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Abstract—Situation-aware technologies enabled by multi-
object tracking (MOT) methods will create new services and
applications in fields such as autonomous navigation and applied
ocean sciences. Belief propagation (BP) is a state-of-the-art
method for Bayesian MOT that relies on a statistical model and
preprocessed sensor measurements. In this paper, we establish
a hybrid method for model-based and data-driven MOT. The
proposed neural enhanced belief propagation (NEBP) approach
complements BP by information learned from raw sensor data
with the goal to improve data association and to reject false
alarm measurements. We evaluate the performance of our NEBP
approach for MOT on the nuScenes autonomous driving dataset
and demonstrate that it can outperform state-of-the-art reference
methods.

Index Terms—Belief propagation, graph neural networks,
multiobject tracking, factor graph.

I. INTRODUCTION

Multi-object tracking (MOT) [1] is a key aspect in a variety
of applications including autonomous navigation and applied
ocean sciences. In particular, in autonomous navigation sys-
tems accurate MOT enables tasks such as motion forecasting
[2] and path planning [3]. The main challenge in MOT is data
association uncertainty, i.e., the unknown association between
measurements and objects. MOT is further complicated by the
fact that the number of objects is unknown.

Most MOT methods adopt a detect-then-track approach
where an object detector [4]-[13] is applied to the raw
sensor data. The resulting object detections are then used as
measurements for MOT. Many existing MOT methods follow
a global nearest neighbor [1] approach where a Hungarian
[14] or a greedy matching algorithm is used to perform “hard”
data association. These types of methods rely on heuristics for
track initialization and termination. To improve the reliability
of hard data association, often discriminative features are
extracted and incorporated by the matching algorithm [7],
[15]-[22]. Another line of work formulates and solves MOT
in the Bayesian estimation framework [1], [23]-[29]. This
type of methods rely on statistical models for object birth,
object motion, and sensor measurements [1], [23]-[29]. The
statistical model makes it possible to perform a more robust
probabilistic “soft” data association. In addition, heuristics for
track initialization and termination can be avoided by modeling
the existence of objects by binary random variables.

BP [30] can solve high-dimensional Bayesian estimation
problems by “passing messages” on the edges of a factor
graph [30] that represents the underlying statistical model.

By exploiting the structure of the graph, BP-based MOT
methods [23]-[25], [31], [32] are highly scalable. This makes
it possible to generate and maintain a very large number
of potential object tracks and, in turn, outperform existing
MOT approaches [24], [25]. However, BP fully relies on a
statistical model. When the factor graph does not accurately
represent the true data generating process, MOT performance
is reduced due to model mismatch. In addition, with the detect-
then-track approach employed by BP-based MOT, important
object-related information might be discarded by the object
detector. We aim to overcome these limitations by introducing
information learned from raw sensor data to BP-based MOT.

NEBP [33] is a hybrid method that combines the benefits of
model-based and data-driven inference and addresses potential
limitations of BP such as model mismatch and overconfident
beliefs [33], [34]. NEBP has been successfully applied to de-
coding [33] and cooperative localization [34] tasks. In NEBP,
a graph neural network (GNN) that matches the topology of
the factor graph is introduced. The trained GNN enhances
potentially inaccurate BP messages to ultimately improve
object declaration and estimation accuracy.

In this paper, we propose NEBP for MOT. Here, BP
messages calculated as input for probabilistic data associa-
tion are combined with the output of the GNN. The GNN
uses measurements (i.e., object detections) and shape features
learned from raw sensor data as an input. For false alarm
rejection, the GNN identifies which measurements are likely
false alarms. If a measurement has been identified as a poten-
tial false alarm, the false alarm distribution in the statistical
model of BP is locally increased. This reduces the probability
that the measurement is associated with an existing object
track or initializes a new object track. Object shape asso-
ciation computes improved association probabilities by also
comparing shape features extracted for existing object tracks
with shape features extracted for measurements. The resulting
NEBP method for MOT can improve object declaration and
estimation performance compared to BP for MOT as well as
outperform further state-of-the-art methods.

The main contributions of this paper can be summarized as
follows.

« We introduce an NEBP method for MOT where probabilistic
data association is augmented by shape features learned
from raw sensor data.

« We apply the proposed method to the nuScenes autonomous
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driving dataset [35] and demonstrate state-of-the-art object
tracking performance.

Our approach recognizes that in modern MOT problems with
high-resolution sensors [32], [36]-[38], it is challenging to
capture object shapes and the corresponding data generating
process by a statistical model. Consequently, the influence of
object shapes on data generation is best learned directly from
data.

II. BACKGROUND

In what follows, we will briefly review factor graphs and
graph neural networks (GNNGs).

A. Factor Graphs

A factor graph [30] is a bipartite undirected graph G; =
(V¢, E¢) that consists of a set of edges £ and a set of vertices
or nodes Vy = QU F. A variable node g € Q represents a
random variable x, and a factor node s € F represents a
factor f, (x(s)). Here, each factor argument x(*) comprises
certain random variables x, (each x, can appear in several
x(*)). Factor nodes and variable nodes are typically depicted
by circles and boxes, respectively. The joint probability density
function (PDF) represented by the factor graph reads p(x)
[Lecr fs (x(s)) where o< indicates equality up to a constant
factor.

Belief propagation (BP) [30], also known as the sum-
product algorithm can compute marginal PDFs p(x,), ¢ € Q
efficiently. BP performs local operations called “messages” on
the edges of the factor graph. There are two types of messages:
(i) messages passed from variable nodes to factor nodes given

by
H Pf—x, (%q)

a€ENE(q)\s

Dxe, 1. (Xq) =

and (ii) messages passed from factor nodes to variable nodes
defined as

By (Xg) = > fo(x)
meNa(s)\q

x(s) \xq

¢xm —fs (Xm ) .

Here, Ngo(-) € Q and Nx(-) C F denote the set of neigh-
boring variable and factor nodes, respectively. After message
passing is completed, one can subsequently obtain marginal
PDFs p(xg4) as the product of all incoming messages from the
neighboring factors, i.e., p(xq) o [Tcpr(q) @1 —x,(Xq). In
factor graph with loops, BP is applied in an iterative manner.
It can then only provide approximations of marginal posterior

pdfs p(xq).

B. Graph Neural Networks

Graph Neural Networks (GNNs) [39] extend neural net-
works to graph-structured data. We consider message passing
neural networks (MPNNs) [40] which are a variant of GNNs
that generalizes graph convolutional networks [41] and pro-
vides a message passing mechanism similar to BP. A MPNN
is defined on a graph G = (V, £) where £ induces the sets of
neighbors NV (i) = {j € V|(i,j) € £}.

Each node i € V is associated with a vector h; called node
embedding. At message passing iteration [ € {1,..., L}, the
following operations are performed for each node ¢ € V in
parallel. First, messages are exchanged with neighboring nodes
j € N(i). In particular, the GNN message sent from node
i € V to its neighboring node j € N (i) is given by

! .
m; = gis (000 a05).
0

In addition, the node embedding h;” is updated by incorpo-

rating the sum of received messages mg»lln-, Jj € N(®), ie.,

Y — g, (hl(-l)v Z mglli’ai)_
FEN ()

Here, g;(-),7 € V and g;—,(-), (4,j) € € denote the node and
edge networks, respectively. Furthermore, a; and a;_,; denote
node and edge attributes.

ITII. REVIEW OF BP-BASED MULTI-OBJECT TRACKING

The proposed NEBP approach is based on BP-based MOT
introduced in [25]. The statistical model used by BP-based
MOT is reviewed next.

A. Object States

At each time frame k, an object detector gue(-) extracts
Ji measurements zj, = [z}, - -z, ; |7 from raw sensor data
2, 1., 2, = gaet( 2k ). All measurements extracted up to time
frame k are denoted as z;.;, = [z5 - 'ZE]T. Since the number
objects is unknown, potential object (PO) states are introduced.
The number of PO states Ny is the maximum possible number
of objects that have generated a measurement up to time frame
k. At time frame k, the existence of a PO n € {1,---, Ny} is
modeled by a binary random existence variable 7, € {0,1},
i.e., PO n exists if and only if 7, = 1. The state of PO n is
modeled by the random vector xj, ,,. The augmented PO state
vector is denoted by y,, = (Xt Tkn)T and the joint PO

state vector by y;, = [y}, -y} y, ] There are two types of
POs:

o New POs denoted 5y, ; = [f;f,j Trilt g€ {1, , i} rep-
resent objects that at time frame k generated a measurement
for the first time. Each measurement zy, ;,j € {1,---, Ji}
introduces a new PO j with state yy, ;.

o Legacy POs denoted yy; = [xp,; ]’ i = {1,---, I}
represent objects that have generated a measurement for the
first time at a previous time frame k' < k.

New POs become legacy POs when the measurements of
the next time frame are considered. Thus, the number of legacy
POs at time frame k is I, = I;._1+Jr_1 = Nr_1 and the total
number of POs is Ny = I}, + Ji. We further denote the joint
new PO state by ¥, £ [y}ﬁl . ~y;£7 Jk]T and the joint legacy

PO state by yx = [yg, -y )% ie. vy = [yr ¥iI©
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Fig. 1: Factor graph for MOT (a) and corresponding graph neural network (GNN) (b) for a single time frame k. In (a), BP
messages that correspond to data association (DA) are shown in blue color. These messages are enhanced by the proposed
NEBP approach are shown; (b) shows the corresponding GNN messages. The time index £ is omitted.

B. Measurement Model

The origin of measurements zx;, j € {1,---,Ji} is
unknown. A measurement can originate from a PO or can be
a false alarm. Furthermore, a PO may also not generate any
measurements (missed detection). With the assumption that a
PO can generate at most one measurement and a measurement
is originated from at most one PO, we model data association
uncertainty as follows [25]. The PO-measurement association
at time frame £ can be described by an “object-oriented” DA
vector ay = [ak,1---ak,r,| . Here, the association variable
ag; =7 € {1,---,Ji} indicates that legacy PO 4 generated
measurement j and ap; = 0 indicated that legacy PO ¢ did
not generate any measurement at time k. Following [42],
we also introduce the “measurement-oriented” DA vector
b, = [bk71 "'bk)]k]T with bk)j =1 € {1,--- ,Ik} if
measurement j was generated by legacy PO i, or by ; = 0
if measurement j was not generated by any legacy PO. Note
that there is a one-to-one mapping between ay, and by, and vice
versa. Introducing by in addition to a; makes it possible to
develop scalable MOT [25]. Finally, we establish the notation
arp 2 [al ---af]T and by, £ [b] ---bj T

If legacy PO ¢ exists, it generates a measurement (i.e.
ar; = j € {1,---,Jx}) with probability pq. Furthermore,
the probability that it also exists at the next time frame
k+ 1 is ps. The number of false alarms is modeled by a
Poisson distribution with mean ug and false alarm measure-
ments are independent and identically distributed according to
fua(zk,;). Before the measurements {Zk,j};-]i , are observed,
the number of new POs is unknown. The number of newly
detected objects is Poisson distributed with mean p,, while
the states of newly detected objects are a priori independent
and identically distributed according to f,(Xy, ;). Following the
assumptions presented in [25, Sec. VIII-A], the joint posterior
PDF f(y1.;s@1:k, P1:k|Z1:1) can be derived [25, Sec. VIII-
G]. The factorization of this joint posterior pdf is visualized
by the factor graph shown in Fig. la. Note that legacy POs
are connected to object-oriented association variables and
new POs are connected to measurement-oriented association
variables.

C. Object Declaration and State Estimation

In the Bayesian setting, declaration of object existence and
object state estimation are based on the marginal existence
probabilities p(rx, = 1|z1) and the conditional PDFs
f(Xkn|Thn = 1,21.,). In particular, declaration of object
existence is performed by comparing p(rg., = 1|z1.%) to a
threshold Tg... In addition, for objects n that are declared to
exist, an estimate of xy, ,, is provided by the minimum mean-
square error (MMSE) estimator

)A(I]\g/{l\nyE :/Xk,nf(xk,n |Tk,n = 1; Zl:k)dxk,n-

Note that declaration of object existence is based on the
existence probability p(rr, = 1]z1:k) = | f(Xkns Thn = 1]
Z1.;)dXy . In addition, object state estimation makes use of

f(yk,n|zlik)

Xkn|Tkn = 1az k)= 1. ¢
f( | ! ) p(rk,n = 1|Z1:k)

Thus, both tasks rely on the calculation of marginal posterior
PDFs f(yinl2z1k) £ f(Xkn,Thn|21:k). By applying BP
following [25, Sec. VIII-IX], accurate approximations (a.k.a.
“beliefs”) f(Yk,n) ~ f(Y).nlZ1:x) of marginal posterior PDFs
can be calculated efficiently. For future reference we introduce
the notation 7y, = p(Tk,n = 1|21.1).

Note that since we introduce a new PO for each measure-
ment, the number of POs grows with time k. Therefore, legacy
and new POs whose approximate existence probabilities are
below a threshold T}, are pruned, i.e., removed from the state
space.

IV. NEBP-BASED MULTI-OBJECT TRACKING

To further improve the performance of BP-based MOT, we
augment the factor graph in Fig. 1a by a GNN. The GNN uses
features extracted from previous estimates, measurements,
and raw sensor information as an input. Since we limit the
following discussion to a single time frame, we will omit the
time index k.
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A. Feature Extraction

First, we discuss how features are learned from raw sensor
data for legacy POs and measurements. We consider motion
and shape features. The motion features for legacy PO 7 and
measurement j are computed as g, motion = gmotion,1(X; , T; )
and hb ,motion = Ymotion, 2( ) reSPGCthely Here Gmotion, 1( ) as
well as gmotion,2(+) are neural networks. In addition, x; and
£, are the approximate MMSE state estimate and existence
probability of legacy PO i at the previous time frame. Sim-
ilarly, the shape features, denoted by hg, shape and hy; shape,
are extracted from raw sensor data Z~ and Z at previous and
current time, respectively, i.e., h, shape = Gshape,1 (£, X; ) and
hbj ,shape = gshape,Q(Za Zj)- Here, Yshape, 1 () as well as gshape,Q(')
are again neural networks. We will discuss one particular
instance of shape feature extraction in Sec. V-A.

B. The Proposed Message Passing Algorithm

For neural enhanced DA, we introduce a GNN that matches
the topology of the DA section of the factor graph in Fig. 1a.
The resulting GNN is shown in Fig. 1b. In addition to
the output of the detector, the GNN also uses raw sensor
information as an input. The goal is to use this additional
information to reject false alarm measurements and obtain
improved DA probabilities by enhancing BP messages with the
output of the GNN. NEBP for MOT consists of the following
steps:

1) Conventional BP: First, conventional BP-based MOT is
run until convergence. This results in the BP messages ¢,, =
(60, (0) - G0, (N)]T € RIFL g, = [64,(0) -+~ 6, (DT
R+ 6y, € R, and ¢y, , a0, € R (cf. [25, Sec. IX-
Al1-IX-A3)).

2) GNN Messages:

cuted iteratively. In particular, at iteration [ € {1, ...,
following operations are performed:

mt(lli)ﬂb ge( l) h(l s @a, (J )7¢‘1’i,j—>bj) O

mlgl)ﬂal = Je ( l) h(l 7(25111( )7¢\I’i,j_)ai)

Next, GNN message passing is exe-
L} the

h((lll+1 _g ( l) Z mb ~>a17¢‘“ )
JEN(3)
1+1)
) = (1) Ym0, 00)).

JGN(l)

Here, g.(-) is the edge neural network and g,(-) is the
node neural network. The edge neural network ge(-) provides
messages passed along the edges of the GNN.

The node embeddings are initialized as the concatenation
of respective motion and shape features, i.e., h(l) = [hT

a; ;motion
aTi,,shape] and h(l) [hb ,motion hT Shape] : FlnaIIY7 for each
jed{1,---,J}, the correction factors B = gr(h(L)) € (0,1]

and ;(j ) = ga(ml()LLa ) € R are computed based on the

two additional neural networks g.(-) and ga(-). As discussed
next, these correction factors provided by the GNN are used to

implement false alarm rejection and object shape association,
respectively.

3) NEBP Messages: After computing (1)—(2) for L it-
erations, neural enhanced message passing is performed as
follows. First, neural enhanced versions qgai of the messages
¢q, are obtained by computing

$a. () = Bjda: () + ReLU(%(5)), j€{Ll,---,J} (3

and setting $a, (0) = pa, (0). Here, ReLU(-) is a rectified linear
unit and ¢, is a normalized' version of @q; (cf. [25, Sec. IX-
A2)), ie.,

3uu) = =72l

060, (i)

Note that ¢,,(j), 7 € {1,...,J} represents the likelihood
that the legacy PO ¢ is assoc1ated to measurement j [25].
Consequently, the ReLU(v;(j)) > 0 term in (3) provided by
the GNN implements object shape association, i.e., the like-
lihood that the legacy PO 7 is associated to the measurement
7 is increased if the shape features extracted for legacy POs
resembles the shape features extracted for measurements.

Next, neural enhanced versions gi;bj of the messages (bb]. are
obtained by computing

on,(0) = B; (¢, (0) -

and setting gi;bj (i) = ¢, (i),7 € {1,-
®s,(0) is given by (cf. [25, Sec. IX- A2])

1) +1 4)

-, I}. We recall that

. Hn % 7. 1%x.) dx. .
Ps(0) = fita fra (25) /fn( ) S (23R dx; + 1

The scalar 3; € (0,1) in (3) and (4) provided by the GNN
implements false alarm rejection. In particular, 5; < 1 is equal
to the local increase of the false alarm distribution given by
fra(z;) = % fra(z;). This local increase of the false alarm
distribution makes it less likely that the measurement z; is
associated to a legacy PO and reduces the existence probability
of the new PO introduced for the measurement z; .

4) Belief Calculation: Finally, conventional BP-based MOT
is again run until convergence by replacing ¢,, with its
neural enhanced counterpart g?)a This results in the enhanced
output messages &; = [£;(0)---%;(J)]T € R/ and 7; =

[7:(0) - ;(I)]T € RIFTL (cf. Fig. 1). After performing the
normalization
o Pali)
I{;j: 1-K”L'.]v .]6057‘]
D T

the resulting messages &; are used for the calculation of legacy
PO beliefs f(y;), i € {1,---,I} (cf. [25, Sec. IX-A4-IX-
A6)). Similarly, the enhanced messages t; are directly used
for the calculation of new PO beliefs f(?j),j e{1,---,J}

"Multiplying BP messages by a constant factor does not alter the resulting
beliefs [30].
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C. The Loss Function

For supervised learning, it is assumed that ground truth
object tracks are available in the training set. Ground truth
object tracks consist of a sequence of object positions and
object identities (IDs). During the training of the GNN, the
parameters of all neural networks are updated through back-
propagation, which computes the gradient of the loss function.
The loss function has the form £ = £, + L,. Here, the two
contributions £; and L, establish false alarm rejection and
object shape association, respectively.

False alarm rejection, introduces the binary cross-entropy
loss [43, Chapter 4.3]

J
Ly = _71 Zﬁf In(B3;) +e(1 =) In(1 - B;)  (5)
j=1

where ﬂft € {0, 1} is the pseudo ground truth label for each
measurement and € € R is a tuning parameter. ﬁjg-l is 1if
the distance between the measurement and any ground truth
position is not larger than Tg; and O otherwise.

The tuning parameter ¢ € R™ is motivated as follows. Since
missing an object is typically more severe than producing a
false alarm, object detectors often output many detections and
produce more false alarm measurements than true measure-
ments. The tuning parameter ¢ € R™ addresses this imbalance
problem which is well studied in the context of learning-based
binary classification [44].

Since @ai (7) in (3) represents the likelihood that the legacy
PO i is associated to the measurement j, ideally ReLU (7;(5))
is large if PO ¢ is associated to the measurement j, and is
equal to zero if they are not associated. Thus, object shape
association introduces the following binary cross-entropy loss

I J

Lo= 23 323 080 (o)

i=1 j=1
+(1=G) (1 -e(u()  ©
where o(z) = 1/(1 4+ e %) is the sigmoid function and
78 =) - 42(I))T € {0,1}” is the pseudo ground truth
association vector of legacy PO i € {1,...,I}. In each pseudo
ground truth association vector %-gt, at most one element is
equal to one and all the other elements are equal to zero.
Note that in (6), we do not apply the ReLU to the 7;(j),
since this would result in the gradients 9L,/d7;(j) to be zero
for negative values of 7;(j). It was observed that performing
backpropagation by also making use of the gradients related
to the negative values of 7;(j), leads to a more efficient
training of the GNN. At each time frame, pseudo ground truth
association vectors are constructed from measurements and
ground truth object tracks based on the following rules:

o Get Measurement IDs: Compute the Euclidean distance
between all ground truth positions and measurements and
run the Hungarian algorithm [1] to find the best associa-
tion between ground truth positions and measurements. All

measurements that have been associated with a ground truth
position and have a distance to that ground truth position
that is smaller than Ty inherit the ID of the ground truth
position. All other measurements do not have an ID.

o Update Legacy PO IDs: Legacy POs inherit the ID from the
previous time frame. If a legacy PO with ID has a distance
not larger than Tj;s to a ground truth position with the same
ID, it keeps its ID. The for a legacy PO ¢ € {1,...,I} that

has the same ID as measurement j € {1, ..., J}, the entry
7£'(j) is set to one. All other entries 5 (5), 4 € {1,..., 1},
j€e{l1,...,J} are set to zero.

e Introduce New PO IDs: For any measurement j €
{1,...,J} with an ID that does not share its ID with a
legacy object, the corresponding new PO inherits the ground
truth ID from the measurement. All other new POs do not
have an ID.

V. EXPERIMENTAL RESULTS

We present results in an urban autonomous driving scenario
to validate our method. In particular, we use data provided by a
LiDAR sensor mounted on the roof of an autonomous vehicle.
This data is part of the nuScenes dataset [35].

A. System Model and Implementation Details

The nuScenes dataset consists of 1000 autonomous driving
scenes and seven object classes. We use the official split
of the dataset, where there are 700 scenes for training, 150
for validation, and 150 for testing. Each scene has a length
of roughly 20 seconds and contains keyframes (frames with
ground truth object annotations) sampled at 2Hz. Object
detections extracted by the CenterPoint [7] detector are used
as measurements, which are then preprocessed using non-
maximum suppression (NMS) [45]. Each measurement has a
class index and the proposed MOT method is performed for
each class individually.

We define the states of POs as xi, € R* which in-
clude their 2D position and 2D velocity. The measurements
zj,; € R consist of the 2D position and velocity obtained
as well as a score 0 < s, ; < 1 from the object detec-
tor. The dynamics of objects are modeled by a constant-
velocity model [46]. The region of interest (ROI) is given by
[xe — 54, e + 54] X [ye — 54, ye + 54], where (z, y.) is the
2D position of the autonomous vehicle. The prior PDF of false
alarms fp,(-) and newly detected objects f,(-) are uniform over
the ROI. All other parameters used in the system model are
estimated from the training data. The thresholds for object
declaration was set to Ty, = 0.5 for legacy POs and to a class
dependent value for new POs. The pruning threshold was set
t0 Tpry = 1073,

The neural networks ge(')’ gn(')’ ga(')’ gmotion(') £
Gmotion,1(*) = gmotion,2(+) are multi-layer perceptrons (MLPs)
with a single hidden layer and leaky ReL.U activation function.
Furthermore, ¢,(-) is a single-hidden-layer MLP with sigmoid
activation at the output layer. Finally, gshape(-) £ Gshape,1(+) =
gshape72(') consists of two convolutional layers followed by
a single-hidden-layer MLP. At each time frame, we use the
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Methods |  Modalities | AMOTA + IDS | Frag |
CenterPoint [7] LiDAR 0.665 562 424
Chiu et al. [17] LiDAR+Camera 0.687 - -
Zaech et al. [18] LiDAR 0.693 262 332
BP LiDAR 0.698 161 250
NEBP (proposed) LiDAR 0.708 172 271

TABLE I: Performance results on nuScenes validation set.

output Z of VoxelNet [4] to extract shape features as discussed
in Section IV-A. The used VoxelNet has been pre-trained by
the CenterPoint method [7]. Its parameters remain unchanged
during the training of the proposed NEBP method. NEBP
training is performed by employing the Adam optimizer [47].
The number of GNN iteration is L = 3. The batch size was
set to 1, the learning rate to 10~*, and the number of training
epochs to 8. The tuning parameter ¢ in (5) was set to 0.1
and the threshold Ty for the pseudo ground truth extraction
discussed in Section IV-C was set to 2 meters.

B. Performance Evaluation

We use the widely used CLEAR metrics [48] that include
the number of false positives (FP), identity switches (IDS) and
fragments (Frag). In addition, we also consider the average
multi-object tracking accuracy (AMOTA) metric proposed in
[15]. Note that the AMOTA is also the primary metric used
for the nuScenes tracking challenge [35].

Evaluation of the AMOTA requires a score for each esti-
mated object. It was observed that a high AMOTA perfor-
mance is obtained by calculating the estimated object score
as a combination of existence probability and measurement
score. In particular, for legacy PO ¢ the estimated object score
is calculated as

J
si =p(ri=1)+ Zﬁai(j)Sj,
i=1

where Pg,(j) X ¢q,(j)ki(j) are approximate marginal asso-
ciation probabilities [25]. Finally, for new PO j the estimated
object score is given by 5; = p(F; = 1) + s;.

For a fair comparison, we use state-of-the-art reference
methods that all rely on the CenterPoint detector [7]. In
particular, BP refers to the traditional BP-based MOT method
[25] that uses object detections provided by the CenterPoint
detector as measurements. Furthermore, the tracking method
proposed in [7] uses a heuristic to create tracks and a greedy
matching algorithm based on the Euclidean distance to asso-
ciate CenterPoint object detections to tracks. Chiu et al. [17]
follows a similar strategy but makes use of a hybrid distance
that combines the Mahalanobis distance and the so-called deep
feature distance. Finally, the method introduced by Zaech et
al. [18] utilizes a network flow formulation and transforms the
DA problem into a classification problem.

In Table I, it can be seen that the proposed NEBP approach
outperforms all reference methods in terms of AMOTA per-
formance. Furthermore, it can be observed, that BP and NEBP

99

indicates that the metric is not reported.

achieve a much lower IDS and Frag metric compared to the
reference methods. This is because both BP and NEBP make
use of a statistical model to determine the initialization and
termination of tracks [25] which is more robust compared to
the heuristic track management performed by other reference
methods. The improved AMOTA performance of NEBP over
BP comes at the cost of a slightly increased IDS and Frag.
TABLE II shows the AMOTA performance as well as
number of FP for the bicycle and motorcycle class. To ensure
a fair comparison, all the FP values are evaluated for the
same percentage of true positives referred to as “recall”. In
particular, for each class, the recall that leads to the largest
multi-object tracking accuracy [48] for NEBP was used.

bicycle motorcycle
Method AMOTA T FP | | AMOTA T FP |
CenterPoint [7] 0.458 390 0.615 792
BP 0.505 168 0.725 349
NEBP (proposed) 0.550 120 0.739 208

TABLE II: Evaluation results on nuScenes validation set in
terms of AMOTA and FP for the bicycle and motorcycle class.

For the considered two classes, NEBP yields the largest
improvement in terms of AMOTA performance over BP.
Compared to BP, the proposed NEBP method also has a
reduced number of FP. In conclusion, false alarm rejection
and object shape association introduced by the proposed NEBP
method can make effective use of features learned from raw
sensor data and substantially improve MOT performance.

VI. FINAL REMARKS

In this paper, we present a NEBP method for MOT that
enhances probabilistic data association by features learned
from raw sensor data. A GNN is introduced that matches the
topology of the factor graph for model-based data association.
In addition to the preprocessed measurements employed by
BP, the GNN also makes use of object features learned from
raw sensor data. For false alarm rejection, the GNN identi-
fies which measurements are likely false alarms. For object
shape association, the GNN computes improved association
probabilities. The proposed method can improve the object
declaration and state estimation performance of BP while
preserving its low computational complexity. Performance
evaluation based on the nuScenes autonomous driving dataset
demonstrated state-of-the-art object tracking performance.
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