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Summary

Infectious disease modeling can serve as a powerful tool for situational awareness and decision
support for policy makers. However, COVID-19 modeling efforts faced many challenges, from
poor data quality to changing policy and human behavior. To extract practical insight from the
large body of COVID-19 modeling literature, we provide a narrative review with a systematic
approach to quantitatively assess prospective, data-driven modeling studies of COVID-19 in the
US. We focus on the aspects of models that are critical to decision-makers. We found that a
significant fraction of papers neglect evaluating performance (25%), expressing uncertainty
(50%), and stating limitations (36%). We also document the forecasting window, methodology,
prediction target, datasets used, and geographic resolution for each study. To remedy some of
these identified gaps, we recommend the adoption of the EPIFORGE 2020 model reporting
guidelines and creating an information sharing system that is suitable for fast-paced outbreak
science.

Introduction

The COVID-19 pandemic has become an unprecedented public health crisis in its prolonged
impact on health and its disruption to economic and social life, with more than 6 million deaths
globally as of May 2022'. To aid planning and response efforts during a pandemic, mathematical
modeling of current and future trends of outbreaks has historically served as a valuable tool.
Nowcasting and forecasting models can improve situational awareness of the current and near
future states of disease spread, while long-term projections and scenario modeling can shed light
on outcomes that may result from a set of assumptions. Insights from modeling can educate
individuals on how to mitigate their own risks, while also providing decision support for policy
makers seeking to minimize harm to an entire population.

These insights are historically provided though peer-reviewed published literature, which can
serve as an invaluable tool for communicating state of the art science. During the COVID-19
pandemic, an extremely large volume of research articles have been produced: 125,000 within 10
months of the first confirmed case, 30,000 of which are preprints. In this noisy publication
landscape, journals prioritized quickly sharing COVID-19 information, but there is a trade-off
between speeding up peer review and ensuring high quality research?. Preprints also played an
important role in spreading COVID-19 research. Preprints were often covered in the media, had
large audiences on social media platforms like Twitter, and in some cases were misunderstood in
consequential ways 2. For COVID-19 modeling specifically, the utility of models for informing
response efforts was criticized largely due to a few particularly erroneous projections at the start
of the outbreak and poor communication on what insight models can and cannot provide 6.
Literature reviews that attempt to synthesize COVID-19 modeling work that have been published
up until August 2021 form an incomplete, piecemeal understanding of modeling work, largely
due to the rapid pace of publication on preprint servers and in publications. Most existing
reviews are either systematic but only cover a short time span, up until July 20207 or use a
narrative approach and do not develop a method to examine a representative set of papers!®12,
The only exceptions we found are one systematic review covering 242 papers up until November
2020"%, and one narrative review that covered 50 of the most cited papers'*. Only one review
included preprints'®, and all are limited to papers published before August 20207!° or in
2020213, Many of these reviews are focused on model objectives and methodology®®!?,
neglect other aspects of modeling that are crucial for translation.

and
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To build on previous work, we provide a narrative review with a systematic approach, which
handles the challenges presented in synthesizing an enormous body of work using objective
criteria to obtain the most representative and informative sample of papers possible. Our review
covers publications up until August 20, 2021, which captures eight months of 2021 that have not
been covered by other reviews. We focus on factors of modeling that have been neglected in the
existing literature, namely input data, uncertainty, performance evaluation, and stated limitations,
which are critical for science translation and enable models to provide insight for decision-
makers and the public. We provide a quantitative evaluation of each of these elements, which
enables stronger and more justified conclusions about trends and areas in need of improvement,
with respect to modeling COVID-19 and future pandemics.

Methods: Search Strategy and Selection Criteria

There are three main types of COVID-19 disease spread modeling: retrospective analysis,
nowecasting, and prospective modeling. Retrospective modeling, or backward-looking analysis,
has been applied throughout the outbreak to explore a variety of key questions such as inferring
basic epidemiological characteristics like R, incubation period, and fatality rate, reveal factors
driving transmission, and assess the effectiveness of different interventions'>!”. Nowcasting
focuses on understanding the current situation, like inferring the true number of cases in light of
underreporting'®!°. Prospective modeling is forward looking, and includes forecasts, projections,
and future scenario analysis. Forecasting aims to predict near term epidemiological dynamics,
often relying on data-driven methods and assuming that there will be minimal changes during the
forecast period, while projections span over a much longer future time window, and thus must
make assumptions about how the factors driving COVID-19 will change in the future. Scenario
analyses produce multiple projections that explore the impacts of different sets of assumptions
that vary factors like transmission rates and interventions.

Due to the magnitude of the COVID-19 modeling literature, we had to impose significant
constraints on the scope of this review to enable us to conduct a systematic, quantitative, and
timely assessment of the relevant literature. Therefore, this work is a narrative review with
systematic approach. Specifically, the following inclusion criteria defined our review scope:

1) Prospective modeling work on population-level dynamics of COVID-19: we include
papers that provide future predictions for a specific location, including forecasting,
projections, and future scenario analysis. We exclude retrospective modeling studies.
Papers that only fit a model without providing out-of-sample predictions were not
included.

2) Data-driven: we broadly define this as papers that incorporate COVID-19 data into the
setup or fitting of the model. Those which only use parameters from the literature or rely
on data from other viruses were excluded.

3) Geographic restriction: we only included papers that implement forecasting or projections
for US counties, states, or at the national level, which restricts our analysis to papers
working with the same data issues and in a similar context.

4) Journal restriction: We include only papers from peer-reviewed journals, as defined by
Scopus’ context curation standards?’. In addition, we restrict to papers from journals
ranked in the top 10% for their respective field based on the Scopus CiteScore. While we
recognize this will exclude important work, this criterion was the best option available to
apply a systematic approach to reducing the set of papers to a manageable level and still
obtaining the most representative sample of papers possible. For our final sample of peer-
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reviewed papers, a table showing the number of papers from each journal and each
journal’s top category and percentile according to Scopus CiteScore is available in the

appendix (p 1).

The Scopus query we developed based on these criteria is also included in the appendix (p 2).
To minimize the chance of our search missing relevant papers, we searched PubMed with the
equivalent query. Figure I outlines our scoping process and shows the number of papers
screened out at each step.

PubMed query: Scopus query:
772 papers 2,135 papers

After combining sources and
removing duplicates:
2,401 papers

After limiting to journals in top
10% of their respective field:
894 papers

After screening by title and

abstract:
L 220 papers /
Preprints from After in-depth screening and
Hub modeling addition of preprints:
groups: 136 papers

17 papers

Figure 1. Scoping Process

A schematic of our scoping process and the number of papers left after each step is shown.

The searches of Scopus and PubMed were carried out on August 20, 2021, and our final
selection of papers was distributed from March 2020 to August 2021 (Figure 2). Notably, the top
10% criteria only reduced the number of papers to 37% of the original size, from 2,401 to 894
papers. Papers were screened individually by KN, SJ, and FP, with a mechanism for double-
checking with another individual if a paper's eligibility for inclusion was unclear. For the data
collection, categorizations were done individually by the same authors, and all categorizations
were double checked with one individual covering all papers for a particular category, so that
categorizations were applied consistently across all papers. After screening steps, we narrowed
down to 119 peer-reviewed papers.



160

161
162
163

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

185
186

187
188
189
190
191
192

Number of Papers
IS o o ] X

h%]

2020-03 2020-05 2020-07 2020-09 2020-11 2021-01 2021-03 2021-05 2021-07
Month Published

Figure 2. Number of Papers in our Analysis by Month of Publication.

This histogram shows the publication date by month of all papers included in our analysis.

o

We additionally considered preprints from authors known to be engaged in real-time modeling
work. We included preprints from modelers participating in the US COVID-19 Forecast Hub?.
We also attempted to include the Scenario Modeling Hub?'"23, but no preprints met our criteria
for the time window considered. While these papers do not have the validation that comes with
peer-review, these models were used in real-time by a national public health agency, which we
believe justifies their inclusion in this analysis. We found 17 preprints in the metadata provided
by the modeling teams contributing to the Forecast Hub. Thus, 136 papers in total are included in
our analysis. Despite our efforts, we acknowledge that we will miss a significant portion of real-
time COVID-19 modeling work that exists on preprint servers and on the websites of modeling
groups.

We have designed our scoping process to obtain the most objective and representative sample
that is possible given the challenges of synthesizing an enormous body of work in a useful,
timely manner. Despite the limitations of our scoping process, we are confident that our analysis
is able to provide valuable insight on the state of published COVID-19 work and highlight areas
for improvement.

Role of the funding source

The funders of the study had no role in study design, data collection, data analysis, data
interpretation, or writing of the report. The authors had full access to all the data in the study and
had final responsibility for the decision to submit for publication.

Results

To conduct a quantitative analysis on the substance and quality of these studies, for each paper
we classified the following features: forecasting window, methodology, prediction target,
datasets used, geographic resolution, quantitative uncertainty, performance evaluation, and stated
limitations. We acknowledge that some of these categorizations are subjective and/or difficult to
consistently extract from papers, especially the performance evaluation and stated limitations
category. Thus, we narrowly define our categories and transparently discuss these definitions in
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this section. While we acknowledge that some of the categorizations we made could be disputed,
we are confident that the overall conclusions still hold. The classification of papers for each
category is shown in the appendix (p 3). Figure 3 visualizes the relative size of each category
and the most common connections between categories. Each line through the figure represents
the categorizations of a single paper, so the thicker the line between two categories, the more
often papers tend to fall into both of those categories. The width of the lines are weighted such
that in cases where a paper falls into more than one category, like using both cases and deaths
data, a line with half of the normal width is assigned to each category.

Data Forecasting Window Method Target

I Demodels e /1101 Agentbased (1] i
s Health Risk Factors” — Other
I Mobity //// Hond I

Human Behavior

Climate

Testing

Policy

Rt
Stock Market Data
Wastewater Surveillance

Figure 3. Sankey Diagram of the Connections Between Categorizations of our Analysis.
This diagram shows the relative cooccurrence of categories within papers in our analysis. Thicker lines between
categories indicate that those categories are more likely to occur in the same paper.

Model Objective and Prediction Horizon

Forecasts are unconditional in the sense that they attempt to predict what will actually happen in
the near future, while projections and scenarios are conditioned on the model’s assumptions
about the future in order to extend the prediction horizon. We were unable to reliably categorize
models into forecasts or projections due to inconsistent use of these terms and a lack of clear
communication in papers on which approach was used. Therefore, as a proxy for model
objective, we categorized papers into short-term predictions (namely, forecasts), or long-term
predictions (namely, projections). To remain consistent with the COVID-19 Forecast Hub and
COVID-19 Scenario Hub, which represent best practice for prospective COVID-19 modeling,
we categorize studies making predictions for four weeks or less as short-term (46%), and studies
making predictions with a horizon that extends beyond 4 weeks as long-term (60%). There were
a small number of papers which produced both long-term and short-term predictions?*27. Note
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that because papers often fall into multiple categories, percentages in this analysis will not
always add up to 100%. Within the category of papers conducting long-term projections, we also
tagged papers with multiple scenarios, which provided multiple predictions based on different
sets of assumptions. This could include modeling scenarios with different reopening speeds, non-
pharmaceutical interventions, and vaccination rates. Of the 82 papers in the long-term
projections category, 54 papers (66%) considered multiple scenarios.

Methodology

Since many of the existing COVID-19 review papers go into more detail on methodology®*:12,
we opted not to cover this aspect of modeling beyond classification into three broad categories:
compartmental models (SIR and variations), statistical models (machine learning, deep learning,
ARIMA, etc.), and hybrid (a combination of compartmental and statistical models). Since most
compartmental models in our sample used statistical methods to fit parameters, in order to retain
informative categories we adopted a stringent definition of a hybrid model, requiring both
compartmental and statistical layers of the model that go beyond using statistical approaches to
fit parameters. For example, one paper classified as hybrid used deep learning to infer a time-
dependent reproduction number, which was then fed into a compartmental model?®. A model that
only uses statistical methods to fit parameters for a compartmental model was classified as
compartmental. We found that 47% of papers used a compartmental model, 43% used a
statistical model, and 12% used a hybrid model. There were a few papers which showed both a
compartmental model and a statistical model?*2”. We also noted if models used agent-based
methods (9%).

Target Variables

The most common target prediction variables were cases (89%), deaths (52%), hospitalizations
(10%), and R; (9%). Some of the lesser used target variables included growth rate, peak cases,
and ICU admissions. 38% of papers had only one target variable, 43% of papers had two target
variables, and 19% had more than two.

The target prediction variables were dominated by absolute numbers of cases and deaths, which
aligns with the goals of the US COVID-19 Forecast Hub. Despite the continued desire for these
targets from across the field of public health, government, industry, and the public, accurate
prediction of them remains challenging®.

Data Categories

Next, we quantified the categories of input data used to inform models. Table I shows how we
defined the data categories, including an in-depth look at the datasets used by papers in our
analysis that attempt to capture COVID-19 behaviors.

Data Category | Description Examples

Cases, Deaths Epidemiological data on the | Daily cases/deaths, cumulative cases/deaths,
number of cases or deaths reproduction number, growth rate
and corresponding metrics.




Hospitalizations

Data related to
hospitalization of COVID-
19 patients.

Daily hospitalizations, active
hospitalizations, ICU occupancy, hospital
capacity

Testing Data pertaining to COVID- | Daily tests, test positivity rate
19 testing in a population or
location.
Climate Data describing the climate | Daily precipitation, daily temperature,
or any meteorological average temperature
variables pertaining to a
specific location, timeseries
or static.
Demographic Demographic or socio- Population, age, race, income, rural/urban
demographic information ratio
about the population of a
specific location.
Health Risk Data which quantifies the Prevalence of comorbidities, use of
Factors health risk factors of the preventative services (doctor visits)
population in the context of
COVID-19.
Mobility Data which quantifies the Google Mobility Trends (residential, grocery
movement of a population. | & pharmacy stores, parks, retail &
recreation, workplaces, transit stations)>°
Unacast social distancing scoreboard
(average mobility, nonessential visits,
encounters density)®!
SafeGraph (trip counts at a census block
group resolution)>?
Apple Mobility Trends (trends in apple maps
routing requests)*?
Facebook Movement Range Maps (change in
movement compared to baseline percent of
population that stays home)*
Flight data
Human Data which quantifies the Google search trends®
Behavior behavior or beliefs of a Mask use per capita®®

population in the context of
COVID-19, excluding data
on the mobility of a
population.

Facebook’s COVID-19 Trends and Impact
Survey (timeseries of self-reported mask use
and other social distancing behaviors)®’

New York Times Mask-Wearing Survey data
(static)*®
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Sentiment index constructed from COVID-
19 news>’

Policy

Data pertaining to policies
relating to COVID-19.

Oxford COVID-19 Government Response
Tracker (ordinal scale on stringency of many
types of COVID-19 policies, including
containment and closure policies, economic
policies, health system policies, and
vaccination policies)**

State Level Social Distancing Policies: tracks
dates and details of policies including
emergency declarations, gathering
restrictions, closures, stay-at-home orders,
travel restrictions, isolation orders, and mask
mandates *!

Table 1. Data Categories.

The most frequently used data categories were cases, deaths, mobility, demographics, and
hospitalizations (7able 2). 20% of papers used only one category of data, 39% of papers used
two categories, 16% used three categories, and 25% used four or more categories.

Data Category Occurrences | Percent of Papers

Cases 126 93%
Deaths 79 62%
Mobility 34 26%
Demographics 30 25%
Hospitalizations 15 12%
Policy 13 12%
Testing 11 9%
Hospital Resources 10 8%
Climate 8 7%
Human Behavior 8 7%
Health Risk Factors 4 5%

Table 2. Top 10 Data Categories.

The data sources informing predictions in our analysis were dominated by case and death data.
Data used in 2 or less papers include vaccinations, R,, wastewater surveillance, and economic
data. 51% of modelers only used epidemiological data sources (cases, deaths, hospitalizations).
The most often used non-epidemiological sources were mobility and demographic data. The
models that did use other data sources tended to incorporate a large number and variety of input
data*?**. Some factors that have been shown to be associated with COVID-19 dynamics, such as
demographics, health risk factors, and climate, rarely appeared in our sample, although little
research has been done to rigorously test for whether these factors can improve predictive
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performance. Of particular interest due to the increasing impact of new variants on
epidemiological dynamics, none of the papers in our sample utilized variant prevalence data. In
the US, this data suffers from low sample size, sampling bias, and is difficult to use as a signal
for predictive modeling.

Geographic Resolution

We noted the geographic scale at which predictions were made, categorizing papers as national,
state, or county-level and lower. 54% out of 136 of papers included a national level prediction,
36% at the state-level, and 34% at the county-level or smaller scale. Half of the models in our
analysis were at the national level, which tends to be the easiest resolution to predict and the least
useful for decision-making, which must often occur at the local level.

Uncertainty

We analyzed which papers included a quantitative expression of uncertainty of their predictions,
excluding those which only did so for model parameters. We found that half of papers (50% out
of 136) did not express any quantitative uncertainty. 49% of papers included some form of
confidence or prediction intervals. A sensitivity analysis was performed in 13% of papers.

Half of the papers studied did not express any quantitative uncertainty around the forecasts,
despite the highly uncertain and consequential nature of COVID-19 dynamics. The utility of
forecasts for decision-makers depends on clear communication of uncertainty*’, especially since
point estimate predictions will rarely match ground truth data. Well calibrated expressions of
uncertainty help stakeholders assess future risk and decide how to respond. For example, the
difference between a 1% chance of exceeding hospital capacity versus a 25% chance could
determine whether certain preparatory actions are taken. Additionally, expressing uncertainty is
especially important to prevent harmful, incorrect interpretations of COVID-19 models. Clearly
communicating uncertainty around predictions weakens the ability of actors to use a study in a
misleading way to support their preexisting agenda.

Performance Evaluation

We categorized the type of performance evaluation used for each model. We chose to conduct
this analysis only for the subset of papers implementing short-term prediction models, which can
be fairly evaluated against truth data. In contrast, the purpose of long-term projections is to
compare multiple plausible scenarios of the future, not to predict what will happen. Therefore, a
fair performance evaluation using standard error metrics is not possible since these models make
assumptions about the future that do not match reality.

For timeseries forecasts, the setup of train and test data should be representative of real-time
forecasting conditions. Since the utility of a model is based on its ability to predict future
dynamics, randomly excluded “out-of-sample” evaluation methods do not adequately describe
performance. Instead, models should be trained using data up until a certain cutoff date and
evaluated on data after that date. This preserves the fundamental challenge of forecasting: not
knowing future data or trends. Within the subset of short-term studies considered, 75% of papers
used some sort of performance evaluation metric to compare future-blind, out-of-sample
predictions to ground truth data, and 25% did not conduct a performance evaluation on their
forecasts. Ground truth data used is usually reported cases or deaths, and sources used in our
sample include JHU CSSE!, The COVID Tracking Project*, and WHO*”. The most common
metrics to compare predictions to ground truth were mean absolute error, root mean square error,



318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349

350
351
352
353
354
355
356

357
358

359
360
361
362
363

11

mean absolute percentage error, R?, mean square error, and coverage rate of prediction intervals.
Out of the papers that did conduct a metric-based evaluation, only 13% evaluated the accuracy of
confidence intervals. Within the group of 47 papers which conducted a future-blind performance
evaluation, 34% evaluated only one model, 55% compared performance metrics across multiple
internal models, and 19% compared the performance metrics of their model against those of
other models in the COVID-19 Forecast Hub. 15% of evaluated models used a baseline model
for comparison.

Most modelers (75%) quantified the performance of their model relative to truth data, but most
did not evaluate their model on predictions made across a timespan that included varying
epidemiological dynamics. In order to quantify this, we counted how many dates papers showed
predictions from. For example, if a paper presents a model prediction using data up until
September 1%t and predicts future case counts on the 8, 15t 2274 and 29%, this would be a
prediction made from a single date. If this paper adds another prediction made from October 1
(using data up until this date) and predicts weekly values for the next 4 weeks, this paper would
be showing predictions made from two dates, which cover a month-long timespan (September 1%
to October 1%!). We defined the category this way in order to make sure we could reliably extract
this data from each paper. Our analysis found that among short-term models, more than half
(55%) only showed a prediction made from a single date, 28% of papers showed predictions
made from multiple dates over a timespan that was less than 2 months long, while 17% covered a
timespan longer than 2 months. From the COVID-19 Forecast Hub, we know that predictive
accuracy of models varies widely over time, especially with respect to epidemiological trends*®.
Therefore, failing to evaluate a model in a variety of epidemiological dynamics severely limits
the generalizability of the performance evaluation and the ability to make fair comparisons
between models. In addition, one-third of papers (34%) that completed a quantitative
performance evaluation did not compare their model to a baseline or any other models, so it is
unclear whether the model provides any improvement over a naive model. The COVID-19
Forecast Hub uses a baseline model that assumes no change in incidence over the next four
weeks. According to historical error metrics calculated by the Forecast Hub and CMU Delphi on
September 8™, 2021, only 25% of models outperformed the baseline model for cases while 75%
outperformed the baseline for deaths by relative mean absolute error and weighted interval
score®. Thus, comparison to a baseline model provides context that provides important
information about the utility of a model.

Many papers did not cover the specific methodology of their performance evaluation, which
limited our ability to provide more specific analyses in this review. Authors should clearly state
the dates of the training period, the dates predictions were made from, how error metrics were
computed and aggregated, and whether metrics are computed in-sample or out-of-sample. In
addition, models that aim to contribute to real-time forecasting efforts should use input data as it
was available at the date predictions are made from, which is available through the CMU Delphi
APT°%3! Without thorough performance evaluation, the broader scientific community will be
unable to determine which approaches are working and build knowledge on best practices.

Model Limitations

Authors stated six main categories of limitations: disregarded factors (39%), data quality (28%),
unknowable factors (26%), limitations specific to the methods used (22%), data availability
(16%), and limited generalizability (8%). We define unknowable factors as those that cannot be
known at the time predictions were made, like future implementation of non-pharmaceutical
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interventions or the emergence of new variants during the prediction horizon. In contrast,
disregarded factors have some relevant data or information available at the time of the analysis,
but the authors choose to disregard it, like the demographic breakdown of populations or
healthcare capacity of different regions. A third of the papers in our analysis (36%) did not list
any limitations in an accessible section of the paper, which we considered to be in the discussion,
conclusion, or in a separate section named limitations. In most cases, all of these types of
limitations are relevant to COVID-19 models. In addition, our categorization does not give
information about how thoroughly these limitations categories were discussed. For COVID-19
applications, clearly stating model limitations is critical to help the public understand the
appropriate way to interpret results.

Multidisciplinary Nature of the COVID-19 Literature

The highly consequential nature of the COVID-19 pandemic has attracted modeling experts from
a variety of different fields. The top five journal subject areas represented in our final set of
papers, in order from most to least frequent, are applied mathematics, multidisciplinary, general
physics and astronomy, general mathematics, and statistical and nonlinear physics. Notably,
public health did not appear in the top five subject areas. Our final set of papers represented 52
journals. The most common journals were Chaos, Solitons, and Fractals, PLOS One, and
Scientific Reports (Figure 4). We were unable to conduct a thorough analysis on the
contributions to COVID-19 modeling from different fields due to the difficulty of classifying
papers into different disciplines based on their journal and the inherent interdisciplinarity of this
work. However, we completed a sub-analysis on the group of papers from Forecast Hub
modelers.

Chaos, Solitons & Fractals INIEIEGEGG—.
PLOS ONE .
Scientific Reports I
Infectious Disease Modelling I
Nonlinear Dynamics I
Proceedings of the National Academy of Sciences [N
ISA Transactions [INEGE
Science of The Total Environment I
Nature Human Behaviour [N
PLOS Computational Biology M

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Fraction of Papers
Figure 4. Top 10 Journals in the final set
This graph shows the most frequent journals in our analysis and what fraction of our sample of papers each
journal published.

Journal

The set of papers written by authors that contributed to the COVID-19 Forecast Hub includes 17
preprints*3-2-¢7 and 3 papers published in peer-reviewed journals®®-70. 70% of these papers made
short-term predictions and 40% of these papers made long-term predictions. Although these
papers were cited by teams in the metadata of their submissions to the COVID-19 Forecast Hub,
which focuses on one to four week predictions, these preprints are not necessarily on the exact
model and application that was submitted to the Forecast Hub. Despite being mostly preprints
with many serving to provide a brief explanation of a model being used in real-time, these papers
were more likely to express uncertainty, have forecasts for state and county levels, and conduct
performance evaluation than the full set of papers, which is shown in 7Table 3. In addition,
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Forecast Hub papers were significantly more likely to show and evaluate predictions made from
several dates over a timespan greater than 2 months (50% versus 17% for all papers). A
significant advantage of the hub approach is that it encourages good practices in terms of
uncertainty, evaluation, and high geographic resolution. Additionally, the real-time sharing of
forecasts ensures that predictions were truly future-blind.

Categories All Papers Forecast Hub Papers
(N=136) and Preprints (N=20)

Prediction Horizon

Short-term Predictions 46% 70%

Long-term Predictions 60% 40%
Methodology

Compartmental 47% 35%

Statistical 43% 45%

Hybrid 12% 20%

Agent-based 9% 5%
Geographic Level

National 54% 25%

State 36% 65%

County or Smaller 34% 55%
Uncertainty

Expressed Quantitative Uncertainty 50% 55%

Sensitivity Analysis 13% 5%
Performance Evaluation

Comparison to Ground Truth (out of 75% 86%

short-term models only)

Only Made Predictions from One Date | 55% 7%

Made Multiple Predictions over a

Timespan greater than 2 months 17% 50%
Limitations

Authors discussed limitations 64% 65%

Table 3. Comparison of All Papers and Forecast Hub Preprints

Discussion

Our analysis found significant gaps in model transparency in the literature, especially on
reporting aspects of models that are crucial for translation. Papers did not consistently state the
precise objective of their model (unconditional forecast or assumption-based projection), detail
their methodology, express uncertainty, evaluate performance across a long, varied timespan,
and clearly list their limitations. Without this information, studies are more vulnerable to
misinterpretation, which can have serious consequences during a global health crisis in which the
public is paying attention to scientific papers’!-’2. In addition, poor reporting limits the ability of
literature reviews to synthesize insights from the research to determine best practices. In
response to these concerns, the EPIFORGE 2020 guidelines were developed and recommend
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consistent terminology, a clear definition of study purpose and model targets, identification of
prospective versus retrospective work, comparison to a baseline model, a non-technical summary
of results, and full documentation of: data sources, data availability, data processing, methods,
assumptions, code, model validation, forecast accuracy evaluation, uncertainty, limitations,
interpretation, and generalizability”®. Consistent sharing of this information for epidemiological
predictions would improve the consistency, reproducibility, comparability, and quality of
epidemic forecasting papers, in addition to minimizing the potential for the public to
misunderstand or misuse the research.

Another obstacle to maximizing the knowledge gained from epidemic forecasting is the
suitability of the information sharing system. Since it is not standard practice for modeling
papers to report on translational work, this review can only comment on the translation potential
of papers based on their reporting practices, not on how models were actually used during the
outbreak. In addition, the volume and variable quality of the literature forced us to adopt
stringent and limiting scoping criteria in order to obtain a manageable sample of literature to
analyze. Other reviews adopted their own narrow scope, creating a body of COVID-19 modeling
literature reviews which amount to a piecemeal, incomplete picture of the efforts of researchers.
This illustrates the difficulty of building knowledge from the COVID-19 literature through the
traditional information sharing system: peer-reviewed literature and systematic literature
reviews. Thus, a new information sharing system that is better suited to the needs of outbreaks is
urgently needed, which can handle the pace of publications and strike a balance between the
speed and quality of disseminating research findings.

Limitations

The main limitations of this review are the result of the difficult nature of synthesizing the
COVID-19 literature. We had to adopt stringent scoping criteria, which included limiting our
analysis to studies that made prospective, data-driven predictions for the US and to papers
published in the top 10% of journals based on Scopus’ CiteScore. The CiteScore is an imperfect
metric that relies on the number of citations per study in a journal. However, the CiteScore was
the best option we knew of to select for a higher quality sample of papers, since we did not want
to introduce a time bias by using each paper’s number of citations. Another limitation is that we
can only comment on the state of the peer-reviewed literature with this analysis, not the state of
all real-time work, some of which is not and may not ever be represented in the literature. In
addition, some of the categorizations we made were subjective and/or difficult to extract
consistently, so we implemented quality control mechanisms as discussed in the Methods
section, and we are confident in our overall conclusions. Despite these limitations, we have
studied the most representative sample of papers possible and obtained findings that are
informative for improving epidemic modeling in the future.

Conclusion

This analysis examined a subset of the COVID-19 modeling literature, focused on data-driven,
prospective modeling, and identified several opportunities to improve the utility of outbreak
modeling, which are especially relevant to inform the work of the new CDC Center for
Forecasting and Outbreak Analytics. In response to significant scoping challenges, we selected a
sample that should represent the best modeling papers and still found them to be substantially
lacking in some of the areas that are most crucial for translating models into useful insight for
decision-makers and the general public.
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The main takeaways of this literature review are adopting epidemic forecasting standards and
creating a suitable information sharing system. Adopting the EPIFORGE 2020 guidelines
address many of the issues identified in this review, including the need to be transparent about
the methods, express uncertainty, thoroughly evaluate performance, state limitations, and discuss
appropriate interpretations. Additionally, the creation of an information sharing system suited to
the needs of an epidemic would allow the hard work of COVID-19 modelers to be more
efficiently synthesized into best practices.
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