Check for
Updates

Malicious Repositories Detection with Adversarial
Heterogeneous Graph Contrastive Learning

Yiyue Qian
University of Notre Dame
Notre Dame, Indiana, USA

yqian5@nd.edu

Yanfang Ye*
University of Notre Dame
Notre Dame, Indiana, USA

yye7@nd.edu

ABSTRACT

GitHub, as the largest social coding platform, has attracted an in-
creasing number of cybercriminals to disseminate malware by post-
ing malicious code repositories. To address the imminent problem,
some tools were developed to detect malicious repositories based on
the code content. However, most of them ignore the rich relational
information among repositories and usually require abundant la-
beled data to train the model. To this end, one effective way is to
exploit unlabeled data to pre-train a model which considers both
structural relation and code content of repositories, and further
transfer the pre-trained model to the downstream tasks with labeled
repository data. In this paper, we propose a novel model adversarial
contrastive learning on heterogeneous graph (CLA-HG) to detect
malicious repository in GitHub. First of all, CLA-HG builds a het-
erogeneous graph (HG) to comprehensively model repository data.
Afterwards, to exploit unlabeled information in HG, CLA-HG in-
troduces a dual-stream graph contrastive learning mechanism that
distinguishes both adversarial subgraph pairs and standard sub-
graph pairs to pre-train graph neural networks using unlabeled data.
Finally, the pre-trained model is fine-tuned to the downstream ma-
licious repository detection task enhanced by a knowledge distilla-
tion (KD) module. Extensive experiments on two collected datasets
from GitHub demonstrate the effectiveness of CLA-HG in compar-
ison with state-of-the-art methods and popular commercial anti-
malware products.

CCS CONCEPTS

« Security and privacy — Social network security and privacy;
« Computing methodologies — Machine learning algorithms; «
Networks — Online social networks.

“Corresponding authors.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM °22, October 17-21, 2022, Atlanta, GA, USA.

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9236-5/22/10...$15.00
https://doi.org/10.1145/3511808.3557384

Yiming Zhang
Case Western Reserve University
Cleveland, Ohio, USA
yxz2092@case.edu

1645

Nitesh Chawla
University of Notre Dame
Notre Dame, Indiana, USA

nchawla@nd.edu

Chuxu Zhang’

Brandeis University
Waltham, Massachusetts, USA
chuxuzhang@brandeis.edu

KEYWORDS

Malicious repository detection; Heterogeneous graph; Graph neural
network; Self-supervised learning

ACM Reference Format:

Yiyue Qian, Yiming Zhang, Nitesh Chawla, Yanfang Ye, and Chuxu Zhang.
2022. Malicious Repositories Detection with Adversarial Heterogeneous
Graph Contrastive Learning. In Proceedings of the 31st ACM International
Conference on Information and Knowledge Management (CIKM 22), October
17-21, 2022, Atlanta, GA, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3511808.3557384

1 INTRODUCTION

As of November 2021, with more than 73 million registered develop-
ers and over 200 million repositories [44], GitHub has become the
largest social coding platform where it enables global developers to
host open-source projects and develop software collaboratively. Due
to high openness and convenience, developers can easily upload and
download public projects for program development. Meanwhile,
GitHub has also attracted an increasing number of cybercriminals
to perform cyberattacks and disseminate malware by aggressively
uploading malicious repositories. Once repositories with malicious
code are downloaded by legitimate developers, the attacked equip-
ment will be infiltrated and compromised, which will cause huge
losses to individuals and organizations. Hence, destroying the dis-
semination of malware is very urgent. To this end, in this paper, we
develop a novel model to detect malicious repositories on GitHub.

To maintain safe and productive social coding platforms, some
methods [8, 28, 32] have been proposed to analyze the malicious ac-
tivities in GitHub. However, these methods merely analyze the code
content but ignore the rich relational information among nodes
in graphs, which is not sufficient enough to address the security
problem in GitHub. For instance, GitHub offers two vulnerabil-
ity detection products LGMT [35] and CodeQL [34] to generate
automatic code vulnerability reports based on the code content.
However, such kinds of security policies are very limited because
tens of thousands of malicious repositories still can be detected.
Although some recent methods [32, 59] have improved the per-
formance in detecting malicious activities, they require a lot of
time and resources to obtain sufficient labeled repository data yet
ignore the valuable and handy unlabeled information. For exam-
ple, SourceFinder [32] labeled almost ten thousand repositories to

https://doi.org/10.1145/3511808.3557384
https://doi.org/10.1145/3511808.3557384
https://doi.org/10.1145/3511808.3557384
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3511808.3557384&domain=pdf&date_stamp=2022-10-17

CIKM 22, October 17-21, 2022, Atlanta, GA, USA.

train a supervised classifier but the classification performance is
not promising enough.

Therefore, in this paper, we develop a novel framework called
CLA-HG (Figure 1) which not only considers code content infor-
mation and rich relations in GitHub but also exploits the handy
unlabeled data for malicious repository detection. Specifically, we
first construct a heterogeneous graph (HG) to depict the code con-
tent of repositories and relations among entities (e.g., repository and
user) in GitHub. Instead of directly utilizing graph neural networks
(GNN) to fuse the content information and structural relations, we
develop a self-supervised module to pre-train an expressive GNN en-
coder with unlabeled data. In particular, we introduce a dual-stream
graph contrastive learning mechanism that defines heterogeneous
subgraph pairs discrimination as the contrastive learning task. To
obtain a better pre-trained encoder, we leverage adversarial attacks
to generate more challenging positive and more effective nega-
tive pairs in heterogeneous subgraph contrastive learning. Thus,
our proposed dual-stream graph contrastive learning framework
aims to distinguish adversarial subgraph instance pairs (adversarial
stream) and standard subgraph instance pairs (standard stream).
Finally, the pre-trained model is fine-tuned to the downstream ma-
licious repository detection task, where the optimization process
is further augmented with a knowledge distillation module. To
conclude, the major contributions of our work include:

e To solve the imminent problem of malicious repositories detec-
tion, we develop a novel model called CLA-HG which compre-
hensively models content information and structural relations as
well as unlabeled data in GitHub.

To the best of our knowledge, CLA-HG is among the earliest work

integrating contrastive learning and adversarial training on graph

to generate challenging samples for representation learning.

e We collect one general dataset from GitHub and conduct compre-
hensive experiments. The results demonstrate the effectiveness
of CLA-HG by comparison with state-of-the-art methods and
commercial anti-malware products.

2 RELATED WORK

This work is closely related to the studies of graph neural networks,
Contrastive learning on graph, adversarial learning on graph, and
malicious repository detection.

Graph Neural Networks. Our graph repesentation learning is
inspired by graph neural networks (GNNs). Existing GNNs can be
generally divided into two streams, spectral-based GNNs [2, 5, 10]
and spatial-based GNNs [9, 24, 40, 45, 55]. Spectral-based GNNs aim
to present nodes in graph and perform convolution in the spectral
space. For instance, Henaff et al. extended the spectral networks to
learn the node embedding in graph [10]. Spatial-based GNNs usu-
ally consider the relational structure information between nodes
and aggregate the information of nodes based on the local struc-
tural information. For example, GCN [18] implements layer-wise
propagation rule to learn the node embedding. In this paper, we
employ GCN as our base model to learn the node representation.

Contrastive Learning on Graph. Existing contrastive learning
on graph models [31, 37, 46, 52, 53, 62] usually train an encoder to

1646

Yiyue Qian et al.

learn the graph representation by discriminating positive pairs and
negative pairs (e.g., subgraph) generated from graph. For instance,
GCC [31] proposes the subgraph instance discrimination as the
contrastive learning task to learn the graph representation. In addi-
tion, GraphCL [52] introduces four types of graph augmentations to
generate graphs in different views to conduct contrastive learning.
In heterogeneous domain, HeCo [43] employs a cross-view (schema
view and meta-path view) contrastive mechanism to learn node
embedding. The performance of graph contrastive learning relies
heavily on the quality of positive pairs and negative pairs instances.
Hence, to compensate for the above limitation, we aim to devise a
graph contrastive learing framework by generating more effective
positive pairs and challenging negative pairs.

Adversarial Learning on Graph. Motivated by the strength of
adversarial learning on image and text, some recent works have
started to study adversarial learning on graphs to enhance the net-
work robustness in supervised learning [14, 58, 60]. For instance,
Zhang et al. proposed GNNGUARD which absorbs the adversarial
perturbations using Gaussian distributions as node representations
in each layer of the network [58]. Recently, some works [15, 52]
extend to improve the model robustness with adversarial transfor-
mations during self-supervised learning. For instance, GROC [15]
aims to build a contrastive learning algorithm with adversarial
attacks to improve the network robustness. In addition, some re-
cent works implement adversarial attacks to generate powerful
contrastive pairs for graph contrastive leanrning. For examples,
GASSL [50] leverages adversarial attacks to inject perturbations to
graph features for generating more challenging contrastive pairs,
and further train the graph encoder. AD-GCL considers adversarial
attacks as a graph augmentation strategy to automatically learn
useful data augmentations for graph dataset. However, the afore-
mentioned works focus on homogeneous graphs and ignore the
heterogeneity property in HG. In addition, existing works directly
apply adversarial attacks to graph may be too risky and overloaded
for graph encoders. Accordingly, we leverage adversarial attacks
to generate more challenging positive and negative pairs for het-
erogeneous graph contrastive learning. To alleviate the workload
of graph encoder, we propose dual-stream heterogeneous graph
contrastive learning to train graph encoders over both adversarial
subgraph instance pairs and standard subgraph instance pairs.

Malicious Repository Detection. Most existing studies about
malicious repository detection mainly focus on analyzing the code
content [8, 32, 51]. For example, La et al. [19] analyzed the content
information of PE file in repository to detect malicious reposito-
ries in GitHub. However, these methods ignore the rich relational
structure information among entities in social coding platforms.
Besides, some existing works focus on collecting and utilizing la-
beled data but ignore the valuable unlabeled information [29, 59].
For instance, GitCyber [59] integrates both code-based content and
relational structure information in GitHub but ignores the valuable
unlabeled information among collected data. Unlike existing works,
we aim to integrate relational structural information, code content,
and unlabeled data to detect malicious repositories in social coding
platforms.

Malicious Repositories Detection with Adversarial Heterogeneous Graph Contrastive Learning

CIKM ’22, October 17-21, 2022, Atlanta, GA, USA.

(a) Graph Schema

pu] — g
S48 -' ;
\ g\ i IR B Al
User (U) Filetype (FT) _'? g =‘f:lﬂfq-‘bvs. .5‘}39 e dys. o:'f 1
ey & oY i
-0 - -0 -0 H
Qll} i Similar !’air Dissimilar Pair | Student) |
&—U'Q ; \ Standa;d—stream / »_model J |
> H i
“o-o I Ty el ! i
= (ot]|
A i| Loss L3f" |}
b4 = s i
g =l :
S q o PR la_p
Keyword (K) File (F lAttack Qv b Goaly VS e |
| Keyword (K) File (F) 0 n [M o 1 Ve i Lot ce ||
:‘\,’,’, —-— m ® Similar Pair Dissimilar Pair s
:’: i L | l;J Adversarial-stream H
(g . Dual-stream Contrastive Learning “Re ort ’
{ Meta-paths P, E:_I—» P, Q—» Py Ii:_l-»%—»li:_l j P

(b) Heterogeneous Graph Construction

(¢) Adversarial Heterogeneous Graph Contrastive Learning

(d) Fine-tuning with
Knowledge Distillation

Figure 1: The overall framework of CLA-HG: (a) It defines five types of entities and six kinds of relationships among entities;
(b)Then it constructs a HG based on the graph schema to depict data in GitHub; (c) Afterwards, it employs adversarial attacks
to sample adversarial heterogeneous subgraphs for generating more challenging positive and negative pairs and further train
GCN via optimizing standard-stream and adversarial-stream contrastive losses. (d) The pre-trained model f*(-) from (c) is
fine-tuned to the downstream task with labeled repository data and the optimization process is augmented by a knowledge

distillation module.

3 PRELIMINARY

In this section, we introduce three related definitions of this paper
(i.e., heterogeneous graph, meta-path, graph convolutional net-
works, and adversarial training) and further define the problem of
malicious repository detection.

Definition 3.1. Heterogeneous Graph. To comprehensively de-
pict the repository data, we build a heterogeneous graph (HG) [20,
21, 49], G = (V,&E,X), where V is the set of different types of
nodes, & € V x V is the set of edges, and X is the attributed
feature set. They are associated with a node type mapping function
¢ :V — 7 and an edge type mapping function ¢ : & — R, where
7 and R is the set of node types and the set of relation types with
|77] +|R]| > 2. The graph schema for G is a graph with nodes from
V and edges from &. As we can see from Figure 1.(a), there are five
types of nodes (i.e., repository, user, keyword, file, and filetype) and
six types of relations (e.g., repository-contain-keyword) in HG.

Definition 3.2. Meta-Path. A meta-path [56, 57] # is a path
defined on the graph schema, which is denoted in the form of

T i T & i Tr+1 where R=Ry Rz -...- Ry (T; € T) is
the composite relation between node types T; and Ty 41, and L is
the length of P. Figure 1.(b) shows three meta-paths (i.e., P, Pa,
P3) manually defined by semantic relations among different types
of entities based on domain knowledge.

Definition 3.3. Graph Convolutional Network. As GCN [18] is
powerful to learn node representation by considering both structure
of graph G and node features X, we employ GCN as the encoder
in this paper. It is a layer-wise propagation rule-based model to
learn the node embedding h; € RY (d: embedding dimension) cor-
responding to repository node ;. In particular, GCN is formulated

1647

as follows:

H* = o(AH! Wh, (1)

where H/*! denotes the node representations at [+ 1 layer and
HO = X represents the original attribute feature of the node. Aisa
symmetric normalization of A with self-loop, i.e, A= D~ PADE
with A = A+ Iy. A, Iy, D are the adjacency matrix, the identity
matrix, and the diagonal node degree matrix of A respectively. wl
denotes the weight matrix at I-th layer, and o is the activation
function. For simplicity, we use h = GCN(X, A) to denote the GCN
model and h is the node embedding.

Definition 3.4. Adversarial Training. Inspired by the power of
adversarial training, we aim to utilize adversarial perturbation to
facilitate the contrastive learning by generating more challenging
positive pairs and negative pairs, which is formulated as:

§ = argmax L(6, X + &),
16" lleo<e

@

where ¢ is the adversarial perturbation, X is the node feature, 6 is the
model parameters and L is the loss with parameter 6. Adversarial
training tries to solve the following optimization problem:

meinIE (L(8,X +9)). (3)

PrOBLEM 1. Malicious Repository Detection. Given a HG G =
(V,8,X) along with repository labels Y = (y1,...,yn) (i = 1
means malicious and y; = 0 means benign), we aim to build a self-
supervised learning model over unlabeled data, which can be fine-

tuned to the downstream malicious repositories detection task with
labeled data.

CIKM 22, October 17-21, 2022, Atlanta, GA, USA.

4 METHODOLOGY

In this section, we present the details of CLA-HG (Figure 1) which
includes three key steps: (1) heterogeneous graph construction on
GitHub data (Figure 1.(b)); (2) adversarial heterogeneous graph
contrastive leaning for model pre-training (Figure 1.(c)); (3) model
fine-tuning with knowledge distillation (Figure 1.(d)).

4.1 Heterogeneous Graph Construction

To identify whether a repository in GitHub is malicious or benign,
we consider both the semantic content of repositories and the rich
relations among entities for characterizing repositories comprehen-
sively. The content-based features and rich structural relations are
described below.

4.1.1 Content-based Features. For each repository, we extract five
related elements (considered as five types of entities in HG), includ-
ing repository content, corresponding user profile, keywords in the
repository, file, and file type, to effectively describe the repository.
To obtain the feature vector of repository, we extract and combine
the information of introduction and description, and then apply
BERT [6] to convert the text information to a fixed-length feature
vector. For the corresponding user, we extract the user profile and
also convert it to a feature vector. Besides, each repository has
several files and each file has the corresponding file type (e.g., .exe,
.C, and .java). Hence, we encode the file name and the type of file
as the feature vector of file and file type, respectively. To obtain
the keyword feature vector, we first extract a set of keywords from
all repositories and implement CHI statistic [54] to select effective
keywords by considering the level of independence among key-
words and the class label. To conclude, we acquire 30,000 effective
keywords for GitHub-Malware dataset and 52,530 effective key-
words for GitHub-Corona dataset (introduced in Section 5.1). After
keyword extraction, each selected keyword is considered as a node
in HG and we implement BERT to acquire the feature vectors.

4.1.2 Relations. Besides extracting the content information of each
entity, we also consider the rich relations among different types
of entities, which is also very essential to judge the legitimacy
of repositories: (1) R1: the user-own-repository relation indicates
that a user owns or has contribution to a repository; (2) R2: the
repository-contain-keyword relation denotes that a repository con-
tains a specific keyword; (3) R3: the repository-have-filetype rela-
tion shows that a file in a repository has a specific file type; (4)
R4: the repository-include-file relation indicates that a repository
includes a specific file; (5) R5: the file-belong-filetype relation de-
picts that a file belongs to a specific file type. (6) R6: the file-hold-
keyword relation denotes that a file holds a specific keyword; To
better describe the relatedness over repositories, we manually de-
fine three meta-paths (i.e., P1, P2, P3 in Figure 1) to extract the
rich connection among different type of entities. For example, P;:
-1

repository i keyword ﬁ—) repository denotes two repositories
are connected if they contain the same keyword.

To summarize, as the graph schema shown (Figure 1), we build
a HG by integrating both semantic content of repositories and rich
structure relation among different entities (i.e., R1-R6 among five
types of nodes). Each entity is attached with the feature vector.

1648

Yiyue Qian et al.

Table 1: Content and relation information from GitHub.

Content Feature

Repository title, topic, program language, read.me

User user name, bio info, bio description

Keyword keyword extracted from code files

File filename, file description, SHA-1

File type types of files (e.g., exe file, C file, and java file)

Relation

R1: user-own-repository R2: repository-contain-keyword
R3: repository-have-filetype R4: repository-include-file
R5: file-belong-filetype Ré: file-hold-keyword

4.2 Adversarial Heterogeneous Graph
Contrastive Learning

Motivated by the recent success of graph contrastive learning [31,
52] which implements different data augmentations to generate
contrastive instances, we propose a novel heterogeneous graph
contrastive learning model with adversarial perturbation to gen-
erate more challenging positive pairs and negative pairs so that
we can obtain a better pre-trained model for node representations.
As shown in Figure 1.(c), CLA-HG has four consecutive compo-
nents: adversarial heterogeneous subgraph sampling, adversarial
subgraph encoding, embedding projection, and dual-stream graph
contrastive learning.

Adversarial Heterogeneous Subgraph Sampling. Most existing
graph contrastive learning methods employ random walk, node
dropping, and edge dropping/adding to sample subgraphs [31, 52].
However, these methods ignore the rich heterogeneous structural
relations in HG. To this end, we propose a hybrid strategy to sample
heterogeneous subgraphs by considering the rich heterogeneous
structure information. Specifically, given a set of root nodes Sy
and meta-paths set , we aim to generate heterogeneous subgraph
GqP = (Vg E¢, Xg), where Vg is the node set of Sy including all
m-hop node neighbors; E; C V4 X V, is the edge set; Xy is the
attribute feature set of all nodes in V. For each node v; in Sq, we
employ random walk with restarted guided by # and obtained a
set of nodes S;’D . After that, we adopt a hybrid sampling strategy to
sample fixed-size neighbors. If the neighbor number of node v; in
Si’@ is less than the fixed-size number, we first sample neighbors in
Si’@ without replacement and then sample neighbors out of Sgp. Oth-
erwise, we only sample neighbors in Sip to generate heterogeneous
subgraphs. By repeating the previous two steps, we obtain a pair of
heterogeneous subgraph instance (Gg) , GZ)) which can be regarded
as a similar pair if they are generated by the same root nodes (
Sg = Sk). Otherwise they are considered as dissimilar instance pair
(Sq # Sp).

In order to generate more challenging positive pairs and negative
pairs for the above graph contrastive learning task, we propose
to perform adversarial attacks to subgraph pairs. For each sub-
graph pair (GZID, GZ)), based on Eqution 2, we first generate (8g, 5x)
as adversarial perturbations for the attribute feature (Xg, Xj) of

Malicious Repositories Detection with Adversarial Heterogeneous Graph Contrastive Learning

subgraph pair, using the PGD attack algorithm [23]. Then the ad-
versarial subgraph pair can be denoted as (GZ) , GZ)), where GEID =

(Vi 8¢, Xq +8¢) and G = (Vi Eg, X + 5.

Adversarial Subgraph Encoding. Given a set of sampled ad-
versarial subgraphs, CLA-HG aims to train an encoder f(-) to learn
the representation of subgraphs. In this paper, we apply GCN to
learn node embeddings:

h = GCN(g(X +8),A) = AReLU (A(X + &) Wy WO) W1, (4)

where g(X) = (X +§)Wr is the function to transform the feature of
different types of nodes in G¥ to a common space; After obtaining
node embeddings, we employ a READOUT layer to get the graph
embedding for G*:
H = READOUT(G?) = Z hi,
v eV’

®)

where V” is the node set of G¥.

Projection. After obtaining the embeddings of adversarial sub-
graphs, we aim to apply the nonlinear projection heads to convert
all subgraph embeddings to a same space for comparison. The
projection heads can be formally defined as follows:

Z = MLP(H). (6)
Dual-stream Graph Contrastive Learning. Inspired by Sim-
CLR [3], we define the discrimination of adversarial heterogeneous
subgraphs as the contrastive learning task which maximizes the
agreements among adversarial subgraph pairs. Specifically, in each
epoch, we first randomly sample a mini-batch of n subgraphs and
each subgraph is generated by different root node sets S. We then
randomly sample another mini-batch of n subgraphs with the same
set of root nodes as the previous mini-batch. Two subgraphs with
the same root node set can be regarded as positive pair (similar pair)
while other 2(n — 1) subgraph pairs are treated as negative pairs
(dissimilar pairs). Afterwards, we inject adversarial perturbations §
into each subgraph. The contrastive loss on adversarial subgraph
contrastive learning can be formulated as:

DG 1 G + LG G).
p=1

1
L= ™)
exp(sim(zq, 2k)/r)

22 L prqrexp(sim(Zg, Zp) /1)’

where éf and ékp are in different mini-batchs, sim(zq, Zk) is the

L(Gy . G[) = -log

cosine similarity between the projected embedding of (ég) , élz)), T
is the temperature parameter, and 1|,%4] € (0,1) is an indicator
function, 1 = 1 when p # g otherwise 1 = 0.

However, performing two different attacks to subgraphs in each
pair is too challenging for the encoder f(-) to learn useful rep-
resentation in contrastive learning. In this case, to alleviate the
encoder’s workload against adversarial attacks, we introduce a
dual-stream graph contrastive learning mechanism that integrates
graph contrastive learning on both adversarial subgraph pairs and
standard subgraph pairs without adversarial attacks. Accordingly,
the dual-stream contrastive loss £y, includes the contrastive loss
term .E‘C’Id" on adversarial subgraph pairs (adversarial-stream) and

1649

CIKM ’22, October 17-21, 2022, Atlanta, GA, USA.

another contrastive loss term £ on standard subgraphs (standard-
stream):

Laual = Aado LY + Lol 9)
where 1,4, is the trade-off hyper-parameters to control the influ-
ence of adversarial attacks. Note that both adversarial branch and
standard branch share all weights in encoder f(-).

4.3 Model Fine-tuning

By performing sufficient steps in heterogeneous subgraph con-
trastive training, we obtain a pre-trained graph encoder f(-)* to
learn the node representation in HG. Different from most exist-
ing methods that directly transfer the pre-trained encoder f(-)* to
downstream model [12, 13, 22], we are expired by these works [4,
30, 61] that distills the pre-trained model over unlabeled data can
gain some useful information to downstream tasks. Hence, we
further introduce the knowledge distillation technique (KD) that
distills the unlabeled information (a.k.a. “soft” knowledge) from
pre-trained encoder f*(-) (teacher model) and further transfer the
soft knowledge to another model (student model). By mimicking
teacher model, student model is able to learn more soft knowledge
from unlabeled data which cannot be expressed by the labeled
data [4, 47]. In particular, we introduce two types of knowledge
distillation (i.e., individual and relational knowledge distillation)
for model fine-tuning.

4.3.1 Individual Knowledge Distillation. Individual knowledge usu-
ally refers to the individual output of the network layers (intermedi-
ate layer or last layer of network). The idea of individual knowledge
distillation (IKD) is that student model aims to mimic the individual
output information of teacher model [41]. In this paper, we define
the individual knowledge as the probability of malicious reposi-
tory. Specifically, we minimize the following individual knowledge
distillation loss between teacher model and student model:

1
Ligr=~1*)) P (zi,t)logP? (zi.t),

i c¢=0

(10)

where P.(z;, t) = exp(zi/t)/ Y exp(zi/t). zi = logit(h;) denotes
the logits of node embedding; c is the label of repository node; ¢ is
the temperature index to soften the peaky softmax function. The
teacher model producing P! (z;, t) is fixed during the distillation
process while the student model producing P2 (z;, t) is trained.

4.3.2 Relational Knowledge Distillation. Relational knowledge dis-
tillation (RKD) aims to distill the mutual relation within the output
embedding generated by teacher model and further transfer such re-
lational knowledge to student model [26]. Different from individual
knowledge distillation, it computes a relational potential function ¢
and then encourages student model to learn the relational function
¢ among repository embedding obtained from teacher model. In
this paper, we consider the distance-wise relations as the potential
function ¢ and calculate the Euclidean distance among repository
data in the embedding space. Specifically, we minimize the follow-
ing relational knowledge distillation loss:

Liar=), La(#" (hiho).¢° (hiho)),
(0,00€G)

(11)

CIKM 22, October 17-21, 2022, Atlanta, GA, USA.

where ¢(h;, hy) = %||h,~ —hy||?, u is the normalization factor for
distance, Ly, is the loss that penalizes difference between teacher
and student model. In this paper, we use the Huber loss to penalize
the difference:
L(a-b)?
Lp(a,b) = { z
h la—b| -4

« is the controlled hyper-parameter.

la-bl <a
otherwise.

(12)

4.3.3 Fine-tuning with Knowledge Distillation. Finally, we combine
the knowledge distillation loss L4 and the malicious repository
detection loss (i.e., cross-entropy) Lce to fine-tune the model:

(13)
where Lyg = Lygg if we transfer the individual knowledge to
student model, otherwise L4 = Lyig-r. Arq is the trade-off weight
for balancing two losses. Note that student model has the same

structure as the teacher model in this paper. The pseudo-code of
CLA-HG is provided in Algorithm 1:

Liotal = Lee + Mg Lid-

Algorithm 1: Training Procedure of CLA-HG

Data: Heterogeneous graph G, Network backbone f(-)
Result: Repository report (malicious or benign)
1 for each epoch do
2 Sample batch-size sets of root nodes and employ
random walk guided by meta-path # for root nodes.
3 Implement hybrid strategy to sample neighbors and
generate batch-size pairs of heterogeneous subgraphs
Gy, GP).
4 Initialize the perturbation (4, J) and generate the

corresponding adversarial subgraph pairs (53) , GZD)
5 Apply f(-) to get the node embedding h and h.

6 Employ READOUT layer to obtain the subgraph
embedding H and H for G¥ and G* respectively.

7 Apply projection heads to project H to Z.

8 | Optimize f(-) by minimizing L4y, in Eq. 9.
9 return f*(-).

o Distill “soft” information from pre-trained encoder f*(-).

=

1 Fine-tune *(-) by minimizing L, in Eq. 13.

-

5 EXPERIMENTS

In this section, we introduce two datasets collected from GitHub.
Then we conduct extensive experiments to evaluate the perfor-
mance of CLA-HG. Afterwards, we conduct additional experiments
to analyze the effectiveness of each model component, the success
of CLA-HG by comparison with commercial anti-malware products,
the visualizations of repository representations, and the analysis of
hyper-parameters sensitivity.

5.1 Data Collection

In this paper, we leverage two real-world datasets from Github,
i.e., GitHub-Malware (collected by this work) and GitHub-Corona
(provided by Meta-AHIN [29]) to evaluate CLA-HG.

1650

Yiyue Qian et al.

GitHub-Malware Dataset. Based on a set of malicious related key-
words (e.g., spy, mine, and bitcoin), we crawl the repository dataset
published from Jan 2021 to Jun 2021, and obtain 8,260 repositories
and 7,110 profiles of developers in GitHub. To obtain the ground
truth of repository data, we closely follow the two-step mechanism
provided by Meta-AHIN [29]. Specifically, we first employ VirusTo-
tal [1] including over 70 anti-malware scanning tools to validate
the legitimacy of repositories. We also remove oversize repositories
due to the limitation of file size in VirusTotal (i.e., 200 MB). Based
on the scanned report from VirusTotal, we then ask anti-malware
experts to further analyze suspected repositories with less than 5
malicious reports from VirusTotal. To conclude, we get the final
labeled data including 3,956 malicious repositories and 4,304 benign
repositories. According to the designed graph schema illustrated in
Figure 1, the constructed HG has 55,392 nodes (i.e., 8,260 repository
nodes, 7,110 user nodes, 30,000 keyword nodes, 9,283 file nodes,
739 file type nodes) and 4,467,759 edges including relation R1-Ré.

GitHub-Corona Dataset. This data is provided by Meta-AHIN [29]
which aims to analyze the malicious repository in GitHub during
the pandemic. The provided dataset was collected based on a set of
COVID-19 related keywords (e.g., coronavirus, pandemic, and vac-
cine) from Feb 2020 to Dec 2020. To conclude, the GitHub-Corona
Dataset has 20,895 repositories including 6,965 malicious reposito-
ries and 13,930 benign repositories related to 18,785 users. Moreover,
the constructed HG based on COVID-19 related data has 176,035
nodes (i.e., 20,895 repository nodes, 18,785 user nodes, 52,530 key-
word nodes, 82,451 file nodes, 1,374 file type nodes) and 5,127,956
edges including relation R1-Ré6. Note that, as we also consider the
type of file as node type in this work, the number of nodes and
edegs is slightly different from Meta-AHIN.

5.2 Baseline Methods

To comprehensively evaluate our model CLA-HG, we compare
CLA-HG with seventeen baseline models which are divided into
four groups: feature-based models (G1), graph-based models (G2),
malicious repository detection methods (G3), and graph contrastive
learning models (G4).

Feature-based models. We extract a set of effective keywords for
each repository and then feed the combined keywords to BERT to
get the repository embedding. We then feed the repository embed-
ding to Logistic regression (LR) [11] or a 2-layer DNN [36] to detect
malicious repository.

Graph-based models. We implement seven graph learning meth-
ods to learn the node representation in graph, and further feed
the node embedding into a 2-layer MLP to detect malicious repos-
itory. Specifically, we first employ DeepWalk [27] to learn node
embedding (ignoring the heterogeneous property and attribute
information) by modeling structure proximity. The length of the
random walk for each node is set as 40. Also, we implement metap-
ath2vec [7] to learn the semantic information of two defined meta-
paths [38] (P; and P») in this application. The walk length of each
node is set as 40 as well. In addition, we also implement five graph
neural network based representation learning models including
GCN [18], GAT [40], GIN [48], R-GCN [33], and HAN [42] to learn
the node embedding by leveraging both node feature and graph

Malicious Repositories Detection with Adversarial Heterogeneous Graph Contrastive Learning

CIKM ’22, October 17-21, 2022, Atlanta, GA, USA.

Table 2: Performance comparison of all methods with different percentages of training data.

. GitHub-Malware GitHub-Corona
Setting
\ 20% \ 50% \ 80% \ 20% \ 50% \ 80%
Group Model | ACC REC | ACC REC | ACC REC | ACC REC | ACC REC | ACC REC
Gy |Feature+LR[11] | 06483 06521 | 07155 07175 | 0.7520 0.7538 | 0.6368 0.6412 | 0.7005 07016 | 0.7424 0.7435
Feature+MLP [36] | 0.6665 0.6753 | 0.7354 0.7366 | 0.7620 0.7714 | 0.6426 0.6484 | 0.7138 0.7125 | 0.7518 0.7525
Deepwalk [27] | 0.7492 0.7503 | 0.7757 0.7835 | 0.7811 0.7952 | 0.7256 0.7266 | 0.7546 0.7602 | 0.7723 0.7712
metapath2vec [7] | 0.7539 0.7675 | 0.7832 0.7925 | 0.7957 0.8013 | 0.7388 0.7396 | 0.7664 0.7687 | 0.7858 0.7904
GCN [18] 0.7682 0.7730 | 0.7865 0.7995 | 0.8058 0.8053 | 0.7378 0.7355 | 0.7672 0.7692 | 0.7895 0.7918
G2 | GAT [40] 0.7630 0.7755 | 0.7825 0.7968 | 0.8045 0.8074 | 0.7358 0.7386 | 0.7652 0.7672 | 0.7992 0.7935
GIN [48] 0.7726 0.7768 | 0.7920 0.7934 | 0.8126 0.8135 | 0.7425 0.7409 | 0.7738 0.7682 | 0.7945 0.7925
R-GCN [33] 0.7841 0.7852 | 0.8015 0.8053 | 0.8221 0.8269 | 0.7687 0.7635 | 0.7892 0.7826 | 0.7997 0.7913
HAN [42] 0.7889 0.7810 | 0.8079 0.8002 | 0.8235 0.8258 | 0.7698 0.7653 | 0.7899 0.7833 | 0.7931 0.7959
G | SourceFinder [32] | 0.6866 0.6725 | 0.7510 0.7446 | 0.7698 0.7571 | 0.6554 0.6583 | 0.7268 0.7315 | 0.7627 0.7566
GitCyber [59] 0.7715 0.7668 | 0.7876 0.7889 | 0.8005 0.8066 | 0.7469 0.7402 | 0.7685 0.7632 | 0.7813 0.7887
Meta-AHIN [29] | 0.8159 0.8163 | 0.8504 0.8417 | 0.8613 0.8624 | 0.7902 0.7953 | 0.8061 0.8124 | 0.8247 0.8305
GCC [31] 0.8053 0.7982 | 0.8387 0.8341 | 0.8523 0.8506 | 0.7825 0.7853 | 0.7936 0.8016 | 0.8125 0.8238
Ga | GraphCL [52] 0.8123 0.8051 | 0.8405 0.8391 | 0.8582 0.8604 | 0.7895 0.7935 | 0.7955 0.8093 | 0.8182 0.8296
HeCo [43] 0.8215 0.8234 | 0.8524 0.8518 | 0.8634 0.8657 | 0.8051 0.8024 | 0.8135 0.8194 | 0.8324 0.8345
GASSL [50] 0.8173 0.8141 | 0.8562 0.8554 | 0.8641 0.8634 | 0.7997 0.7995 | 0.8104 0.8121 | 0.8237 0.8321
AD-GCL [39] 0.8145 0.8114 | 0.8578 0.8575 | 0.8687 0.8698 | 0.8005 0.8017 | 0.8155 0.8203 | 0.8385 0.8387
Ours | CLA-HG (IKD) | 08501 0.8524 |0.8791 0.8924 | 0.8954 0.8947 | 0.8251 0.8302 | 0.8465 0.8493 | 0.8617 0.8654
CLA-HG (RKD) |0.8537 0.8567 | 0.8769 0.8855 | 0.9023 0.9017 | 0.8284 0.8336 | 0.8425 0.8453 | 0.8667 0.8705
GitHub-Malware GitHub-Corona
® Malicious ® Malicious ® Malicious ® Malicious
Benign Benign Benign Benign
AD-GCL CLA-HG HeCo CLA-HG

Figure 2: Visualization of repository embedding generated by (AD-GCL, CLA-HG) on GitHub-Malware and (HeCo, CLA-HG) on

GitHub-Corona.

structure. In particular, for HAN, we implement HAN by two de-
fined meta-paths (i.e., P; and P;) to learn the attention-based node
embedding. Similar to G1, we feed the learned repository embed-
ding to a 2-layer DNN classifier to detect malicious repositories.

Malicious repository detection methods. We reproduce three
existing methods that are designed to detect malicious repositories,
i.e., GitCyber [59], SourceFinder [32], and Meta-AHIN [29]. Based
on the setting of GitCyber, we build a DNN classifier guided by two
defined meta-paths on HG to detect malicious repositories. Simi-
lar to the setting of SourceFinder [32], we utilize the pre-trained
model word2vec [25] to get the embedding for each repository and
feed it to a Multinomial Naive Bayes [16] for malicious repository
detection. In addition, as the GitHub-Corona dataset is provided
by [29], we closely follow the settings in [29] to learn repository

1651

representations via a meta-learning framework and further predict
the malicious score of repositories.

Graph contrastive learning models. We reproduce GCC [31],
GraphCL [52], and HeCo [43] based on their source code. For GCC,
we implement GIN as the graph encoder and adopt an end-to-end
strategy to build the subgraph dictionary (with size 1023) in con-
trastive learning. For GraphCL, we adopt edges perturbation and
edges masking as graph augmentation methods and GCN as graph
encoder to conduct contrastive learning. For HeCo, we leverage two
meta-paths (i.e., P; and Py) to closely follow the setting and conduct
node-view and meta-path view contrastive learning. We also repro-
duce two works about graph contrastive learning with adversarial
augmentations, i.e., GASSL [50] and AD-GCL [39]. For GASSL, we
automatically generate challenging views by adding perturbations

CIKM 22, October 17-21, 2022, Atlanta, GA, USA.

to our graph features and adversarially train the graph encoder. We
finally reproduce AD-GCL by leveraging the adversarial attacks as
the graph augmentation method to generate contrastive pairs for
graph contrastive learning.

5.3 Experimental Setup

To evaluate the performance of CLA-HG and baseline methods, we
adopt two widely-used metrics: accuracy showing the percent of
repositories being classified correctly (ACC) and recall score show-
ing the percent of malicious repositories being detected successfully
(REC). We conduct 10-fold cross-validation for all models to get
the averaged results. Experiments are conducted under the envi-
ronment of the Ubuntu 16.04 OS, plus Intel i9-9900k CPU, GeForce
GTX 2080 Ti Graphics Cards, and 64 GB of RAM. We employ a
2-layer GCN with weight decay le-5 as encoder and the dimen-
sion of repository embedding generated by encoder is 200. We
use Adam [17] optimizer with learning rate 0.001. For dual-stream
graph contrastive learning, we sample 2-hop (m = 2) subgraphs and
the fixed-size numbers of neighbor is set as 10 for the first hop and
5 for the second hop. The temperature parameter 7 is set as 0.5. The
adversarial hyper-parameter 1,4, is set as 0.5. During fine-tuning,
we set the temperature parameter ¢ in IKD as 10, « in RKD as 0.6,
and the trade-off weight Ay, is set as 0.5. Our source code will be
available upon publication.

5.4 Performance Comparison

Table 2 shows the performances of all models on two datasets and
the best performance are highlighted in bold and the best baseline
results are emphasized by underline. All results listed in the table
are the average results of ten runs. The percentage number shows
the ratio of training data used for model training while the rest
data is used for model validation (10%) and testing. According to
the table, we can conclude that: (i) By comparison with G1, G2,
and G3, we can find that relations among entities can improve the
model performance of repository classification. Merely considering
code-based content is not supportive enough to detect malicious
repository. In addition, we can also get the conclusion when compar-
ing SourceFiner with GitCyber and Meta-HG in G3. Both GitCyber
and Meta-AHIN have better performance than that of SourceFiner
as they consider both the content information and relationships
of repositories. (ii) By comparison with G2 and G4, we see that
unlabeled data contributes greatly when we exploit unlabeled data
to train an encoder for graph representation learning, showing
the effectiveness of unlabeled data for repository representation
learning. (iii) GASSL and AD-GCL, leveraging adversarial attacks
as the graph augmentation method to generate contrastive pairs,
has better performance than other contrastive learning models in
G4 (GCC and GraphCL). This shows that adversarial attacks can
generate more challenging contrastive pairs to boost the perfor-
mance of contrastive learning. (iv) When fine-tuning the pre-trained
encoder with different knowledge distillation methods, relational
knowledge distillation extracts more useful unlabeled information
than individual knowledge distillation. (v) By comparison with all
baseline models, CLA-HG is proved to have the best performance,
demonstrating the effectiveness of our model design for malicious
repository detection.

1652

Yiyue Qjan et al.

GitHub-Malware

M -pscL W -ACL

GitHub-Corona

-FT -RKD B CLA-HG

0.94 0.94

0.90 0.90
0.86
0.82 0.82
0.78

0.74 0.74

ACC

GitHub-Malware

W -MPRW W -P1

REC ACC
GitHub-Corona

B CLA-HG

REC

-P3
0.94

0.94

0.90 0.90

0.86 0.86

0.82
0.78

0.74

ACC REC ACC REC

Figure 3: Two sets of ablation studies on two datasets.

5.5 Ablation Study

To further show the effectiveness of all components in CLA-HG
and the success of hybrid strategy for heterogeneous subgraph
sampling, we conduct two sets of ablation experiments in Figure 3.
First, we conduct ablation experiments to analyze the contribution
of each component in CLA-HG (i.e., dual-stream contrastive learn-
ing (DSCL), adversarial contrastive learning (ACL), fine-tuning(FT),
and relational knowledge distillation (RKD)) by removing it sepa-
rately. We remove DSCL from CLA-HG, which means we directly
employ GCN to learn the node embedding in HG and further feed
the repository embedding to 2-layer MLP for repository classifica-
tion. We can conclude that DSCL has the largest contribution to
CLA-HG as the performance drops significantly on both datasets.
In addition, we remove ACL from CLA-HG and leverage standard
heterogeneous subgraphs as contrastive samples to conduct con-
trastive learning. We can find that the performance also decreases
obviously. Afterwards, we remove fine-tuning from CLA-HG, which
means we directly apply the repository embedding generated by the
pre-trained encoder to a two-layer MLP. It is easy to find that trans-
ferring the weights from the pre-trained encoder to the downstream
classification model also has a contribution to CLA-HG. Moreover,
we remove RKD from CLA-HG and we see that the performance
decreases slightly on both datasets, showing the effectiveness of
relational knowledge distillation in enhancing the model.

We also conduct extensive ablation experiments to analyze the
contribution of each meta-path (i.e., P;, Py, P3) and validate the
effectiveness of our hybrid neighbor sampling strategy in heteroge-
neous subgraph sampling. We first remove the meta-path guided
random walk strategy (MPRW), which means we uniformly sample
neighbors to generate heterogeneous subgraphs. The performance
drops obviously on both datasets, demonstrating the importance of
MPRW strategy in subgraph sampling. We then remove each meta-
path independently and we find that the performance of model
without P; or P, decreases but the performance of model with-
out P3 does not change obviously, showing the effectiveness of Py

Malicious Repositories Detection with Adversarial Heterogeneous Graph Contrastive Learning

(a) Heterogeneous Subgraph Sampling (b) Knowledge Distillation

CIKM ’22, October 17-21, 2022, Atlanta, GA, USA.

(c) Dual-Stream Contrastive Learning (d) Fine-tuning

0.92 0.92 0.92 0.92 - -
‘@ GitHub-Malware ®GitHub-Corona ®GitHub-Malware ®GitHub-Corona -®-GitHub-Malware ®GitHub-Corona ®GitHub-Malware ®GitHub-Corona
| Y X
0.9 ./.,__./‘.» 0.9] 0.9 /././ 0.9) M —o——J
0.88 § 0.88 | b 088 9 0.88 |
b1 e 8086 o 8086 3086 ;’__‘/.//./.\.\“
0.86 . . .
< /./c’ ‘0\’\‘ <%0 ¢— '\.\.\“ﬂ’l y | p
0.4 P 084 0.84 | 0.84
0.82 0.82 0.82 0.82
(5,00 (510) (5,15) (10,5 (10,10) (10,15) (15,15) 001 01 05 07 1 2 5 0.1 1 5 10 15 20 25 0 001 01 03 05 07 1
(my,my) Aadv t Aka

Figure 4: Hyper-parameters sensitivity analysis on two datasets.

and P,. Hence, we select P; and P, to guide random walk when
sampling heterogeneous subgraphs.

5.6 Comparison with Commercial Products

To further demonstrate the effectiveness of CLA-HG, we compare
it with four popular commercial anti-malware products (i.e., AVG,
Kaspersky, Comodo, and ESET) and LGTM (provided by GitHub)
on two datasets in Table 3. The Version shows the information of
the product we used for evaluation. Note that different versions
may have different performances due to version biases. We find that
CLA-HG achieves at least 2% improvement in accuracy and recall
by comparing it with other four products on GitHub-Malware and
GitHub-Corona. Among those commercial products, AVG has the
best performance on two datasets but it still fails to win CLA-HG.
Besides, by comparison with LGTM provided by GitHub, CLA-
HG achieves over 20% accuracy and recall improvement on both
datasets. Therefore, Table 3 again demonstrates the strong appli-
cabilities of CLA-HG for malicious repository detection in GitHub.

Table 3: Comparison with commercial products.

Method- Version ‘ GitHub-Malware ‘ GitHub-Corona

| ACC REC | ACC REC
CLA-HG 0.9023 0.9017 0.8667 0.8705
AVG (19.8.3108) 0.8839 0.8690 0.8478 0.8441
Kaspersky (15.0.1.13) 0.8735 0.8583 0.8428 0.8263
Comodo (32668) 0.8670 0.8502 0.8446 0.8220
ESET (15.0.18) 0.8658 0.8478 0.8415 0.8216
LGTM (GitHub) 0.6913 0.6349 0.6645 0.6198

5.7 Embedding Visualization

In order to show a more intuitive performance comparison, we
visualize the embedding of malicious and benign repositories gener-
ated by CLA-HG and the best baseline models on GitHub-Malware
(AD-GCL) and GitHub-Corona (HeCo) in Figure 2. The blue points
refer to malicious repositories and the orange points represent
benign repositories. We can find that CLA-HG generates more dis-
tinct boundaries and a smaller overlapping area between malicious
and benign repositories on GitHub-Malware. In addition, although
HeCo shows excellent performance on GitHub-Corona, we find that
the overlapping area between malicious and benign repositories
is still bigger than CLA-HG. Hence, Figure 2 further demonstrates
the superiority of CLA-HG in detecting malicious repositories.

5.8 Hyper-parameters Sensitivity

To explore the hyper-parameters sensitivity in this paper, we con-
duct four analysis experiments w.r.t. the number of nodes in each
hop on heterogeneous subgraph sampling, 4,4, on Dual-stream
contrastive learning, ¢ on individual knowledge distillation, and
Aka on fine-tuning. Specifically, in Figure 4.(a), we vary the number
of neighbors in the first hop and second hop (denoted as m1, my)
in the range of {5, 10, 15} to generate heterogeneous subgraphs.
We can find that the optimal number of neighbors for the first
hop and second hop are m1=10 and my=5 respectively. Besides, in
Figure 4.(b), we vary the value of 1,4, in dual-stream contrastive
learning in the range of {0.01,0.1,0.5,0.7, 1.0, 2.0,5.0}. We can see
that the model performance increases with the increment of 1,4,
and the optimal value is 0.5, while the performance decreases when
Aadoy goes beyond the optimal value. In addition, in Figure 4.(c), we
vary the value of ¢ in Eq. 10 in the range of {0.1, 1, 5, 10, 15, 20, 25} to
soften the peaky softmax function on the logits of node embedding
in individual knowledge distillation and we find the optimal value
of temperature index ¢ is 10. Moreover, in Figure 4.(d), we vary
the value of trade-off weight Ag4 in Eq. 13 during fine-tuning. By
comparing the performance of 0 and 0.5 (optimal value), we can
again demonstrate the effectiveness of knowledge distillation in
enhancing the performance of the fine-tuned model.

6 CONCLUSION

In this work, we create one new dataset (GitHub-Malware) and
develop a novel framework called CLA-HG to solve the imminent
problem of malicious repository detection. Specifically, we first
build a HG to describe the relations and content information of
repository data. Then we design a dual-stream graph contrastive
learning framework that distinguishes adversarial subgraph pairs
and standard subgraph pairs to pre-train an expressive encoder.
Afterwards, we transfer the pre-trained encoder to the downstream
repository classification model and further augmented by a knowl-
edge distillation module. The empirical results demonstrate the
superior performance of CLA-HG by comparison with baseline
methods and commercial anti-malware products.

ACKNOWLEDGMENTS

This work is partially supported by the NSF under grants IIS-
2209814, 11S-2203262, 11S-2214376, 11S-2217239, OAC-2218762, CNS-
2203261, CNS-2122631, CMMI-2146076, and the NIJ 2018-75-CX-
0032. Any opinions, findings, and conclusions or recommendations
expressed in this material are those of the authors and do not nec-
essarily reflect the views of any funding agencies.

1653

CIKM 22, October 17-21, 2022, Atlanta, GA, USA.

REFERENCES

(1]

[2

—

(3]

[10]

(11

[12]

[13

[14]

[15

[16

[17]

[18

[19]

[20

[21]

[22]

[23

[24]

oo
)

[26]
[27]

[28]

[29]

[30]

2017. virustotal: R Client for the VirusTotal APL https://cran.r-project.org/web/
packages/virustotal/index.html.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral net-
works and locally connected networks on graphs. arXiv preprint arXiv:1312.6203
(2013).

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A
simple framework for contrastive learning of visual representations. In ICML.
Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey E
Hinton. 2020. Big Self-Supervised Models are Strong Semi-Supervised Learners.
In NeurIPS.

Michaél Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. In NeurIPS.
Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. Bert:
Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

Yuxiao Dong, Nitesh V Chawla, and Ananthram Swami. 2017. metapath2vec:
Scalable representation learning for heterogeneous networks. In KDD.
Qingyuan Gong, Jiayun Zhang, Yang Chen, Qi Li, Yu Xiao, Xin Wang, and Pan
Hui. 2019. Detecting malicious accounts in online developer communities using
deep learning. In CIKM.

Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NeurIPS.

Mikael Henaff, Joan Bruna, and Yann LeCun. 2015. Deep convolutional networks
on graph-structured data. arXiv preprint arXiv:1506.05163 (2015).

David W Hosmer Jr, Stanley Lemeshow, and Rodney X Sturdivant. 2013. Applied
logistic regression. John Wiley & Sons.

Weihua Hu, Bowen Liu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande,
and Jure Leskovec. 2020. Strategies for pre-training graph neural networks. In
ICLR.

Ziniu Hu, Yuxiao Dong, Kuansan Wang, Kai-Wei Chang, and Yizhou Sun. 2020.
GPT-GNN: Generative Pre-Training of Graph Neural Networks. In KDD.

Wei Jin, Yao Ma, Xiaorui Liu, Xianfeng Tang, Suhang Wang, and Jiliang Tang.
2020. Graph structure learning for robust graph neural networks. In KDD.
Nikola Jovanovi¢, Zhao Meng, Lukas Faber, and Roger Wattenhofer. 2021. To-
wards robust graph contrastive learning. arXiv preprint arXiv:2102.13085 (2021).
Ashraf M Kibriya, Eibe Frank, Bernhard Pfahringer, and Geoffrey Holmes. 2004.
Multinomial naive bayes for text categorization revisited. In AJCAL

Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. In ICLR.

Thomas N Kipf and Max Welling. 2017. Semi-supervised classification with graph
convolutional networks. In ICLR.

William La Cholter, Matthew Elder, and Antonius Stalick. 2021. Windows Mal-
ware Binaries in C/C++ GitHub Repositories: Prevalence and Lessons Learned.
In ICISSP.

Zemin Liu, Vincent W Zheng, Zhou Zhao, Zhao Li, Hongxia Yang, Minghui Wu,
and Jing Ying. 2018. Interactive paths embedding for semantic proximity search
on heterogeneous graphs. In KDD.

Zemin Liu, Vincent W Zheng, Zhou Zhao, Fanwei Zhu, Kevin Chen-Chuan Chang,
Minghui Wu, and Jing Ying. 2017. Semantic proximity search on heterogeneous
graph by proximity embedding. In AAAL

Yuanfu Lu, Xunqiang Jiang, Yuan Fang, and Chuan Shi. 2021. Learning to pre-train
graph neural networks. In AAAL

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and
Adrian Vladu. 2018. Towards deep learning models resistant to adversarial attacks.
In ICLR.

Alessio Micheli. 2009. Neural network for graphs: A contextual constructive
approach. IEEE Transactions on Neural Networks (2009).

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Efficient
estimation of word representations in vector space. arXiv preprint arXiv:1301.3781
(2013).

Wonpyo Park, Dongju Kim, Yan Lu, and Minsu Cho. 2019. Relational Knowledge
Distillation. In CVPR.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In KDD.

Yiyue Qian, Yiming Zhang, Qianlong Wen, Yanfang Ye, and Chuxu Zhang. 2022.
Rep2Vec: Repository Embedding via Heterogeneous Graph Adversarial Con-
trastive Learning. In KDD.

Yiyue Qian, Yiming Zhang, Yanfang Ye, and Chuxu Zhang. 2021. Adapting Meta
Knowledge with Heterogeneous Information Network for COVID-19 Themed
Malicious Repository Detection. In [JCAL

Yiyue Qian, Yiming Zhang, Yanfang Ye, Chuxu Zhang, et al. 2021. Distilling
Meta Knowledge on Heterogeneous Graph for Illicit Drug Trafficker Detection
on Social Media. In NeurIPS.

1654

(31]

(32]

@
20,

=
=

~
=

S
&

[52]

(53]

[54

[55]

[56

[57]

[58

[59

[60

[61

[62]

Yiyue Qian et al.

Jiezhong Qiu, Qibin Chen, Yuxiao Dong, Jing Zhang, Hongxia Yang, Ming Ding,
Kuansan Wang, and Jie Tang. 2020. Gcc: Graph contrastive coding for graph

neural network pre-training. In KDD.
Md Omar Faruk Rokon, Risul Islam, Ahmad Darki, Evangelos E Papalexakis,

and Michalis Faloutsos. 2020. Sourcefinder Finding malware source-code from
publicly available repositories in github. In RAID.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan
Titov, and Max Welling. 2018. Modeling relational data with graph convolutional
networks. In ESWC.

Semmle. 2019. CodeQL for research. https://securitylab.github.com/tools/codeql.
Semmle. 2019. LGTM. https://github.com/marketplace/lgtm.

Donald F Specht et al. 1991. A general regression neural network. IEEE transac-
tions on neural networks (1991).

Fan-Yun Sun, Jordan Hoffmann, Vikas Verma, and Jian Tang. 2020. Infograph: Un-
supervised and semi-supervised graph-level representation learning via mutual
information maximization. In ICLR.

Yizhou Sun, Jiawei Han, Xifeng Yan, Philip S Yu, and Tianyi Wu. 2011. Pathsim:
Meta path-based top-k similarity search in heterogeneous information networks.
In VLDB.

Susheel Suresh, Pan Li, Cong Hao, and Jennifer Neville. 2021. Adversarial graph
augmentation to improve graph contrastive learning. In NeurIPS.

Petar Velickovié¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph Attention Networks. In ICLR.

Lin Wang and Kuk-Jin Yoon. 2021. Knowledge distillation and student-teacher
learning for visual intelligence: A review and new outlooks. IEEE Transactions
on Pattern Analysis and Machine Intelligence (2021).

Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S
Yu. 2019. Heterogeneous graph attention network. In WWW.

Xiao Wang, Nian Liu, Hui Han, and Chuan Shi. 2021. Self-supervised Heteroge-
neous Graph Neural Network with Co-contrastive Learning. In KDD.
Wikipedia. 2022. GitHub Introduction. https://en.wikipedia.org/wiki/GitHub.
Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chenggqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems (2020).

Dongkuan Xu, Wei Cheng, Dongsheng Luo, Haifeng Chen, and Xiang Zhang.
2021. Infogcl: Information-aware graph contrastive learning. In NeurIPS.
Guodong Xu, Ziwei Liu, Xiaoxiao Li, and Chen Change Loy. 2020. Knowledge
distillation meets self-supervision. In ECCV.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. 2018. How Powerful
are Graph Neural Networks?. In ICLR.

Carl Yang, Yuxin Xiao, Yu Zhang, Yizhou Sun, and Jiawei Han. 2020. Heteroge-
neous network representation learning: A unified framework with survey and
benchmark. IEEE Transactions on Knowledge and Data Engineering (2020).
Longqi Yang, Liangliang Zhang, and Wenjing Yang. 2021. Graph Adversarial
Self-Supervised Learning. In NeurIPS.

Yanfang Ye, Yujie Fan, Shifu Hou, Yiming Zhang, Yiyue Qian, Shiyu Sun, Qian
Peng, Mingxuan Ju, Wei Song, and Kenneth Loparo. 2020. Community mitigation:
A data-driven system for covid-19 risk assessment in a hierarchical manner. In
CIKM.

Yuning You, Tianlong Chen, Yongduo Sui, Ting Chen, Zhangyang Wang, and
Yang Shen. 2020. Graph contrastive learning with augmentations. In NeurIPS.
Lu Yu, Shichao Pei, Lizhong Ding, Jun Zhou, Longfei Li, Chuxu Zhang, and
Xiangliang Zhang. 2022. SAIL: Self-Augmented Graph Contrastive Learning. In
AAAL

Yujia Zhai, Wei Song, Xianjun Liu, Lizhen Liu, and Xinlei Zhao. 2018. A chi-square
statistics based feature selection method in text classification. In ICSESS.
Chuxu Zhang, Dongjin Song, Chao Huang, Ananthram Swami, and Nitesh V
Chawla. 2019. Heterogeneous graph neural network. In KDD.

Chuxu Zhang, Ananthram Swami, and Nitesh V Chawla. 2019. Shne: Represen-
tation learning for semantic-associated heterogeneous networks. In WSDM.
Chuxu Zhang, Lu Yu, Xiangliang Zhang, and Nitesh V Chawla. 2018. Task-guided
and semantic-aware ranking for academic author-paper correlation inference.
IJCAL

Xiang Zhang and Marinka Zitnik. 2020. Gnnguard: Defending graph neural
networks against adversarial attacks. In NeurIPS.

Yiming Zhang, Yujie Fan, Shifu Hou, Yanfang Ye, Xusheng Xiao, Pan Li, Chuan
Shi, Liang Zhao, and Shouhuai Xu. 2020. Cyber-guided Deep Neural Network
for Malicious Repository Detection in GitHub. In ICKG.

Yiming Zhang, Yiyue Qian, Yujie Fan, Yanfang Ye, Xin Li, Qi Xiong, and Fudong
Shao. 2020. dstyle-gan: Generative adversarial network based on writing and
photography styles for drug identification in darknet markets. In ACSAC.
Yiming Zhang, Yiyue Qian, Yanfang Ye, and Chuxu Zhang. 2022. Adapting
Distilled Knowledge for Few-shot Relation Reasoning over Knowledge Graphs.
In SDM.

Jianan Zhao, Qianlong Wen, Shiyu Sun, Yanfang Ye, and Chuxu Zhang. 2021.
Multi-view Self-supervised Heterogeneous Graph Embedding. In ECML/PKDD.

https://cran.r-project.org/web/packages/virustotal/index.html
https://cran.r-project.org/web/packages/virustotal/index.html
https://securitylab.github.com/tools/codeql
https://github.com/marketplace/lgtm
https://en.wikipedia.org/wiki/GitHub

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminary
	4 Methodology
	4.1 Heterogeneous Graph Construction
	4.2 Adversarial Heterogeneous Graph Contrastive Learning
	4.3 Model Fine-tuning

	5 Experiments
	5.1 Data Collection
	5.2 Baseline Methods
	5.3 Experimental Setup
	5.4 Performance Comparison
	5.5 Ablation Study
	5.6 Comparison with Commercial Products
	5.7 Embedding Visualization
	5.8 Hyper-parameters Sensitivity

	6 Conclusion
	References

