

all subgraph embeddings to a same space for comparison. The

projection heads can be formally defined as follows:

Z̃ = MLP(H̃) . (6)

Dual-stream Graph Contrastive Learning. Inspired by Sim-

CLR [3], we define the discrimination of adversarial heterogeneous

subgraphs as the contrastive learning task which maximizes the

agreements among adversarial subgraph pairs. Specifically, in each

epoch, we first randomly sample a mini-batch of 𝑛 subgraphs and

each subgraph is generated by different root node sets S. We then

randomly sample another mini-batch of 𝑛 subgraphs with the same

set of root nodes as the previous mini-batch. Two subgraphs with

the same root node set can be regarded as positive pair (similar pair)

while other 2(𝑛 − 1) subgraph pairs are treated as negative pairs

(dissimilar pairs). Afterwards, we inject adversarial perturbations 𝛿

into each subgraph. The contrastive loss on adversarial subgraph

contrastive learning can be formulated as:

Ladv

cl
=

1

2𝑛

𝑛∑︁
𝑝=1

[𝐿(G̃P
2𝑝−1, G̃

P
2𝑝 ) + 𝐿(G̃P

2𝑝 , G̃
P
2𝑝−1)], (7)

𝐿(G̃P
𝑞 , G̃P

𝑘
) = −log

exp(sim(Z̃𝑞, Z̃𝑘 )/𝜏)∑
2𝑛
𝑝=1 1[𝑝≠𝑞 ]exp(sim(Z̃𝑞, Z̃𝑝 )/𝜏)

, (8)

where G̃P
𝑞 and G̃P

𝑘
are in different mini-batchs, sim(Z̃𝑞, Z̃𝑘 ) is the

cosine similarity between the projected embedding of (G̃P
𝑞 , G̃P

𝑘
), 𝜏

is the temperature parameter, and 1[𝑝≠𝑞 ] ∈ (0, 1) is an indicator

function, 1 = 1 when 𝑝 ≠ 𝑞 otherwise 1 = 0.

However, performing two different attacks to subgraphs in each

pair is too challenging for the encoder 𝑓 (·) to learn useful rep-

resentation in contrastive learning. In this case, to alleviate the

encoder’s workload against adversarial attacks, we introduce a

dual-stream graph contrastive learning mechanism that integrates

graph contrastive learning on both adversarial subgraph pairs and

standard subgraph pairs without adversarial attacks. Accordingly,

the dual-stream contrastive loss L
dual

includes the contrastive loss

term Ladv

cl
on adversarial subgraph pairs (adversarial-stream) and

another contrastive loss term L
cl
on standard subgraphs (standard-

stream):

L
dual

= 𝜆𝑎𝑑𝑣 Ladv

cl
+ L

cl
, (9)

where 𝜆𝑎𝑑𝑣 is the trade-off hyper-parameters to control the influ-

ence of adversarial attacks. Note that both adversarial branch and

standard branch share all weights in encoder 𝑓 (·).

4.3 Model Fine-tuning
By performing sufficient steps in heterogeneous subgraph con-

trastive training, we obtain a pre-trained graph encoder 𝑓 (·)∗ to
learn the node representation in HG. Different from most exist-

ing methods that directly transfer the pre-trained encoder 𝑓 (·)∗ to
downstream model [12, 13, 22], we are expired by these works [4,

30, 61] that distills the pre-trained model over unlabeled data can

gain some useful information to downstream tasks. Hence, we

further introduce the knowledge distillation technique (KD) that

distills the unlabeled information (a.k.a. “soft” knowledge) from

pre-trained encoder 𝑓 ∗ (·) (teacher model) and further transfer the

soft knowledge to another model (student model). By mimicking

teacher model, student model is able to learn more soft knowledge

from unlabeled data which cannot be expressed by the labeled

data [4, 47]. In particular, we introduce two types of knowledge

distillation (i.e., individual and relational knowledge distillation)

for model fine-tuning.

4.3.1 Individual Knowledge Distillation. Individual knowledge usu-
ally refers to the individual output of the network layers (intermedi-

ate layer or last layer of network). The idea of individual knowledge

distillation (IKD) is that student model aims to mimic the individual

output information of teacher model [41]. In this paper, we define

the individual knowledge as the probability of malicious reposi-

tory. Specifically, we minimize the following individual knowledge

distillation loss between teacher model and student model:

L
kd-I

= −𝑡2
∑︁
𝑖

1∑︁
𝑐=0

𝑃𝑇𝑐 (𝑧𝑖 , 𝑡)log𝑃𝑆𝑐 (𝑧𝑖 , 𝑡), (10)

where 𝑃𝑐 (𝑧𝑖 , 𝑡) = exp(𝑧𝑖/𝑡)/
∑
𝑐 exp(𝑧𝑖/𝑡). 𝑧𝑖 = logit(h𝑖 ) denotes

the logits of node embedding; 𝑐 is the label of repository node; 𝑡 is

the temperature index to soften the peaky softmax function. The

teacher model producing 𝑃𝑇𝑐 (𝑧𝑖 , 𝑡) is fixed during the distillation

process while the student model producing 𝑃𝑆𝑐 (𝑧𝑖 , 𝑡) is trained.

4.3.2 Relational Knowledge Distillation. Relational knowledge dis-
tillation (RKD) aims to distill the mutual relation within the output

embedding generated by teacher model and further transfer such re-

lational knowledge to student model [26]. Different from individual

knowledge distillation, it computes a relational potential function 𝜙

and then encourages student model to learn the relational function

𝜙 among repository embedding obtained from teacher model. In

this paper, we consider the distance-wise relations as the potential

function 𝜙 and calculate the Euclidean distance among repository

data in the embedding space. Specifically, we minimize the follow-

ing relational knowledge distillation loss:

L
kd-R

=
∑︁

(𝑣𝑖 ,𝑣𝑜 ∈G)
𝐿ℎ (𝜙𝑇 (h𝑖 ,h𝑜 ), 𝜙𝑆 (h𝑖 ,h𝑜 )), (11)
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where 𝜙 (h𝑖 ,h𝑜 ) = 1

𝑢 | |h𝑖 − h𝑜 | |2, 𝑢 is the normalization factor for

distance, 𝐿ℎ is the loss that penalizes difference between teacher

and student model. In this paper, we use the Huber loss to penalize

the difference:

𝐿ℎ (𝑎, 𝑏) =
{

1

2
(𝑎 − 𝑏)2 |𝑎 − 𝑏 | ≤ 𝛼

|𝑎 − 𝑏 | − 1

2
otherwise.

(12)

𝛼 is the controlled hyper-parameter.

4.3.3 Fine-tuning with Knowledge Distillation. Finally, we combine

the knowledge distillation loss L
kd

and the malicious repository

detection loss (i.e., cross-entropy) Lce to fine-tune the model:

L
total

= Lce + 𝜆𝑘𝑑Lkd
. (13)

where L
kd

= L
kd-I

if we transfer the individual knowledge to

student model, otherwise L
kd

= L
kd-R

. 𝜆𝑘𝑑 is the trade-off weight

for balancing two losses. Note that student model has the same

structure as the teacher model in this paper. The pseudo-code of

CLA-HG is provided in Algorithm 1:

Algorithm 1: Training Procedure of CLA-HG

Data: Heterogeneous graph 𝐺 , Network backbone 𝑓 (·)
Result: Repository report (malicious or benign)

1 for each epoch do
2 Sample batch-size sets of root nodes and employ

random walk guided by meta-path P for root nodes.

3 Implement hybrid strategy to sample neighbors and

generate batch-size pairs of heterogeneous subgraphs

(𝐺P
𝑞 ,𝐺P

𝑘
).

4 Initialize the perturbation (𝛿𝑞, 𝛿𝑘 ) and generate the

corresponding adversarial subgraph pairs (𝐺P
𝑞 ,𝐺P

𝑘
).

5 Apply 𝑓 (·) to get the node embedding h and h̃.
6 Employ READOUT layer to obtain the subgraph

embedding H and H̃ for 𝐺P
and 𝐺P

respectively.

7 Apply projection heads to project H̃ to Z̃.
8 Optimize 𝑓 (·) by minimizing L

dual
in Eq. 9.

9 return 𝑓 ∗ (·).
10 Distill “soft” information from pre-trained encoder 𝑓 ∗ (·).
11 Fine-tune 𝑓 ∗ (·) by minimizing L

total
in Eq. 13.

5 EXPERIMENTS
In this section, we introduce two datasets collected from GitHub.

Then we conduct extensive experiments to evaluate the perfor-

mance of CLA-HG. Afterwards, we conduct additional experiments

to analyze the effectiveness of each model component, the success

of CLA-HG by comparison with commercial anti-malware products,

the visualizations of repository representations, and the analysis of

hyper-parameters sensitivity.

5.1 Data Collection
In this paper, we leverage two real-world datasets from Github,

i.e., GitHub-Malware (collected by this work) and GitHub-Corona

(provided by Meta-AHIN [29]) to evaluate CLA-HG.

GitHub-Malware Dataset. Based on a set of malicious related key-

words (e.g., spy, mine, and bitcoin), we crawl the repository dataset

published from Jan 2021 to Jun 2021, and obtain 8,260 repositories

and 7,110 profiles of developers in GitHub. To obtain the ground

truth of repository data, we closely follow the two-step mechanism

provided by Meta-AHIN [29]. Specifically, we first employ VirusTo-

tal [1] including over 70 anti-malware scanning tools to validate

the legitimacy of repositories. We also remove oversize repositories

due to the limitation of file size in VirusTotal (i.e., 200 MB). Based

on the scanned report from VirusTotal, we then ask anti-malware

experts to further analyze suspected repositories with less than 5

malicious reports from VirusTotal. To conclude, we get the final

labeled data including 3,956 malicious repositories and 4,304 benign

repositories. According to the designed graph schema illustrated in

Figure 1, the constructed HG has 55,392 nodes (i.e., 8,260 repository

nodes, 7,110 user nodes, 30,000 keyword nodes, 9,283 file nodes,

739 file type nodes) and 4,467,759 edges including relation R1-R6.

GitHub-CoronaDataset.This data is provided byMeta-AHIN [29]

which aims to analyze the malicious repository in GitHub during

the pandemic. The provided dataset was collected based on a set of

COVID-19 related keywords (e.g., coronavirus, pandemic, and vac-

cine) from Feb 2020 to Dec 2020. To conclude, the GitHub-Corona

Dataset has 20,895 repositories including 6,965 malicious reposito-

ries and 13,930 benign repositories related to 18,785 users. Moreover,

the constructed HG based on COVID-19 related data has 176,035

nodes (i.e., 20,895 repository nodes, 18,785 user nodes, 52,530 key-

word nodes, 82,451 file nodes, 1,374 file type nodes) and 5,127,956

edges including relation R1-R6. Note that, as we also consider the

type of file as node type in this work, the number of nodes and

edegs is slightly different from Meta-AHIN.

5.2 Baseline Methods
To comprehensively evaluate our model CLA-HG, we compare

CLA-HG with seventeen baseline models which are divided into

four groups: feature-based models (G1), graph-based models (G2),

malicious repository detection methods (G3), and graph contrastive

learning models (G4).

Feature-based models. We extract a set of effective keywords for

each repository and then feed the combined keywords to BERT to

get the repository embedding. We then feed the repository embed-

ding to Logistic regression (LR) [11] or a 2-layer DNN [36] to detect

malicious repository.

Graph-based models. We implement seven graph learning meth-

ods to learn the node representation in graph, and further feed

the node embedding into a 2-layer MLP to detect malicious repos-

itory. Specifically, we first employ DeepWalk [27] to learn node

embedding (ignoring the heterogeneous property and attribute

information) by modeling structure proximity. The length of the

random walk for each node is set as 40. Also, we implement metap-

ath2vec [7] to learn the semantic information of two defined meta-

paths [38] (𝑃1 and 𝑃2) in this application. The walk length of each

node is set as 40 as well. In addition, we also implement five graph

neural network based representation learning models including

GCN [18], GAT [40], GIN [48], R-GCN [33], and HAN [42] to learn

the node embedding by leveraging both node feature and graph
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Table 2: Performance comparison of all methods with different percentages of training data.

Setting

GitHub-Malware GitHub-Corona

20% 50% 80% 20% 50% 80%

Group Model ACC REC ACC REC ACC REC ACC REC ACC REC ACC REC

G1

Feature+LR [11] 0.6483 0.6521 0.7155 0.7175 0.7520 0.7538 0.6368 0.6412 0.7005 0.7016 0.7424 0.7435

Feature+MLP [36] 0.6665 0.6753 0.7354 0.7366 0.7620 0.7714 0.6426 0.6484 0.7138 0.7125 0.7518 0.7525

G2

Deepwalk [27] 0.7492 0.7503 0.7757 0.7835 0.7811 0.7952 0.7256 0.7266 0.7546 0.7602 0.7723 0.7712

metapath2vec [7] 0.7539 0.7675 0.7832 0.7925 0.7957 0.8013 0.7388 0.7396 0.7664 0.7687 0.7858 0.7904

GCN [18] 0.7682 0.7730 0.7865 0.7995 0.8058 0.8053 0.7378 0.7355 0.7672 0.7692 0.7895 0.7918

GAT [40] 0.7630 0.7755 0.7825 0.7968 0.8045 0.8074 0.7358 0.7386 0.7652 0.7672 0.7992 0.7935

GIN [48] 0.7726 0.7768 0.7920 0.7934 0.8126 0.8135 0.7425 0.7409 0.7738 0.7682 0.7945 0.7925

R-GCN [33] 0.7841 0.7852 0.8015 0.8053 0.8221 0.8269 0.7687 0.7635 0.7892 0.7826 0.7997 0.7913

HAN [42] 0.7889 0.7810 0.8079 0.8002 0.8235 0.8258 0.7698 0.7653 0.7899 0.7833 0.7931 0.7959

G3

SourceFinder [32] 0.6866 0.6725 0.7510 0.7446 0.7698 0.7571 0.6554 0.6583 0.7268 0.7315 0.7627 0.7566

GitCyber [59] 0.7715 0.7668 0.7876 0.7889 0.8005 0.8066 0.7469 0.7402 0.7685 0.7632 0.7813 0.7887

Meta-AHIN [29] 0.8159 0.8163 0.8504 0.8417 0.8613 0.8624 0.7902 0.7953 0.8061 0.8124 0.8247 0.8305

G4

GCC [31] 0.8053 0.7982 0.8387 0.8341 0.8523 0.8506 0.7825 0.7853 0.7936 0.8016 0.8125 0.8238

GraphCL [52] 0.8123 0.8051 0.8405 0.8391 0.8582 0.8604 0.7895 0.7935 0.7955 0.8093 0.8182 0.8296

HeCo [43] 0.8215 0.8234 0.8524 0.8518 0.8634 0.8657 0.8051 0.8024 0.8135 0.8194 0.8324 0.8345

GASSL [50] 0.8173 0.8141 0.8562 0.8554 0.8641 0.8634 0.7997 0.7995 0.8104 0.8121 0.8237 0.8321

AD-GCL [39] 0.8145 0.8114 0.8578 0.8575 0.8687 0.8698 0.8005 0.8017 0.8155 0.8203 0.8385 0.8387

Ours

CLA-HG (IKD) 0.8501 0.8524 0.8791 0.8924 0.8954 0.8947 0.8251 0.8302 0.8465 0.8493 0.8617 0.8654

CLA-HG (RKD) 0.8537 0.8567 0.8769 0.8855 0.9023 0.9017 0.8284 0.8336 0.8425 0.8453 0.8667 0.8705

Figure 2: Visualization of repository embedding generated by (AD-GCL, CLA-HG) on GitHub-Malware and (HeCo, CLA-HG) on
GitHub-Corona.

structure. In particular, for HAN, we implement HAN by two de-

fined meta-paths (i.e., 𝑃1 and 𝑃2) to learn the attention-based node

embedding. Similar to G1, we feed the learned repository embed-

ding to a 2-layer DNN classifier to detect malicious repositories.

Malicious repository detection methods. We reproduce three

existing methods that are designed to detect malicious repositories,

i.e., GitCyber [59], SourceFinder [32], and Meta-AHIN [29]. Based

on the setting of GitCyber, we build a DNN classifier guided by two

defined meta-paths on HG to detect malicious repositories. Simi-

lar to the setting of SourceFinder [32], we utilize the pre-trained

model word2vec [25] to get the embedding for each repository and

feed it to a Multinomial Naive Bayes [16] for malicious repository

detection. In addition, as the GitHub-Corona dataset is provided

by [29], we closely follow the settings in [29] to learn repository

representations via a meta-learning framework and further predict

the malicious score of repositories.

Graph contrastive learning models. We reproduce GCC [31],

GraphCL [52], and HeCo [43] based on their source code. For GCC,

we implement GIN as the graph encoder and adopt an end-to-end

strategy to build the subgraph dictionary (with size 1023) in con-

trastive learning. For GraphCL, we adopt edges perturbation and

edges masking as graph augmentation methods and GCN as graph

encoder to conduct contrastive learning. For HeCo, we leverage two

meta-paths (i.e., 𝑃1 and 𝑃2) to closely follow the setting and conduct

node-view and meta-path view contrastive learning. We also repro-

duce two works about graph contrastive learning with adversarial

augmentations, i.e., GASSL [50] and AD-GCL [39]. For GASSL, we

automatically generate challenging views by adding perturbations
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to our graph features and adversarially train the graph encoder. We

finally reproduce AD-GCL by leveraging the adversarial attacks as

the graph augmentation method to generate contrastive pairs for

graph contrastive learning.

5.3 Experimental Setup
To evaluate the performance of CLA-HG and baseline methods, we

adopt two widely-used metrics: accuracy showing the percent of

repositories being classified correctly (ACC) and recall score show-

ing the percent of malicious repositories being detected successfully

(REC). We conduct 10-fold cross-validation for all models to get

the averaged results. Experiments are conducted under the envi-

ronment of the Ubuntu 16.04 OS, plus Intel i9-9900k CPU, GeForce

GTX 2080 Ti Graphics Cards, and 64 GB of RAM. We employ a

2-layer GCN with weight decay 1e-5 as encoder and the dimen-

sion of repository embedding generated by encoder is 200. We

use Adam [17] optimizer with learning rate 0.001. For dual-stream

graph contrastive learning, we sample 2-hop (𝑚 = 2) subgraphs and

the fixed-size numbers of neighbor is set as 10 for the first hop and

5 for the second hop. The temperature parameter 𝜏 is set as 0.5. The

adversarial hyper-parameter 𝜆𝑎𝑑𝑣 is set as 0.5. During fine-tuning,

we set the temperature parameter 𝑡 in IKD as 10, 𝛼 in RKD as 0.6,

and the trade-off weight 𝜆𝑘𝑑 is set as 0.5. Our source code will be

available upon publication.

5.4 Performance Comparison
Table 2 shows the performances of all models on two datasets and

the best performance are highlighted in bold and the best baseline

results are emphasized by underline. All results listed in the table

are the average results of ten runs. The percentage number shows

the ratio of training data used for model training while the rest

data is used for model validation (10%) and testing. According to

the table, we can conclude that: (i) By comparison with G1, G2,

and G3, we can find that relations among entities can improve the

model performance of repository classification. Merely considering

code-based content is not supportive enough to detect malicious

repository. In addition, we can also get the conclusionwhen compar-

ing SourceFiner with GitCyber and Meta-HG in G3. Both GitCyber

and Meta-AHIN have better performance than that of SourceFiner

as they consider both the content information and relationships

of repositories. (ii) By comparison with G2 and G4, we see that

unlabeled data contributes greatly when we exploit unlabeled data

to train an encoder for graph representation learning, showing

the effectiveness of unlabeled data for repository representation

learning. (iii) GASSL and AD-GCL, leveraging adversarial attacks

as the graph augmentation method to generate contrastive pairs,

has better performance than other contrastive learning models in

G4 (GCC and GraphCL). This shows that adversarial attacks can

generate more challenging contrastive pairs to boost the perfor-

mance of contrastive learning. (iv)When fine-tuning the pre-trained

encoder with different knowledge distillation methods, relational

knowledge distillation extracts more useful unlabeled information

than individual knowledge distillation. (v) By comparison with all

baseline models, CLA-HG is proved to have the best performance,

demonstrating the effectiveness of our model design for malicious

repository detection.

Figure 3: Two sets of ablation studies on two datasets.

5.5 Ablation Study
To further show the effectiveness of all components in CLA-HG

and the success of hybrid strategy for heterogeneous subgraph

sampling, we conduct two sets of ablation experiments in Figure 3.

First, we conduct ablation experiments to analyze the contribution

of each component in CLA-HG (i.e., dual-stream contrastive learn-

ing (DSCL), adversarial contrastive learning (ACL), fine-tuning(FT),

and relational knowledge distillation (RKD)) by removing it sepa-

rately. We remove DSCL from CLA-HG, which means we directly

employ GCN to learn the node embedding in HG and further feed

the repository embedding to 2-layer MLP for repository classifica-

tion. We can conclude that DSCL has the largest contribution to

CLA-HG as the performance drops significantly on both datasets.

In addition, we remove ACL from CLA-HG and leverage standard

heterogeneous subgraphs as contrastive samples to conduct con-

trastive learning. We can find that the performance also decreases

obviously. Afterwards, we remove fine-tuning fromCLA-HG, which

means we directly apply the repository embedding generated by the

pre-trained encoder to a two-layer MLP. It is easy to find that trans-

ferring the weights from the pre-trained encoder to the downstream

classification model also has a contribution to CLA-HG. Moreover,

we remove RKD from CLA-HG and we see that the performance

decreases slightly on both datasets, showing the effectiveness of

relational knowledge distillation in enhancing the model.

We also conduct extensive ablation experiments to analyze the

contribution of each meta-path (i.e., 𝑃1, 𝑃2, 𝑃3) and validate the

effectiveness of our hybrid neighbor sampling strategy in heteroge-

neous subgraph sampling. We first remove the meta-path guided

random walk strategy (MPRW), which means we uniformly sample

neighbors to generate heterogeneous subgraphs. The performance

drops obviously on both datasets, demonstrating the importance of

MPRW strategy in subgraph sampling. We then remove each meta-

path independently and we find that the performance of model

without 𝑃1 or 𝑃2 decreases but the performance of model with-

out 𝑃3 does not change obviously, showing the effectiveness of 𝑃1
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Figure 4: Hyper-parameters sensitivity analysis on two datasets.

and 𝑃2. Hence, we select 𝑃1 and 𝑃2 to guide random walk when

sampling heterogeneous subgraphs.

5.6 Comparison with Commercial Products
To further demonstrate the effectiveness of CLA-HG, we compare

it with four popular commercial anti-malware products (i.e., AVG,

Kaspersky, Comodo, and ESET) and LGTM (provided by GitHub)

on two datasets in Table 3. The Version shows the information of

the product we used for evaluation. Note that different versions

may have different performances due to version biases. We find that

CLA-HG achieves at least 2% improvement in accuracy and recall

by comparing it with other four products on GitHub-Malware and

GitHub-Corona. Among those commercial products, AVG has the

best performance on two datasets but it still fails to win CLA-HG.

Besides, by comparison with LGTM provided by GitHub, CLA-

HG achieves over 20% accuracy and recall improvement on both

datasets. Therefore, Table 3 again demonstrates the strong appli-

cabilities of CLA-HG for malicious repository detection in GitHub.

Table 3: Comparison with commercial products.

Method- Version

GitHub-Malware GitHub-Corona

ACC REC ACC REC

CLA-HG 0.9023 0.9017 0.8667 0.8705

AVG (19.8.3108) 0.8839 0.8690 0.8478 0.8441

Kaspersky (15.0.1.13) 0.8735 0.8583 0.8428 0.8263

Comodo (32668) 0.8670 0.8502 0.8446 0.8220

ESET (15.0.18) 0.8658 0.8478 0.8415 0.8216

LGTM (GitHub) 0.6913 0.6349 0.6645 0.6198

5.7 Embedding Visualization
In order to show a more intuitive performance comparison, we

visualize the embedding of malicious and benign repositories gener-

ated by CLA-HG and the best baseline models on GitHub-Malware

(AD-GCL) and GitHub-Corona (HeCo) in Figure 2. The blue points

refer to malicious repositories and the orange points represent

benign repositories. We can find that CLA-HG generates more dis-

tinct boundaries and a smaller overlapping area between malicious

and benign repositories on GitHub-Malware. In addition, although

HeCo shows excellent performance on GitHub-Corona, we find that

the overlapping area between malicious and benign repositories

is still bigger than CLA-HG. Hence, Figure 2 further demonstrates

the superiority of CLA-HG in detecting malicious repositories.

5.8 Hyper-parameters Sensitivity
To explore the hyper-parameters sensitivity in this paper, we con-

duct four analysis experiments w.r.t. the number of nodes in each

hop on heterogeneous subgraph sampling, 𝜆𝑎𝑑𝑣 on Dual-stream

contrastive learning, 𝑡 on individual knowledge distillation, and

𝜆𝑘𝑑 on fine-tuning. Specifically, in Figure 4.(a), we vary the number

of neighbors in the first hop and second hop (denoted as𝑚1,𝑚2)

in the range of {5, 10, 15} to generate heterogeneous subgraphs.

We can find that the optimal number of neighbors for the first

hop and second hop are𝑚1=10 and𝑚2=5 respectively. Besides, in

Figure 4.(b), we vary the value of 𝜆𝑎𝑑𝑣 in dual-stream contrastive

learning in the range of {0.01, 0.1, 0.5, 0.7, 1.0, 2.0, 5.0}. We can see

that the model performance increases with the increment of 𝜆𝑎𝑑𝑣
and the optimal value is 0.5, while the performance decreases when

𝜆𝑎𝑑𝑣 goes beyond the optimal value. In addition, in Figure 4.(c), we

vary the value of 𝑡 in Eq. 10 in the range of {0.1, 1, 5, 10, 15, 20, 25} to
soften the peaky softmax function on the logits of node embedding

in individual knowledge distillation and we find the optimal value

of temperature index 𝑡 is 10. Moreover, in Figure 4.(d), we vary

the value of trade-off weight 𝜆𝑘𝑑 in Eq. 13 during fine-tuning. By

comparing the performance of 0 and 0.5 (optimal value), we can

again demonstrate the effectiveness of knowledge distillation in

enhancing the performance of the fine-tuned model.

6 CONCLUSION
In this work, we create one new dataset (GitHub-Malware) and

develop a novel framework called CLA-HG to solve the imminent

problem of malicious repository detection. Specifically, we first

build a HG to describe the relations and content information of

repository data. Then we design a dual-stream graph contrastive

learning framework that distinguishes adversarial subgraph pairs

and standard subgraph pairs to pre-train an expressive encoder.

Afterwards, we transfer the pre-trained encoder to the downstream

repository classification model and further augmented by a knowl-

edge distillation module. The empirical results demonstrate the

superior performance of CLA-HG by comparison with baseline

methods and commercial anti-malware products.

ACKNOWLEDGMENTS
This work is partially supported by the NSF under grants IIS-

2209814, IIS-2203262, IIS-2214376, IIS-2217239, OAC-2218762, CNS-

2203261, CNS-2122631, CMMI-2146076, and the NIJ 2018-75-CX-

0032. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not nec-

essarily reflect the views of any funding agencies.

1653



CIKM ’22, October 17–21, 2022, Atlanta, GA, USA. Yiyue Qian et al.

REFERENCES
[1] 2017. virustotal: R Client for the VirusTotal API. https://cran.r-project.org/web/

packages/virustotal/index.html.

[2] Joan Bruna,Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral net-

works and locally connected networks on graphs. arXiv preprint arXiv:1312.6203
(2013).

[3] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A

simple framework for contrastive learning of visual representations. In ICML.
[4] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E

Hinton. 2020. Big Self-Supervised Models are Strong Semi-Supervised Learners.

In NeurIPS.
[5] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-

tional neural networks on graphs with fast localized spectral filtering. In NeurIPS.
[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:

Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[7] Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:

Scalable representation learning for heterogeneous networks. In KDD.
[8] Qingyuan Gong, Jiayun Zhang, Yang Chen, Qi Li, Yu Xiao, Xin Wang, and Pan

Hui. 2019. Detecting malicious accounts in online developer communities using

deep learning. In CIKM.

[9] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation

learning on large graphs. In NeurIPS.
[10] Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep convolutional networks

on graph-structured data. arXiv preprint arXiv:1506.05163 (2015).
[11] David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant. 2013. Applied

logistic regression. John Wiley & Sons.

[12] Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,

and Jure Leskovec. 2020. Strategies for pre-training graph neural networks. In

ICLR.
[13] Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. 2020.

GPT-GNN: Generative Pre-Training of Graph Neural Networks. In KDD.
[14] Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang.

2020. Graph structure learning for robust graph neural networks. In KDD.
[15] Nikola Jovanović, Zhao Meng, Lukas Faber, and Roger Wattenhofer. 2021. To-

wards robust graph contrastive learning. arXiv preprint arXiv:2102.13085 (2021).
[16] Ashraf M Kibriya, Eibe Frank, Bernhard Pfahringer, and Geoffrey Holmes. 2004.

Multinomial naive bayes for text categorization revisited. In AJCAI.
[17] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-

mization. In ICLR.
[18] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph

convolutional networks. In ICLR.
[19] William La Cholter, Matthew Elder, and Antonius Stalick. 2021. Windows Mal-

ware Binaries in C/C++ GitHub Repositories: Prevalence and Lessons Learned.

In ICISSP.
[20] Zemin Liu, Vincent W Zheng, Zhou Zhao, Zhao Li, Hongxia Yang, Minghui Wu,

and Jing Ying. 2018. Interactive paths embedding for semantic proximity search

on heterogeneous graphs. In KDD.
[21] Zemin Liu, VincentWZheng, Zhou Zhao, Fanwei Zhu, Kevin Chen-Chuan Chang,

Minghui Wu, and Jing Ying. 2017. Semantic proximity search on heterogeneous

graph by proximity embedding. In AAAI.
[22] Yuanfu Lu, Xunqiang Jiang, Yuan Fang, and Chuan Shi. 2021. Learning to pre-train

graph neural networks. In AAAI.
[23] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and

Adrian Vladu. 2018. Towards deep learningmodels resistant to adversarial attacks.

In ICLR.
[24] Alessio Micheli. 2009. Neural network for graphs: A contextual constructive

approach. IEEE Transactions on Neural Networks (2009).
[25] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient

estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

[26] Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. 2019. Relational Knowledge

Distillation. In CVPR.
[27] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning

of social representations. In KDD.
[28] Yiyue Qian, Yiming Zhang, Qianlong Wen, Yanfang Ye, and Chuxu Zhang. 2022.

Rep2Vec: Repository Embedding via Heterogeneous Graph Adversarial Con-

trastive Learning. In KDD.
[29] Yiyue Qian, Yiming Zhang, Yanfang Ye, and Chuxu Zhang. 2021. Adapting Meta

Knowledge with Heterogeneous Information Network for COVID-19 Themed

Malicious Repository Detection. In IJCAI.
[30] Yiyue Qian, Yiming Zhang, Yanfang Ye, Chuxu Zhang, et al. 2021. Distilling

Meta Knowledge on Heterogeneous Graph for Illicit Drug Trafficker Detection

on Social Media. In NeurIPS.

[31] Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,

Kuansan Wang, and Jie Tang. 2020. Gcc: Graph contrastive coding for graph

neural network pre-training. In KDD.
[32] Md Omar Faruk Rokon, Risul Islam, Ahmad Darki, Evangelos E Papalexakis,

and Michalis Faloutsos. 2020. Sourcefinder Finding malware source-code from

publicly available repositories in github. In RAID.
[33] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan

Titov, and Max Welling. 2018. Modeling relational data with graph convolutional

networks. In ESWC.
[34] Semmle. 2019. CodeQL for research. https://securitylab.github.com/tools/codeql.

[35] Semmle. 2019. LGTM. https://github.com/marketplace/lgtm.

[36] Donald F Specht et al. 1991. A general regression neural network. IEEE transac-
tions on neural networks (1991).

[37] Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. 2020. Infograph: Un-

supervised and semi-supervised graph-level representation learning via mutual

information maximization. In ICLR.
[38] Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. 2011. Pathsim:

Meta path-based top-k similarity search in heterogeneous information networks.

In VLDB.
[39] Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. 2021. Adversarial graph

augmentation to improve graph contrastive learning. In NeurIPS.
[40] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.
[41] Lin Wang and Kuk-Jin Yoon. 2021. Knowledge distillation and student-teacher

learning for visual intelligence: A review and new outlooks. IEEE Transactions
on Pattern Analysis and Machine Intelligence (2021).

[42] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S

Yu. 2019. Heterogeneous graph attention network. InWWW.

[43] Xiao Wang, Nian Liu, Hui Han, and Chuan Shi. 2021. Self-supervised Heteroge-

neous Graph Neural Network with Co-contrastive Learning. In KDD.
[44] Wikipedia. 2022. GitHub Introduction. https://en.wikipedia.org/wiki/GitHub.

[45] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems (2020).

[46] Dongkuan Xu, Wei Cheng, Dongsheng Luo, Haifeng Chen, and Xiang Zhang.

2021. Infogcl: Information-aware graph contrastive learning. In NeurIPS.
[47] Guodong Xu, Ziwei Liu, Xiaoxiao Li, and Chen Change Loy. 2020. Knowledge

distillation meets self-supervision. In ECCV.
[48] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How Powerful

are Graph Neural Networks?. In ICLR.
[49] Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. 2020. Heteroge-

neous network representation learning: A unified framework with survey and

benchmark. IEEE Transactions on Knowledge and Data Engineering (2020).

[50] Longqi Yang, Liangliang Zhang, and Wenjing Yang. 2021. Graph Adversarial

Self-Supervised Learning. In NeurIPS.
[51] Yanfang Ye, Yujie Fan, Shifu Hou, Yiming Zhang, Yiyue Qian, Shiyu Sun, Qian

Peng, Mingxuan Ju, Wei Song, and Kenneth Loparo. 2020. Community mitigation:

A data-driven system for covid-19 risk assessment in a hierarchical manner. In

CIKM.

[52] Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and

Yang Shen. 2020. Graph contrastive learning with augmentations. In NeurIPS.
[53] Lu Yu, Shichao Pei, Lizhong Ding, Jun Zhou, Longfei Li, Chuxu Zhang, and

Xiangliang Zhang. 2022. SAIL: Self-Augmented Graph Contrastive Learning. In

AAAI.
[54] Yujia Zhai,Wei Song, Xianjun Liu, Lizhen Liu, and Xinlei Zhao. 2018. A chi-square

statistics based feature selection method in text classification. In ICSESS.
[55] Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V

Chawla. 2019. Heterogeneous graph neural network. In KDD.
[56] Chuxu Zhang, Ananthram Swami, and Nitesh V Chawla. 2019. Shne: Represen-

tation learning for semantic-associated heterogeneous networks. InWSDM.

[57] Chuxu Zhang, Lu Yu, Xiangliang Zhang, and Nitesh V Chawla. 2018. Task-guided

and semantic-aware ranking for academic author-paper correlation inference.

IJCAI.

[58] Xiang Zhang and Marinka Zitnik. 2020. Gnnguard: Defending graph neural

networks against adversarial attacks. In NeurIPS.
[59] Yiming Zhang, Yujie Fan, Shifu Hou, Yanfang Ye, Xusheng Xiao, Pan Li, Chuan

Shi, Liang Zhao, and Shouhuai Xu. 2020. Cyber-guided Deep Neural Network

for Malicious Repository Detection in GitHub. In ICKG.
[60] Yiming Zhang, Yiyue Qian, Yujie Fan, Yanfang Ye, Xin Li, Qi Xiong, and Fudong

Shao. 2020. dstyle-gan: Generative adversarial network based on writing and

photography styles for drug identification in darknet markets. In ACSAC.
[61] Yiming Zhang, Yiyue Qian, Yanfang Ye, and Chuxu Zhang. 2022. Adapting

Distilled Knowledge for Few-shot Relation Reasoning over Knowledge Graphs.

In SDM.

[62] Jianan Zhao, Qianlong Wen, Shiyu Sun, Yanfang Ye, and Chuxu Zhang. 2021.

Multi-view Self-supervised Heterogeneous Graph Embedding. In ECML/PKDD.

1654

https://cran.r-project.org/web/packages/virustotal/index.html
https://cran.r-project.org/web/packages/virustotal/index.html
https://securitylab.github.com/tools/codeql
https://github.com/marketplace/lgtm
https://en.wikipedia.org/wiki/GitHub

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	4 Methodology
	4.1 Heterogeneous Graph Construction
	4.2 Adversarial Heterogeneous Graph Contrastive Learning
	4.3 Model Fine-tuning

	5 Experiments
	5.1 Data Collection
	5.2 Baseline Methods
	5.3 Experimental Setup
	5.4 Performance Comparison
	5.5 Ablation Study
	5.6 Comparison with Commercial Products
	5.7 Embedding Visualization
	5.8 Hyper-parameters Sensitivity

	6 Conclusion
	References



