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Abstract:

Background: Since the US reported its first COVID-19 case on January 21, 2020, the science
community has been applying various techniques to forecast incident cases and deaths. To date,
providing an accurate and robust forecast at a high spatial resolution has proved challenging, even
in the short term.

Method: Here we present a novel multi-stage deep learning model to forecast the number of
COVID-19 cases and deaths for each US state at a weekly level for a forecast horizon of 1 to 4
weeks. The model is heavily data driven, and relies on epidemiological, mobility, survey, climate,
demographic, and SARS-CoV-2 variant frequencies data. We implement a rigorous and robust
evaluation of our model — specifically we report on weekly performance over a one-year period
based on multiple error metrics, and explicitly assess how our model performance varies over
space, chronological time, and different outbreak phases.

Findings: The proposed model is shown to consistently outperform the CDC ensemble model for
all evaluation metrics in multiple spatiotemporal settings, especially for the longer-term (3 and 4
weeks ahead) forecast horizon. Our case study also highlights the potential value of variant
frequencies data for use in short-term forecasting to identify forthcoming surges driven by new
variants.

Interpretation: Based on our findings, the proposed forecasting framework improves upon the
available state-of-the-art forecasting tools currently used to support public health decision making
with respect to COVID-19 risk.
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Research in context

Evidence before this study

A systematic review of the COVID-19 forecasting and the EPIFORGE 2020 guidelines reveal the
lack of consistency, reproducibility, comparability, and quality in the current COVID-19
forecasting literature. To provide an updated survey of the literature, we carried out our literature
search on Google Scholar, PubMed, and medRxi, using the terms “Covid-19,” “SARS-CoV-2,”
“coronavirus,” “short-term,” “forecasting,” and “variant frequencies data.” Although the literature
includes a significant number of papers, it remains lacking with respect to rigorous model
evaluation, interpretability and translation. Furthermore, while SARS-CoV-2 genomic
surveillance is emerging as a vital necessity to fight COVID-19 (i.e. wastewater sampling and
airport screening), there is a clear gap between the development of COVID-19 forecasting tools
and genomic epidemiology. Coupling these efforts and the respective research teams is critical
for maximizing the value of variant frequencies data within modeling tools to aid pandemic
preparedness efforts.

Added value of this study

We propose a multi-stage deep learning model to forecast COVID-19 cases and deaths with a
horizon window of four weeks. The data driven model relies on a comprehensive set of input
features, including epidemiological, mobility, behavioral survey, climate, and demographic. We
present a robust evaluation framework to systematically assess the model performance over a one-
year time span, and using multiple error metrics. This rigorous evaluation framework reveals how
the predictive accuracy varies over chronological time, space, and outbreak phase. Further, a
comparative analysis against the CDC ensemble, the best performing model in the COVID-19
ForecastHub, shows the model to consistently outperform the CDC ensemble for all evaluation
metrics in multiple spatiotemporal settings, especially for the longer forecasting windows. We also
conduct a feature analysis, and show that the role of explanatory features changes over time.
Specifically, we note a changing role of climate variables on model performance in the latter half
of the study period. Lastly, we present a case study that reveals how incorporating variant
frequencies data may improve forecasting accuracy compared to a model without variant
frequencies data.

Implications of all the available evidence

Results from the robust evaluation analysis highlight extreme model performance variability over
time and space, and suggest that forecasting models should be accompanied with specifications on
the conditions under which they perform best (and worst), in order to maximize their value and
utility in aiding public health decision making. The feature analysis reveals the complex and
changing role of factors contributing to COVID-19 transmission over time, and suggests a possible
seasonality effect of climate on COVID-19 spread, but only after August 2021. Finally, the case
study highlights the added value of using variant frequencies data in short-term epidemiological
forecasting models, especially during the early stage of new variant introductions.
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Introduction

By January 31%, 2022, over 55 million cases and 850 thousand deaths have been attributed to
SARS-CoV-2 virus in the US."? Since the start of the pandemic, and in response to the need to
allocate (often limited) resources and help guide policy making, the scientific community has
sought to predict the spread of COVID-19.2% Various prospective modeling efforts exist to
forecast short-term (i.e., weeks) epidemiological outcomes (cases, deaths, and hospitalizations), as
well as conduct longer term (i.e., months) scenario analysis.

The approaches applied by researchers to generate short-term COVID-19 forecasts can broadly be
categorized into three approaches: mechanistic, statistical, and hybrid modeling. Multiple
mechanistic modeling approaches have been applied to COVID-19 forecasting, which explicitly
represent transmission dynamics in a population through the use of compartment models such as
Susceptible-Infected-Recovered (SIR) and extensions.””!° An alternative to the mechanistic
approach is statistical modeling, which estimates the mathematical representation of observed
behavior directly from available data. These methods typically rely upon machine learning
techniques for forecasting, which most commonly include time series,'!"!? decision tree,'* and deep
learning approaches.!*!> The long short-term memory network (LSTM) occupies an important
position among all deep learning methods due to its advantages in processing time series data.
Researchers have applied various frameworks of LSTM to forecast COVID-19 epidemiological
outcomes for the U.S. at different spatial resolutions.!"!” The third modeling approach merges
mechanistic and statistical methodologies, here referred to as hybrid models, which take advantage
of the strengths of each method to improve model performance.?’ For example, the DeepGLEAM
model combines a stochastic compartmental simulation model with deep learning for COVID-19
forecasting.?! All approaches utilized to date have their own strengths and weaknesses.
Mechanistic models are good at providing epidemiological explanations for observed behavior,
and are capable of explicitly analyzing different policies such as mask mandate and other social
distancing measures through model parameterization; however, these modeling frameworks are
limited in their ability to capture rapid changes in disease spreading behavior or consider potential
risk factors other than those represented within the compartmental framework.!® In contrast,
statistical models, while flexible enough to include any potential variable of interest, heavily rely
on the quality and availability of the required input data, and critically, the outputs are not
constrained to adhere to feasible viral dynamics. One approach to mitigate the method-specific
weaknesses is to use ensemble models, such as the CDC COVID-19 Forecast Hub model, which
compile multiple models of various approaches within a single prediction framework.?? This
approach has consistently proven to be the most robust, and best performing approach for short
term COVID-19 forecasting efforts, and thus why we evaluate our model against it.

Whatever the method, a recognized shortcoming in the existing COVID-19 modeling literature is
the lack of rigorous and robust evaluation, which is critical to assess and compare model
performance.”> On October 19" 2021, the CDC COVID-19 Forecast Hub published the
EPIFORGE guidelines to attempt to improve the quality of models, highlighting the importance
of consistency, interpretability, reproducibility, and comparability of models.>* However, most
model evaluation presented in the published literature remains incomprehensive.”> Many models
are evaluated for a single forecasting period, according to a single error metric, and sometimes not
evaluated retrospectively at all.?

Furthermore, many of the existing studies do not account for critical factors or novel data sets,
such as human behavior, which are available through mobility data and/or real-time survey data,
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or variant frequencies data®®, which is becoming increasingly available and of higher quality.
Additionally, there is a substantial gap between model development and model implementation
for real-time forecasting, and many of the models mentioned above lack guidance on when and
where each model would be most suitable, let alone information on if, when and where they were
applied.

In this study we address these existing gaps in the literature and provide a more reliable source of
COVID-19 forecasts for policymakers and the public. We proposed a deep learning model to
forecast the US COVID-19 cases and deaths for all 50 states, for 1- to 4-week forecasting windows.
The model incorporates epidemiological (cases, deaths, hospitalizations, vaccinations), mobility,
survey, climate, demographic, and variant frequencies data. Our work complements a recent study
that incorporates viral variant data among other novel data sets into an LSTM framework for
forecasting COVID-19, applied to three cities in Japan during the Delta wave®®. We assess the
model performance based on multiple error metrics, as well as for varying time periods, regions,
and as a function of different outbreak phases, namely periods of intense growth, decline and
stability. Lastly, we implement a retrospective case study incorporating variant frequencies data
for the Delta and Omicron waves to demonstrate the value of incorporating new variant
introductions within forecasting tools. A critical contribution of this case study is bridging the
typically disparate efforts and groups that generate raw genomic sequence data (from GISAID)
and develop real-time forecasting tools. The incorporation of this GISAID data, even in aggregate
population level form, provides critical evidence for an added value of long-term sequencing
efforts. We conduct feature importance analysis to investigate the role of each feature in predicting
COVID-19 cases, which further highlights the value of the variant frequencies data within the
proposed modeling efforts.

Methods

COVID-19 transmission patterns have proven complex over time. Thus, forecasting even near-
term disease dynamics requires a robust predictive modeling framework and carefully selected
input data streams. Critically, the framework must account for nonlinear interactions between the
considered factors affecting the transmission dynamics and uncertainty in their time-dependent
impact on observed transmission dynamics. We therefore propose a multi-stage deep learning
framework, which, at each stage, forecasts a chosen target variable for the seven days ahead (e.g.,
one-week ahead forecast). The multi-stage model builds off the initial first stage prediction to
forecast an additional week out and continues to implement this iterative approach one stage at a
time, to predict further into the future. In this paper, we will focus on 4-stage forecasting, which
generates 4-week ahead predictions, consistent with the CDC COVID-19 Forecast Hub.?%
However, the framework can be applied to shorter- and longer-term horizons.

Multi-Stage LSTM Network Architecture

The multi-stage framework consists of two neural network branches, connected in parallel, as
illustrated in Figure 1. The main branch (main model) predicts the target epidemiological variables
of interest, while the secondary branch (feature model) predicts the features to populate the data
streams used as input in the main model. The target variable for the main model is either weekly
incident cases or weekly mortality rate; for the features model, target variables are all other
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independent time-varying features that serve as predictors for the main model, e.g., mobility and
survey data. The only variables that we do not predict in the features model are static variables
such as demographics. An example of a model output is shown in Figure 1.C, for New York state,
specifically, the forecasted weekly cases for each of the four weeks following October 171, 2020.
Additional implementation of the multi-stage framework, details of model formulations, and
model parameterization are described in detail in Appendix Section 2-1 to 2-3.

Model Evaluation

We conduct a robust evaluation of the model performance, explicitly assessing its performance as
a function of space, time, and outbreak phase. All assessment is conducted over a long horizon (52
weeks, spanning all epidemiological weeks from August 2020 to August 2021), and evaluated
using three different error metrics: a) Absolute Error (AE), b) Percentage Absolute Error (PAE),
and c) Weighted Interval Scores (WIS).2’ The definition of each error metric is described in
Appendix Section 2-4. The first two metrics measure the accuracy of point predictions, while the
last metric is intended to evaluate the model predictions as a probability distribution. For all
experiments, we use JHU CSSE actual weekly reported cases and deaths ! as the ground truth data
to compute the error metrics. While this analysis is retrospective, the evaluation is based on data
that would have been available at the time of prediction, to align with the real-time forecasting
constraints. For space constraints, the PAE results are presented throughout this section, and the
WIS and AE results, when relevant, are provided in relevant sections throughout the Appendix.
We compare our results to the CDC ensemble model,?° which we use as the benchmark because it
has consistently proven to be the top performing model in the CDC COVID-19 Forecast Hub,?
among dozens of individually contributed models (ensemble members).

We also conduct sensitivity analysis to assess the contribution of each variable to the model
performance, by evaluating different combinations of input features (Appendix Section 2-5). Due
to time constraints and computational cost, the sensitivity analysis only applies to PAE and AE.

Feature Importance

We utilize an integrated gradients (IG) approach to investigate the role of each feature in predicting
COVID-19 cases. IG assigns importance to features as attributions.?” It achieves this by integrating
the gradients of the output with respect to the input along an arbitrary path from the baseline to the
input data point. We apply the IG for the model with variant frequencies data and calculate the
feature importance for each state at selected time points. The formulation of IG is described in
detail in Appendix Section 2-6.

Data

The proposed LSTM model is heavily data driven and trained using multiple disparate categories:
epidemiological, mobility, survey, climate, demographic, and variant frequencies data. The time-
varying data are available at a daily resolution for each US state. We rely on a combination of raw
and derived metrics as inputs, which are listed in Table 1, and each is described in detail in
Appendix Section 1.
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Ethics

No animal or human experimentations involved in this study.

Role of Funders

The funders were not involved in study design, data collection, data analyses, interpretation of
data, or writing of the manuscript.

Results

Results for the LSTM model forecasted cases for 1-, 2-, 3- and 4-week forecasting windows, for
every state in the US are presented in this section. Equivalent results for deaths forecasts are
described in Appendix Section 3-8. We present our model performance as a function of time, space
and different outbreak phases. We then conclude this section with results from a case study that
supplements the input data streams with variant cases from available SARS-CoV-2 genomic
surveillance data. The case study 1s conducted for a subset of states with the highest quality variant
frequencies data, and the 2021 summer period, to align with the delta wave in the US. In Appendix
Section 2-5 we present results from a sensitivity analysis conducted to assess the contribution of
each variable in prediction. Finally, a feature importance analysis is included in Appendix Section
2-6 where we present the contribution of each feature at several critical time points, namely at the
introduction of a new variant, the period of transition between dominant variants, and when the
dominant variant reaching maximum proportion.

Model Performance Across Time

Figure 2 illustrates the relative performance of the LSTM against the CDC ensemble model for
each of the 52-week periods evaluated, for 1 to 4 week forecast windows, highlighting the
performance variability over time. Each pair of bar plots represents PAE distribution for all the
states at a given week, where the green bar represents the error distribution for the multi-stage
LSTM model, and the yellow bar represents the error distribution for the CDC ensemble model.
The red curve represents the weekly reported cases at the national level. The left y-axis represents
the PAE by different forecasting windows and right y-axis represents national level reported cases.

For the time period evaluated the model consistently outperforms the CDC ensemble, especially
during case surges, and for longer (3 and 4 weeks ahead) forecast windows. The average PAE
across all states and weeks is 22%, 32%, 44% and 57% for the 1 to 4 week forecast windows,
respectively. As the forecasting window increases, the variability in performance across states
further increases, as indicated by the wider bars. Figure 2 also reveals how the model performance
varies with respect to the different waves of the pandemic. The model performance is relatively
stable for the first five months of the study period (August 2020 to November 2020), but much
more variable in performance in January 2021 and May 2021, which both correspond to periods
when the cases transitioned from decreasing to more stable rates. The results for WIS and AE
reveal consistent performance patterns, as illustrated in Appendix Section 3-1.

Model Performance Across States
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Figure 3 illustrates the average performance over all 52 weeks, for each state, highlighting the
performance variability across space. The color scales represent the magnitude of the error metric;
the scales of PAE are fixed in 10-90 range. The deeper color corresponds to larger error.
Equivalent evaluations for AE and WIS are included in Appendix Section 3-2. While there are no
clear spatial patterns of model performance for 1-week ahead forecast, a spatial pattern becomes
evident as the forecast window increases. For the 2 to 4-week forecast windows, the PAE is
relatively larger for midwestern states and smaller for southeastern states. Reasons for this are
addressed in the discussion section.

Model Performance by Outbreak Phase

In addition to examining performance variability over fixed space and time, we also evaluate the
model performance as a function of the outbreak phase. To do this, we generate five outbreak
phases based on the weekly average incidence growth rates and assign each state-week pair
accordingly. We apply 5-quantiles clustering according to the relative magnitude of growth rate,
the five groups are classified as: 1) fast increasing (growth rate above 0-017); 2) slightly increasing
(growth rate between 0-005 and 0-017); 3) flat (growth rate between -0-004 and 0-004); 4) slightly
decreasing (growth rate between -0-016 and -0-004); and 5) fast decreasing (growth rate below -
0-016). The assignment of the weeks to categories is presented in Appendix Figure 23. After the
phase category assignment, we evaluate the performance for all state-week pairs in each of the five
phase groups independently.

Figure 4 shows the model performance of the multi-stage LSTM model by different outbreak
phases, the colors represent different outbreak phases, and each bar represents the distribution of
PAE in corresponding outbreak phases. This result reveals that the model performs best in the
stable period and has the highest variability when cases change rapidly, consistent with the same
evaluation for the CDC Ensemble model (Appendix Figure 24). Equivalent evaluation based on
WIS are shown in Appendix Figure 25 and 26. In addition to evaluating the LSTM and CDC
Ensemble model separately, we also compare both models under each outbreak phase (see
Appendix Section 3-6). As shown in Appendix Figure 27 and 28, when growth is classified as fast
increasing, the multi-stage LSTM model outperform the CDC ensemble model over 60% of the
time for all forecast windows. For the slightly increasing and fast decreasing periods, our model
slightly outperforms the CDC ensemble. However, the performance of the model is lower than the
CDC ensemble during periods of outbreak stability and slight declines (e.g., December 2020 and
May 2021).

Case Study with Variant Frequencies Data

The US has experienced multiple waves of incident cases, often driven by new variants. In this
case study, we conduct a retrospective analysis to explore the value of including variant cases from
available SARS-CoV-2 genomic surveillance data in improving COVID-19 outbreak prediction
using our proposed modeling framework, based on the hypothesis that variant frequencies data
may act as a signal for forthcoming changes in transmission patterns and therefore help improve
prediction accuracy.’® Here we focus on forecasting state-level confirmed cases in the US,
capturing the wave caused by the Delta and Omicron variant. We implement the analysis for the

8
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39 selected states that sequenced at least 5% of reported cases from May 1 to August 31, 2021.
We generate new variant-specific case time series (as the product of the daily proportion and total
daily cases reported), which are used as inputs in the model. Details of the variant frequencies data
preprocessing are documented in Appendix Section 1-6. For Delta wave, we select the top three
variants with the highest proportion during June and September 2021 as new variant-specific time
series, i.e., Delta, Gamma, and Alpha. In addition, we also create a fourth time series (“other”)
representing the sum of all other circulating SARS-CoV-2 lineages. The inclusion of “other”
category enables us to capture the introduction of new variants, in addition to other known
circulating variants. We apply the same approach to generate variant-specific time series for the
Omicron wave between December 1, 2021, and January 1, 2022. When applying the model, the
selection of the variant-specific time series can be adjusted dynamically, based on the most recent
data.

Figure 5 illustrates the results for three different models: (a) Multi-stage LSTM model without
variant cases data, (b) Multi-stage LSTM model with variant cases data and (c) CDC Ensemble
model. The x-axis is the week that the predictions are made on. Each pair of bar plots represents
PAE distribution for the selected states at a given week, where the green bar represents the error
distribution for the multi-stage LSTM model without variant cases data, purple bar represents the
error distribution for the multi-stage LSTM model with variant frequencies data, and the yellow
bar represents the error distribution for the CDC ensemble model. The blue region represents the
period of Delta invasion, the shaded green region represents Delta dominated period (proportion
of Delta reaches 100%), and the orange region represents the period of Omicron invasion. Results
from the case study suggests that the inclusion of variant cases data have varying levels of impact
on the model performance, dependent on the time period, but critically, are shown to improve
performance in the early growth stage of a newly introduced variant. Furthermore, results from the
feature analysis present in Appendix Figure 11-16 highlight the critical role these variant-specific
time series play in these critical phases of the outbreak, specifically when a new variant is emerging
to be the dominant variant in circulation, the variant-specific data input is the most significant
feature in the model. This holds true for both the Delta and Omicron introductions. Other specific
performance trends are noted in the discussion section. The results based on AE and WIS are
shown in Appendix Section 3-7.

Notably, this study is retrospective, and therefore is not subject to the real-time reporting
limitations of SARS-CoV-2 variant frequencies data from sequences COVID-19 cases.
Specifically, the average time lag in variant frequencies data reporting is 26 days,*! whereas we
assume data is available with a seven day lag. While not feasible at present, this study highlights
the potential value of timely and open virus genomic surveillance as a pandemic forecasting tool.

Model Selection

We conduct sensitivity analysis to assess the importance and contribution of various input features
and training periods to identify the best performing model. We assign features into four categories
(epidemiological, mobility, survey, and climate data). The complete set of features considered, and
category assignment are listed in Table 1. Four models are constructed which include different
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combinations of available features, namely 1) a simple basis model with only epidemiological data,
2) amodel with epidemiological and mobility data, 3) a model with epidemiological, mobility and
survey data, and 4) a model with all features. We further conduct the equivalent model comparison
for two discrete time periods aligning with pre and post available vaccines, specifically divided on
February 1, 2021, approximately when vaccination roll out began in the US. The results comparing
the performance of these four models for the entire period and two discrete periods are shown in
Appendix Figures 9, and 10, respectively. The results reveal that the model with epidemiological,
mobility, and survey data has the best overall performance. However, the contribution of each
input feature can vary across time; this is expanded upon in the discussion section. Finally, the
analysis performed for COVID-19 deaths as a response variable is presented in Appendix Figure
26, where model 3) and 4) have similar performance. Additional sensitivity analysis on model’s
input parameters is included in the Appendix Section 2-5.

Discussion
Spatiotemporal Variability of Model Performance

Our analysis reveals a high variability in model performance as a function of the forecast window,
chronological time and space. The performance over the 52 weeks evaluated is closely tied to the
observed outbreak dynamics, and figure 2 highlights the impact of rapidly changing dynamics on
the model performance. The model performs worse around the inflection period (especially when
cases’ trend changes from decreasing to stable), and gradually improves as case (and death) rates
stabilize. In terms of spatial patterns, for the time period evaluated model is more accurate in
eastern and southeastern states, compared with midwestern states. This pattern is further confirmed
by comparing the model performance with the CDC ensemble model. This spatial pattern can be
partially explained by the difference in case trends across these regions. Specifically, during
October 2020 to December 2020, midwestern states experienced the fall COVID-19 wave ahead
of most of the country. Specifically, midwestern states started to show a decreasing trend while
cases were increasing elsewhere (see Appendix Section 3-3). Because the model is trained using
the data for all states for each prediction period, the predictions will be guided by the most
dominant trend, and the model may underperform for any states not experiencing the same patterns.
As an extension of this work, one could develop group-specific models through a cluster-based
training setup or a more deliberate design of loss function, and as such, generate forecasts for each
sub-group. Additionally, as expected, the model performance decreases as the forecasting window
increases. This outcome is partially an artifact of the multi-stage nature of the modeling framework,
which is sensitive to accumulative uncertainty in the input data and error propagation in the model
outputs; e.g., predictions generated for each week are used as inputs for the following week’s
prediction. Therefore, in periods of high instability, the one-week ahead predictions can be more
erroneous, thus the error will be larger for longer forecast windows relative to the same forecast
window in more stable periods. Overall, the observed spatial and temporal variability in model
performance highlights the importance of identifying and communicating the optimal performance
conditions for a given model before it is shared publicly or relied upon by decision makers.

Model Performance Varies by Outbreak Phase

In Figure 2, the LSTM model is shown to perform consistently better than the CDC ensemble
model in the periods of rapid outbreak growth (e.g., October 2020 to November 2020, July 2021)
and decline (e.g., January 2021). To further explore model applicability, we evaluated model
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performance as a function of the outbreak phase, namely periods of growth, decline or stability,
which were designated by five discrete categories. For the nine most populated states, most of the
weeks in fall 2020 and summer 2021 are assigned to either fast or slightly increasing phase
categories (Appendix Figure 23). The results highlighted in Figure 4 reveal the LSTM model to
perform best in stable periods, and poorest in periods of extreme growth and decline. However,
critically, the comparison of our LSTM model against the CDC Ensemble as a function of the
outbreak phase, presented Appendix Figure 27 and 28, reveals that the multi-stage LSTM model
performs relative better during the most critical phases of fast growth and fast decreases. This
variation in forecasting accuracy during the rapidly changing outbreak phases is consistent with
COVID-19 forecasting literature.?? Future work should consider relaxing continuous forecasting
outputs, and focusing on categorical predictions, which may be able to be generated more
accurately and reliably. Our analysis also highlights that model selection should consider model
performance relative to the phase of the outbreak, in addition to the fixed time and location the
model is applied to.

Model Evaluation Is Sensitive to Performance Metric Chosen

A major focus of this analysis is to explore the how model performance relates to the metrics
chosen for evaluation. As illustrated in the Appendix Section 3-1, the performance of the LSTM
and CDC ensemble model can vary significantly, dependent on the error metric selected. This
occurs due to the way the metrics are mathematically defined (Appendix Section 2-4), in particular,
whether they are normalized to account for potentially large variations in the magnitude of the
predictor variable or not, as well as how they account for uncertainty bounds. For example, AE
has a positive correlation with confirmed case counts, therefore the states and outbreak periods
with the highest reported case values will have higher AE scores; this is the case for California,
New York, and Florida (Appendix Figure 20). In contrast, PAE is normalized by case levels, and
is therefore more likely to have a higher relative value when case rates are low because small
variabilities in the estimated versus observed incidence rate will be amplified. This behavior is
illustrated during summer 2021 in states with lower populations like Maine, New Hampshire, and
Vermont, when the weekly confirmed cases are below 50 (Figure 3). For all forecasting windows,
the results are shown to be sensitive to the error metric chosen, and critically, the selection of the
best performing model for a given state is dependent on the metric chosen for evaluation. However,
as the forecasting window increases, the LSTM model appears to consistently outperform the CDC
ensemble model for the southeastern states (i.e., Virginia, North Carolina, South Carolina)
according to all metrics. This analysis highlights the need to consider multiple metrics in
evaluating models, in order to improve model selection and robustly assess model performance.

Model Sensitivity to Input Data Streams

Results from the sensitivity analysis to assess the importance and contribution of various input
features revealed the best performing model included all the features except climate data. Our
analysis reveals that a model solely reliant on epidemiological data performed worst, while adding
mobility and survey data reliably improved model performance, especially for longer forecasting
windows. These results support the inclusion of preprocessed mobility variables and real-time
survey variables in learning model frameworks such as the proposed LSTM model. While the
epidemiologic, survey and mobility variables revealed similar roles across the entire study period,

11



437
438
439
440
441
442
443
444
445
446
447
448
449
450

451
452

453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475

476
477
478
479
480
481

and each of the separate periods evaluated, the role of climate variables is less clear. The inclusion
of climate variables did not initially appear to improve predictive capability (when considered
across the entire study period), however, when we divided the study period into two discrete
periods, the role of the climate data changed. For the period between August 2020 and February
2021, the inclusion of climate data did not improve the model performance, however during the
second phase of the study period, between February and August 2021, the inclusion of climate
variables increased the model performance (Appendix Figure 9). These results suggest a differing
role of climate on COVID-19 transmission in the first and second year of the pandemic, which
aligns with other literature.*> We hypothesize in the first year of the pandemic factors other than
climate, such as behavior and underlying population immunity, dominated the role of climate,
and/or the role of climate is being captured indirectly through other predictors (e.g., higher
temperatures lead to behavioral changes which can be captured through the survey and mobility
data sets). While this preliminary analysis sheds some light on the possible role of climate and
seasonality of COVID-19, this is an area in need of further research.

Inclusion of Variant Frequencies Data Improves Model Performance

The case study, designed to capture the impact of new variant introductions on outbreak dynamics,
highlights the value of using variant frequencies data in short-term epidemiological forecasting,
specifically with regards to early identification of inflection points. Due to differences in relative
infectivity and underlying population immunity, the Delta and Omicron waves occurred over
different timescales; the Delta variant took around two months to increase from 0% to 100% of
the reported variant proportion, while the Omicron variant reached 100% in half this time. These
differences led to variable model performance patterns, however for both, the variant data provided
clear benefit for model performance during the emerging period. For the Delta wave, the added
value of including variant case data was evident within two weeks after the average proportion of
the Delta variant was above 15% for most of the 39 states included in the cases study. Specifically,
the LSTM model with variant cases data performed better than both the reference LSTM model
(without the variant cases data) and the CDC ensemble model for predictions between
epidemiological weeks June 20, and July 25, 2021, especially for the longer three- and four-week
forecasting windows. This is approximately the period when the dominant variant switches from
Alpha to Delta (Appendix Figure 6). The results for the Omicron wave further confirm this
performance pattern. The multi-stage LSTM model with variant cases data begins to outperform
the other two reference models just two weeks after the majority of states first reported Omicron
cases. However, the model with variant case data is not always superior; for both the Delta and
Omicron waves the model with the variant data lagged the other reference models once the variant
proportion reached 100%, respectively. A possible explanation for this is that when the Delta or
Omicron variant proportion reached 100%, the proportion of other variant specific cases suddenly
dropped to zero, and the multi-stage LSTM model requires a learning period to adapt to this change
in the input data stream (Figure 5).

Results from the feature importance analysis provides additional evidence for the significant role
of variant data during critical windows of the COVID-19 pandemic. During the periods when there
is a transition between dominant circulating variants (Appendix Figure 12 and 15), the emerging
variant cases become the most dominant feature guiding the model predictions. However, outside
of this window the variant data is not as important. Immediately after a new variant is identified
(Appendix Figures 11 and 14) and after the new variant proportion reaches 100% (Appendix
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Figure 13 and 16), the new variant cases have minor contributions compared to other features.
Additionally, the feature analysis results more broadly highlight that the contribution of each
feature varies substantially from week to week, with no predictable pattern for feature contribution.
This finding highlights the complexity of COVID-19 forecasting and further justifies the non-
linear, deep learning methodology we chose in this work.

Limitations

There are several limitations to this study, primarily resulting from data issues, and imposed
methodological constraints. Most critically, there are challenges posed by the quality and
availability of the data relied upon, for both the health outcomes data sets used to represent ground
truth, as well as the input data streams. Given the intended real time use of this framework, the
best available data at the time of generating the forecast were used to both train and evaluate the
model, and as such, unresolved anomalies, biases and inaccuracies in the data directly affect
performance. Further data quality issues such as spatiotemporal biases, sample size and data gaps
also posed challenges, and were more prevalent in the data sets used to capture human behavior,
e.g., survey data. In addition to quality of the data used, certain critical features are excluded from
the model, such as government policies and policy compliance rates, as well as other behavioral
data. Future work should explore the inclusion of these additional data sources to further enhance
model performance. In addition to data issues, the LSTM model is fully empirical, i.e., it does not
have a mechanistic component, therefore the actual infection dynamics are not constrained by
feasible outbreak scenarios, which can result in unrealistic predictions. The empirical nature of the
model also constrains the forecasts to previously observed transmission patterns (within the
training time window); thus, the model will perform poorly when the transmission dynamics
dramatically differ (exceed) from prior behavior.

Conclusion

We introduced a flexible deep learning framework that utilizes a broad set of data types
(epidemiological, mobility, survey, climate, demographic, and variant frequencies) to forecast
COVID-19 cases and deaths in real time. The novel multi-stage forecasting routine uses an
iterative approach, building on one stage's outputs to generate the next stage’s predictions. We
applied our framework for the United States at a weekly temporal resolution and state-level spatial
resolution, for a four-week planning horizon. We evaluated our model at each epidemiological
week over the 52-week period between August 2020 to August 2021, and quantified performance
using three different error metrics. We further break down the performance as a function of
outbreak phases, location, time, and forecasting window. While the model is shown to perform
well in multiple settings, the results from this analysis illustrate a variable performance of the
model across the considered dimensions. This variability is driven by the complex, uncertain and
evolving role of the critical contributing factors that drive COVID-19 transmission dynamics. This
includes, for example, changes behavior, immunity, climate, the environment, and viral dynamics.
Additionally, our case study reveals that the model can learn from simple variant proportion data
within two weeks after a new variant is first reported. During this critical window the model
heavily relies upon variant cases data and performs better, highlighting the value of using variant
frequencies data in short-term epidemiological forecasting. However, as the new variant
proportion reaches 100%, the variant cases data gradually lose their additional value. Based on
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these findings, forecasting models should be accompanied with specifications on the conditions
under which models performs best (and worst), in order to maximize their value and utility in
aiding public health decision making. Extensions of this work include applying it at higher spatial
resolutions (e.g., at the county level), and for predicting other response variables (e.g.,
hospitalization rates). Further, we selected a simple LSTM as the model’s building block since it
is a state-of-art framework for processing time dependent data, however, rigorous inter-
comparisons with other deep learning techniques should be conducted.
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Table 1: Summary of input data

State-Level Data Data Processing Data Smoothing Sources
Epidemiological data
COVID-19 cases/deaths Raw 7-day moving average :
Growth rate of cases/deaths Derived 7-day moving average :
Vaccination coverage Raw 7-day moving average 33
Hospitalization data Raw 7-day moving average 3435
Mobility data
Importation risk Derived 7-day moving average 1,36
Mobility ratio Derived 7-day moving average 36
;/;Sstiitrsl:gtggsfor 21 different Derived Principal component analysis ~ *°
Survey data
COVID-like symptoms in Raw data has already been 35
community Raw smoothed
Climate data
Temperature (°C) Raw 7-day moving average 37
Precipitation (mm/day) Raw 7-day moving average 37
Demographic data
Population Raw -
Proportion of people over 65 Raw - 38
Variant frequencies data
Variant cases Derived 7-day moving average
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Figure. 1. A) Network architecture of the multi-stage LSTM model. B) Prediction structure of the
multi-stage LSTM model. At the initial stage, the model uses the most recent data as input, then at
the later stage, the model adapts previous prediction as input to make further predictions. The
transparent colors represent the model’s output, and solid colors represents the model’s inputs. C)
An example forecasting of the multi-stage LSTM model.
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Figure. 2. Comparison of model performance between the multi-stage LSTM Model and the CDC
ensemble model based on PAE. Each pair of bar plots represents PAE distribution for all the states
at a given week, where the green bar represents the error distribution for the multi-stage LSTM
model, and the yellow bar represents the error distribution for the CDC ensemble model. The red
curve represents the weekly reported cases at the national level. The left y-axis represents the PAE
by different forecasting windows and right y-axis represents national level reported cases.
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Figure. 4. Evaluation of the multi-stage LSTM model by outbreak phases based on PAE. The
colors represent different outbreak phases, and each bar represents the distribution of PAE in

corresponding outbreak phases.
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Figure. 5. Model performance based on PAE for three different models: (a) Multi-stage LSTM
model without variant cases data, (b) Multi-stage LSTM model with variant cases data and (c)
CDC Ensemble model. The x-axis is the week that the predictions are made on. Each pair of bar
plots represents PAE distribution for the selected states at a given week, where the green bar
represents the error distribution for the multi-stage LSTM model without variant cases data, purple
bar represents the error distribution for the multi-stage LSTM model with variant cases data, and
the yellow bar represents the error distribution for the CDC ensemble model. The blue region
represents the period of Delta invasion, the shaded green region represents Delta dominated period
(proportion of Delta reaches 100%), and the orange region represents the period of Omicron
invasion.
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