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Abstract— An accurate model of human drivers is essential to
validate the performance of autonomous vehicles in multiagent
and interactive scenarios. Previous works on human driver
modeling either use model-based controllers that are not adap-
tive and need laborious parameter-tuning or learn an end-to-
end black box model that has few safety guarantees. We propose
a two-stage hybrid driver model, where a high-level neural
network generates driver traits that are used as the parameters
of the low-level model-based controllers for simulated drivers.
We train our model using generative adversarial imitation
learning with reward augmentation and parameter sharing
from real-world vehicle trajectory data. By combining data-
driven and model-based approaches, our method simulates
traffic agents with expressive, safe, and human-like behaviors.
We demonstrate that our method outperforms state-of-the-art
baselines in terms of imitation performance and safety in a
multi-agent highway driving scenario.

I. INTRODUCTION

The ability to safely interact with human traffic partic-
ipants in various scenarios is important for autonomous
vehicles yet challenging to validate [2], [3]. Although testing
the autonomous driving algorithms in the real-world reflects
their performance accurately, real-world testing is usually
expensive and can be dangerous [4]. A cheaper and safer
alternative is simulation, which has the potential to generate
large-scale traffic scenarios for validation purposes. However,
simulating human-like behaviors in multiagent traffic scenar-
ios remains an open challenge because of the stochasticity
and complexity of human behaviors [5].

Building human driver models for simulation is a chal-
lenging task for two main reasons. First, human behaviors are
highly variable since they frequently interact and negotiate
with each other and occasionally bend the traffic rules [6].
As a result, parametric equations have difficulty capturing the
uncertainty of human decisions. Second, extracting a model
from human driving data is difficult [7]. Many existing works
assume that the humans have a utility function and attempt
to recover the function through learning [8]-[10]. However,
humans may be irrational and such a utility function may
not even exist under specific circumstances [11].

Despite these challenges, driver modeling has been the
subject of extensive research [12]-[15]. Model based meth-
ods, such as Intelligent Driver Model (IDM) and Minimizing
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Fig. 1: Overview of our method. To simulate natural traffic flows, we
propose a hybrid model that trains a neural network with multi-agent reward
augmented GAIL to generate driver traits z, which are passed to model-
based controllers to output accelerations and steering angles.

Overall Braking Induced by Lane Changes (MOBIL), use a
set of equations with fixed parameters to describe human
driving behaviors. Thus, IDM and MOBIL are unable to
synthesize complex, and evolving human behaviors in an
adaptive manner [16]-[19]. To overcome this problem, Gen-
erative Adversarial Imitation Learning (GAIL) has been used
to learn expressive and adaptable driver models from datasets
of human drivers [7], [20], [21]. Additional techniques, such
as parameter sharing and reward augmentation, have also
been explored to improve the scalability and performance
of GAIL [22], [23]. Despite improving the imitation perfor-
mance, these black box models have few safety guarantees
and are computationally expensive to train.

To address the above problems of model-based and
learning-based approaches, we develop human driver models
that can exhibit expressive, adaptive, and safe behaviors in
complex driving scenarios. We propose a hybrid two-stage
driver model that combines model-based methods with imita-
tion learning based methods. In particular, an IDM [24] and a
proportional-derivative (PD) controller are used for low-level
longitude and lateral control of the vehicle, respectively. As
opposed to using fixed hyper-parameters in the IDM and
PD controller, we train a high-level auto-tuning network
to adjust the parameters in real time so that the vehicle
can exhibit adaptive behavior in constantly changing driving
situations. By adopting the idea of parameter sharing GAIL
(PS-GAIL) [22], the trained network parameters are shared
by all the agents to improve the efficiency and scalability. In
addition, we use reward augmentation to modify the objective
to minimize undesirable behaviors. To stabilize the training,
we gradually increase the number of simulated agents with
a prescribed learning curriculum.

Our hybrid approach combines the advantages and ad-
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dresses the problems of both types of methods. The high-
level network has better adaptability than model-based con-
trollers, allowing our model to exhibit human-like behaviors.
Compared with pure data-driven methods, the proposed
model is safer due to the safety guarantees of the low-level
controllers.

Our contributions can be summarized as follows:

1) We propose a novel two-stage driver model which
combines model-based and data-driven approaches to
generate expressive and safe human driving behaviors
using reward augmented GAIL (Figure [I)).

2) Using parameter-sharing, reward augmentation, and
curriculum learning, our model is able to control
multiple vehicles simultaneously for a realistic traffic
simulation.

3) We demonstrate that our method achieves higher
driving safety and maintains competitive performance
compared to previous works in experiments using real-
world driving trajectories.

This paper is organized as follows: We review previous
related works in Section [I[I} We introduce the preliminaries
including model-based controllers and multi-agent GAIL in
Section We formalize the problem of human driver
modeling and propose our model architecture in Section
Experiments and results are discussed in Section [V. We
conclude the paper in Section

II. RELATED WORKS

We review previous works in model-based, learning-based,
and hybrid methods for human driver modeling.

A. Model-Based Controllers

Model based methods such as Intelligent Driver Model
(IDM) and its variants have been widely used for longitude
driving behavior modeling [16], [25], [26]. IDM uses a
parametric model to maintain a safe headway distance with
front vehicles. Minimizing Overall Braking Induced by Lane
Changes (MOBIL) extends these car-following models to
handle lane-changing behaviors [19]. Depending on neigh-
boring vehicles, MOBIL makes lane-changing decisions if
certain criteria are satisfied. Both IDM and MOBIL use a set
of equations to describe human driving behaviors and thus
are unable to synthesize complex and constantly changing
human behaviors in an adaptive manner.

B. Imitation Learning for Driver Modeling

Generative adversarial imitation learning (GAIL) and its
variants have been widely used to learn expressive and
adaptable driver models from datasets of human drivers [7],
[20], [21]. PS-GAIL uses parameter sharing to allow a
GAIL policy to control multiple agents simultaneously [22].
Reward Augmented Imitation Learning (RAIL) combines
imitation learning with reinforcement learning reward, which
allows designers to use prior knowledge to improve the
imitation performance of drivers [23]. However, these black-
box imitation learning models lack safety guarantees, which
makes them prone to undesirable traffic phenomenon such

as collisions and off-roads. In addition, training end-to-end
policies is computationally expensive and not data efficient.

C. Hybrid Methods for Driver Modeling

There are extensions of IDM to model realistic driving
behaviors. Monteil et al. [27] use Kalman filter with physical
inequality constraints to estimate the IDM parameters from
the sensor data. Morton er al. [28] use the Levenberg-
Marquardt algorithm to learn the behavioral parameters as a
nonlinear least-squares problems. Buyer [29] uses a particle
filter for online parameter estimation based on conventional
Sequential Importance Resampling (SIR). Bhattacharyya et
al. [30] estimate a distribution over the parameters of IDM
model using particle filtering. However, all of the above
methods use non-adaptive parameters of the underlying rule-
based models. The parameters for these approaches are not
updated over time as traffic conditions change, resulting in
static driver behaviors.

Beyond traffic simulation, hybrid approaches have been
employed for safe autonomous driving. Pulver ef al. [31] use
DAgger [32] to imitate an expensive-to-run optimizer and
train an efficient optimizer for motion planning. Yurtsever et
al. [33] include the waypoints of A* planner as part of the
state and reward for deep Q-learning based driving agents.
These methods typically do not aim to imitate driver-like
behaviors extracted from driver data. Both of these models
only use the model-based approach for training and ulti-
mately produce a neural network for controlling the vehicle.
Thus, the resulting controllers do not have the performance
guarantees of the underlying model-based method.

In this work, we train a neural network to dynamically
adjust the parameters for the model-based controllers to
generate more realistic trajectories. Moreover, many previ-
ous works for traffic simulation only consider longitudinal
control of the vehicles [7], [20]-[23], [30], while our work
also includes the lateral control to enable lane-changing
behaviors, leading to more realistic traffic simulation.

III. PRELIMINARIES

We introduce the model-based controllers used to gen-
erate low-level actions for vehicle control in human driver
modeling, the formulation of driving as a Markov Decision
Process (MDP), and general ideas of Generative Adversarial
Imitation Learning in multi-agent systems.

A. Model-Based Controllers for Traffic Simulation

1) Longitudinal Control: To control the longitudinal be-
havior of a vehicle, we use IDM to generate acceleration
predictions based on the following equations:

vAv
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where v is the current velocity, Av is the current relative
velocity with respect to the front vehicle, and d is the
current distance to the front vehicle. The vehicle dynamics
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are parameterized by the minimum distance to the front
vehicle that the driver will tolerate dj, the desired time gap
to the front vehicle 7', the maximum acceleration ability
a, the maximum deceleration ability b, the driver’s desired
velocity vy, and the velocity exponent § which describes
how the acceleration decreases when the velocity of the
vehicle approaches the desired velocity. By making use of an
explicit driver model, the IDM often produces collision-free
trajectories [28].

2) Lateral Control: Following previous works [7], [20]-
[23], [30], we use kinematic bicycle model to describe
vehicle dynamics. We use a PD controller for the lateral
control of the vehicles. The model-based PD controller gen-
erates steering angle commands according to the following

equations:
A, = arcsin <KPUAM) ) 3)
1/;7" :Kh ((¢L+AT/JT) _w)v (4)
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where Ay, is the lateral position of the vehicle with respect
to the center line of the target lane, 17, is the current lane
heading, 1) is the current vehicle heading, [ is the wheelbase,
K, is the position control gain, and Kj, is the heading control
gain. Given K, Kj, and a target lane index p, the PD
controller generates a steering angle based on the current
state of the vehicle.

B. Markov Decision Process

We model driving as a Markov Decision Process (MDP),
defined by the tuple (S, A, P,r,v, po), where S is the state
space, A is the action space, P : S x A x S — R is the
transition probability distribution, » : S x A — R is the
reward function, v € (0,1) is the discount factor, and pq is
the distribution of the initial state sg.

A stochastic policy, 7 : § x A — [0,1], defines the
probability of taking each action from each state. At each
time step t, the agent takes an action a; € A according to
its policy 7(+|s;), receives a reward 7, and transits to the next
state sy+1 according to the unknown state transition model
P(-|s¢, at). The total accumulated return from time step ¢ is
defined as Ry = ), ¥*ri+x. The goal of the agent is to
find a policy that maximizes the expected return from each
state, defined as V;(s) = E;[R:|s: = s].

C. Generative Adversarial Imitation Learning

The goal of generative adversarial imitation learning is
to learn a policy 7 that imitates an expert policy mg given
demonstrations from the expert. A demonstration is defined
as a sequence of state-action pairs 7 = {so, ag, $1,0a1, ...}
obtained from the interactions of the expert policy mg with
the environment.

In GAIL, a discriminator D learns to distinguish expert
behaviors from non-expert ones while a policy 7 attempts

to emulate expert behaviors by minimizing the Jensen-
Shannon divergence between the two state-action occupancy
distributions. The objective of GAIL is

min max E,[log(D(s,a))] + E,.[log(1 — D(s,a))], (6)

where D is the probability that the state-action pair (s,a) is
generated by the non-expert policy 7. The optimization in
GAIL is performed by alternating between a gradient step to
increase the objective (6) with respect to the discriminator
parameters and a policy update step to decrease the objec-
tive (6) with respect to the policy parameters.

To realize simultaneous control over multiple agents for
traffic flow simulation, we adopt the idea of parameter
sharing GAIL, where a policy with shared parameters is used
by each agent to generate trajectories respectively [22]. We
also penalize undesirable traffic phenomena through reward
augmentation [23]. Although using the same policy param-
eters, the agents can still exhibit different safe behaviors
as each agent receives unique observations. Furthermore, all
the agents receive rewards from the same discriminator with
augmented reward to update the policy at each iteration of
the optimization.

IV. METHODOLOGY

Next, we present the problem formulation of the driving
behavior imitation and our proposed method.

A. Problem Formulation

To model the human driver behavior, we formulate the
problem as parameter estimation of IDM and PD con-
trollers with stochasticity. We aim to recover the distri-
bution over the parameters of model-based controllers by
mimicking human driving data. We assume that the state-
action samples are independent and identically distributed
(i.i.d.) and drawn from the demonstration distribution 75 =
{(siyai) ¥, o pE(s,a). The occupancy distribution is
defined by pr(s,a) = m(a|s) > oV p(st = s|m), where
m(als) is the probability of taking action a at state s follow-
ing policy 7, p(s; = s|m) is the probability that the agent
reaches state s at time t executing policy 7 starting from
initial state distribution sy ~ pg. Our main assumption is that
human drivers can be described by their own driver traitﬂ z.
Each driver trait corresponds to a configuration for model-
based controllers. In this work, we focus on highway driving
scenarios; however, we note that our model can easily extend
to other driving scenarios in which IDM and PD controllers
can be applied (e.g., merge, roundabout, intersection, etc.).

Our policy m composes a driver trait generator my param-
eterized by 6 and model-based controllers MC' to output
agents’ actions a € A, w(als) := MC (a|mg(z|s)). Driver
trait generator g : S — Z maps the state to driver traits of
human drivers. MC : Z — A takes in the driver traits and
outputs the driving actions.

'We refer to driver traits as the individual driver’s preference parameters
that characterize how maneuvers are performed. For the IDM, traits are
represented as the tunable parameters including jam distance, desired time
gap, desired velocity during the driving, and so on.
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Fig. 2: An illustration of our model architecture, explicitly showing the two-stage policy. The model takes in the observation, processes it with multiple
layer perceptron, and outputs the driver traits. Model-based controllers dictate how the vehicles accelerate and steer on the road.

Algorithm 1 Our algorithm

Input: Expert demonstrations 75 = {(s;,a:)},,
shared policy parameter 6 of driver trait generator, discrim-
inator parameters wy, and batch size B.

QOutput: Learned policies my, reward function D,,

1: for:=0,1,2,... do

2: Sample the driver traits z < my

3 Rollout trajectories for all agents {(ss, a)}l_q ~
MC(2)

4: Score trajectories {(s¢,a¢)}._, and calculate aug-
mented rewards from the discriminator

5: Update the discriminator parameters from w; to w;1

by taking the gradient of Eq[7] w.r.t. w
6: Take a policy step from 6; to ;.1 using PPO [34
to decrease the objective function Eq[7]

[}

Our objective is to minimize the distance between our
learned two-stage policy and the expert policy (i.e., human
demonstrations). We use a discriminator D to estimate the
distance between the expert occupancy distribution pg and
non-expert occupancy distribution p,. The augmented dis-
tance d is used as the reward signal for MDP. The agent is ex-
pected to minimize the cumulative distances ZZOZO Yodi i1
measured by the discriminator.

Based on MC and our discriminator, we can reformu-
late the MDP as (S, Z, P,d,v,Sy), where Z is the driver
trait space and d is the augmented distance between the
occupancy distribution generated by our model and expert
occupancy distribution. The driver trait generation policy
is trained to solve reformulated MDP and maximizes the
probability that trajectories generated by MC is expert
trajectories.

B. Imitation Learning with Driver Trait Generation

Our proposed approach combines model-based controller
and model-free imitation learning to generate explainable
and expressive driver behaviors. Algorithm [I] provides the
pseudo code of our proposed approach. The discriminator is
a classifier to encourage behavior mimicking and traffic flow
generation. The agent infers the driving parameters which are
used for model-based controllers. Our learning objective is

minmax 3" parciey) (7) log(D(r) + pi(r) log(1— D(r))
’ (7)

We use the driver trait generator to estimate driver traits
z = (do,T,a,b,vg,0, K,, Ky, p), where dy denotes the jam
distance, 7' denotes the desired time gap, a denotes the
maximum acceleration, b denotes the maximum deceleration,
vo denotes the desired velocity, J denotes the velocity
exponent in IDM, K, denotes the position control gain,
K}, denotes the heading control gail, p denotes the target
lane index for PD controller. Our driver trait generation
policy, my, takes in the positions, velocities, accelerations,
and the distance to the lane markings of the ego vehicle
and surrounding vehicles as the state. Our policy outputs the
mean g and standard variation o for driver traits (Figure
). The driver traits are sampled from normal distribution
N(ui,0;). We perform additional quantization for target
lane index to generate discrete variable. We use the similar
reparameterization trick [35].

C. Curriculum Learning for Multi-Agent Settings

When training multi-agent systems, one major challenge
is that the problem is non-stationarity, due to the fact that
each agent is updating their policy during training. The
change in each agent’s policies affects other agents’ goals
and objectives, and vice-versa. This non-stationarity typically
leads to unstable training procedures [36]. We use curriculum
learning to increase the stability of the training process. We



TABLE I: The ego vehicle and surrounding vehicles that
we use as the observation. The position, the velocity, the
acceleration, and the distances to lane markings are included
for each vehicle.

Name Description

Ego The agent controlled by our policy.
Front The preceding vehicle in the same lane
Rear The following vehicle in the same lane.
leftFront The preceding vehicle in the left lane.
leftAlongside The adjacent vehicle in the right lane.
leftRear The following vehicle in the left lane.
rightFront The preceding vehicle in the right lane.
rightAlongside The adjacent vehicle in the right lane.
rightRear The following vehicle in the right lane.

Car|136.48km/h|ID576
Truck|82.42km/h|ID572 —_

Car|126.25km/h|ID579
Truck|80.42km/h|ID573

Fig. 3: Visualisation of our simulation environment adapted from the
HighD dataset. The driving simulator has exactly the same configuration as
the real-world dataset.

start out with only a small percentage of agents controlled
by our policy and then gradually increase the percentage of
agents to be controlled. Ultimately, all of the driving agents
are controlled by our policy and a traffic flow is generated.

V. EXPERIMENTS

In this section, we describe the simulation environment for
driver modeling, the dataset we use for training, and present
our experimental results.

A. Policy Representation

We represent our driver trait generator wp7 and discrim-
inator D using MLP. We use the Actor-Critic approach for
our PPO-based driver trait generator. We implement the actor
and critic with two hidden layers and 128 hidden units.
ELU activation functions are applied in actor. LeakyReLU
activation functions are applied in critic. The discriminator
consists of one hidden layer and 128 hidden units, with
tanh activation functions applied. Adam optimizers with a
constant learning rate of 7x 107 is used to train the network.

B. Dataset

We use the HighD dataset as the expert demonstrations
that contains naturalistic vehicle trajectories in German high-
way [37]. HighD dataset records the traffic flow from bird’s-
eye view. The positions, the speeds, and the accelerations of
the agents are initialized according to the dataset.

C. Simulator

Figure 3| shows a screenshot of our simulation environment
that replays the dataset and trains our policy. Table [[ is a
summary of all vehicles’ state that are used as observations.
We include the position, velocity, acceleration, and the
distances to the lane markings of the agents and neighbors
as the state s € S. During the training, a percentage of the
agents are chosen to be controlled by a driving model while
the remaining agents are controlled by the IDM.
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Fig. 4: Root mean square error in position and speed averaged over
testing vehicles in all driving scenarios to benchmark our model against
other driver models. The x-axis is the frame number. The y-axis is RMSE.

D. Experiment setup

1) Baselines: The baselines that we used to compare
against our proposed policy are IDM with the default pa-
rameter values recommended in [38] (Default), NL IDM
with parameters estimated by nonlinear least squares from
the data [28], reward augmentation integrated into the multi-
agent imitation learning (RAIL [23]), PF IDM with param-
eters learned from data using particle filtering [30].

2) Evaluation: We test all models with 40 randomly
selected driving scenarios until the end of each episode.
Half of the scenarios are lane changing scenarios while
the other half are lane keeping scenarios. To evaluate the
imitation performance of all methods, we measure the root
mean square error (RMSE) of the position and velocity
between trajectories generated by driver models and the
dataset to show the local imitation performance for 85 frames
with frame rate equal to 25Hz. We compare the speed
distributions to show how the agents imitate the human
drivers globally. To measure the safety of all methods, we
measure the off-road ratio and collision rate of all driving
agents. The off-road ratio is the ratio between the frames
that the vehicles are operating away from roads and the
total number of frames. The collision rate is the number of
collisions divided by the total number of driving agents.
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E. Results

We assess the local imitation performance of our model
against the baselines in terms of RMSE to see the similarity
of driving models and the ground truth (Figure ). While
our proposed method outperforms other baselines in terms
of the RMSE speed, our method is comparable to RAIL
in terms of the RMSE position. Leveraging on deep neural
networks, our method and RAIL utilize the expert data to
better recover the human driving patterns than the model-
based baselines. The agents driven by our method produce
more variable behaviors than RAIL and the other hybrid
methods, which makes our agents behave more similar to
the ground truth overall.

Speed distribution over testing vehicles in all driving
scenarios is shown in Figure [5] We also include the speed
distribution from the ground truth dataset. The ground truth
speed distribution is multimodal with peaks at 24, 34, and
39 m/s. NL IDM and RAIL generate relatively uniform speed
distributions that do not capture this multimodality, and
they only produce slight peaks at 19.5m/s and 35.5m/s,
respectively. The default method does capture modal be-
havior, but only shows two peaks at 24.5 and 30 m/s. Only
our method and the PF IDM approach are able to capture
similar multimodality to that of the ground truth. Our method
produces speeds at 23, 29.5, 32.5, and 39 m/s, while the PF
IDM produces likely speeds at 22.5, 31, 34 and 39.5 m/s.
While both methods capture similar variability, we observe
that our method more closely captures the true distribution,
likely contributing to the better overall imitation performance
compared to the PF IDM and other methods.

Figure [6] shows the frequency of undesirable traffic phe-
nomena through the metrics of off-road ratio and collision
rate. Pure model-based controllers explicitly constrain the
agents to drive within the road, resulting in zero off-road
ratios. The Default method has lowest collision rate because
the default parameters of headway distance and headway
time is sufficiently large to avoid collisions. RAIL exhibits
poor performance in terms of off-road ratio and collision
rate, which confirms that RAIL (and other typical end-to-
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Fig. 6: Percentage of the undesirable driving behavior averaged over
all testing vehicles in all driving scenarios. The off-road ratio shows
that model based methods eliminate drift that data-driven methods tend to
produce. The collision ratio highlights the lack of safety guarantees of data-
driven methods and, to a lesser extent, hybrid models.

end learning methods) do not guarantee safe driving. Our
method and other model-based methods achieve zero off-
road ratios since these methods leverage PD controllers for
lateral control. However, since our method adapts other
safety parameters to match typical human behavior, we
exhibit a higher collision rate than the default method,
while still outperforming the end-to-end data-driven method.
This result demonstrates the trade-off between human-like
imitation performance and safety guarantees, and that our
hybrid method effectively balances objectives of generating
realistic traffic flow.

VI. CONCLUSION AND FUTURE WORK

In this work, we propose a hybrid two-stage framework,
which combines model-based controllers and data-driven
methods, for human driver modeling. In our method, driver
traits are generated in real time through a deep neural net-
work and are used by model-based controllers to synthesize
low-level actions. We use curriculum learning and parameter
sharing to train a driver trait generator with reward aug-
mented imitation learning that effectively controls multiple
agents to generate realistic traffic flow. Our experiments
demonstrate that the proposed method can effectively balance
imitation performance and safety by generating more realistic
trajectories than model-based methods and safer behaviors
than pure data-driven approaches.

Our work has some limitations, which lead to potential
directions for future work. In practice, a driver is able to
monitor the surrounding vehicles, but full state observa-
tions can be redundant (e.g., a human driver takes actions
without accurate measurements of acceleration). As a result,
matching agent observations in simulation and real world
by incorporating partial observability into our model can be
another step towards better imitation performance. Moreover,
the discriminator in our method, which is used to generate
reward signals for GAIL, is trained to evaluate the similarity
between expert and synthesized behaviors of a single agent.
To generate a human-like traffic flow, however, an additional
global discriminator which captures the dynamics of the
multiagent system can potentially generate more accurate
rewards and further improve the performance of our model.
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