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Abstract—Situation-aware technologies enabled by multi-
object tracking (MOT) methods will create new services and
applications in fields such as autonomous navigation and applied
ocean sciences. Belief propagation (BP) is a state-of-the-art
method for Bayesian MOT that relies on a statistical model and
preprocessed sensor measurements. In this paper, we establish
a hybrid method for model-based and data-driven MOT. The
proposed neural enhanced belief propagation (NEBP) approach
complements BP by information learned from raw sensor data
with the goal to improve data association and to reject false
alarm measurements. We evaluate the performance of our NEBP
approach for MOT on the nuScenes autonomous driving dataset
and demonstrate that it can outperform state-of-the-art reference
methods.

Index Terms—Belief propagation, graph neural networks,
multiobject tracking, factor graph.

I. INTRODUCTION

Multi-object tracking (MOT) [1] is a key aspect in a variety

of applications including autonomous navigation and applied

ocean sciences. In particular, in autonomous navigation sys-

tems accurate MOT enables tasks such as motion forecasting

[2] and path planning [3]. The main challenge in MOT is data

association uncertainty, i.e., the unknown association between

measurements and objects. MOT is further complicated by the

fact that the number of objects is unknown.

Most MOT methods adopt a detect-then-track approach

where an object detector [4]–[13] is applied to the raw

sensor data. The resulting object detections are then used as

measurements for MOT. Many existing MOT methods follow

a global nearest neighbor [1] approach where a Hungarian

[14] or a greedy matching algorithm is used to perform “hard”

data association. These types of methods rely on heuristics for

track initialization and termination. To improve the reliability

of hard data association, often discriminative features are

extracted and incorporated by the matching algorithm [7],

[15]–[22]. Another line of work formulates and solves MOT

in the Bayesian estimation framework [1], [23]–[29]. This

type of methods rely on statistical models for object birth,

object motion, and sensor measurements [1], [23]–[29]. The

statistical model makes it possible to perform a more robust

probabilistic “soft” data association. In addition, heuristics for

track initialization and termination can be avoided by modeling

the existence of objects by binary random variables.

BP [30] can solve high-dimensional Bayesian estimation

problems by “passing messages” on the edges of a factor

graph [30] that represents the underlying statistical model.

By exploiting the structure of the graph, BP-based MOT

methods [23]–[25], [31], [32] are highly scalable. This makes

it possible to generate and maintain a very large number

of potential object tracks and, in turn, outperform existing

MOT approaches [24], [25]. However, BP fully relies on a

statistical model. When the factor graph does not accurately

represent the true data generating process, MOT performance

is reduced due to model mismatch. In addition, with the detect-

then-track approach employed by BP-based MOT, important

object-related information might be discarded by the object

detector. We aim to overcome these limitations by introducing

information learned from raw sensor data to BP-based MOT.

NEBP [33] is a hybrid method that combines the benefits of

model-based and data-driven inference and addresses potential

limitations of BP such as model mismatch and overconfident

beliefs [33], [34]. NEBP has been successfully applied to de-

coding [33] and cooperative localization [34] tasks. In NEBP,

a graph neural network (GNN) that matches the topology of

the factor graph is introduced. The trained GNN enhances

potentially inaccurate BP messages to ultimately improve

object declaration and estimation accuracy.

In this paper, we propose NEBP for MOT. Here, BP

messages calculated as input for probabilistic data associa-

tion are combined with the output of the GNN. The GNN

uses measurements (i.e., object detections) and shape features

learned from raw sensor data as an input. For false alarm

rejection, the GNN identifies which measurements are likely

false alarms. If a measurement has been identified as a poten-

tial false alarm, the false alarm distribution in the statistical

model of BP is locally increased. This reduces the probability

that the measurement is associated with an existing object

track or initializes a new object track. Object shape asso-

ciation computes improved association probabilities by also

comparing shape features extracted for existing object tracks

with shape features extracted for measurements. The resulting

NEBP method for MOT can improve object declaration and

estimation performance compared to BP for MOT as well as

outperform further state-of-the-art methods.

The main contributions of this paper can be summarized as

follows.

• We introduce an NEBP method for MOT where probabilistic

data association is augmented by shape features learned

from raw sensor data.

• We apply the proposed method to the nuScenes autonomous
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driving dataset [35] and demonstrate state-of-the-art object

tracking performance.

Our approach recognizes that in modern MOT problems with

high-resolution sensors [32], [36]–[38], it is challenging to

capture object shapes and the corresponding data generating

process by a statistical model. Consequently, the influence of

object shapes on data generation is best learned directly from

data.

II. BACKGROUND

In what follows, we will briefly review factor graphs and

graph neural networks (GNNs).

A. Factor Graphs

A factor graph [30] is a bipartite undirected graph Gf =
(Vf , Ef ) that consists of a set of edges Ef and a set of vertices

or nodes Vf = Q ∪ F . A variable node q ∈ Q represents a

random variable xq and a factor node s ∈ F represents a

factor fs
(

x(s)
)

. Here, each factor argument x(s) comprises

certain random variables xq (each xq can appear in several

x(s)). Factor nodes and variable nodes are typically depicted

by circles and boxes, respectively. The joint probability density

function (PDF) represented by the factor graph reads p(x) ∝
∏

s∈F fs
(

x(s)
)

where ∝ indicates equality up to a constant

factor.

Belief propagation (BP) [30], also known as the sum-

product algorithm can compute marginal PDFs p(xq), q ∈ Q
efficiently. BP performs local operations called “messages” on

the edges of the factor graph. There are two types of messages:

(i) messages passed from variable nodes to factor nodes given
by

φxq→fs(xq) =
∏

a∈NF (q)\s

φfa→xq
(xq)

and (ii) messages passed from factor nodes to variable nodes

defined as

φfs→xq
(xq) =

∑

x
(s)\xq

fs
(

x(s)
)

∏

m∈NQ(s)\q

φxm→fs(xm).

Here, NQ(·) ⊆ Q and NF (·) ⊆ F denote the set of neigh-

boring variable and factor nodes, respectively. After message

passing is completed, one can subsequently obtain marginal

PDFs p(xq) as the product of all incoming messages from the

neighboring factors, i.e., p(xq) ∝
∏

s∈NF (q) φfs→xq
(xq). In

factor graph with loops, BP is applied in an iterative manner.

It can then only provide approximations of marginal posterior

pdfs p(xq).

B. Graph Neural Networks

Graph Neural Networks (GNNs) [39] extend neural net-

works to graph-structured data. We consider message passing

neural networks (MPNNs) [40] which are a variant of GNNs

that generalizes graph convolutional networks [41] and pro-

vides a message passing mechanism similar to BP. A MPNN

is defined on a graph G = (V , E) where E induces the sets of

neighbors N (i) = {j ∈ V
∣

∣(i, j) ∈ E}.

Each node i ∈ V is associated with a vector hi called node

embedding. At message passing iteration l ∈ {1, . . . , L}, the

following operations are performed for each node i ∈ V in

parallel. First, messages are exchanged with neighboring nodes

j ∈ N (i). In particular, the GNN message sent from node

i ∈ V to its neighboring node j ∈ N (i) is given by

m
(l)
i→j = gi→j

(

h
(l)
i ,h

(l)
j , ai→j

)

.

In addition, the node embedding h
(l)
i is updated by incorpo-

rating the sum of received messages m
(l)
j→i, j ∈ N (i), i.e.,

h
(l+1)
i = gi

(

h
(l)
i ,

∑

j∈N (i)

m
(l)
j→i, ai

)

.

Here, gi(·), i ∈ V and gi→j(·), (i, j) ∈ E denote the node and

edge networks, respectively. Furthermore, ai and ai→j denote

node and edge attributes.

III. REVIEW OF BP-BASED MULTI-OBJECT TRACKING

The proposed NEBP approach is based on BP-based MOT

introduced in [25]. The statistical model used by BP-based

MOT is reviewed next.

A. Object States

At each time frame k, an object detector gdet(·) extracts

Jk measurements zk , [zTk,1 · · · z
T
k,Jk

]T from raw sensor data

Zk, i.e., zk = gdet(Zk). All measurements extracted up to time

frame k are denoted as z1:k , [zT1 · · · zTk ]
T. Since the number

objects is unknown, potential object (PO) states are introduced.

The number of PO states Nk is the maximum possible number

of objects that have generated a measurement up to time frame

k. At time frame k, the existence of a PO n ∈ {1, · · · , Nk} is

modeled by a binary random existence variable rk,n ∈ {0, 1},

i.e., PO n exists if and only if rk,n = 1. The state of PO n is

modeled by the random vector xk,n. The augmented PO state
vector is denoted by yk,n , [xT

k,n rk,n]
T and the joint PO

state vector by yk , [yT
k,1 · · ·y

T
k,Nk

]T. There are two types of
POs:

• New POs denoted yk,j = [xT
k,j rk,j ]

T, j ∈ {1, · · · , Jk} rep-

resent objects that at time frame k generated a measurement

for the first time. Each measurement zk,j , j ∈ {1, · · · , Jk}
introduces a new PO j with state yk,j .

• Legacy POs denoted yk,i = [xT
k,i rk,i]

T, i = {1, · · · , Ik}
represent objects that have generated a measurement for the

first time at a previous time frame k′ < k.

New POs become legacy POs when the measurements of

the next time frame are considered. Thus, the number of legacy

POs at time frame k is Ik = Ik−1+Jk−1 =Nk−1 and the total

number of POs is Nk = Ik +Jk. We further denote the joint

new PO state by yk , [yT
k,1 · · ·y

T
k,Jk

]T and the joint legacy

PO state by yk , [yT
k,1 · · ·y

T
k,Ik

]T, i.e., yk = [yT
k yT

k ]
T.
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Fig. 1: Factor graph for MOT (a) and corresponding graph neural network (GNN) (b) for a single time frame k. In (a), BP

messages that correspond to data association (DA) are shown in blue color. These messages are enhanced by the proposed

NEBP approach are shown; (b) shows the corresponding GNN messages. The time index k is omitted.

B. Measurement Model

The origin of measurements zk,j , j ∈ {1, · · · , Jk} is

unknown. A measurement can originate from a PO or can be

a false alarm. Furthermore, a PO may also not generate any

measurements (missed detection). With the assumption that a

PO can generate at most one measurement and a measurement

is originated from at most one PO, we model data association

uncertainty as follows [25]. The PO-measurement association

at time frame k can be described by an “object-oriented” DA

vector ak = [ak,1 · · · ak,Ik ]
T. Here, the association variable

ak,i = j ∈ {1, · · · , Jk} indicates that legacy PO i generated

measurement j and ak,i = 0 indicated that legacy PO i did

not generate any measurement at time k. Following [42],

we also introduce the “measurement-oriented” DA vector

bk = [bk,1 · · · bk,Jk
]T with bk,j = i ∈ {1, · · · , Ik} if

measurement j was generated by legacy PO i, or bk,j = 0
if measurement j was not generated by any legacy PO. Note

that there is a one-to-one mapping between ak and bk and vice

versa. Introducing bk in addition to ak makes it possible to

develop scalable MOT [25]. Finally, we establish the notation

a1:k , [aT1 · · ·aT
k ]

T and b1:k , [bT
1 · · ·bT

k ]
T.

If legacy PO i exists, it generates a measurement (i.e.

ak,i = j ∈ {1, · · · , Jk}) with probability pd. Furthermore,

the probability that it also exists at the next time frame

k + 1 is ps. The number of false alarms is modeled by a

Poisson distribution with mean µfa and false alarm measure-

ments are independent and identically distributed according to

ffa(zk,j). Before the measurements {zk,j}
Jk

j=1 are observed,

the number of new POs is unknown. The number of newly

detected objects is Poisson distributed with mean µn, while

the states of newly detected objects are a priori independent

and identically distributed according to fn(xk,j). Following the

assumptions presented in [25, Sec. VIII-A], the joint posterior

PDF f(y1:k, a1:k,b1:k|z1:k) can be derived [25, Sec. VIII-

G]. The factorization of this joint posterior pdf is visualized

by the factor graph shown in Fig. 1a. Note that legacy POs

are connected to object-oriented association variables and

new POs are connected to measurement-oriented association

variables.

C. Object Declaration and State Estimation

In the Bayesian setting, declaration of object existence and

object state estimation are based on the marginal existence

probabilities p(rk,n = 1|z1:k) and the conditional PDFs

f(xk,n|rk,n = 1, z1:k). In particular, declaration of object

existence is performed by comparing p(rk,n = 1|z1:k) to a

threshold Tdec. In addition, for objects n that are declared to

exist, an estimate of xk,n is provided by the minimum mean-

square error (MMSE) estimator

x̂MMSE
k,n =

∫

xk,nf(xk,n |rk,n = 1, z1:k)dxk,n.

Note that declaration of object existence is based on the

existence probability p(rk,n = 1 |z1:k) =
∫

f(xk,n, rk,n = 1 |
z1:k)dxk,n. In addition, object state estimation makes use of

f(xk,n |rk,n = 1, z1:k) =
f(yk,n |z1:k)

p(rk,n = 1 |z1:k)
.

Thus, both tasks rely on the calculation of marginal posterior

PDFs f(yk,n |z1:k) , f(xk,n, rk,n |z1:k). By applying BP

following [25, Sec. VIII-IX], accurate approximations (a.k.a.

“beliefs”) f̃(yk,n)≈ f(yk,n|z1:k) of marginal posterior PDFs
can be calculated efficiently. For future reference we introduce

the notation r̂k,n = p(rk,n = 1 |z1:k).
Note that since we introduce a new PO for each measure-

ment, the number of POs grows with time k. Therefore, legacy

and new POs whose approximate existence probabilities are

below a threshold Tpru are pruned, i.e., removed from the state
space.

IV. NEBP-BASED MULTI-OBJECT TRACKING

To further improve the performance of BP-based MOT, we

augment the factor graph in Fig. 1a by a GNN. The GNN uses

features extracted from previous estimates, measurements,

and raw sensor information as an input. Since we limit the

following discussion to a single time frame, we will omit the

time index k.
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A. Feature Extraction

First, we discuss how features are learned from raw sensor

data for legacy POs and measurements. We consider motion

and shape features. The motion features for legacy PO i and

measurement j are computed as hai,motion = gmotion,1(x̂
−
i , r̂

−
i )

and hbj ,motion = gmotion,2(zj), respectively. Here, gmotion,1(·) as

well as gmotion,2(·) are neural networks. In addition, x̂−
i and

r̂−i are the approximate MMSE state estimate and existence

probability of legacy PO i at the previous time frame. Sim-

ilarly, the shape features, denoted by hai,shape and hbj ,shape,

are extracted from raw sensor data Z− and Z at previous and

current time, respectively, i.e., hai,shape = gshape,1(Z−, x̂−
i ) and

hbj ,shape = gshape,2(Z, zj). Here, gshape,1(·) as well as gshape,2(·)
are again neural networks. We will discuss one particular

instance of shape feature extraction in Sec. V-A.

B. The Proposed Message Passing Algorithm

For neural enhanced DA, we introduce a GNN that matches

the topology of the DA section of the factor graph in Fig. 1a.

The resulting GNN is shown in Fig. 1b. In addition to

the output of the detector, the GNN also uses raw sensor

information as an input. The goal is to use this additional

information to reject false alarm measurements and obtain

improved DA probabilities by enhancing BP messages with the

output of the GNN. NEBP for MOT consists of the following

steps:

1) Conventional BP: First, conventional BP-based MOT is

run until convergence. This results in the BP messages φai
=

[φai
(0) · · ·φai

(J)]T ∈ R
J+1, φbj = [φbj (0) · · ·φbj (I)]

T ∈
R

I+1, φΨi,j→bj ∈ R, and φΨi,j→ai
∈ R (cf. [25, Sec. IX-

A1–IX-A3]).

2) GNN Messages: Next, GNN message passing is exe-

cuted iteratively. In particular, at iteration l ∈ {1, . . . , L} the

following operations are performed:

m
(l)
ai→bj

= ge

(

h(l)
ai
,h

(l)
bj
, φai

(j), φΨi,j→bj

)

(1)

m
(l)
bj→ai

= ge

(

h(l)
ai
,h

(l)
bj
, φai

(j), φΨi,j→ai

)

h(l+1)
ai

= gn

(

h(l)
ai
,

∑

j∈N (i)

m
(l)
bj→ai

, φai
(0)

)

h
(l+1)
bj

= gn

(

h
(l)
bj
,

∑

j∈N (i)

m
(l)
ai→bj

, φbj (0)

)

. (2)

Here, ge(·) is the edge neural network and gn(·) is the

node neural network. The edge neural network ge(·) provides

messages passed along the edges of the GNN.

The node embeddings are initialized as the concatenation

of respective motion and shape features, i.e., h
(1)
ai

= [hT
ai,motion

hT
ai,shape]

T and h
(1)
bj

= [hT
bj ,motion hT

bj ,shape]
T. Finally, for each

j ∈ {1, · · · , J}, the correction factors βj = gr(h
(L)
bj

) ∈ (0, 1]

and γi(j) = ga

(

m
(L)
bj→ai

)

∈ R are computed based on the
two additional neural networks gr(·) and ga(·). As discussed

next, these correction factors provided by the GNN are used to

implement false alarm rejection and object shape association,

respectively.

3) NEBP Messages: After computing (1)–(2) for L it-

erations, neural enhanced message passing is performed as

follows. First, neural enhanced versions φ̃ai
of the messages

φai
are obtained by computing

φ̃ai
(j) = βj φ̄ai

(j) + ReLU
(

γi(j)
)

, j ∈ {1, · · · , J} (3)

and setting φ̃ai
(0) = φai

(0). Here, ReLU(·) is a rectified linear

unit and φ̄ai
is a normalized1 version of φai

(cf. [25, Sec. IX-

A2]), i.e.,

φ̄ai
(j) =

φai
(j)

∑J

j′=0 φai
(j′)

, j ∈ {1, · · · , J}.

Note that φai
(j), j ∈ {1, . . . , J} represents the likelihood

that the legacy PO i is associated to measurement j [25].

Consequently, the ReLU
(

γi(j)
)

> 0 term in (3) provided by

the GNN implements object shape association, i.e., the like-

lihood that the legacy PO i is associated to the measurement

j is increased if the shape features extracted for legacy POs

resembles the shape features extracted for measurements.

Next, neural enhanced versions φ̃bj of the messages φbj are

obtained by computing

φ̃bj(0) = βj

(

φbj (0)− 1
)

+ 1 (4)

and setting φ̃bj (i) = φbj (i), i ∈ {1, · · · , I}. We recall that

φbj (0) is given by (cf. [25, Sec. IX-A2])

φbj(0) =
µn

µfa ffa

(

zj
)

∫

fn

(

xj

)

f
(

zj
∣

∣xj

)

dxj + 1 .

The scalar βj ∈ (0, 1) in (3) and (4) provided by the GNN

implements false alarm rejection. In particular, βj < 1 is equal

to the local increase of the false alarm distribution given by

f̃fa(zj) = 1
βj
ffa(zj). This local increase of the false alarm

distribution makes it less likely that the measurement zj is

associated to a legacy PO and reduces the existence probability

of the new PO introduced for the measurement zj .

4) Belief Calculation: Finally, conventional BP-based MOT

is again run until convergence by replacing φai
with its

neural enhanced counterpart φ̃ai
. This results in the enhanced

output messages κ̃i = [κ̃i(0) · · · κ̃i(J)]
T ∈ R

J+1 and ι̃j =
[ι̃i(0) · · · ι̃i(I)]T ∈ R

I+1 (cf. Fig. 1). After performing the

normalization

κ̃′
i(j) =

φ̃ai
(j)

φai
(j)

κ̃i(j), j ∈ {0, · · · , J}

the resulting messages κ̃′
i are used for the calculation of legacy

PO beliefs f̃(yi), i ∈ {1, · · · , I} (cf. [25, Sec. IX-A4–IX-

A6]). Similarly, the enhanced messages ι̃j are directly used

for the calculation of new PO beliefs f̃(yj), j ∈ {1, · · · , J}.

1Multiplying BP messages by a constant factor does not alter the resulting
beliefs [30].
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C. The Loss Function

For supervised learning, it is assumed that ground truth

object tracks are available in the training set. Ground truth

object tracks consist of a sequence of object positions and

object identities (IDs). During the training of the GNN, the

parameters of all neural networks are updated through back-

propagation, which computes the gradient of the loss function.

The loss function has the form L = Lr + La. Here, the two

contributions Lr and La establish false alarm rejection and

object shape association, respectively.

False alarm rejection, introduces the binary cross-entropy

loss [43, Chapter 4.3]

Lr =
−1

J

J
∑

j=1

βgt
j ln(βj) + ǫ(1− βgt

j ) ln(1− βj) (5)

where β
gt
j ∈ {0, 1} is the pseudo ground truth label for each

measurement and ǫ ∈ R
+ is a tuning parameter. βgt

j is 1 if

the distance between the measurement and any ground truth

position is not larger than Tdist and 0 otherwise.

The tuning parameter ǫ∈R
+ is motivated as follows. Since

missing an object is typically more severe than producing a

false alarm, object detectors often output many detections and

produce more false alarm measurements than true measure-

ments. The tuning parameter ǫ∈R
+ addresses this imbalance

problem which is well studied in the context of learning-based

binary classification [44].

Since φ̃ai
(j) in (3) represents the likelihood that the legacy

PO i is associated to the measurement j, ideally ReLU
(

γi(j)
)

is large if PO i is associated to the measurement j, and is

equal to zero if they are not associated. Thus, object shape

association introduces the following binary cross-entropy loss

La =
−1

IJ

I
∑

i=1

J
∑

j=1

γ
gt
i (j) ln

(

σ(γi(j))
)

+
(

1− γgt
i (j)

)

ln
(

1− σ(γi(j))
)

(6)

where σ(x) = 1/(1 + e−x) is the sigmoid function and

γgt
i = [γgt

i (1) · · · γ
gt
i (J)]

T ∈ {0, 1}J is the pseudo ground truth

association vector of legacy PO i∈ {1, . . . , I}. In each pseudo

ground truth association vector γgt
i , at most one element is

equal to one and all the other elements are equal to zero.

Note that in (6), we do not apply the ReLU to the γi(j),
since this would result in the gradients ∂La/∂γi(j) to be zero

for negative values of γi(j). It was observed that performing

backpropagation by also making use of the gradients related

to the negative values of γi(j), leads to a more efficient

training of the GNN. At each time frame, pseudo ground truth

association vectors are constructed from measurements and

ground truth object tracks based on the following rules:

• Get Measurement IDs: Compute the Euclidean distance

between all ground truth positions and measurements and

run the Hungarian algorithm [1] to find the best associa-

tion between ground truth positions and measurements. All

measurements that have been associated with a ground truth

position and have a distance to that ground truth position

that is smaller than Tdist inherit the ID of the ground truth

position. All other measurements do not have an ID.

• Update Legacy PO IDs: Legacy POs inherit the ID from the

previous time frame. If a legacy PO with ID has a distance

not larger than Tdist to a ground truth position with the same

ID, it keeps its ID. The for a legacy PO i∈ {1, . . . , I} that

has the same ID as measurement j ∈ {1, . . . , J}, the entry

γgt
i (j) is set to one. All other entries γgt

i (j), i∈ {1, . . . , I},

j ∈ {1, . . . , J} are set to zero.

• Introduce New PO IDs: For any measurement j ∈
{1, . . . , J} with an ID that does not share its ID with a

legacy object, the corresponding new PO inherits the ground

truth ID from the measurement. All other new POs do not

have an ID.

V. EXPERIMENTAL RESULTS

We present results in an urban autonomous driving scenario

to validate our method. In particular, we use data provided by a

LiDAR sensor mounted on the roof of an autonomous vehicle.

This data is part of the nuScenes dataset [35].

A. System Model and Implementation Details

The nuScenes dataset consists of 1000 autonomous driving

scenes and seven object classes. We use the official split

of the dataset, where there are 700 scenes for training, 150

for validation, and 150 for testing. Each scene has a length

of roughly 20 seconds and contains keyframes (frames with

ground truth object annotations) sampled at 2Hz. Object

detections extracted by the CenterPoint [7] detector are used

as measurements, which are then preprocessed using non-

maximum suppression (NMS) [45]. Each measurement has a

class index and the proposed MOT method is performed for

each class individually.

We define the states of POs as xk,n ∈ R
4 which in-

clude their 2D position and 2D velocity. The measurements

zk,j ∈ R
5 consist of the 2D position and velocity obtained

as well as a score 0 < sk,j ≤ 1 from the object detec-

tor. The dynamics of objects are modeled by a constant-

velocity model [46]. The region of interest (ROI) is given by

[xe − 54, xe + 54]× [ye − 54, ye + 54], where (xe, ye) is the

2D position of the autonomous vehicle. The prior PDF of false

alarms ffa(·) and newly detected objects fn(·) are uniform over

the ROI. All other parameters used in the system model are

estimated from the training data. The thresholds for object

declaration was set to Tdec = 0.5 for legacy POs and to a class

dependent value for new POs. The pruning threshold was set

to Tpru =10−3.

The neural networks ge(·), gn(·), ga(·), gmotion(·) ,

gmotion,1(·) = gmotion,2(·) are multi-layer perceptrons (MLPs)

with a single hidden layer and leaky ReLU activation function.

Furthermore, gr(·) is a single-hidden-layer MLP with sigmoid

activation at the output layer. Finally, gshape(·) , gshape,1(·) =
gshape,2(·) consists of two convolutional layers followed by

a single-hidden-layer MLP. At each time frame, we use the
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Methods Modalities AMOTA ↑ IDS ↓ Frag ↓

CenterPoint [7] LiDAR 0.665 562 424

Chiu et al. [17] LiDAR+Camera 0.687 - -

Zaech et al. [18] LiDAR 0.693 262 332

BP LiDAR 0.698 161 250

NEBP (proposed) LiDAR 0.708 172 271

TABLE I: Performance results on nuScenes validation set. “-” indicates that the metric is not reported.

output Z of VoxelNet [4] to extract shape features as discussed

in Section IV-A. The used VoxelNet has been pre-trained by

the CenterPoint method [7]. Its parameters remain unchanged

during the training of the proposed NEBP method. NEBP

training is performed by employing the Adam optimizer [47].

The number of GNN iteration is L = 3. The batch size was

set to 1, the learning rate to 10−4, and the number of training

epochs to 8. The tuning parameter ǫ in (5) was set to 0.1

and the threshold Tdist for the pseudo ground truth extraction

discussed in Section IV-C was set to 2 meters.

B. Performance Evaluation

We use the widely used CLEAR metrics [48] that include

the number of false positives (FP), identity switches (IDS) and

fragments (Frag). In addition, we also consider the average

multi-object tracking accuracy (AMOTA) metric proposed in

[15]. Note that the AMOTA is also the primary metric used

for the nuScenes tracking challenge [35].

Evaluation of the AMOTA requires a score for each esti-

mated object. It was observed that a high AMOTA perfor-

mance is obtained by calculating the estimated object score

as a combination of existence probability and measurement

score. In particular, for legacy PO i the estimated object score

is calculated as

si = p̃(ri = 1) +
J
∑

j=1

p̃ai
(j)sj ,

where p̃ai
(j) ∝ φai

(j)κi(j) are approximate marginal asso-

ciation probabilities [25]. Finally, for new PO j the estimated

object score is given by sj = p̃(rj = 1) + sj .

For a fair comparison, we use state-of-the-art reference

methods that all rely on the CenterPoint detector [7]. In

particular, BP refers to the traditional BP-based MOT method

[25] that uses object detections provided by the CenterPoint

detector as measurements. Furthermore, the tracking method

proposed in [7] uses a heuristic to create tracks and a greedy

matching algorithm based on the Euclidean distance to asso-

ciate CenterPoint object detections to tracks. Chiu et al. [17]

follows a similar strategy but makes use of a hybrid distance

that combines the Mahalanobis distance and the so-called deep

feature distance. Finally, the method introduced by Zaech et

al. [18] utilizes a network flow formulation and transforms the

DA problem into a classification problem.

In Table I, it can be seen that the proposed NEBP approach

outperforms all reference methods in terms of AMOTA per-

formance. Furthermore, it can be observed, that BP and NEBP

achieve a much lower IDS and Frag metric compared to the

reference methods. This is because both BP and NEBP make

use of a statistical model to determine the initialization and

termination of tracks [25] which is more robust compared to

the heuristic track management performed by other reference

methods. The improved AMOTA performance of NEBP over

BP comes at the cost of a slightly increased IDS and Frag.

TABLE II shows the AMOTA performance as well as

number of FP for the bicycle and motorcycle class. To ensure

a fair comparison, all the FP values are evaluated for the

same percentage of true positives referred to as “recall”. In

particular, for each class, the recall that leads to the largest

multi-object tracking accuracy [48] for NEBP was used.

Method
bicycle motorcycle

AMOTA ↑ FP ↓ AMOTA ↑ FP ↓

CenterPoint [7] 0.458 390 0.615 792

BP 0.505 168 0.725 349

NEBP (proposed) 0.550 120 0.739 208

TABLE II: Evaluation results on nuScenes validation set in

terms of AMOTA and FP for the bicycle and motorcycle class.

For the considered two classes, NEBP yields the largest

improvement in terms of AMOTA performance over BP.

Compared to BP, the proposed NEBP method also has a

reduced number of FP. In conclusion, false alarm rejection

and object shape association introduced by the proposed NEBP

method can make effective use of features learned from raw

sensor data and substantially improve MOT performance.

VI. FINAL REMARKS

In this paper, we present a NEBP method for MOT that

enhances probabilistic data association by features learned

from raw sensor data. A GNN is introduced that matches the

topology of the factor graph for model-based data association.

In addition to the preprocessed measurements employed by

BP, the GNN also makes use of object features learned from

raw sensor data. For false alarm rejection, the GNN identi-

fies which measurements are likely false alarms. For object

shape association, the GNN computes improved association

probabilities. The proposed method can improve the object

declaration and state estimation performance of BP while

preserving its low computational complexity. Performance

evaluation based on the nuScenes autonomous driving dataset

demonstrated state-of-the-art object tracking performance.
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