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Abstract— Robust design of autonomous systems under un-
certainty is an important yet challenging problem. This work
proposes a robust controller that consists of a state estimator
and a tube based predictive control law. The class of linear
systems under ellipsoidal uncertainty is considered. In contrast
to existing approaches based on polytopic sets, the constraint
tightening is directly computed from the ellipsoidal sets of
disturbances without over-approximation, thus leading to less
conservative bounds. Conditions to guarantee robust constraint
satisfaction and robust stability are presented. Further, by
avoiding the usage of Minkowski sum in set computation,
the proposed approach can also scale up to high-dimensional
systems. The results are illustrated by examples.

I. INTRODUCTION

Model predictive control (MPC) is a control technique
based on the iterative solution of an optimization prob-
lem [1]. By using the system model and the current state,
MPC plans the optimal control sequence based on a cost
function. The system executes the first control input in the
optimal sequence and the procedure repeats at the next time
step. MPC has received considerable attention over the last
decades driven largely by its ability to handle multi-variable
systems and state/input constraints [2].

In practice, however, two important issues arise in MPC
design: (i) the actual state is often not available, leading
to the necessity of state estimation, and (ii) measurements
and the model used for prediction are uncertain (e.g., due
to disturbances and unmodeled dynamics). Therefore, robust
output feedback MPC schemes have been proposed and
investigated to overcome the above challenges, see [3]-[7].

Tube based output feedback MPC uses a combination
of a state estimator with a robust model predictive con-
trol law [4]-[6], [8], [9]. The basic idea is to decompose
the closed-loop dynamics into a nominal, disturbance free
system for prediction and optimization and utilizes one or
two tubes to handle the uncertainties. Other robust output
feedback MPC approaches are based on min-max optimiza-
tion [10], [11], moving horizon estimation [12], [13], set-
membership estimation [2], [14]-[16], or combinations of
linear and set-membership estimation [17], [18].

In problem settings of robust output feedback MPC,
bounding sets for disturbances are often described by poly-
topes [4]-[7], [19]. In real-world experiments, however,
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Fig. 1: Real disturbances in different systems turn out to lie in ellipsoidal
bounding sets. Left [22]: Measurements for eight different test points from
Decawave indoor positioning system. Blue dots indicate the measurement
results and black dots indicate the places of anchors. Right: RTK GPS
position measurements on a static Polaris GEM autonomous vehicle [23].
The measurements have been normalized to have zero mean.

we observe that ellipsoids turn out to be a more suitable
description of disturbance sets, as shown in Figure 1 and
in [20], [21]. To apply the previous approaches under such
uncertainties, over-approximation of ellipsoids by polytopes
needs to be performed, which is in general conservative.
This work focuses on an extension of the tube-based output
feedback MPC [4]-[6] to ellipsoidal uncertainty. The main
contribution is a robust controller that can achieve less
conservative results and can scale up to high-dimensional
systems. To this end, we derive the constraint tightening
directly from ellipsoidal sets, which allows to obtain tighter
approximations on the worst case effect of the uncertainties.
Moreover, our approach avoids the usage of Minkowski sum
in constraint tightening and thus is more computationally
efficient in high-dimensional systems.

Nomenclature: For two sets U, V, UDY and U x V denote
the Minkowski sum and Cartesian product. A set Uf is a C
set if it is compact, convex, and contains the origin.

II. PROBLEM SETUP
We consider the following linear, uncertain, discrete-time,
time-invariant system:
(la)
(1b)

Tpq1 = Axy + Buy + wy,
yr = Cxp + vy,

where xj € R” is the system state at time k, ux € R™ is the
control input, y; € RP is the measured output, wy, € R is an
unknown state disturbance, vi € RP is an unknown output
disturbance, and (A, B,C) are known matrices, where the
couple (A, B) is assumed to be controllable and (A, C') ob-
servable. The state disturbance wy, and the output disturbance
vy, are only known to the extent that they lie, respectively,
in the ellipsoidal C sets W and V:

wr, € W= {w|w'Q tw < 1},

2
v eVi={v|v R <1}, @



where () and R are known positive definite matrices.
For the initial state x(, an estimate Z( is available satis-
fying:
xo — Lo € Ep := {e| e U le < 1}, 3)

where Eg, the initial uncertainty, is an ellipsoidal C' set.
System (1) is subject to the following mixed constraints
on the system state and control input:

Fzxp + Gui < f, “)

where (F, G, f) € R9*" x R¥™ x RY are known matrices.
Note that the ellipsoidal uncertainty (2), (3) and the polytopic
constraint (4) are considered.

The overall goal is to design a robust output feedback
controller for system (1) such that the closed-loop system is
robustly stabilized and the constraint (4) is satisfied for any
admissible state disturbance sequence w := {wq, w1, ...},
output disturbance sequence v := {vp, vy, ... }, initial uncer-
tainty xo — 2o, and k > 0. The proposed controller is based
on the combination of a state estimator with a nonlinear
feedback law based on MPC as in [4]-[6], [8].

III. BOUNDING THE UNCERTAINTY

In this section, we review previous methods using poly-
topic sets and propose a novel approach using ellipsoidal
sets to tighten the constraint to account for the uncertainty
in the closed-loop system.

A. Uncertainty bounding via polytopic sets

The previous works in tube-based output feedback MPC
utilizes a simple Luenberger observer to estimate the state.
The constraint tightening is achieved by bounding the esti-
mation error and the prediction error using polytopes.

1) State estimate: A linear observer of the form

Zpt1 = Ay + Buy + L(CTy, — yi)

is used, where the observer gain L needs to be chosen such
that A + LC has eigenvalues only inside the unit disc.

2) State decomposition: The state estimate Zj is used
to calculate the control uy. Therefore, the previous works
decompose the state zj into three different components,
compare [4]-[6], [8], [9]. The first component is the nominal
state Tj,, whose dynamics depends on the nominal input :

ZTp+1 = ATy + Buy,. (5

The second component is the estimation error ej, which is
the difference between the real state x;, and the state estimate
.i'ki

€L = T — ik (6)

The last component is the prediction error &, which is the
difference between the state estimate Zj; and the nominal
state Ty:

The real state x; can then be represented by:

Ty = Ty, + er + & 7

The decomposition allows to design a predictive control law
for the nominal system (5), which is unaffected by the noise,
and to derive the constraint tightening for the satisfaction
of (4) by considering the uncertainty in ej and &.

3) Control input calculation: A control law combining a
feed-forward component, given by the tube-based model pre-
dictive controller, and a feedback component is considered:

up = g + K (& — Zx), ®)

where K is a fixed feedback gain satisfying that A + BK
has eigenvalues only inside the unit disc.

4) Constraint tightening via separate sets: The above def-
initions give rise to the following dynamics for the estimation
error eg:

€rt1 = (A—i—LC)ek + wy + Log. 9)
The prediction error & evolves according to:
&hp1 = (A+ BK)&, — L(Cey + v). (10)

With the initial uncertainty Eg, the bounds on the estimation
error ey, is governed by:

(an

To bound &, Mayne et al. [4], [S] treated the observer
correction term —L(Ce, + vg) in (10) as an “artificial”
disturbance ¢y, satisfying:

(bk € (P]ﬁ

which results in the set recursion:

Eir1 = (A+ LC)E, & W & LV.

b, =—-LCE, @ —LV,

Zii1 = (A4 BE)Z;, @ 0. (12)

To achieve less conservative constraint tightening, 2y = {0}
can be used by setting o = 2o, compare [8], [9]. As a result,
the constraint (4) can be robustly satisfied if the following
inequality holds for any & € Zg, e € Eg, and k£ > 0:

ka+Gﬂk+(F+GK)§k+F€k§f. (13)

It has been shown in [5] that the sets [E;, and Z; converge in
the Hausdorff metric to the minimal robust positive invariant
(RPD) sets E, and =, respectively, satisfying:

Eoo = (A + LO)Eo ® W & LV,
Eeo = (A+ BK)Zo ® —LCEo, @ —LV.

The above minimal RPI sets allow to compute only a finite
number of sets E; and =; and to over-approximate the sets
consistently after a specific k£ for the constraint tightening,
see [6], [8].

5) Constraint tightening via a single set: Kogel et al. [6],
[8] bounds the errors e; and & using a single set, instead
of using two separate coupled sets as discussed above. To
this end, the two errors (9) and (10) are combined into a
composite system using the state z = (e;— E;)T:

Zht1 = flzk + Bdk, di € Dy,



where D, = W x V and

pe A+ LC 0 ~ I L

A= ( —LC A+BK)’ b= (o L)'
With the initial composite state zp € Zg = Eg x {0} as
above, one can have z, € Zj; where

Zys1 = AZy, & BDy. (14)

Therefore, the constraint (4) can be robustly satisfied if the
following inequality holds for any zj € Zj, and k > O:

FZy+ G + (F F+GK) 2z, < f. (15)

Similarly, the sets Zj converge in the Hausdorff metric to
the minimal RPI set Z., satisfying

Zoo = Al & BDy,

which again allows to bound Zj; by computing only a finite
number of sets [6]. The constraint tightening (15) is less
conservative than (13) because, for example, the errors ey
and & are each influenced by vy, but the sum ex + & is
independent of vy, compare (9), (10).

Remark 1 (Bounding set representation)

Both the two set approach and the single set approach
calculate the error bounds Ey, =i, Zi, Eoo, Eco, Zoo using
polytopes. To apply the methods, the ellipsoidal uncertainty
W, V, Eqg need to be over-approximated by polytopes, which
is in general conservative. Moreover, the computation of
the minimal RPI sets in form of polytopes often requires
Minkowski sum, which can be computationally challenging
in high-dimensional systems [6].

B. Improved bounds using ellipsoidal sets

In contrast to the prior work discussed above [4]-[6],
[8], [9], we derive the constraint tightening directly from
ellipsoidal sets, which avoids the conservatism introduced
by the over-approximation of the ellipsoidal uncertainty by
polytopes. Furthermore, we decompose the state x; into two
components rather than three components and bound a so-
called control error for the constraint tightening.

1) State estimate: To estimate the state a classic set-
membership state estimation algorithm is employed and is
outlined as follows [24]. Given the system (1), the dis-
turbance uncertainty (2), and the initial uncertainty (3), a
bounding set Xy, to the set of all possible states zy, at time
k given the outputs observed up to time k can be described
as an ellipsoid:

rp € Xy = {2 | (z *ik)TPk_\;(iE — &) <1-6;}, (16)
where the positive definite matrix Py, is recursively given
by the equations:

Pryijrgr = [(1 -

Py =1~
Pyo = 0.

) +1\]€+ch C]_lv

B)TAP AT + 571Q, (17)

The estimate & evolves according to:
= Az + Bug
+ pPei1jp1CTR™

T
k+1 (18)

Y(yr41 — C(Ady, + Buy))

with Z( as the initial condition and the non-negative real
number 5,% is given by the equation:

51%+1 = (1-8)(1-p)s;
+ (yks1 — C(Ady, + Bug))[(1 — p) ' CPegnCT
+p 'R (yry1 — C(Ady + Buy)),
52 =0,
(19)

where 3, p are parameters with 0 < S <1 and 0 < p < 1.

We point out two desirable properties of the state estima-
tion algorithm given by (16)—(19):

i) The matrix Py, does not depend on the outputs along

the trajectory, and hence can be precomputed.
if) The matrix Py, converges to a steady state P,
see [24].
The first property will be helpful to calculate the bounds
on uncertainty within the prediction horizon, and the sec-
ond property will be beneficial to develop a time-invariant
tightened constraint in steady state.

2) State decomposition: We decompose the state xj, into
two components instead of three components as in the prior
work and as discussed in (7). The first component is the
nominal state T as defined in (5). The second component
is the control error s;, which is the difference between the
real state x; and the nominal state Zy:

Sk =T — Tk- (20)
The real state x; can then be represented by:
T = T + Sk 2n

We now tighten the constraint by considering the uncertainty
in the error state sg.

3) Constraint tightening: We use the same control input
as in (8). From (1a), (5), (6), (8) and (20), the dynamics for
the control error s is governed by:

Sk+1 = (A + BK)Sk + wy,, — BKey. 22)

Using the set-membership state estimation (16) yields the set
recursion:

Sk41 = (A+ BK)S, ®W & —BKEy;, (23)

where
Ek|k = {6 | 6 ke <1- 6k} (24)
The sets S, are bounds on the worst case evolution of
sk starting from any sy within §¢ = Eojo. Therefore,

the constraint (4) can be robustly satisfied if the following
inequality holds for any s € Sk, ex € Eyx, and k>0:

Fz+ Guy, + (F + GK)s, — GKep < f. (25)



The tightened constraint (25) cannot be directly used in
predictive control because Sy and Ey;, cannot be precom-
puted. In detail, 67 in (24) depends on yj, which is unknown
before the time k. To overcome the problem, we present
the following proposition bounding the estimation error ej
without prior knowledge of the subsequent system outputs.

Proposition 1 (Bounds on estimation error)

Consider the set-membership state estimation (16)—(19)
associated with the system (1). At time k, it is guaranteed
that the estimation error in the next i steps eyy; € Eg 4 =
{e] eTijrlilkHe <1—(1-=pB)(1—-p)is3} for any k >0,
1 > 0, and admissible disturbance sequences w and v, where
K14k is the bounding ellipsoid of the estimation error at

time k + i based on the information available at time k.

The proof is provided in Appendix A.

Note that the bounding set Ey ;5 of the estimation error
ek+i can be precomputed at time k for all £k > 0 and ¢ > 0,
regardless of the actual subsequent disturbances and controls
in the next ¢ steps.

To propagate the error within the prediction at time &, one
can now bound sg4; by Si 4 with the dynamics of:

Sk+it1jk = (A+ BK)Sk1ijx @ W & —BKEy 1,
Skik = Sk,

where S; is governed by dynamics (23). At time k, we
can then derive the following tightened constraint within the
prediction for any Sky; € Sgik» €xti € Eppijp, @ > 0:

Fzp, + Gugy; + (F + GK)Sk_H —GKep; < f. 27)

Remark 2 (Constraint tightening for predictive control)
Any nominal state trajectory {Zr, Tr41, - ..} and nominal
input sequence {uy, Ugt1, ...} from time k satisfying the
constraint (27) will also satisfy the constraint (25) due to
the fact that By i € Egpqip and Spyi S Sppip for
all k > 0 and © > 0 from Proposition 1. Therefore, we
can use the constraint (27), which can be precomputed, in
predictive control to ensure the robust satisfaction of the
original constraint (4).

(26)

Remark 3 (Computation of the tightened constraints)
There is no need to compute the sets Sy and Sy ex-
plicitly. Instead, one can compute the constraint tightening
(F+GK)spyi —GKepyi, Vskyi € Skt Verti € Eppifr
in (27) by unrolling Sy, and Sy over time and solving
quadratically constrained linear programs.

Alternatively, a time-invariant constraint tightening can be
used after some time steps by adding some conservatism. In
detail, if the state estimation enters steady state and Eg;, is
over-approximated by Ej;, C Ey = {e | e" P le < 1},
the dynamics (23) and (26) become identical as:

Sk41 = (A+ BK)S, @ W & —BKE,. (28)

For any initial C set Sy, the sets S; governed by (28)
converge in the Hausdorff metric to the minimal RPI set
S satisfying:

Seo = (A + BK)So. ®W @ —BKE,, (29)

which allows to bound Sy by computing only a finite number
of sets as in polytope settings [4]-[6], [8], [9].

Under ellipsoidal uncertainty W and Eo, instead of
expressing the minimal RPI set S, as a polytope, we
propose to directly calculate the time-invariant tightened
constraint using quadratically constrained quadratic program
without explicit computation of S... The proposed algorithm
avoids the usage of Minkowski sum, thus scaling well
to high-dimensional systems. The details are provided in
Appendix B.

IV. CLOSED LOOP PROPERTIES

In this section, we present conditions on the MPC setup
to guarantee robust constraint satisfaction and robust stability
based on the tightened constraint (27) from Section III.

In the following we present the optimization problem
underlying the MPC. To employ the constraint tightening
with reduced conservatism from Section III, the proposed
robust output feedback approach uses a similar controller
structure to the one in [6], [9], which is in contrast to [4], [5],
[8]: The nominal state & for £ > 0 is not determined by the
optimization problem, instead it is given by the dynamics (5)
with the previous nominal state/input ZTp_1/tg—1.

The optimal control problem at time k is given by:

N—1
Vi = min Y q(Zppie Ungife) + P(Tesnk)
XksUk i—0
St Trpipie = AZprijn + Blg i
Fp g + Guprip < f — (F + GK)sppi + GKept,
VSk+i € Spyilks Ver+i € Epyr,

Trinik € XL, T = T,
(30)

where ¢ = 07N — 1, Xp = {{Ek‘k,i'k_;'_]\”k} is the
planned nominal state trajectory, Uy = {Ug|k, - - - Up4+N—1|k |
is the planned input sequence, N is the horizon, ¢(-,-) is a
positive definite stage cost, p(-) is a positive definite terminal
COSt, Sg4|x is the bounding set of the control error governed
by (26), Ej | is the bounding set of the estimation error
governed by Proposition 1, X£ is the terminal set, and Ty
is governed by dynamics (5) with the initial condition of
Ty = 2o to achieve less conservative constraint tightening as
described in Section III.
Upon solving (30) at time k, the controller applies

U :ﬂz‘k-l-K(CEk — k) a3n

to the system (1), where I is the state estimate given
by (18), and U g is the first part of the optimal nominal
input from (30). The controller (31) along with the state
estimation (18) forms the receding horizon control strategy
for the system.

For the brevity of notation, let f; be the tightened con-
straint at the end of the horizon in (30):

fr =f —max(F + GK)spin — max —GKepyN.

Sk+N €L+ N (32)

S.t. Sk+N € SkrNjks €k+N € Erpnyk,



where the maximization is performed elementwise, com-
pare [25]. We introduce the following assumption on the
terminal cost and terminal sets, compare [5], [6]:

Assumption 1 (Terminal cost and sets)
There exist a terminal cost p(-) and terminal sets X£ such
that:

p((A+ BK)x) — p(x) < —q(z, Kx), Vx € Xi, (33a)
(A+BK)x € X[, (F+GK)x < fi,, Yz € X[. (33b)

We now establish the recursive feasibility and stability of
the proposed robust, output feedback MPC:

Theorem 1 (Closed loop properties)

Let Assumption 1 hold. If the problem (30) is feasible
for time k = 0, then the closed-loop system given by (1),
(2), (18), (30) and (31) has the following properties for
any admissible realization of the initial uncertainty eq, the
state disturbance sequence w, and the output disturbance
sequence V:

o Recursive feasibility: (30) is feasible for any k > 0,

o Constraint satisfaction: Fxy+ Guy < f for any k > 0,

o Convergence: the nominal state Ty is exponentially
stable and x, converges to the set S..

The proof is provided in Appendix C.

V. SIMULATION EXAMPLES

We illustrate the results on two example systems: a double
integrator with state dimension n = 2 as in [4], [S], [8],
which shows the improved constraint tightening with reduced
conservatism relative to prior works, and a quadrotor system
with n = 12, which shows that the proposed robust output
feedback MPC can generalize to high-dimensional systems.
Hereafter, we define the stage cost and terminal cost as:

q(z,u) = (1/2)[z"Qz + v Ru], p(z) = (1/2)z" Pz,
where ), R, and P are positive definite matrices.

A. Double Integrator
To illustrate the improved constraint tightening we con-
sider the following system [4], [5]:

1 1 1
$k+1_|:0 1]%4—[1} up +we, yr=[1 1]z + vk,

where the ellipsoidal disturbance bounds are given by:

||wk||2 S Av )\ > 07 HUIC”Q S My > 0

The state and input constraints are:
xy € [-50,3] x [-50,3], wu € [-3,3].

The control gain is K = (—0.6136, —0.9962). The state
estimation parameters J and p are determined offline by a
grid search such that the trace of the matrix P, is minimized.
For the baselines using polytopic sets for constraint tighten-
ing, we approximated the disturbance sets W and V by axis-
aligned minimum bounding boxes and chose the observer
gain L = (—1,—1) as in [4]. For simplicity it is assumed that
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Fig. 2: Constraint tightening using the two set approach (13) (blue), the
single set approach (15) (black), and the proposed approach (27) (red).

Eo = Eo and £y = {0} is used for the polytope approaches
and that Py = Py is used for the proposed method.

Constraint tightening: We set A = 0.1 and g = 0.05.
Figure 2 illustrates the constraint tightening on z[1], z[2],
and v computed at time £ = 0 using the proposed ap-
proach (26), (27), the two set approach (11)—(13), and the
single set approach (14), (15). We observe that the proposed
approach delivers significantly less conservative constraint
tightening by avoiding the over-approximation of ellipsoidal
uncertainty. The two set approach and the single set approach
produce an identical constraint tightening for time £ = 0 due
to the same initialization of E; and =j.

We further investigate the constraint tightening in steady
state with E,, and Z, in the two set approach, Z., in



TABLE I: Time invariant constraint tightening

Approach | z[1] z[2] u

Two set (11)-(13) 3.352 4.500 3.884
Single set (14), (15) | 1.712 2.294  3.447
Proposed (26), (27) 1.174 1.443 1.963

the single set approach, and S., and Eo in the proposed
approach. Disturbance bounds with A = g = 0.25 are
used. Table I summarizes the results on respective states
and control input. The constraint tightening will converge
to the values listed in the table as k& — oo. Note that the
two set approach and the single set approach generate a
constraint tightening on u of 3.884 and 3.447 respectively,
which both exceed the radius of the interval of the constraint
on u, thus making the robust control infeasible. In contrast,
the proposed approach generates a much smaller constraint
tightening on u of 1.963 due to the reduced conservatism. In
such cases, only the proposed controller can robustly stabilize
the system while ensuring the constraint satisfaction.

Simulation: The closed loop performance of the proposed
approach and the single set approach of Kogel et al [6] is
illustrated using simulations.

For the cost function we choose N = 15, Q = 1,
R= 0.01, and P to be the solution to the algebraic Riccati
equation of the infinite horizon LQR. The terminal set is
computed as a maximal positive invariant set for the nominal
system. The disturbances are randomly sampled from the
bounding sets with A = 0.1 and ¢ = 0.05 and are kept
identical for two approaches.

Figure 3 shows the closed-loop response of both ap-
proaches under uncertainty, starting from the initial state
rg = (—3.1,—8)" and the initial state estimate &y =
(—3,—8) . Note that the state and input constraints are sat-
isfied for both approaches. Moreover, the proposed approach
allows to move the state z[2] closer to the boundary of
the constraint than the single set approach. A larger input
u is also allowed in the first few time steps due to the
reduced conservatism using the proposed approach, compare
Figure 2. As a result, a faster convergence to the origin is
achieved compared to the single set approach.

B. Quadrotor Dynamics

To illustrate that the proposed method can scale up to high-
dimensional systems we consider quadrotor dynamics with
12 states and 4 inputs [26]:

p=v,
R = R&,

mv = mges — TRes,

. (34)
Jo=M-wx Jw,

where p = (ps, py,p=) | is the position, R € SO(3) is rota-
tion matrix representing the quadrotor attitude corresponding
to the 3-2-1 Euler angle 2 = (¢,0,9) ", v = (vg, vy, v,) " is
the translational velocity, w = (wg,wp,wy) ' is the angular
velocity, 7' is the total thrust, M = (M, M,,M,)" is
the moment, * : R®* — SO(3) is the hat operator, m is
the mass of the quadrotor, g is the gravitational force, and
J = diag(Jy, Jy, J) is the moment of inertial matrix. The
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Fig. 3: Closed-loop response of the double integrator. Left: single set
approach based on Kogel et al [6]. Right: proposed approach. Black: nominal
path with wg = 0, v, = 0. Red: sample paths for random noise with
uniform distribution. Green: Constraints on the real state and input.

inertial property of the quadrotor model is adopted from [27,
Chapter 16]. The model used for control is the linearized
model of (34) around the equilibrium state where 2, =
[0,0,0]T and T, = mg. To apply MPC controllers, a time
discretization is used with dt = 0.2s. The output matrix C'is
defined as an identity matrix. State and output disturbances
are added to the model to introduce the uncertainty.

The ellipsoidal disturbance bounds are given by:

||wk||2 S 0.037 H’Uk”Q S 0.03.

The state and input constraints are Qi € [—7/9,7/9] x
[-7/9,7/9] x [-7/9,7/9] and T}, € [-5,5].

Figure 4 shows the closed-loop response of the proposed
approach for a regulation task on the linearized model, start-
ing from the initial state po = (5,4,0)", Q¢ = (0,0,0) T,
vo = (0,0,0)T, wg = (0,0,0) " and the initial state estimate
Po = (5,4,0)7, ¢ = (—0.03,0,0)T, vo = (0,0,0)7,
wo = (0,0,0)". We observe that the constraints are ro-
bustly satisfied, the MPC optimization problem (30) remains
feasible, and the system is robustly stabilized. In contrast,
the single set approach can be computationally challenging
in high-dimensional systems due to explicit computation of
mRPI sets, see [6, Remark 5].

VI. CONCLUSION

We proposed a novel robust, output feedback model
predictive controller for constrained linear systems with
ellipsoidal state and output disturbances. The approach com-
bines a state estimator with a predictive control law and
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Fig. 4: Closed-loop response of the quadrotor system using the proposed
approach. Black: nominal path with wy, = 0, v = 0. Red: sample paths
for random noise with uniform distribution. Green: Constraints on the real
state. Blue: Tightened constraints on the nominal state.

derives the constraint tightening directly from ellipsoidal
sets. This avoids the conservatism introduced by the over-
approximation of the ellipsoidal uncertainty by polytopes in
previous works. Moreover, the proposed method does not
require the explicit computation of minimal RPI sets and thus
can scale up to high-dimensional systems efficiently. Condi-
tions guaranteeing robust stability were outlined. Examples
illustrated the advantages of the proposed approach. Future
works include real-world experiments on LTI systems and
an extension of the proposed method to nonlinear systems.
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APPENDIX
A. Proof of Proposition 1

Proof: Given the information available at time k, we
first prove by induction that 67, > (1 — 8)*(1 — p)*d3 for
any ¢ > 0. Clearly, ¢« = 0 satisfies the inequality. Assume

that 67, > (1 — 3)*(1 — p)'0;. From (19), we then have:
Oiyivr = (1= B)(1 = p)Oi s + (Yrrita

— C(A&pys + Bupya))[(1 = p) 7' CPryigrpsiC
+ p "R (Ykriv1 — C(AZpyi + Bugy))
> (1= 8)(1 - p)diy,
> (1= 8" (1 —p) e
by the fact that [(1 — p)"'CPyyip16:C " + p 'R is
positive definite and that 0 < 8 < 1,0 < p < 1. Thus,


http://wiki.ros.org/indoor_localization

we conclude that 67, > (1 — 8)*(1 — p)*é}. for any i > 0.

From (16), for all xy4; € Xy k44> We have that:
(@i = Ehtd) | Pripgs (@i — Tagd)
<187, <1 (1-B)(1—p)id}.
By definition of the estimation error e;, we then have

el Pl errs < 1= (1= B)'(1 = p)'d} for any i > 0,

which completes the proof. [ ]

B. Time Invariant Constraint Tightening

We focus on the tightened constraint of the form:
Fz, + Gup + (F + GK)s — GKe < f, (35)

for any s € S, and e € E.., where S is defined by (29).
For brevity, we use Ax = A+ BK throughout this section.

Let a pair of positive integers r1, 72 and a pair of scalars
0 < ag,as < 1 satisfy:

AW C oW, ARBKE, C asBKE,,. (36)

It can be shown that the minimal RPI set approximation for
sg can be determined by [25, Chapter 3]:

1 7“1—1 . 1 7“2—1 ) 5
Seo = AW —A’. BKE .
1*041@ K @1*042@ K
j=0 j=0
Therefore, the tightened constraint (35) can be written as:
r1—1 )
Fay+ Gy + 17— ;) (F + GK) Alw;
1 Tzfl )
T > (F + GK)A}BKe; — GKe < f,
§=0

for any w; € W, e¢; € I~EOO, and e € ]EOO. The constraint
tightening only requires to solve quadratically constrained
linear programs under the ellipsoidal W and Eos.

In cases where 6 .= BK is full row rank, we know that
A?QINEOO C az0E. if and only if GTA}?HINEOO C B,
where AT is the Moore-Penrose pseudoinverse of 6. In other
words, for all e € E, the point #T A72fe lies in the scaled
ellipsoid sEo. The same reasoning applies to AW C
a1 W. Therefore, the condition (36) is equivalent to:

max (ARw)TQ™H(ARw) < o, (37)
we
max (07432 0e) ' P (0TAR be) < a3, (38)

e€E

where the maximization is performed elementwise. Given
r1, T2, the optimal value of a1, ae can be computed accord-
ingly. More accurate approximation of the robust positively
invariant set can be achieved with larger r1, ro and smaller
a1, ag. Although (37) and (38) are non-convex problems, the
optimizer [28] always returns the optimal solution efficiently
with non-zero initializations.

In cases where 6 is row rank-deficient, one can always
find a full-dimensional bounding ellipsoid of 9E. and
follow the proposed algorithm. We note that the computation
of the constraint tightening described in this section does
not require the Minkowski sum, thus making the proposed
algorithm generalize well to high-dimensional systems.

C. Proof of Theorem 1

Proof: Assume that at time k the optimal control
problem (30) is feasible and let {@t\k’ a*:,*cﬂ‘k,.. .. ,f’,ngle}
and {u;';‘k, UZ+1\k7 = ,uk+N_1‘k} be tth optlmal. nominal
state trajectory and input sequence respectively. At time k+1,
we have:

T = ATy + By, = ATy, + Blgy, = Ty

In addition, by the fact that 67, , > (1 — 3)(1 — p)d7 and
Proposition 1, we know that for any ¢ > O:

Ertiviip+1 € Epgigt1yn

Sktitijk+1 S Skt

Thus, the nominal state trajectory

{Zhi1)es Thgopr - > Thpvpr (A+ BE)Z np b (39)
and the related input sequence
{1 Wz - - - U N1 KZpqonpi} (40)

is a feasible solution to the problem (30) at time k + 1 by
Assumption 1 and the fact that Z;, Nk S X,’i. Therefore, we
conclude by induction that the problem (30) is feasible for
any k > 0.

The constraint satisfaction follows from the use of the
tightened constraint (27) and the fact that the nominal state
Ty satisfies (5).

We now show that V" is decreasing along the trajectory.
Note that (39), (40) is a suboptimal solution to the prob-
lem (30) at time k + 1, therefore we have:

N-1
Vi < a(@papo Trpape)
i=1
+ @(Zh N KZvpe) + P((A+ BE)Zp n i)
= Vi — a(@pks W) — P(@ini)
+ ¢(Zhy N KZne) + P((A+ BE)Z, vik)-

Therefore we have:
Vi = Vi < =@ Uige)

by Assumption 1 and the fact that zy , Nk € X£ . Note that
the stage cost ¢(-, -) and the terminal cost p(-) are both pos-
itive definite. Therefore, the optimal cost V}' is a decreasing
Lyapunov function along the closed-loop trajectory, which
implies that the nominal state Z; converges to the origin as
k — oo. Moreover, we know that x; € Ty & S; by the
definition of the control error. Thus, we conclude that z;
converges to S, as k — oo. |
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