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ABSTRACT: A new version of the MQCT program is presented, which includes an important
addition, adiabatic trajectory approximation (AT-MQCT), in which the equations of motion
for the classical and quantum parts of the system are decoupled. This method is much faster,
which permits calculations for larger molecular systems and at higher collision energies than
was possible before. AT-MQCT is general and can be applied to any molecule + molecule
inelastic scattering problem. A benchmark study is presented for H,O + H,O rotational energy
transfer, an important asymmetric-top rotor + asymmetric-top rotor collision process, a very
difficult problem unamenable to the treatment by other codes that exist in the community. Our
results indicate that AT-MQCT represents a reliable computational tool for prediction of
collisional energy transfer between the individual rotational states of two molecules, and this is
valid for all combinations of state symmetries (such as para and ortho states of each collision
partner).

Energy transfer among translational, rotational, and vibra- and full-quantum methods, is a recently developed mixed
tional degrees of freedom during an encounter between quantum/classical theory (MQCT) approach.”>™*" In this
two molecules is a fundamentally important process in physical method, the time-dependent Schrodinger equation is used to
chemistry. Two theoretical methods, known for decades and describe the internal degrees of freedom of molecules (their
most frequently used for the description of collisional energy rotation and vibration), while the mean-field trajectories are
transfer, are the classical trajectory method,' ™ often called a used to describe the relative translational motion of two
quasi-classical trajectory, and the full-quantum time-independ- collision partners. In recent years, this approach has been
ent inelastic scattering approach,s_7 called the coupled-channel applied to many molecular systems, including diatomic,
formalism. Both have their pros and cons. For example, the triatomic, tetra-atomic, and polyatomic molecules colliding
classical method permits the treatment of large molecular with an atom,”>**™*° and to molecule + molecule collisions,
systems” "> but has several fundamental flaws such as zero- including diatom + diatom®**” and asymmetric-top rotor +
point energy leakage and violation of microscopic reversibility diatom®**”** collisions, and the most general case of collision

and lacks many essential features, such as quantization of the
internal molecular states, selection rules for state-to-state
transitions, quantum interference, and symmetry effects. All of
these are present in the full-quantum approach, but the penalty
for quantum treatment of scattering is its significant computa-
tional cost. In practice, the full-quantum description of
collisional energy transfer is feasible only for simple collision
partners in the low-energy scattering regime, such as in the
coldest parts of interstellar media or in ultracold physics
experiments.”~'® Newer time-dependent quantum methods,
such as MCTDH,'”?° offer a somewhat better scaling
(compared to the traditional time-independent coupled-
channel formalism) and thus are being actively developed.”**
Still, the numerical effort required for the full-quantum
treatment of scattering is expected to remain high.

A recently proposed quantum statistical approach®”** is one
way to avoid the cost of scattering calculations. Another
practical alternative, which falls between the standard classical

between two asymmetric-top rotor molecules.””*" It was

found, by comparison against the full-quantum calculations,
that MQCT is reasonably accurate and much less computa-
tionally expensive. It enables calculations for larger molecules
and higher collision energies than was possible before. A user-
ready general computer code MQCT was released a few years
ago.”

It is now well established that at high collision energies the
results of MQCT are very close to the full-quantum
results.””*"?>?%*! At lower collision energies, dominated by
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Feshbach resonances, MQCT is less accurate but still §ives a
qualitatively correct description of the collision process.” One
phenomenon that MQCT cannot describe in principle is
quantum tunneling that is important for the formation of
“shape” resonances, but this effect is expected to be less
relevant for larger and heavier collision partners. In the work
done so far, MQCT was applied mostly to the rotational
transitions and to the simplest vibrational transitions in
diatomic molecules.””*’ More work is certainly needed to
expand MQCT to the vibrational transitions in triatomic
molecules and to the coupled rotational—vibrational transition
processes.

Importantly, mixed quantum/classical theory represents a
general framework that permits the development and testing of
new computational methodologies for the description of
collisional energy transfer. For example, a very efficient
decoupling scheme was recently proposed,”” which permits
to run approximate MQCT calculations for a fraction of the
numerical cost of the fully coupled MQCT. This method,
named adiabatic trajectory approximation (AT-MQCT), was
found to be reliable for H,O + H, rotational energy transfer
(including excitation and quenching of both collision partners)
and for C¢Hg + He rotational excitation and quenching in a
broad range of rotational excitations and collision energies.”"
One goal of this paper is to expand AT-MQCT to the most
general and complex case of asymmetric top + asymmetric top,
required for the treatment of molecule + molecule collisions,
such as H,O + H,O collisions. It should be stressed that no
full-quantum scattering results are available for this case, and
no quantum codes can handle it, to the best of our knowledge.
Therefore, we present a comparison of AT-MQCT versus the
fully coupled CC-MQCT method for H,O + H,O collisions.
Collisional energy transfer in this molecular system is
important, in particular, for interpretation of astrophysical
observations of molecular species in cometary comae*" and in
atmospheres of icy planets such as Jupiter’s moons.”> Another
goal of this paper is to add AT-MQCT to the suite of
MQCT_2022 codes (for all 10 system types), to offer a
general approach and an efficient computer code for the
treatment of rotational transitions in any molecule + molecule
system, for potential users in the fields of astrochemistry,
atmospheric chemistry, and chemical kinetics in general. Being
a time-dependent method, MQCT can provide very useful
physical insight into the dynamics of collisional energy transfer
in a variety of molecular systems and processes. For this, we
present a performance study of AT-MQCT versus CC-MQCT
and versus the full-quantum MOLSCAT calculations. More-
over, this paper can also be used as a brief user’s guide for the
potential users of the MQCT 2022 code. A full version of the
user manual is provided in the Supporting Information.

For the sake of completeness, we outline the MQCT
equations of motion for classical and quantum degrees of
freedom. Rigorous derivation of these formula can be found in
the recent literature.”>>>**** A laboratory-fixed reference
frame is employed to describe classically the relative motion of

two collision partners. Vector R connects centers of mass of
two collision partners and is described by its length R and
azimuthal angle @ that determines the scattering angle in the
equatorial plane (the polar angle is not needed because MQCT
trajectories are restricted to one plane due to the cylindrical
symmetry of the mean-field potential). R and @ are classical
degrees of freedom, and their evolution is driven by the
following classical-like equations of motion (where Py and Pg
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are generalized momenta associated with R and @,
respectively):***
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Multiple sums in eqs 3 and 4 go over all quantum states of

the system. Enﬂ// terms correspond to energy differences
between the initial (lower index) and final (upper index)
internal states of the system, say rotational or ro-vibrational
states with energies E, and E, .. Index m labels projections of
molecular angular momentum j onto molecule—molecule axis
R (which is used as quantization axis z in the body-fixed
reference frame). Time evolution of quantum states is
described in the so-called body-fixed reference frame, the
rotating frame tied to molecule—molecule vector R. Probability
amplitudes a,,,(¢) for molecular quantum states (rotational and
ro-vibrational) evolve accordin§ to the following quantum-like
system of coupled equations:”*’
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Summation in the first term of this equation includes
quantum state-to-state transitions, within given m, driven by
potential coupling matrix MZ that depends parametrically on
R (omitted for the sake of clarity). This matrix is real-valued,
time-independent, and diagonal in m (also omitted for the sake

of clarity):

M} (R) = (¥,(A, AIV(R, Ay AD(A, ALY (6)

Wave functions ¥,(A;, A,) and ¥,.(A,, A,) correspond to
the initial and final states, respectively. They describe rotations
of two collision partners relative to the molecule—molecule
axis R using a set of Euler angles A = {a;, §, 1} and
A, = {a,, B,, 1,} for molecules 1 and 2, respectively. Potential
energy surface V(R, A;, A,) is expressed through the same
variables. The second term in eq S5 describes transitions
between the rotational states with Am = +1, driven by classical
orbital angular velocity ®, which is the Coriolis coupling effect.

https://doi.org/10.1021/acs.jpclett.2c03328
J. Phys. Chem. Lett. 2023, 14, 817—-824
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To conduct a meaningful test of the cost of MQCT
calculations in comparison with the cost of full-quantum
calculations, we picked the H,O + H, system, because the full-
quantum CC calculations can be carried out for this system
type using the standard code MOLSCAT***” and because it
was shown that CC-MQCT and AT-MQCT give reliable
results for these collision partners.”” Thus, for the H,O + H,
system, we carried out MOLSCAT calculations at a total
energy of 500 cm™" with a fixed total angular momentum Jror
of 100 but increased the number of rotational states included
in the basis. The largest MOLSCAT calculations we finished
had 140 states of the H,O + H, system with the following
maximum values: j; = 13 (for water) and j, = 4 (for hydrogen)
and E,,, = 2000 cm ™" (energy of the upper state in the basis).
A set of close to 20 independent runs was performed. The
serial version of MOLSCAT was used (very long runs using
one processor), and the NERSC Cori Haswell computer
system was employed (2.3 GHz Intel Xeon Processor, 128 GB
of memory). MQCT calculations were done in parallel using
10 processors of the same computer system at the same
collision energy and with the same Jop (which corresponds to
the maximum impact parameter of ~25 Bohr and requires 101
MQCT trajectories). Again, the number of rotational states in
the basis set was varied, reaching 200 states as the maximum
for CC-MQCT and 300 states as the maximum for AT-MQCT
calculations. This was sufficient to see the trends.

It is important to stress that the state-to-state transition

matrix Mﬁ in MQCT formalism does not depend on orbital
angular momentum /. MQCT trajectories with different values
of / are propagated independently and use the same matrix, for
any choice of /. This is different from the full-quantum
method, in which the size of the matrix depends on Jor. The
only common physical indicator, present in both MQCT and
MOLSCAT calculations, is the number of states in the system.
Therefore, the comparison of performance in Figure 1 is
presented as a function of the number of rotational states.
From Figure 1, we can see that when the number of states
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Figure 1. Numerical cost of two versions of MQCT calculations vs
full-quantum calculations (MOLSCAT), for molecular systems of
increasing complexity (number of rotational states). Calculations are
done using the H,O + H, system, and a projection for the H,O +
H,O system is made.
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exceeds 100, the cost of full-quantum calculations increases as
N¢ where N is the number of rotational states. In the range of
N ~ 150, the cost of full-quantum calculations is 4 orders of
magnitude higher than the cost of AT-MQCT. It should also
be emphasized that MQCT calculations are intrinsically
parallel and can be carried out using <1000 processors with
minimal communication overhead, which reduced the wall-
clock time by an additional 3 orders of magnitude. In contrast,
the full-quantum calculations are hard to parallelize. While
custom versions of parallel MOLSCAT exist among users, the
standard version we used was serial.

In the range of N ~ 300 states, the cost of AT-MQCT
increases as N°, which is a much more favorable scaling law
compared to that of the full-quantum calculations (see Figure
1). For example, for the H,0 + H,O system, we found that
AT-MQCT calculations with N > 1000 states remain feasible.
In Figure 1, we also projected the cost of calculations for the
H,O + H,O0 system at various temperatures, assuming that the
basis set size should be on the order of 4kT, or Ey = 4kT,
where Ey is energy of rotational state number N in the H,O +
H,O system (see below).

Next, we conducted a test of the accuracy of the
approximate AT-MQCT method by comparing its results
against the results of the fully coupled CC-MQCT method.
For these calculations, we included 12 states of the “target”
water molecule up to j, = 3 (six para states and six ortho states)
combined with 28 states of the “quencher” water molecule up
to j, = 6 (14 para states and 14 ortho states). Due to symmetry
considerations, four independent calculations can be carried
out in this case for the p-target + p-quencher, p-target + o-
quencher, o-target + p-quencher, and o-target + o-quencher
combinations [84 channels of the H,O + H,O system formed
in each case (six states of the target combined with 14 states of
the quencher)], with a total rotational energy of <620 cm™'.
This rotational basis set is not that large, considering the well
depth of the H,0O + H,0O PES (on the order of 1800 cm™),
but is sufficient to compare two versions of MQCT.
Convergence of cross sections with respect to the basis set
size is within 40% on average.

For the water + water system, we used the CCpol-8sf[2014]
PES from refs 48 and 49. This PES was expanded over the
basis set of analytic functions listed in Table 8 of the user
manual (see the Supporting Information) for SYS TYPE = 0
and using the keyword IDENTICAL PES = YES (see page 21
of the user manual) to take advantage of the PES symmetry
imposed by two identical collision partners. We retained 28
symmetrized expansion terms (4, fi1, 4y, i, 4) that contain 84
individual functions included in the expression for SYS TYPE
= 0 in Table 8 of the user manual. For example, a symmetrized
expansion term with y; = 4 and p, = 2 contains four individual
functions expressed through the products of D-functions for
collision partners one (1) and two (2): with u(1) = +4 and
u(2) = +2, with u(1) = —4 and p(2) = =2, with (1) = +4 and
u(2) = =2, and finally with (1) = —4 and u(2) = +2. This
expansion has 23 unique coeflicients listed in Table 1 and
includes a majority of the dipole and quadrupole interaction
terms (A; and 4, up to 2) as well as some higher-order
interaction terms (4, and A, up to 4). The largest value of the
total A included was 6. The definition of D-functions is given
on page S of the user manual (see the Supporting
Information).

The dependencies of 23 expansion coefficients on the
molecule—molecule distance v, , ; , 4(R) are plotted in Figure

1AM,

https://doi.org/10.1021/acs.jpclett.2c03328
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Table 1. Values of the Expansion Coeflicients for the PES of
the H,0 + H,0 System at R = 8.09 Bohr”

(/11: Hu /12; Hoy /1) U/l,y,lzm/l (Cm_l)

=0 (0,0,0,0,0) —4774.19
=1 (1,0,0,0,1) 544.31
(1,0,1,0,0) —131.69
(1,0,1,0,2) —14250.92
=2 (2,0,1,0,3) —342.14
(2,2,1,0,3) 4548.47
(2,2,2, 2, 4) 1953.05
(2,2,2,0,4) —128.63
=3 (3,0,0,0,3) —68.52
(3,0,1,0,4) 839.36
(3,0,2,2,5) 407.71
(3,0,3,0,6) —107.84
(3,2,0,0,3) 137.84
(3,2,1,0,4) —1112.08
(3,2,2,+2,9) —540.28
(3,2, 3, +2,6) —188.47
(3,2,3,0,6) 142.53
Al =4 (41 0! 1: 0) 5) —232.47
(4,0,2,2,6) —147.79
(4,2,1,0,5) 206.02
(4,2,2, +2, 6) 130.58
(4,4,1,0,5) 175.29
(4, 4,2, £2, 6) 108.51

“The normalization of expansion functions is given in Table 8 on page
22 of the user manual (see the Supporting Information).

2. Isotropic term vygp0o(R) has a minimum near R = 6.6 Bohr
and a well depth of ~10000 cm™". Interestingly, the dipole—
dipole interaction term vyq,4,(R) is approximately 3 times

20000 —0,0,0,0,0 —1,0,0,0,1 1,0,1,0,2
—2,2,1,0,3 —2,2,224 —3,0,1,0,4
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Figure 2. Radial dependence of 23 expansion coefficients v At it 2(R)

for the H,O + H,O interaction potential. The four most important
expansion terms are labeled, and the largest 12 are labeled by

A AopinA.

820

larger. The next most important term is vy,;03(R) that
corresponds to the quadrupole—dipole interaction, and the
next vyy,(R) corresponds to the quadrupole—quadrupole
interaction. Their magnitudes are roughly 3 and 6 times
smaller, respectively, than the dipole—dipole term but are still
comparable to the isotropic interaction term. The next most
significant is hexapole—dipole term v3,,04,(R), followed by the
group of v30;04(R), V32225(R), V30205(R), and v45505(R) terms
that include interactions up to the octupole. These are ~1
order of magnitude smaller than the dipole—dipole term. All
23 dependencies vﬂlﬂlﬂzﬂzﬂ(R) are shown in Figure 2, and the 12

largest terms are labeled. The values of expansion coefficients
near R = 8 Bohr are listed in Table 1. One can see that the
magnitude of the largest term (dipole—dipole) is close to
14251 cm™!, while that for the smallest included term is only
~68.5 cm™!.

To quantify the accuracy of PES expansion, we computed by
direct numerical integration the values of matrix elements for a
small subset of states (0000, Oooli, 000202 111000y 111111
111202 2020000 202111, and 20,2¢,) at two molecule—molecule
distances (near R = 6 and 8 Bohr). Direct integration is
numerically expensive and is impractical for calculations of the
entire matrix for the H,O + H,O system, but it can be
employed to obtain a set of benchmark data for a smaller
subset of transitions. In Figure 3, we plot a comparison of

1.LE+03
1,1, (2.0) »o,,..o.,.(o.(n’,"/
1,105 (1,0) >O\,:,IH(I,0).,"
I,.Eml.‘.-l)—d)‘,ul,,(L-I)/.’/
1120 (3,1) = Oggly (1.1), o*
= 1.LE+02
.2
%)
=1
<
o
>
[84]
A
A 1.LE+01
1LE+00 *
1.E+00 1.E+01 1.E+02 1.E+03

Direct Integration

Figure 3. Comparison of matrix elements for the H,O + H,O system
computed analytically (using PES expansion) vs those computed by
direct numerical integration. State-to-state transitions that correspond
to the four largest matrix elements are labeled. The numbers in
parentheses correspond to the initial and final values of the overall (j,
m).

matrix elements obtained by direct integration versus those
computed analytically using PES expansion. We can see that
the magnitudes of the larger matrix elements exceed 500 cm™"
and those are computed very accurately. Many matrix elements
fall in the range between 10 and 200 cm™}, and for those, the
PES expansion also works reasonably well. However, smaller
matrix elements (<10 cm™') indicate visible errors due to
truncation of the PES expansion. One option is to recompute
these elements with a larger PES expansion (which can be
numerically challenging), and another option is to neglect

https://doi.org/10.1021/acs.jpclett.2c03328
J. Phys. Chem. Lett. 2023, 14, 817—-824
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Figure 4. Comparison of state-to-state transition cross sections (in units of square angstroms) computed by the fully coupled CC-MQCT method
(black bars) and the approximate AT-MQCT method (red bars). For the “target” molecule, four transitions for para water are presented in the top
row and another four transitions for ortho water are presented in the bottom row. The horizontal axis lists various state-to-state transitions in the

“quencher” molecule (64 transitions total).

them during the propagation of MQCT trajectories (on the
basis of their relatively small values).

On the basis of the analysis presented above, the state-to-
state transition matrix for the H,O + H,O system was analyzed
and truncated to retain only the matrix elements with
magnitudes of >10 cm™'. This resulted in 100319 matrix
elements (transitions) included in the propagation of the
equations of motion (eqs 1—5) presented above. Expansion
coefficients were computed on a grid of 171 points that was
chosen to be denser in the short-range region (AR = 0.1 Bohr
near R = 4 Bohr) and sparser in the long-range region of the
PES (AR = 2.5 Bohr near R = 100 Bohr). Matrix elements for
the individual state-to-state transitions were computed on the
same R grid using the formulas of Table 9 of the user manual
(see the Supporting Information). The MQCT code
constructs cubic splines of these data to propagate trajectories.
For the H,0O + H,O collision, we considered one value of the
kinetic energy U = 533 cm™'. The maximum value of the
impact parameter was set at 60 Bohr, and the initial molecule—
molecule distance was 100 Bohr. Values of orbital angular
momentum up to /.. ~ 550 were required. To facilitate CC-
MQCT calculations that become costly in this case, we used a
step Al ~ 19 [keyword DL = 19 (see page 26 of the user
manual)]. This resulted in propagation of 29 MQCT
trajectories for each combination of j and m of the initial
state. Convergence of cross sections with respect to the value
of Al was within the range of 4—8% for different transitions.
Calculations were carried out in parallel using 128 processors
of HPC Raj at Marquette University (AMD Rome 2 GHz
processors, 512 GB of memory). Sixteen processors were used
to propagate each trajectory. To have a meaningful
comparison, both CC-MQCT and AT-MQCT trajectories
were propagated using the same standard RK4 propagator with
a constant time step of 100 au.

Independent sets of calculations were carried out for para—
para, para—ortho, ortho—para, and ortho—ortho combinations
of the rotational states of two collision partners. The
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approximate AT-MQCT calculations were ~3 times faster
than the fully coupled CC-MQCT calculations (using the RK4
propagator with a constant time step of 100 au in both cases).
In Figure 4, the results of the two methods are compared. The
top row gives four examples of state-to-state transitions in para
water, while the bottom row gives four examples of transitions
in ortho water. The vertical axis gives the values of integral
cross sections for state-to-state transitions in the “target”
molecule (in units of square angstroms), while the horizontal
axis lists several possible transitions in the “quencher” molecule
(including both para and ortho water).

Overall, 64 state-to-state transitions of various symmetries
are presented in Figure 4, focusing on transitions between
various excited states of the quencher within the j = 2
manifold. For most of them, the results of the two MQCT
methods are very similar. In particular, for all transitions with
large cross sections (11 transitions in Figure 4), the results of
approximate AT-MQCT are nearly identical to the results of
fully coupled CC-MQCT. Visible differences are found for
those transitions that exhibit small values of cross sections
(only one transition in Figure 4). In some cases, AT-MQCT
slightly overestimates the values of small cross sections, while
in other cases, it slightly underestimates them. Because, overall,
these processes are less important, we can conclude that the
accuracy of AT-MQCT approximation is quite satisfactory. In
the past, a similar good agreement between AT-MQCT and
CC-MQCT was obtained for the H,O + H, system.”’

For the modeling of collisional energy transfer, it is often
necessary to compute the so-called thermally averaged cross
sections for state-to-state transitions in the “target” molecule,
obtained by summation over the final states and averaging over
the initial states of the “quencher” molecule (using the thermal
distribution of quencher states at a given temperature), which
includes both para and ortho states of the quencher combined
with appropriate weights.”> We computed such thermally
averaged cross sections for several para and ortho states of the
“target” molecule assuming a Boltzman distribution of
“quencher” states at 800 K. To take full advantage of AT-

https://doi.org/10.1021/acs.jpclett.2c03328
J. Phys. Chem. Lett. 2023, 14, 817—-824
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MQCT, the adaptive step size procedure specific to this
method was enabled using the keyword AT _ADAPTOL =
0.0005 (see page 12 of the user manual). This resulted in an
acceleration of AT-MQCT calculations by a factor of 76
compared to CC-MQCT calculations. The results of the two
calculations are presented in Figure 5. We see that the two sets
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Figure 5. Comparison of thermally averaged cross sections computed
by the fully coupled CC-MQCT method (black squares) and the
approximate AT-MQCT method (red circles) for several state-to-
state transitions in para and ortho water.

of data are barely distinguishable. The differences we saw in
the individual state-to-state transitions in Figure 4 are largely
washed out by thermal averaging in Figure 5, where the largest
deviation is just slightly more than 1% of the cross section
value. One conclusion is that AT-MQCT is particularly well
suited for the calculations of thermally averaged cross sections.
The second observation is that even in the thermally averaged
cross sections the quantum propensity rules remain important.
Namely, from Figure S, one can notice that all transitions with
odd values of Ak, and Ak, exhibit systematically larger cross
sections, compared to transitions with even values of Ak, and
Ak, that are always smaller, and this is valid for the para and
ortho states of water.

In this paper, we present a new version of the MQCT
program that includes an important addition, an adiabatic
trajectory method or AT-MQCT, in which the propagations of
the equations of motion for classical and quantum parts of the
system are decoupled. This approximate method is much
faster, which enables calculations for larger molecular systems
and at higher collision energies than was possible before.
Because the method is general, it can be applied to any
molecule + molecule inelastic scattering problem. In
MQCT_2022, an adiabatic trajectory approximation is
implemented for all system types up to the most general
case of an asymmetric-top rotor + asymmetric-top rotor
system.

The results presented here for the H,O + H,0O system,
which is one example of an asymmetric-top + asymmetric-top
system, indicate that AT-MQCT is rather accurate for
prediction of state-to-state transition cross sections between
the individual rotational states of two collision partners, and
this is valid for all combinations of state symmetries (such as
the para and ortho states of each collision partner). Moreover,

thermally averaged cross sections obtained by AT-MQCT are
nearly identical to those obtained by the fully coupled MQCT
method (CC-MQCT). The calculations of a database of
thermally averaged cross sections for H,O + H,O collisional
energy transfer, very much in demand in the astrochemistry
community, are ongoing, in which we use the rotational basis
set of 1064 states of the water + water system that includes 28
states of the target molecule up to j, = 8 combined with 38
states of the quencher up to j, = 10, in each of the four
independent calculations for the ortho and para combination.
The results will be reported elsewhere.

A summary of MQCT 2022 code capabilities is presented
herein, and a detailed user manual, including the list of all
keywords for the expert-level calculations, is provided in the
Supporting Information. In addition to AT-MQCT, the new
version of the MQCT package includes many fixes (found in
the previous version of the code) and several major
improvements for efficiency and portability. See the user
manual for further information. At present, the code is
available from authors by reasonable request. In the near
future, the code will be made available to the community
through GitHub.
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The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jpclett.2c03328.

Complete and updated user manual for MQCT 2022,
which includes a description of all system types available
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PES, and a summary of equations used to compute
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