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Abstract:  19 

Background: Since the US reported its first COVID-19 case on January 21, 2020, the science 20 

community has been applying various techniques to forecast incident cases and deaths. To date, 21 

providing an accurate and robust forecast at a high spatial resolution has proved challenging, even 22 

in the short term.  23 

 24 

Method: Here we present a novel multi-stage deep learning model to forecast the number of 25 

COVID-19 cases and deaths for each US state at a weekly level for a forecast horizon of 1 to 4 26 

weeks. The model is heavily data driven, and relies on epidemiological, mobility, survey, climate, 27 

demographic, and SARS-CoV-2 variant frequencies data. We implement a rigorous and robust 28 

evaluation of our model – specifically we report on weekly performance over a one-year period 29 

based on multiple error metrics, and explicitly assess how our model performance varies over 30 

space, chronological time, and different outbreak phases.  31 

 32 

Findings: The proposed model is shown to consistently outperform the CDC ensemble model for 33 

all evaluation metrics in multiple spatiotemporal settings, especially for the longer-term (3 and 4 34 

weeks ahead) forecast horizon. Our case study also highlights the potential value of variant 35 

frequencies data for use in short-term forecasting to identify forthcoming surges driven by new 36 

variants.  37 

Interpretation: Based on our findings, the proposed forecasting framework improves upon the 38 

available state-of-the-art forecasting tools currently used to support public health decision making 39 

with respect to COVID-19 risk. 40 
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Research in context 49 

 50 

Evidence before this study 51 

A systematic review of the COVID-19 forecasting and the EPIFORGE 2020 guidelines reveal the 52 

lack of consistency, reproducibility, comparability, and quality in the current COVID-19 53 

forecasting literature. To provide an updated survey of the literature, we carried out our literature 54 

search on Google Scholar, PubMed, and medRxi, using the terms “Covid-19,” “SARS-CoV-2,” 55 

“coronavirus,” “short-term,” “forecasting,” and “variant frequencies data.” Although the literature 56 

includes a significant number of papers, it remains lacking with respect to rigorous model 57 

evaluation, interpretability and translation. Furthermore, while SARS-CoV-2 genomic 58 

surveillance is emerging as a vital necessity to fight COVID-19 (i.e. wastewater sampling and 59 

airport screening), there is a clear gap between the development of COVID-19 forecasting tools 60 

and genomic epidemiology. Coupling these efforts and the respective research teams  is critical 61 

for maximizing the value of variant frequencies data within modeling tools to aid pandemic 62 

preparedness efforts.  63 

 64 

Added value of this study 65 

We propose a multi-stage deep learning model to forecast COVID-19 cases and deaths with a 66 

horizon window of four weeks. The data driven model relies on a comprehensive set of input 67 

features, including epidemiological, mobility, behavioral survey, climate, and demographic. We 68 

present a robust evaluation framework to systematically assess the model performance over a one-69 

year time span, and using multiple error metrics. This rigorous evaluation framework reveals how 70 

the predictive accuracy varies over chronological time, space, and outbreak phase. Further, a 71 

comparative analysis against the CDC ensemble, the best performing model in the COVID-19 72 

ForecastHub, shows the model to consistently outperform the CDC ensemble for all evaluation 73 

metrics in multiple spatiotemporal settings, especially for the longer forecasting windows. We also 74 

conduct a feature analysis, and show that the role of explanatory features changes over time. 75 

Specifically, we note a changing role of climate variables on model performance in the latter half 76 

of the study period. Lastly, we present a case study that reveals how incorporating variant 77 

frequencies data may improve forecasting accuracy compared to a model without variant 78 

frequencies data. 79 

 80 

Implications of all the available evidence 81 

Results from the robust evaluation analysis highlight extreme model performance variability over 82 

time and space, and suggest that forecasting models should be accompanied with specifications on 83 

the conditions under which they perform best (and worst), in order to maximize their value and 84 

utility in aiding public health decision making. The feature analysis reveals the complex and 85 

changing role of factors contributing to COVID-19 transmission over time, and suggests a possible 86 

seasonality effect of climate on COVID-19 spread, but only after August 2021. Finally, the case 87 

study highlights the added value of using variant frequencies data in short-term epidemiological 88 

forecasting models, especially during the early stage of new variant introductions. 89 

 90 

  91 
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Introduction 92 

By January 31st, 2022, over 55 million cases and 850 thousand deaths have been attributed to 93 

SARS-CoV-2 virus in the US.1,2 Since the start of the pandemic, and in response to the need to 94 

allocate (often limited) resources and help guide policy making, the scientific community has 95 

sought to predict the spread of COVID-19.3–6 Various prospective modeling efforts exist to 96 

forecast short-term (i.e., weeks) epidemiological outcomes (cases, deaths, and hospitalizations), as 97 

well as conduct longer term (i.e., months) scenario analysis. 98 

The approaches applied by researchers to generate short-term COVID-19 forecasts can broadly be 99 

categorized into three approaches: mechanistic, statistical, and hybrid modeling. Multiple 100 

mechanistic modeling approaches have been applied to COVID-19 forecasting, which explicitly 101 

represent transmission dynamics in a population through the use of compartment models such as 102 

Susceptible-Infected-Recovered (SIR) and extensions.7–10 An alternative to the mechanistic 103 

approach is statistical modeling, which estimates the mathematical representation of observed 104 

behavior directly from available data. These methods typically rely upon machine learning 105 

techniques for forecasting, which most commonly include time series,11,12 decision tree,13 and deep 106 

learning approaches.14,15 The long short-term memory network (LSTM) occupies an important 107 

position among all deep learning methods due to its advantages in processing time series data. 108 

Researchers have applied various frameworks of LSTM to forecast COVID-19 epidemiological 109 

outcomes for the U.S. at different spatial resolutions.16–19 The third modeling approach merges 110 

mechanistic and statistical methodologies, here referred to as hybrid models, which take advantage 111 

of the strengths of each method to improve model performance.20 For example, the DeepGLEAM 112 

model  combines a stochastic compartmental simulation model with deep learning for COVID-19 113 

forecasting.21 All approaches utilized to date have their own strengths and weaknesses. 114 

Mechanistic models are good at providing epidemiological explanations for observed behavior, 115 

and are capable of explicitly analyzing different policies such as mask mandate and other social 116 

distancing measures through model parameterization; however, these modeling frameworks are 117 

limited in their ability to capture rapid changes in disease spreading behavior or consider potential 118 

risk factors other than those represented within the compartmental framework.16 In contrast, 119 

statistical models, while flexible enough to include any potential variable of interest, heavily rely 120 

on the quality and availability of the required input data, and critically, the outputs are not 121 

constrained to adhere to feasible viral dynamics. One approach to mitigate the method-specific 122 

weaknesses is to use ensemble models, such as the CDC COVID-19 Forecast Hub model, which 123 

compile multiple models of various approaches within a single prediction framework.22 This 124 

approach has consistently proven to be the most robust, and best performing approach for short 125 

term COVID-19 forecasting efforts, and thus why we evaluate our model against it. 126 

Whatever the method, a recognized shortcoming in the existing COVID-19 modeling literature is 127 

the lack of rigorous and robust evaluation, which is critical to assess and compare model 128 

performance.23 On October 19th 2021, the CDC COVID-19 Forecast Hub published the 129 

EPIFORGE guidelines to attempt to improve the quality of models, highlighting the importance 130 

of consistency, interpretability, reproducibility, and comparability of models.24 However, most 131 

model evaluation presented in the published literature remains incomprehensive.23 Many models 132 

are evaluated for a single forecasting period, according to a single error metric, and sometimes not 133 

evaluated retrospectively at all.23  134 

Furthermore, many of the existing studies do not account for critical factors or novel data sets, 135 

such as human behavior, which are available through mobility data and/or real-time survey data, 136 
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or variant frequencies data25, which is becoming increasingly available and of higher quality. 137 

Additionally, there is a substantial gap between model development and model implementation 138 

for real-time forecasting, and many of the models mentioned above lack guidance on when and 139 

where each model would be most suitable, let alone information on if, when and where they were 140 

applied.  141 

In this study we address these existing gaps in the literature and provide a more reliable source of 142 

COVID-19 forecasts for policymakers and the public. We proposed a deep learning model to 143 

forecast the US COVID-19 cases and deaths for all 50 states, for 1- to 4-week forecasting windows. 144 

The model incorporates epidemiological (cases, deaths, hospitalizations, vaccinations), mobility, 145 

survey, climate, demographic, and variant frequencies data. Our work complements a recent study 146 

that incorporates viral variant data among other novel data sets into an LSTM framework for 147 

forecasting COVID-19, applied to three cities in Japan during the Delta wave26. We assess the 148 

model performance based on multiple error metrics, as well as for varying time periods, regions, 149 

and as a function of different outbreak phases, namely periods of intense growth, decline and 150 

stability. Lastly, we implement a retrospective case study incorporating variant frequencies data 151 

for the Delta and Omicron waves to demonstrate the value of incorporating new variant 152 

introductions within forecasting tools. A critical contribution of this case study is bridging the 153 

typically disparate efforts and groups that generate raw genomic sequence data (from GISAID) 154 

and develop real-time forecasting tools. The incorporation of this GISAID data, even in aggregate 155 

population level form, provides critical evidence for an added value of long-term sequencing 156 

efforts.  We conduct feature importance analysis to investigate the role of each feature in predicting 157 

COVID-19 cases, which further highlights the value of the variant frequencies data within the 158 

proposed modeling efforts.  159 

  160 

Methods 161 

COVID-19 transmission patterns have proven complex over time. Thus, forecasting even near-162 

term disease dynamics requires a robust predictive modeling framework and carefully selected 163 

input data streams. Critically, the framework must account for nonlinear interactions between the 164 

considered factors affecting the transmission dynamics and uncertainty in their time-dependent 165 

impact on observed transmission dynamics. We therefore propose a multi-stage deep learning 166 

framework, which, at each stage, forecasts a chosen target variable for the seven days ahead (e.g., 167 

one-week ahead forecast). The multi-stage model builds off the initial first stage prediction to 168 

forecast an additional week out and continues to implement this iterative approach one stage at a 169 

time, to predict further into the future. In this paper, we will focus on 4-stage forecasting, which 170 

generates 4-week ahead predictions, consistent with the CDC COVID-19 Forecast Hub.25,26 171 

However, the framework can be applied to shorter- and longer-term horizons. 172 

 173 

Multi-Stage LSTM Network Architecture 174 

The multi-stage framework consists of two neural network branches, connected in parallel, as 175 

illustrated in Figure 1. The main branch (main model) predicts the target epidemiological variables 176 

of interest, while the secondary branch (feature model) predicts the features to populate the data 177 

streams used as input in the main model. The target variable for the main model is either weekly 178 

incident cases or weekly mortality rate; for the features model, target variables are all other 179 



6 

 

independent time-varying features that serve as predictors for the main model, e.g., mobility and 180 

survey data. The only variables that we do not predict in the features model are static variables 181 

such as demographics. An example of a model output is shown in Figure 1.C, for New York state, 182 

specifically, the forecasted weekly cases for each of the four weeks following October 17th, 2020. 183 

Additional implementation of the multi-stage framework, details of model formulations, and 184 

model parameterization are described in detail in Appendix Section 2·1 to 2·3.  185 

 186 

Model Evaluation 187 

We conduct a robust evaluation of the model performance, explicitly assessing its performance as 188 

a function of space, time, and outbreak phase. All assessment is conducted over a long horizon (52 189 

weeks, spanning all epidemiological weeks from August 2020 to August 2021), and evaluated 190 

using three different error metrics: a) Absolute Error (AE), b) Percentage Absolute Error (PAE), 191 

and c) Weighted Interval Scores (WIS).20 The definition of each error metric is described in 192 

Appendix Section 2·4. The first two metrics measure the accuracy of point predictions, while the 193 

last metric is intended to evaluate the model predictions as a probability distribution. For all 194 

experiments, we use JHU CSSE actual weekly reported cases and deaths 1 as the ground truth data 195 

to compute the error metrics. While this analysis is retrospective, the evaluation is based on data 196 

that would have been available at the time of prediction, to align with the real-time forecasting 197 

constraints. For space constraints, the PAE results are presented throughout this section, and the 198 

WIS and AE results, when relevant, are provided in relevant sections throughout the Appendix. 199 

We compare our results to the CDC ensemble model,20 which we use as the benchmark because it 200 

has consistently proven to be the top performing model in the CDC COVID-19 Forecast Hub,22 201 

among dozens of individually contributed models (ensemble members). 202 

We also conduct sensitivity analysis to assess the contribution of each variable to the model 203 

performance, by evaluating different combinations of input features (Appendix Section 2·5). Due 204 

to time constraints and computational cost, the sensitivity analysis only applies to PAE and AE. 205 

 206 

Feature Importance 207 

We utilize an integrated gradients (IG) approach to investigate the role of each feature in predicting 208 

COVID-19 cases. IG assigns importance to features as attributions.29 It achieves this by integrating 209 

the gradients of the output with respect to the input along an arbitrary path from the baseline to the 210 

input data point. We apply the IG for the model with variant frequencies data and calculate the 211 

feature importance for each state at selected time points. The formulation of IG is described in 212 

detail in Appendix Section 2·6. 213 

 214 

Data 215 

The proposed LSTM model is heavily data driven and trained using multiple disparate categories: 216 

epidemiological, mobility, survey, climate, demographic, and variant frequencies data. The time-217 

varying data are available at a daily resolution for each US state. We rely on a combination of raw 218 

and derived metrics as inputs, which are listed in Table 1, and each is described in detail in 219 

Appendix Section 1. 220 

 221 
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Ethics 222 

No animal or human experimentations involved in this study. 223 

 224 

Role of Funders 225 

The funders were not involved in study design, data collection, data analyses, interpretation of 226 

data, or writing of the manuscript. 227 

 228 

Results 229 

Results for the LSTM model forecasted cases for 1-, 2-, 3- and 4-week forecasting windows, for 230 

every state in the US are presented in this section. Equivalent results for deaths forecasts are 231 

described in Appendix Section 3·8. We present our model performance as a function of time, space 232 

and different outbreak phases. We then conclude this section with results from a case study that 233 

supplements the input data streams with variant cases from available SARS-CoV-2 genomic 234 

surveillance data. The case study is conducted for a subset of states with the highest quality variant 235 

frequencies data, and the 2021 summer period, to align with the delta wave in the US. In Appendix 236 

Section 2·5 we present results from a sensitivity analysis conducted to assess the contribution of 237 

each variable in prediction. Finally, a feature importance analysis is included in Appendix Section 238 

2·6 where we present the contribution of each feature at several critical time points, namely at the 239 

introduction of a new variant, the period of transition between dominant variants, and when the 240 

dominant variant reaching maximum proportion. 241 

 242 

Model Performance Across Time  243 

Figure 2 illustrates the relative performance of the LSTM against the CDC ensemble model for 244 

each of the 52-week periods evaluated, for 1 to 4 week forecast windows, highlighting the 245 

performance variability over time. Each pair of bar plots represents PAE distribution for all the 246 

states at a given week, where the green bar represents the error distribution for the multi-stage 247 

LSTM model, and the yellow bar represents the error distribution for the CDC ensemble model. 248 

The red curve represents the weekly reported cases at the national level. The left y-axis represents 249 

the PAE by different forecasting windows and right y-axis represents national level reported cases.  250 

For the time period evaluated the model consistently outperforms the CDC ensemble, especially 251 

during case surges, and for longer (3 and 4 weeks ahead) forecast windows. The average PAE 252 

across all states and weeks is 22%, 32%, 44% and 57% for the 1 to 4 week forecast windows, 253 

respectively. As the forecasting window increases, the variability in performance across states 254 

further increases, as indicated by the wider bars. Figure 2 also reveals how the model performance 255 

varies with respect to the different waves of the pandemic. The model performance is relatively 256 

stable for the first five months of the study period (August 2020 to November 2020), but much 257 

more variable in performance in January 2021 and May 2021, which both correspond to periods 258 

when the cases transitioned from decreasing to more stable rates. The results for WIS and AE 259 

reveal consistent performance patterns, as illustrated in Appendix Section 3·1. 260 

 261 

Model Performance Across States 262 
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Figure 3 illustrates the average performance over all 52 weeks, for each state, highlighting the 263 

performance variability across space. The color scales represent the magnitude of the error metric; 264 

the scales of PAE are fixed in 10–90 range. The deeper color corresponds to larger error. 265 

Equivalent evaluations for AE and WIS are included in Appendix Section 3·2. While there are no 266 

clear spatial patterns of model performance for 1-week ahead forecast, a spatial pattern becomes 267 

evident as the forecast window increases. For the 2 to 4-week forecast windows, the PAE is 268 

relatively larger for midwestern states and smaller for southeastern states. Reasons for this are 269 

addressed in the discussion section.  270 

 271 

Model Performance by Outbreak Phase 272 

In addition to examining performance variability over fixed space and time, we also evaluate the 273 

model performance as a function of the outbreak phase. To do this, we generate five outbreak 274 

phases based on the weekly average incidence growth rates and assign each state-week pair 275 

accordingly. We apply 5-quantiles clustering according to the relative magnitude of growth rate, 276 

the five groups are classified as:  1) fast increasing (growth rate above 0·017); 2) slightly increasing 277 

(growth rate between 0·005 and 0·017); 3) flat (growth rate between -0·004 and 0·004); 4) slightly 278 

decreasing (growth rate between -0·016 and -0·004); and 5) fast decreasing (growth rate below -279 

0·016). The assignment of the weeks to categories is presented in Appendix Figure 23. After the 280 

phase category assignment, we evaluate the performance for all state-week pairs in each of the five 281 

phase groups independently.  282 

Figure 4 shows the model performance of the multi-stage LSTM model by different outbreak 283 

phases, the colors represent different outbreak phases, and each bar represents the distribution of 284 

PAE in corresponding outbreak phases. This result reveals that the model performs best in the 285 

stable period and has the highest variability when cases change rapidly, consistent with the same 286 

evaluation for the CDC Ensemble model (Appendix Figure 24). Equivalent evaluation based on 287 

WIS are shown in Appendix Figure 25 and 26.  In addition to evaluating the LSTM and CDC 288 

Ensemble model separately, we also compare both models under each outbreak phase (see 289 

Appendix Section 3·6). As shown in Appendix Figure 27 and 28, when growth is classified as fast 290 

increasing, the multi-stage LSTM model outperform the CDC ensemble model over 60% of the 291 

time for all forecast windows. For the slightly increasing and fast decreasing periods, our model 292 

slightly outperforms the CDC ensemble. However, the performance of the model is lower than the 293 

CDC ensemble during periods of outbreak stability and slight declines (e.g., December 2020 and 294 

May 2021).  295 

 296 

 297 

Case Study with Variant Frequencies Data 298 

The US has experienced multiple waves of incident cases, often driven by new variants. In this 299 

case study, we conduct a retrospective analysis to explore the value of including variant cases from 300 

available SARS-CoV-2 genomic surveillance data in improving COVID-19 outbreak prediction 301 

using our proposed modeling framework, based on the hypothesis that variant frequencies data 302 

may act as a signal for forthcoming changes in transmission patterns and therefore help improve 303 

prediction accuracy.30 Here we focus on forecasting state-level confirmed cases in the US, 304 

capturing the wave caused by the Delta and Omicron variant. We implement the analysis for the 305 
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39 selected states that sequenced at least 5% of reported cases from May 1 to August 31, 2021. 306 

We generate new variant-specific case time series (as the product of the daily proportion and total 307 

daily cases reported), which are used as inputs in the model. Details of the variant frequencies data 308 

preprocessing are documented in Appendix Section 1·6. For Delta wave, we select the top three 309 

variants with the highest proportion during June and September 2021 as new variant-specific time 310 

series, i.e., Delta, Gamma, and Alpha. In addition, we also create a fourth time series (“other”) 311 

representing the sum of all other circulating SARS-CoV-2 lineages. The inclusion of “other” 312 

category enables us to capture the introduction of new variants, in addition to other known 313 

circulating variants. We apply the same approach to generate variant-specific time series for the 314 

Omicron wave between December 1, 2021, and January 1, 2022. When applying the model, the 315 

selection of the variant-specific time series can be adjusted dynamically, based on the most recent 316 

data.  317 

 318 

Figure 5 illustrates the results for three different models: (a) Multi-stage LSTM model without 319 

variant cases data, (b) Multi-stage LSTM model with variant cases data and (c) CDC Ensemble 320 

model. The x-axis is the week that the predictions are made on. Each pair of bar plots represents 321 

PAE distribution for the selected states at a given week, where the green bar represents the error 322 

distribution for the multi-stage LSTM model without variant cases data, purple bar represents the 323 

error distribution for the multi-stage LSTM model with variant frequencies data, and the yellow 324 

bar represents the error distribution for the CDC ensemble model. The blue region represents the 325 

period of Delta invasion, the shaded green region represents Delta dominated period (proportion 326 

of Delta reaches 100%), and the orange region represents the period of Omicron invasion. Results 327 

from the case study suggests that the inclusion of variant cases data have varying levels of impact 328 

on the model performance, dependent on the time period, but critically, are shown to improve 329 

performance in the early growth stage of a newly introduced variant. Furthermore, results from the 330 

feature analysis present in Appendix Figure 11-16 highlight the critical role these variant-specific 331 

time series play in these critical phases of the outbreak, specifically when a new variant is emerging 332 

to be the dominant variant in circulation, the variant-specific data input is the most significant 333 

feature in the model. This holds true for both the Delta and Omicron introductions.  Other specific 334 

performance trends are noted in the discussion section. The results based on AE and WIS are 335 

shown in Appendix Section 3·7. 336 

 337 

Notably, this study is retrospective, and therefore is not subject to the real-time reporting 338 

limitations of SARS-CoV-2 variant frequencies data from sequences COVID-19 cases. 339 

Specifically, the average time lag in variant frequencies data reporting is 26 days,31 whereas we 340 

assume data is available with a seven day lag. While not feasible at present, this study highlights 341 

the potential value of timely and open virus genomic surveillance as a pandemic forecasting tool. 342 

 343 

Model Selection 344 

We conduct sensitivity analysis to assess the importance and contribution of various input features 345 

and training periods to identify the best performing model. We assign features into four categories 346 

(epidemiological, mobility, survey, and climate data). The complete set of features considered, and 347 

category assignment are listed in Table 1. Four models are constructed which include different 348 
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combinations of available features, namely 1) a simple basis model with only epidemiological data, 349 

2) a model with epidemiological and mobility data, 3) a model with epidemiological, mobility and 350 

survey data, and 4) a model with all features. We further conduct the equivalent model comparison 351 

for two discrete time periods aligning with pre and post available vaccines, specifically divided on 352 

February 1, 2021, approximately when vaccination roll out began in the US. The results comparing 353 

the performance of these four models for the entire period and two discrete periods are shown in 354 

Appendix Figures 9, and 10, respectively. The results reveal that the model with epidemiological, 355 

mobility, and survey data has the best overall performance. However, the contribution of each 356 

input feature can vary across time; this is expanded upon in the discussion section. Finally, the 357 

analysis performed for COVID-19 deaths as a response variable is presented in Appendix Figure 358 

26, where model 3) and 4) have similar performance. Additional sensitivity analysis on model’s 359 

input parameters is included in the Appendix Section 2·5. 360 

 361 

Discussion 362 

Spatiotemporal Variability of Model Performance  363 

Our analysis reveals a high variability in model performance as a function of the forecast window, 364 

chronological time and space. The performance over the 52 weeks evaluated is closely tied to the 365 

observed outbreak dynamics, and figure 2 highlights the impact of rapidly changing dynamics on 366 

the model performance. The model performs worse around the inflection period (especially when 367 

cases’ trend changes from decreasing to stable), and gradually improves as case (and death) rates 368 

stabilize. In terms of spatial patterns, for the time period evaluated model is more accurate in 369 

eastern and southeastern states, compared with midwestern states. This pattern is further confirmed 370 

by comparing the model performance with the CDC ensemble model. This spatial pattern can be 371 

partially explained by the difference in case trends across these regions. Specifically, during 372 

October 2020 to December 2020, midwestern states experienced the fall COVID-19 wave ahead 373 

of most of the country. Specifically, midwestern states started to show a decreasing trend while 374 

cases were increasing elsewhere (see Appendix Section 3·3). Because the model is trained using 375 

the data for all states for each prediction period, the predictions will be guided by the most 376 

dominant trend, and the model may underperform for any states not experiencing the same patterns.  377 

As an extension of this work, one could develop group-specific models through a cluster-based 378 

training setup or a more deliberate design of loss function, and as such, generate forecasts for each 379 

sub-group. Additionally, as expected, the model performance decreases as the forecasting window 380 

increases. This outcome is partially an artifact of the multi-stage nature of the modeling framework, 381 

which is sensitive to accumulative uncertainty in the input data and error propagation in the model 382 

outputs; e.g., predictions generated for each week are used as inputs for the following week’s 383 

prediction. Therefore, in periods of high instability, the one-week ahead predictions can be more 384 

erroneous, thus the error will be larger for longer forecast windows relative to the same forecast 385 

window in more stable periods. Overall, the observed spatial and temporal variability in model 386 

performance highlights the importance of identifying and communicating the optimal performance 387 

conditions for a given model before it is shared publicly or relied upon by decision makers. 388 

Model Performance Varies by Outbreak Phase 389 

In Figure 2, the LSTM model is shown to perform consistently better than the CDC ensemble 390 

model in the periods of rapid outbreak growth (e.g., October 2020 to November 2020, July 2021) 391 

and decline (e.g., January 2021). To further explore model applicability, we evaluated model 392 
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performance as a function of the outbreak phase, namely periods of growth, decline or stability, 393 

which were designated by five discrete categories. For the nine most populated states, most of the 394 

weeks in fall 2020 and summer 2021 are assigned to either fast or slightly increasing phase 395 

categories (Appendix Figure 23). The results highlighted in Figure 4 reveal the LSTM model to 396 

perform best in stable periods, and poorest in periods of extreme growth and decline. However, 397 

critically, the comparison of our LSTM model against the CDC Ensemble as a function of the 398 

outbreak phase, presented Appendix Figure 27 and 28, reveals that the multi-stage LSTM model 399 

performs relative better during the most critical phases of fast growth and fast decreases.  This 400 

variation in forecasting accuracy during the rapidly changing outbreak phases is consistent with 401 

COVID-19 forecasting literature.22  Future work should consider relaxing continuous forecasting 402 

outputs, and focusing on categorical predictions, which may be able to be generated more 403 

accurately and reliably.  Our analysis also highlights that model selection should consider model 404 

performance relative to the phase of the outbreak, in addition to the fixed time and location the 405 

model is applied to.  406 

 407 

Model Evaluation Is Sensitive to Performance Metric Chosen 408 

A major focus of this analysis is to explore the how model performance relates to the metrics 409 

chosen for evaluation. As illustrated in the Appendix Section 3·1, the performance of the LSTM 410 

and CDC ensemble model can vary significantly, dependent on the error metric selected. This 411 

occurs due to the way the metrics are mathematically defined (Appendix Section 2·4), in particular, 412 

whether they are normalized to account for potentially large variations in the magnitude of the 413 

predictor variable or not, as well as how they account for uncertainty bounds. For example, AE 414 

has a positive correlation with confirmed case counts, therefore the states and outbreak periods 415 

with the highest reported case values will have higher AE scores; this is the case for California, 416 

New York, and Florida (Appendix Figure 20). In contrast, PAE is normalized by case levels, and 417 

is therefore more likely to have a higher relative value when case rates are low because small 418 

variabilities in the estimated versus observed incidence rate will be amplified. This behavior is 419 

illustrated during summer 2021 in states with lower populations like Maine, New Hampshire, and 420 

Vermont, when the weekly confirmed cases are below 50 (Figure 3). For all forecasting windows, 421 

the results are shown to be sensitive to the error metric chosen, and critically, the selection of the 422 

best performing model for a given state is dependent on the metric chosen for evaluation. However, 423 

as the forecasting window increases, the LSTM model appears to consistently outperform the CDC 424 

ensemble model for the southeastern states (i.e., Virginia, North Carolina, South Carolina) 425 

according to all metrics. This analysis highlights the need to consider multiple metrics in 426 

evaluating models, in order to improve model selection and robustly assess model performance.  427 

 428 

Model Sensitivity to Input Data Streams  429 

Results from the sensitivity analysis to assess the importance and contribution of various input 430 

features revealed the best performing model included all the features except climate data. Our 431 

analysis reveals that a model solely reliant on epidemiological data performed worst, while adding 432 

mobility and survey data reliably improved model performance, especially for longer forecasting 433 

windows. These results support the inclusion of preprocessed mobility variables and real-time 434 

survey variables in learning model frameworks such as the proposed LSTM model. While the 435 

epidemiologic, survey and mobility variables revealed similar roles across the entire study period, 436 
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and each of the separate periods evaluated, the role of climate variables is less clear. The inclusion 437 

of climate variables did not initially appear to improve predictive capability (when considered 438 

across the entire study period), however, when we divided the study period into two discrete 439 

periods, the role of the climate data changed. For the period between August 2020 and February 440 

2021, the inclusion of climate data did not improve the model performance, however during the 441 

second phase of the study period, between February and August 2021, the inclusion of climate 442 

variables increased the model performance (Appendix Figure 9). These results suggest a differing 443 

role of climate on COVID-19 transmission in the first and second year of the pandemic, which 444 

aligns with other literature.32 We hypothesize in the first year of the pandemic factors other than 445 

climate, such as behavior and underlying population immunity, dominated the role of climate, 446 

and/or the role of climate is being captured indirectly through other predictors (e.g., higher 447 

temperatures lead to behavioral changes which can be captured through the survey and mobility 448 

data sets). While this preliminary analysis sheds some light on the possible role of climate and 449 

seasonality of COVID-19, this is an area in need of further research. 450 

 451 

Inclusion of Variant Frequencies Data Improves Model Performance  452 

The case study, designed to capture the impact of new variant introductions on outbreak dynamics, 453 

highlights the value of using variant frequencies data in short-term epidemiological forecasting, 454 

specifically with regards to early identification of inflection points. Due to differences in relative 455 

infectivity and underlying population immunity, the Delta and Omicron waves occurred over 456 

different timescales; the Delta variant took around two months to increase from 0% to 100% of 457 

the reported variant proportion, while the Omicron variant reached 100% in half this time. These 458 

differences led to variable model performance patterns, however for both, the variant data provided 459 

clear benefit for model performance during the emerging period. For the Delta wave, the added 460 

value of including variant case data was evident within two weeks after the average proportion of 461 

the Delta variant was above 15% for most of the 39 states included in the cases study. Specifically, 462 

the LSTM model with variant cases data performed better than both the reference LSTM model 463 

(without the variant cases data) and the CDC ensemble model for predictions between 464 

epidemiological weeks June 20, and July 25, 2021, especially for the longer three- and four-week 465 

forecasting windows. This is approximately the period when the dominant variant switches from 466 

Alpha to Delta (Appendix Figure 6). The results for the Omicron wave further confirm this 467 

performance pattern. The multi-stage LSTM model with variant cases data begins to outperform 468 

the other two reference models just two weeks after the majority of states first reported Omicron 469 

cases. However, the model with variant case data is not always superior; for both the Delta and 470 

Omicron waves the model with the variant data lagged the other reference models once the variant 471 

proportion reached 100%, respectively.  A possible explanation for this is that when the Delta or 472 

Omicron variant proportion reached 100%, the proportion of other variant specific cases suddenly 473 

dropped to zero, and the multi-stage LSTM model requires a learning period to adapt to this change 474 

in the input data stream (Figure 5).  475 

Results from the feature importance analysis provides additional evidence for the significant role 476 

of variant data during critical windows of the COVID-19 pandemic. During the periods when there 477 

is a transition between dominant circulating variants (Appendix Figure 12 and 15), the emerging 478 

variant cases become the most dominant feature guiding the model predictions. However, outside 479 

of this window the variant data is not as important. Immediately after a new variant is identified 480 

(Appendix Figures 11 and 14)  and after the new variant proportion reaches 100% (Appendix 481 
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Figure 13 and 16),  the new variant cases have minor contributions compared to other features. 482 

Additionally, the feature analysis results more broadly highlight that the contribution of each 483 

feature varies substantially from week to week, with no predictable pattern for feature contribution. 484 

This finding highlights the complexity of COVID-19 forecasting and further justifies the non-485 

linear, deep learning methodology we chose in this work. 486 

 487 

Limitations 488 

There are several limitations to this study, primarily resulting from data issues, and imposed 489 

methodological constraints. Most critically, there are challenges posed by the quality and 490 

availability of the data relied upon, for both the health outcomes data sets used to represent ground 491 

truth, as well as the input data streams. Given the intended real time use of this framework, the 492 

best available data at the time of generating the forecast were used to both train and evaluate the 493 

model, and as such, unresolved anomalies, biases and inaccuracies in the data directly affect 494 

performance. Further data quality issues such as spatiotemporal biases, sample size and data gaps 495 

also posed challenges, and were more prevalent in the data sets used to capture human behavior, 496 

e.g., survey data. In addition to quality of the data used, certain critical features are excluded from 497 

the model, such as government policies and policy compliance rates, as well as other behavioral 498 

data. Future work should explore the inclusion of these additional data sources to further enhance 499 

model performance. In addition to data issues, the LSTM model is fully empirical, i.e., it does not 500 

have a mechanistic component, therefore the actual infection dynamics are not constrained by 501 

feasible outbreak scenarios, which can result in unrealistic predictions. The empirical nature of the 502 

model also constrains the forecasts to previously observed transmission patterns (within the 503 

training time window); thus, the model will perform poorly when the transmission dynamics 504 

dramatically differ (exceed) from prior behavior.  505 

 506 

Conclusion 507 

We introduced a flexible deep learning framework that utilizes a broad set of data types 508 

(epidemiological, mobility, survey, climate, demographic, and variant frequencies) to forecast 509 

COVID-19 cases and deaths in real time. The novel multi-stage forecasting routine uses an 510 

iterative approach, building on one stage's outputs to generate the next stage’s predictions. We 511 

applied our framework for the United States at a weekly temporal resolution and state-level spatial 512 

resolution, for a four-week planning horizon.  We evaluated our model at each epidemiological 513 

week over the 52-week period between August 2020 to August 2021, and quantified performance 514 

using three different error metrics. We further break down the performance as a function of 515 

outbreak phases, location, time, and forecasting window. While the model is shown to perform 516 

well in multiple settings, the results from this analysis illustrate a variable performance of the 517 

model across the considered dimensions. This variability is driven by the complex, uncertain and 518 

evolving role of the critical contributing factors that drive COVID-19 transmission dynamics. This 519 

includes, for example, changes behavior, immunity, climate, the environment, and viral dynamics. 520 

Additionally, our case study reveals that the model can learn from simple variant proportion data 521 

within two weeks after a new variant is first reported. During this critical window the model 522 

heavily relies upon variant cases data and performs better, highlighting the value of using variant 523 

frequencies data in short-term epidemiological forecasting. However, as the new variant 524 

proportion reaches 100%, the variant cases data gradually lose their additional value. Based on 525 
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these findings, forecasting models should be accompanied with specifications on the conditions 526 

under which models performs best (and worst), in order to maximize their value and utility in 527 

aiding public health decision making. Extensions of this work include applying it at higher spatial 528 

resolutions (e.g., at the county level), and for predicting other response variables (e.g., 529 

hospitalization rates). Further, we selected a simple LSTM as the model’s building block since it 530 

is a state-of-art framework for processing time dependent data, however, rigorous inter-531 

comparisons with other deep learning techniques should be conducted. 532 
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Table 1: Summary of input data 638 

State-Level Data Data Processing Data Smoothing Sources 

Epidemiological data    

COVID-19 cases/deaths Raw 7-day moving average 1 

Growth rate of cases/deaths Derived 7-day moving average 1 

Vaccination coverage Raw 7-day moving average 33 

Hospitalization data Raw 7-day moving average 34,35  

Mobility data    

Importation risk Derived 7-day moving average 1,36 

Mobility ratio Derived 7-day moving average 36 

Visits ratio for 21 different 

destinations 
Derived Principal component analysis 36 

Survey data    

COVID-like symptoms in 

community 
Raw 

Raw data has already been 

smoothed 
35 

Climate data    

Temperature (°C) Raw 7-day moving average 37 

Precipitation (mm/day) Raw 7-day moving average 37 

Demographic data    

Population Raw -   

Proportion of people over 65 Raw - 38 

Variant frequencies data    

Variant cases Derived 7-day moving average   

 639 

 640 
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 641 

Figure. 1.  A) Network architecture of the multi-stage LSTM model. B) Prediction structure of the 642 

multi-stage LSTM model. At the initial stage, the model uses the most recent data as input, then at 643 

the later stage, the model adapts previous prediction as input to make further predictions. The 644 

transparent colors represent the model’s output, and solid colors represents the model’s inputs. C) 645 

An example forecasting of the multi-stage LSTM model.  646 
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 647 

 648 

Figure. 2. Comparison of model performance between the multi-stage LSTM Model and the CDC 649 

ensemble model based on PAE. Each pair of bar plots represents PAE distribution for all the states 650 

at a given week, where the green bar represents the error distribution for the multi-stage LSTM 651 

model, and the yellow bar represents the error distribution for the CDC ensemble model. The red 652 

curve represents the weekly reported cases at the national level. The left y-axis represents the PAE 653 

by different forecasting windows and right y-axis represents national level reported cases.  654 

 655 

 656 
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 657 

Figure. 3. State-specific average model performance based on PAE (over all epidemiological 658 

weeks) for varying prediction windows of one- to four-week out predictions. The color scales 659 

represent the magnitude of the error metric; the scales of PAE are fixed in 10–90 range. The deeper 660 

color corresponds to larger error. 661 

 662 

 663 
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Figure. 4. Evaluation of the multi-stage LSTM model by outbreak phases based on PAE. The 664 

colors represent different outbreak phases, and each bar represents the distribution of PAE in 665 

corresponding outbreak phases. 666 

 667 

 668 

Figure. 5. Model performance based on PAE for three different models: (a) Multi-stage LSTM 669 

model without variant cases data, (b) Multi-stage LSTM model with variant cases data and (c) 670 

CDC Ensemble model. The x-axis is the week that the predictions are made on. Each pair of bar 671 

plots represents PAE distribution for the selected states at a given week, where the green bar 672 

represents the error distribution for the multi-stage LSTM model without variant cases data, purple 673 

bar represents the error distribution for the multi-stage LSTM model with variant cases data, and 674 

the yellow bar represents the error distribution for the CDC ensemble model. The blue region 675 

represents the period of Delta invasion, the shaded green region represents Delta dominated period 676 

(proportion of Delta reaches 100%), and the orange region represents the period of Omicron 677 

invasion. 678 
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