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Summary 47 

Infectious disease modeling can serve as a powerful tool for situational awareness and decision 48 

support for policy makers. However, COVID-19 modeling efforts faced many challenges, from 49 

poor data quality to changing policy and human behavior. To extract practical insight from the 50 

large body of COVID-19 modeling literature, we provide a narrative review with a systematic 51 

approach to quantitatively assess prospective, data-driven modeling studies of COVID-19 in the 52 

US. We focus on the aspects of models that are critical to decision-makers. We found that a 53 

significant fraction of papers neglect evaluating performance (25%), expressing uncertainty 54 

(50%), and stating limitations (36%). We also document the forecasting window, methodology, 55 

prediction target, datasets used, and geographic resolution for each study. To remedy some of 56 

these identified gaps, we recommend the adoption of the EPIFORGE 2020 model reporting 57 

guidelines and creating an information sharing system that is suitable for fast-paced outbreak 58 

science. 59 

 60 

Introduction 61 

The COVID-19 pandemic has become an unprecedented public health crisis in its prolonged 62 

impact on health and its disruption to economic and social life, with more than 6 million deaths 63 

globally as of May 20221. To aid planning and response efforts during a pandemic, mathematical 64 

modeling of current and future trends of outbreaks has historically served as a valuable tool. 65 

Nowcasting and forecasting models can improve situational awareness of the current and near 66 

future states of disease spread, while long-term projections and scenario modeling can shed light 67 

on outcomes that may result from a set of assumptions. Insights from modeling can educate 68 

individuals on how to mitigate their own risks, while also providing decision support for policy 69 

makers seeking to minimize harm to an entire population.  70 

These insights are historically provided though peer-reviewed published literature, which can 71 

serve as an invaluable tool for communicating state of the art science. During the COVID-19 72 

pandemic, an extremely large volume of research articles have been produced: 125,000 within 10 73 

months of the first confirmed case, 30,000 of which are preprints2. In this noisy publication 74 

landscape, journals prioritized quickly sharing COVID-19 information, but there is a trade-off 75 

between speeding up peer review and ensuring high quality research3. Preprints also played an 76 

important role in spreading COVID-19 research. Preprints were often covered in the media, had 77 

large audiences on social media platforms like Twitter, and in some cases were misunderstood in 78 

consequential ways 2. For COVID-19 modeling specifically, the utility of models for informing 79 

response efforts was criticized largely due to a few particularly erroneous projections at the start 80 

of the outbreak and poor communication on what insight models can and cannot provide 4–6.  81 

Literature reviews that attempt to synthesize COVID-19 modeling work that have been published 82 

up until August 2021 form an incomplete, piecemeal understanding of modeling work, largely 83 

due to the rapid pace of publication on preprint servers and in publications. Most existing 84 

reviews are either systematic but only cover a short time span, up until July 20207–9 or use a 85 

narrative approach and do not develop a method to examine a representative set of papers10–12. 86 

The only exceptions we found are one systematic review covering 242 papers up until November 87 

202013, and one narrative review that covered 50 of the most cited papers14. Only one review 88 

included preprints13, and all are limited to papers published before August 20207–10 or in 89 

202012,13. Many of these reviews are focused on model objectives and methodology8,9,12, and 90 

neglect other aspects of modeling that are crucial for translation.  91 
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To build on previous work, we provide a narrative review with a systematic approach, which 92 

handles the challenges presented in synthesizing an enormous body of work using objective 93 

criteria to obtain the most representative and informative sample of papers possible. Our review 94 

covers publications up until August 20, 2021, which captures eight months of 2021 that have not 95 

been covered by other reviews. We focus on factors of modeling that have been neglected in the 96 

existing literature, namely input data, uncertainty, performance evaluation, and stated limitations, 97 

which are critical for science translation and enable models to provide insight for decision-98 

makers and the public. We provide a quantitative evaluation of each of these elements, which 99 

enables stronger and more justified conclusions about trends and areas in need of improvement, 100 

with respect to modeling COVID-19 and future pandemics.  101 

 102 

Methods: Search Strategy and Selection Criteria 103 

There are three main types of COVID-19 disease spread modeling: retrospective analysis, 104 

nowcasting, and prospective modeling. Retrospective modeling, or backward-looking analysis, 105 

has been applied throughout the outbreak to explore a variety of key questions such as inferring 106 

basic epidemiological characteristics like 𝑅0, incubation period, and fatality rate, reveal factors 107 

driving transmission, and assess the effectiveness of different interventions15–17. Nowcasting 108 

focuses on understanding the current situation, like inferring the true number of cases in light of 109 

underreporting18,19. Prospective modeling is forward looking, and includes forecasts, projections, 110 

and future scenario analysis. Forecasting aims to predict near term epidemiological dynamics, 111 

often relying on data-driven methods and assuming that there will be minimal changes during the 112 

forecast period, while projections span over a much longer future time window, and thus must 113 

make assumptions about how the factors driving COVID-19 will change in the future. Scenario 114 

analyses produce multiple projections that explore the impacts of different sets of assumptions 115 

that vary factors like transmission rates and interventions. 116 

Due to the magnitude of the COVID-19 modeling literature, we had to impose significant 117 

constraints on the scope of this review to enable us to conduct a systematic, quantitative, and 118 

timely assessment of the relevant literature. Therefore, this work is a narrative review with 119 

systematic approach. Specifically, the following inclusion criteria defined our review scope:  120 

1) Prospective modeling work on population-level dynamics of COVID-19: we include 121 

papers that provide future predictions for a specific location, including forecasting, 122 

projections, and future scenario analysis. We exclude retrospective modeling studies. 123 

Papers that only fit a model without providing out-of-sample predictions were not 124 

included. 125 

2) Data-driven: we broadly define this as papers that incorporate COVID-19 data into the 126 

setup or fitting of the model. Those which only use parameters from the literature or rely 127 

on data from other viruses were excluded. 128 

3) Geographic restriction: we only included papers that implement forecasting or projections 129 

for US counties, states, or at the national level, which restricts our analysis to papers 130 

working with the same data issues and in a similar context.  131 

4) Journal restriction: We include only papers from peer-reviewed journals, as defined by 132 

Scopus’ context curation standards20. In addition, we restrict to papers from journals 133 

ranked in the top 10% for their respective field based on the Scopus CiteScore. While we 134 

recognize this will exclude important work, this criterion was the best option available to 135 

apply a systematic approach to reducing the set of papers to a manageable level and still 136 

obtaining the most representative sample of papers possible. For our final sample of peer-137 
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reviewed papers, a table showing the number of papers from each journal and each 138 

journal’s top category and percentile according to Scopus CiteScore is available in the 139 

appendix (p 1).  140 

 141 

The Scopus query we developed based on these criteria is also included in the appendix (p 2). 142 

To minimize the chance of our search missing relevant papers, we searched PubMed with the 143 

equivalent query. Figure 1 outlines our scoping process and shows the number of papers 144 

screened out at each step. 145 

 146 

 147 

Figure 1. Scoping Process 148 

A schematic of our scoping process and the number of papers left after each step is shown. 149 

 150 

The searches of Scopus and PubMed were carried out on August 20, 2021, and our final 151 

selection of papers was distributed from March 2020 to August 2021 (Figure 2). Notably, the top 152 

10% criteria only reduced the number of papers to 37% of the original size, from 2,401 to 894 153 

papers. Papers were screened individually by KN, SJ, and FP, with a mechanism for double-154 

checking with another individual if a paper's eligibility for inclusion was unclear. For the data 155 

collection, categorizations were done individually by the same authors, and all categorizations 156 

were double checked with one individual covering all papers for a particular category, so that 157 

categorizations were applied consistently across all papers. After screening steps, we narrowed 158 

down to 119 peer-reviewed papers. 159 
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 160 

 161 
Figure 2. Number of Papers in our Analysis by Month of Publication. 162 

This histogram shows the publication date by month of all papers included in our analysis. 163 
 164 

We additionally considered preprints from authors known to be engaged in real-time modeling 165 

work. We included preprints from modelers participating in the US COVID-19 Forecast Hub2. 166 

We also attempted to include the Scenario Modeling Hub21–23, but no preprints met our criteria 167 

for the time window considered. While these papers do not have the validation that comes with 168 

peer-review, these models were used in real-time by a national public health agency, which we 169 

believe justifies their inclusion in this analysis. We found 17 preprints in the metadata provided 170 

by the modeling teams contributing to the Forecast Hub. Thus, 136 papers in total are included in 171 

our analysis. Despite our efforts, we acknowledge that we will miss a significant portion of real-172 

time COVID-19 modeling work that exists on preprint servers and on the websites of modeling 173 

groups.  174 

We have designed our scoping process to obtain the most objective and representative sample 175 

that is possible given the challenges of synthesizing an enormous body of work in a useful, 176 

timely manner. Despite the limitations of our scoping process, we are confident that our analysis 177 

is able to provide valuable insight on the state of published COVID-19 work and highlight areas 178 

for improvement. 179 

 180 

Role of the funding source 181 

The funders of the study had no role in study design, data collection, data analysis, data 182 

interpretation, or writing of the report. The authors had full access to all the data in the study and 183 

had final responsibility for the decision to submit for publication. 184 

 185 

Results  186 

To conduct a quantitative analysis on the substance and quality of these studies, for each paper 187 

we classified the following features: forecasting window, methodology, prediction target, 188 

datasets used, geographic resolution, quantitative uncertainty, performance evaluation, and stated 189 

limitations. We acknowledge that some of these categorizations are subjective and/or difficult to 190 

consistently extract from papers, especially the performance evaluation and stated limitations 191 

category. Thus, we narrowly define our categories and transparently discuss these definitions in 192 
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this section. While we acknowledge that some of the categorizations we made could be disputed, 193 

we are confident that the overall conclusions still hold. The classification of papers for each 194 

category is shown in the appendix (p 3). Figure 3 visualizes the relative size of each category 195 

and the most common connections between categories. Each line through the figure represents 196 

the categorizations of a single paper, so the thicker the line between two categories, the more 197 

often papers tend to fall into both of those categories. The width of the lines are weighted such 198 

that in cases where a paper falls into more than one category, like using both cases and deaths 199 

data, a line with half of the normal width is assigned to each category. 200 

 201 

 202 

 203 

Figure 3. Sankey Diagram of the Connections Between Categorizations of our Analysis. 204 
This diagram shows the relative cooccurrence of categories within papers in our analysis. Thicker lines between 205 

categories indicate that those categories are more likely to occur in the same paper. 206 
 207 

Model Objective and Prediction Horizon 208 

Forecasts are unconditional in the sense that they attempt to predict what will actually happen in 209 

the near future, while projections and scenarios are conditioned on the model’s assumptions 210 

about the future in order to extend the prediction horizon. We were unable to reliably categorize 211 

models into forecasts or projections due to inconsistent use of these terms and a lack of clear 212 

communication in papers on which approach was used. Therefore, as a proxy for model 213 

objective, we categorized papers into short-term predictions (namely, forecasts), or long-term 214 

predictions (namely, projections). To remain consistent with the COVID-19 Forecast Hub and 215 

COVID-19 Scenario Hub, which represent best practice for prospective COVID-19 modeling, 216 

we categorize studies making predictions for four weeks or less as short-term (46%), and studies 217 

making predictions with a horizon that extends beyond 4 weeks as long-term (60%). There were 218 

a small number of papers which produced both long-term and short-term predictions24–27. Note 219 
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that because papers often fall into multiple categories, percentages in this analysis will not 220 

always add up to 100%. Within the category of papers conducting long-term projections, we also 221 

tagged papers with multiple scenarios, which provided multiple predictions based on different 222 

sets of assumptions. This could include modeling scenarios with different reopening speeds, non-223 

pharmaceutical interventions, and vaccination rates. Of the 82 papers in the long-term 224 

projections category, 54 papers (66%) considered multiple scenarios.  225 

 226 

Methodology 227 

Since many of the existing COVID-19 review papers go into more detail on methodology8,9,12, 228 

we opted not to cover this aspect of modeling beyond classification into three broad categories: 229 

compartmental models (SIR and variations), statistical models (machine learning, deep learning, 230 

ARIMA, etc.), and hybrid (a combination of compartmental and statistical models). Since most 231 

compartmental models in our sample used statistical methods to fit parameters, in order to retain 232 

informative categories we adopted a stringent definition of a hybrid model, requiring both 233 

compartmental and statistical layers of the model that go beyond using statistical approaches to 234 

fit parameters. For example, one paper classified as hybrid used deep learning to infer a time-235 

dependent reproduction number, which was then fed into a compartmental model28. A model that 236 

only uses statistical methods to fit parameters for a compartmental model was classified as 237 

compartmental. We found that 47% of papers used a compartmental model, 43% used a 238 

statistical model, and 12% used a hybrid model. There were a few papers which showed both a 239 

compartmental model and a statistical model24–27. We also noted if models used agent-based 240 

methods (9%). 241 

 242 

Target Variables 243 

The most common target prediction variables were cases (89%), deaths (52%), hospitalizations 244 

(10%), and 𝑅𝑡 (9%). Some of the lesser used target variables included growth rate, peak cases, 245 

and ICU admissions. 38% of papers had only one target variable, 43% of papers had two target 246 

variables, and 19% had more than two.  247 

The target prediction variables were dominated by absolute numbers of cases and deaths, which 248 

aligns with the goals of the US COVID-19 Forecast Hub. Despite the continued desire for these 249 

targets from across the field of public health, government, industry, and the public, accurate 250 

prediction of them remains challenging29.  251 

 252 

Data Categories 253 

Next, we quantified the categories of input data used to inform models. Table 1 shows how we 254 

defined the data categories, including an in-depth look at the datasets used by papers in our 255 

analysis that attempt to capture COVID-19 behaviors. 256 

 257 

Data Category 

  

Description 

  

Examples 

 

Cases, Deaths Epidemiological data on the 

number of cases or deaths 

and corresponding metrics.  

Daily cases/deaths, cumulative cases/deaths, 

reproduction number, growth rate 
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Hospitalizations Data related to 

hospitalization of COVID-

19 patients. 

Daily hospitalizations, active 

hospitalizations, ICU occupancy, hospital 

capacity 

Testing Data pertaining to COVID-

19 testing in a population or 

location. 

Daily tests, test positivity rate 

Climate Data describing the climate 

or any meteorological 

variables pertaining to a 

specific location, timeseries 

or static.  

Daily precipitation, daily temperature, 

average temperature 

Demographic Demographic or socio-

demographic information 

about the population of a 

specific location.  

Population, age, race, income, rural/urban 

ratio 

Health Risk 

Factors 

Data which quantifies the 

health risk factors of the 

population in the context of 

COVID-19.  

Prevalence of comorbidities, use of 

preventative services (doctor visits) 

Mobility Data which quantifies the 

movement of a population. 

 

 

Google Mobility Trends (residential, grocery 

& pharmacy stores, parks, retail & 

recreation, workplaces, transit stations)30 

Unacast social distancing scoreboard 

(average mobility, nonessential visits, 

encounters density)31 

SafeGraph (trip counts at a census block 

group resolution)32 

Apple Mobility Trends (trends in apple maps 

routing requests)33 

Facebook Movement Range Maps (change in 

movement compared to baseline percent of 

population that stays home)34 

Flight data 

 

Human 

Behavior 

Data which quantifies the 

behavior or beliefs of a 

population in the context of 

COVID-19, excluding data 

on the mobility of a 

population. 

 

Google search trends35 

Mask use per capita36 

Facebook’s COVID-19 Trends and Impact 

Survey (timeseries of self-reported mask use 

and other social distancing behaviors)37 

New York Times Mask-Wearing Survey data 

(static)38 
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 Sentiment index constructed from COVID-

19 news39 

Policy Data pertaining to policies 

relating to COVID-19. 

 
  

Oxford COVID-19 Government Response 

Tracker (ordinal scale on stringency of many 

types of COVID-19 policies, including 

containment and closure policies, economic 

policies, health system policies, and 

vaccination policies)40  

State Level Social Distancing Policies: tracks 

dates and details of policies including 

emergency declarations, gathering 

restrictions, closures, stay-at-home orders, 

travel restrictions, isolation orders, and mask 

mandates 41 

Table 1. Data Categories. 258 

The most frequently used data categories were cases, deaths, mobility, demographics, and 259 

hospitalizations (Table 2). 20% of papers used only one category of data, 39% of papers used 260 

two categories, 16% used three categories, and 25% used four or more categories. 261 

 262 

Data Category Occurrences Percent of Papers 

Cases 126 93% 

Deaths 79 62% 

Mobility 34 26% 

Demographics 30 25% 

Hospitalizations 15 12% 

Policy 13 12% 

Testing 11 9% 

Hospital Resources 10 8% 

Climate 8 7% 

Human Behavior 8 7% 

Health Risk Factors 4 5% 

Table 2. Top 10 Data Categories. 263 

The data sources informing predictions in our analysis were dominated by case and death data. 264 

Data used in 2 or less papers include vaccinations, 𝑅𝑡, wastewater surveillance, and economic 265 

data. 51% of modelers only used epidemiological data sources (cases, deaths, hospitalizations). 266 

The most often used non-epidemiological sources were mobility and demographic data. The 267 

models that did use other data sources tended to incorporate a large number and variety of input 268 

data42–44. Some factors that have been shown to be associated with COVID-19 dynamics, such as 269 

demographics, health risk factors, and climate, rarely appeared in our sample, although little 270 

research has been done to rigorously test for whether these factors can improve predictive 271 
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performance. Of particular interest due to the increasing impact of new variants on 272 

epidemiological dynamics, none of the papers in our sample utilized variant prevalence data. In 273 

the US, this data suffers from low sample size, sampling bias, and is difficult to use as a signal 274 

for predictive modeling.  275 

 276 

Geographic Resolution 277 

We noted the geographic scale at which predictions were made, categorizing papers as national, 278 

state, or county-level and lower. 54% out of 136 of papers included a national level prediction, 279 

36% at the state-level, and 34% at the county-level or smaller scale. Half of the models in our 280 

analysis were at the national level, which tends to be the easiest resolution to predict and the least 281 

useful for decision-making, which must often occur at the local level. 282 

 283 

Uncertainty 284 

We analyzed which papers included a quantitative expression of uncertainty of their predictions, 285 

excluding those which only did so for model parameters. We found that half of papers (50% out 286 

of 136) did not express any quantitative uncertainty. 49% of papers included some form of 287 

confidence or prediction intervals. A sensitivity analysis was performed in 13% of papers.  288 

Half of the papers studied did not express any quantitative uncertainty around the forecasts, 289 

despite the highly uncertain and consequential nature of COVID-19 dynamics. The utility of 290 

forecasts for decision-makers depends on clear communication of uncertainty45, especially since 291 

point estimate predictions will rarely match ground truth data. Well calibrated expressions of 292 

uncertainty help stakeholders assess future risk and decide how to respond. For example, the 293 

difference between a 1% chance of exceeding hospital capacity versus a 25% chance could 294 

determine whether certain preparatory actions are taken. Additionally, expressing uncertainty is 295 

especially important to prevent harmful, incorrect interpretations of COVID-19 models. Clearly 296 

communicating uncertainty around predictions weakens the ability of actors to use a study in a 297 

misleading way to support their preexisting agenda. 298 

 299 

Performance Evaluation 300 

We categorized the type of performance evaluation used for each model. We chose to conduct 301 

this analysis only for the subset of papers implementing short-term prediction models, which can 302 

be fairly evaluated against truth data. In contrast, the purpose of long-term projections is to 303 

compare multiple plausible scenarios of the future, not to predict what will happen. Therefore, a 304 

fair performance evaluation using standard error metrics is not possible since these models make 305 

assumptions about the future that do not match reality.  306 

For timeseries forecasts, the setup of train and test data should be representative of real-time 307 

forecasting conditions. Since the utility of a model is based on its ability to predict future 308 

dynamics, randomly excluded “out-of-sample” evaluation methods do not adequately describe 309 

performance. Instead, models should be trained using data up until a certain cutoff date and 310 

evaluated on data after that date. This preserves the fundamental challenge of forecasting: not 311 

knowing future data or trends. Within the subset of short-term studies considered, 75% of papers 312 

used some sort of performance evaluation metric to compare future-blind, out-of-sample 313 

predictions to ground truth data, and 25% did not conduct a performance evaluation on their 314 

forecasts. Ground truth data used is usually reported cases or deaths, and sources used in our 315 

sample include JHU CSSE1, The COVID Tracking Project46, and WHO47. The most common 316 

metrics to compare predictions to ground truth were mean absolute error, root mean square error, 317 
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mean absolute percentage error, 𝑅2, mean square error, and coverage rate of prediction intervals. 318 

Out of the papers that did conduct a metric-based evaluation, only 13% evaluated the accuracy of 319 

confidence intervals. Within the group of 47 papers which conducted a future-blind performance 320 

evaluation, 34% evaluated only one model, 55% compared performance metrics across multiple 321 

internal models, and 19% compared the performance metrics of their model against those of 322 

other models in the COVID-19 Forecast Hub. 15% of evaluated models used a baseline model 323 

for comparison. 324 

Most modelers (75%) quantified the performance of their model relative to truth data, but most 325 

did not evaluate their model on predictions made across a timespan that included varying 326 

epidemiological dynamics. In order to quantify this, we counted how many dates papers showed 327 

predictions from. For example, if a paper presents a model prediction using data up until 328 

September 1st and predicts future case counts on the 8th, 15th, 22nd, and 29th, this would be a 329 

prediction made from a single date. If this paper adds another prediction made from October 1st 330 

(using data up until this date) and predicts weekly values for the next 4 weeks, this paper would 331 

be showing predictions made from two dates, which cover a month-long timespan (September 1st 332 

to October 1st). We defined the category this way in order to make sure we could reliably extract 333 

this data from each paper. Our analysis found that among short-term models, more than half 334 

(55%) only showed a prediction made from a single date, 28% of papers showed predictions 335 

made from multiple dates over a timespan that was less than 2 months long, while 17% covered a 336 

timespan longer than 2 months. From the COVID-19 Forecast Hub, we know that predictive 337 

accuracy of models varies widely over time, especially with respect to epidemiological trends48. 338 

Therefore, failing to evaluate a model in a variety of epidemiological dynamics severely limits 339 

the generalizability of the performance evaluation and the ability to make fair comparisons 340 

between models. In addition, one-third of papers (34%) that completed a quantitative 341 

performance evaluation did not compare their model to a baseline or any other models, so it is 342 

unclear whether the model provides any improvement over a naïve model. The COVID-19 343 

Forecast Hub uses a baseline model that assumes no change in incidence over the next four 344 

weeks. According to historical error metrics calculated by the Forecast Hub and CMU Delphi on 345 

September 8th, 2021, only 25% of models outperformed the baseline model for cases while 75% 346 

outperformed the baseline for deaths by relative mean absolute error and weighted interval 347 

score49. Thus, comparison to a baseline model provides context that provides important 348 

information about the utility of a model. 349 

Many papers did not cover the specific methodology of their performance evaluation, which 350 

limited our ability to provide more specific analyses in this review. Authors should clearly state 351 

the dates of the training period, the dates predictions were made from, how error metrics were 352 

computed and aggregated, and whether metrics are computed in-sample or out-of-sample. In 353 

addition, models that aim to contribute to real-time forecasting efforts should use input data as it 354 

was available at the date predictions are made from, which is available through the CMU Delphi 355 

API50,51. Without thorough performance evaluation, the broader scientific community will be 356 

unable to determine which approaches are working and build knowledge on best practices. 357 

 358 

Model Limitations 359 

Authors stated six main categories of limitations: disregarded factors (39%), data quality (28%), 360 

unknowable factors (26%), limitations specific to the methods used (22%), data availability 361 

(16%), and limited generalizability (8%). We define unknowable factors as those that cannot be 362 

known at the time predictions were made, like future implementation of non-pharmaceutical 363 



 12 

interventions or the emergence of new variants during the prediction horizon. In contrast, 364 

disregarded factors have some relevant data or information available at the time of the analysis, 365 

but the authors choose to disregard it, like the demographic breakdown of populations or 366 

healthcare capacity of different regions. A third of the papers in our analysis (36%) did not list 367 

any limitations in an accessible section of the paper, which we considered to be in the discussion, 368 

conclusion, or in a separate section named limitations. In most cases, all of these types of 369 

limitations are relevant to COVID-19 models. In addition, our categorization does not give 370 

information about how thoroughly these limitations categories were discussed. For COVID-19 371 

applications, clearly stating model limitations is critical to help the public understand the 372 

appropriate way to interpret results.  373 

 374 

Multidisciplinary Nature of the COVID-19 Literature 375 

The highly consequential nature of the COVID-19 pandemic has attracted modeling experts from 376 

a variety of different fields. The top five journal subject areas represented in our final set of 377 

papers, in order from most to least frequent, are applied mathematics, multidisciplinary, general 378 

physics and astronomy, general mathematics, and statistical and nonlinear physics. Notably, 379 

public health did not appear in the top five subject areas. Our final set of papers represented 52 380 

journals. The most common journals were Chaos, Solitons, and Fractals, PLOS One, and 381 

Scientific Reports (Figure 4). We were unable to conduct a thorough analysis on the 382 

contributions to COVID-19 modeling from different fields due to the difficulty of classifying 383 

papers into different disciplines based on their journal and the inherent interdisciplinarity of this 384 

work. However, we completed a sub-analysis on the group of papers from Forecast Hub 385 

modelers. 386 

 387 

 388 

 389 

Figure 4. Top 10 Journals in the final set 390 

This graph shows the most frequent journals in our analysis and what fraction of our sample of papers each 391 

journal published. 392 

 393 

The set of papers written by authors that contributed to the COVID-19 Forecast Hub includes 17 394 

preprints43,52–67 and 3 papers published in peer-reviewed journals68–70. 70% of these papers made 395 

short-term predictions and 40% of these papers made long-term predictions. Although these 396 

papers were cited by teams in the metadata of their submissions to the COVID-19 Forecast Hub, 397 

which focuses on one to four week predictions, these preprints are not necessarily on the exact 398 

model and application that was submitted to the Forecast Hub. Despite being mostly preprints 399 

with many serving to provide a brief explanation of a model being used in real-time, these papers 400 

were more likely to express uncertainty, have forecasts for state and county levels, and conduct 401 

performance evaluation than the full set of papers, which is shown in Table 3. In addition, 402 
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Forecast Hub papers were significantly more likely to show and evaluate predictions made from 403 

several dates over a timespan greater than 2 months (50% versus 17% for all papers). A 404 

significant advantage of the hub approach is that it encourages good practices in terms of 405 

uncertainty, evaluation, and high geographic resolution. Additionally, the real-time sharing of 406 

forecasts ensures that predictions were truly future-blind. 407 

 408 

Table 3. Comparison of All Papers and Forecast Hub Preprints 409 

Discussion 410 

Our analysis found significant gaps in model transparency in the literature, especially on 411 

reporting aspects of models that are crucial for translation. Papers did not consistently state the 412 

precise objective of their model (unconditional forecast or assumption-based projection), detail 413 

their methodology, express uncertainty, evaluate performance across a long, varied timespan, 414 

and clearly list their limitations. Without this information, studies are more vulnerable to 415 

misinterpretation, which can have serious consequences during a global health crisis in which the 416 

public is paying attention to scientific papers71,72. In addition, poor reporting limits the ability of 417 

literature reviews to synthesize insights from the research to determine best practices. In 418 

response to these concerns, the EPIFORGE 2020 guidelines were developed and recommend 419 

Categories All Papers 

(N=136) 

Forecast Hub Papers 

and Preprints (N=20) 

Prediction Horizon 

Short-term Predictions 

 Long-term Predictions 

 

46% 

60% 

 

70% 

40% 

Methodology 

Compartmental 

Statistical 

Hybrid 

Agent-based 

 

47% 

43% 

12% 

9% 

 

35% 

45% 

20% 

5% 

Geographic Level 

National 

State 

County or Smaller 

 

54% 

36% 

34% 

 

25% 

65% 

55% 

Uncertainty 

Expressed Quantitative Uncertainty 

 

Sensitivity Analysis 

 

50% 

 

13% 

 

55% 

 

5% 

Performance Evaluation 

Comparison to Ground Truth (out of 

short-term models only) 

 

Only Made Predictions from One Date 

Made Multiple Predictions over a 

Timespan greater than 2 months 

 

75% 

 

 

55% 

 

17% 

 

86% 

 

 

7% 

 

50% 

Limitations 

             Authors discussed limitations 

 

 

64% 

 

65% 
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consistent terminology, a clear definition of study purpose and model targets, identification of 420 

prospective versus retrospective work, comparison to a baseline model, a non-technical summary 421 

of results, and full documentation of: data sources, data availability, data processing, methods, 422 

assumptions, code, model validation, forecast accuracy evaluation, uncertainty, limitations, 423 

interpretation, and generalizability73. Consistent sharing of this information for epidemiological 424 

predictions would improve the consistency, reproducibility, comparability, and quality of 425 

epidemic forecasting papers, in addition to minimizing the potential for the public to 426 

misunderstand or misuse the research. 427 

Another obstacle to maximizing the knowledge gained from epidemic forecasting is the 428 

suitability of the information sharing system. Since it is not standard practice for modeling 429 

papers to report on translational work, this review can only comment on the translation potential 430 

of papers based on their reporting practices, not on how models were actually used during the 431 

outbreak. In addition, the volume and variable quality of the literature forced us to adopt 432 

stringent and limiting scoping criteria in order to obtain a manageable sample of literature to 433 

analyze. Other reviews adopted their own narrow scope, creating a body of COVID-19 modeling 434 

literature reviews which amount to a piecemeal, incomplete picture of the efforts of researchers. 435 

This illustrates the difficulty of building knowledge from the COVID-19 literature through the 436 

traditional information sharing system: peer-reviewed literature and systematic literature 437 

reviews. Thus, a new information sharing system that is better suited to the needs of outbreaks is 438 

urgently needed, which can handle the pace of publications and strike a balance between the 439 

speed and quality of disseminating research findings. 440 

 441 

Limitations 442 

The main limitations of this review are the result of the difficult nature of synthesizing the 443 

COVID-19 literature. We had to adopt stringent scoping criteria, which included limiting our 444 

analysis to studies that made prospective, data-driven predictions for the US and to papers 445 

published in the top 10% of journals based on Scopus’ CiteScore. The CiteScore is an imperfect 446 

metric that relies on the number of citations per study in a journal. However, the CiteScore was 447 

the best option we knew of to select for a higher quality sample of papers, since we did not want 448 

to introduce a time bias by using each paper’s number of citations. Another limitation is that we 449 

can only comment on the state of the peer-reviewed literature with this analysis, not the state of 450 

all real-time work, some of which is not and may not ever be represented in the literature. In 451 

addition, some of the categorizations we made were subjective and/or difficult to extract 452 

consistently, so we implemented quality control mechanisms as discussed in the Methods 453 

section, and we are confident in our overall conclusions. Despite these limitations, we have 454 

studied the most representative sample of papers possible and obtained findings that are 455 

informative for improving epidemic modeling in the future. 456 

 457 

Conclusion 458 

This analysis examined a subset of the COVID-19 modeling literature, focused on data-driven, 459 

prospective modeling, and identified several opportunities to improve the utility of outbreak 460 

modeling, which are especially relevant to inform the work of the new CDC Center for 461 

Forecasting and Outbreak Analytics. In response to significant scoping challenges, we selected a 462 

sample that should represent the best modeling papers and still found them to be substantially 463 

lacking in some of the areas that are most crucial for translating models into useful insight for 464 

decision-makers and the general public.  465 
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The main takeaways of this literature review are adopting epidemic forecasting standards and 466 

creating a suitable information sharing system. Adopting the EPIFORGE 2020 guidelines 467 

address many of the issues identified in this review, including the need to be transparent about 468 

the methods, express uncertainty, thoroughly evaluate performance, state limitations, and discuss 469 

appropriate interpretations. Additionally, the creation of an information sharing system suited to 470 

the needs of an epidemic would allow the hard work of COVID-19 modelers to be more 471 

efficiently synthesized into best practices. 472 
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