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The ensemble average of noninteracting particles in a nonlinear oscillator system is investigated. Depending on
the initial phase-space distribution, the nonlinearity-induced dephasing mechanism can lead to temporal decays
of the average particle position that can be quite different from the standard exponential decay. In fact, the
approach to the equilibrium can be Gaussian or even nonmonotonic in time. In the long-time limit, it is possible
to construct a single differential equation for the time evolution of the average position. Unlike the infinite set of
coupled nonlinear differential equations derived from the standard approach based on the Liouville equation, this
equation can be even linear. We also show that the predicted dephasing mechanisms have their direct counterpart
in the corresponding dynamics of quantum mechanical wave packets.
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I. INTRODUCTION18

While the time evolution of expectation values of quantum19

mechanical single-particle systems can rarely be predicted by20

a single particle orbit associated with the classical mechani-21

cal limit, the corresponding averages of classical mechanical22

ensembles are more useful as they reveal a much closer23

connection to quantum mechanics. For example, the average24

position of a suitable classical mechanical ensemble follows25

the quantum expectation value for short times in the chaotic26

domain and even for longer scales if the dynamics is regular27

[1]. The classical-quantum discrepancies are most significant28

at long times, at which the underlying discrete energy struc-29

ture of the quantum system can become relevant. In this case,30

the initial collapse associated with dephasing of the states31

of different energy can even be followed by a quantum me-32

chanical revival, as quasiperiodic quantum states can return33

arbitrarily close to their initial state [2–4].34

The dephasing stage and the approach to equilibrium is an35

important issue in molecular and atomic spectroscopy [5,6],36

and in the condensed matter physics of mesoscopic devices.37

In some cases, it can be associated with a loss of coherence,38

reflected by the reduction of the off-diagonal elements of a39

density matrix. The rate of the dephasing process can also40

provide us with information about the energy level structure in41

the system. For example, in many-body physics, the dephas-42

ing of ensembles of particles can be used as a direct probe of43

the strength of the interparticle interaction. In most of these44

examples, the processes are usually characterized by a decay45

that is exponential in time [7,8]. The most prominent example46

of such an exponential decay is related to the famous Fermi47

golden rule.48

Recently, the possibility of a temporal Gaussian decay was49

discussed by Izrailev and co-workers [9,10] in the context of50

the return probability for closed systems of interacting parti-51

cles. These authors showed that a new Gaussian decay regime 52

can exist before the usual long-time exponential behavior sets 53

in. Whether exponential or Gaussian dephasing, each decay 54

discussed in the literature so far is characterized by monotonic 55

decreases in time. 56

In this work, we introduce the possibility of a different 57

class of dephasing mechanisms that can lead even to non- 58

monotonic decays. We demonstrate this for the long-time 59

evolution of the average position of an ensemble of noninter- 60

acting particles in a nonlinear (quartic) oscillator potential. To 61

provide three examples, if the initial positions of the particles 62

are Lorentzian distributed, we reproduce the usual exponential 63

decay. However, if this distribution is Gaussian we observe a 64

Gaussian decay, and if the particles are distributed uniformly 65

over a certain range, the decay can be characterized by a series 66

of partial revivals. In fact, our proposed theoretical description 67

for these ensemble averages suggests that the nonlinearity 68

provided by a cubic oscillator is sufficiently general to permit 69

nearly any desired type of time decay behavior of the average 70

position if the initial spatial distribution is designed appropri- 71

ately. 72

The traditional phase-space method to study the approach 73

to equilibrium is based on the Liouville equation, which, 74

however, leads in this case to an infinite set of coupled differ- 75

ential equations for the moments of products of the position 76

and momentum variables. To compute the average position is 77

practically impossible as any truncation scheme applied to this 78

infinite set leads to large errors and therefore does not present 79

a practical way to progress. 80

This paper is organized in the following way. In Sec. II, 81

our nonlinear system and its induced dephasing of ensemble 82

average are defined and discussed. In Sec. III, we perform 83

a harmonic decomposition of a representative single orbit of 84

the cubic oscillator. In Sec. IV, an analytical investigation of 85

the long-time behavior of the ensemble-averaged position is 86
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FIG. 1. The time evolution of the (Lorentzian) ensemble’s average position X (t ), velocity dX/dt , and acceleration d2X/dt2, as well
as a phase-space portrait {X (t ), dX/dt}. We averaged over 20 000 orbits with X0 = −3 and �X0 = 0.1. Each single-particle orbit fulfills
d2x/dt2 = −x3 with x(t = 0) = x0 and dx/dt (t = 0) = 0.

presented. In Sec. V, we construct differential equations for87

the ensemble averaged position for the Lorentz initial spatial88

distribution. In Sec. VI, we suggest that classical mechanical89

based decay mechanisms have their direct counterpart in the90

time evolution of quantum mechanical wave packets. Finally91

in Sec. VII, a summary and outlook into future challenges are92

presented.93

II. NONLINEARLY INDUCED DEPHASING94

OF ENSEMBLE AVERAGES95

It is well known that the frequency of a particle moving in96

a simple harmonic oscillator potential does not depend on its97

initial elongation x0. As a result, in a noninteracting, multipar-98

ticle dynamics, all particles take the same time for a round trip99

along their respective elliptical phase-space orbits. This means100

that if we introduce spherical coordinates (radius and angle),101

the corresponding angular speed is identical for any particles.102

This means they stay “in phase” and the time evolution of103

the ensemble’s average position X (t ) is identical to that of a104

particular single orbit x(t ). In this work, we use the lower-case105

symbol x(t) to denote the position of a single particle and106

the upper-case symbol X (t ) for the corresponding ensemble107

average of position. Unlike a harmonic potential, if the oscil-108

lator’s potential energy is quartic, such as V (x) = x4/4, each109

orbit (initially at rest) has its own (initial position dependent)110

period Tperiod(x0) and the orbits can get out of phase, leading to111

a nontrivial evolution of X (t ), which can be obtained numeri-112

cally [11–14]. More specifically, we assume that the periodic113

time evolution of each orbit is governed by d2x/dt2 = −x3114

with the initial position x(t = 0) = x0 and vanishing initial115

velocity, dx/dt (t = 0) = 0. Any general prefactor of −x3 can116

be absorbed into a rescaled time. Due to the nonlinear nature117

of the cubic restoring force, useful closed-form analytical118

solutions for the single-particle orbits x(t ; x0) exist but they119

are complicated as we discuss in Appendix A.120

The average position X (t ) can be obtained from the single-121

particle orbits x(t ; x0) as122

X (t ) =
∫

dx0 ρ(x0) x(t ; x0), (2.1)

where ρ(x0) denotes the probability distribution of the set123

of initial positions x0. The numerical data for X (t ) were ob-124

tained as an average of several ten thousand individual orbits,125

whose initial positions were Lorentz distributed according126

to ρL(x0) ≡ (π�X0)−1/[1 + (x0 − X0)2/�X 2
0 ], which is cen-127

tered around a given average position X0 with a spatial width 128

�X0. 129

To the best of our knowledge, the only systematic way 130

to derive the equations of motion for X (t ) is based on the 131

classical mechanical Liouville equation for the underlying 132

phase-space density. As we show in Appendix B, the so- 133

lution for X (t ) is governed here by an infinite coupled set 134

of first-order differential equations for the average values of 135

all products of the position and the momentum. However, 136

these coupled equations would require a truncation to be 137

numerically feasible. We have shown in Appendix B that 138

these truncation schemes distort the actual solution X (t ) sig- 139

nificantly as the resulting equation cannot even predict the 140

short-time behavior [associated with only the first few oscilla- 141

tion cycles of X (t )] reliably. 142

To obtain X (t ) for all times, we have therefore solved the 143

differential equation for each initial condition x0 numerically 144

and then used the integral in Eq. (2.1) to average over all solu- 145

tions to compute X (t ). In Fig. 1 we display a typical example 146

for the initial average X0 = −3 and width �X0 = 0.1. 147

As the orbits get out of phase with each other, the resulting 148

amplitude of the average position X (t ) decays in time. How- 149

ever, it is important to note that this decay is entirely different 150

from that of any damped single orbit solution, which would 151

be described by d2x/dt2 = −x3 − κdx/dt . In this equation, 152

the period would increase significantly as the particle motion 153

slows down. In contrast, Fig. 1 clearly suggests that the period 154

in the decaying function X (t ) remains the same for all times. 155

The nonharmonic and nontrivial nature of the average X (t ) 156

becomes most apparent in its second derivative d2X/dt2 as 157

shown in the figure. During the first early time oscillations 158

its structure is rather different from the long-time behavior, 159

which appears to become more (modulated) sinusoidal. The 160

early time nonharmonic nature is also apparent in the square- 161

like shape of the parametric orbit in (X, dX/dt ) phase space, 162

which approaches an inward elliptical spiral only for long 163

times. 164

III. HARMONIC DECOMPOSITION OF A SINGLE 165

ORBIT OF THE CUBIC OSCILLATOR 166

While the complicated expressions for the orbits 167

x(t ; x0, p0) of the cubic oscillator of Appendix A cannot 168

provide any new intuitive insight into the solution structure 169

or the amount of deviation from sinusoidal solutions, it offers 170
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an alternative algorithm to the direct numerical solution171

integration technique for differential equations.172

We will show in this section that the periodicity of the173

solution permits us to obtain a rather rapidly converging ex-174

pansion. In order to follow a more systematic approach where175

the error can be directly controlled, we can use a harmonic176

expansion, which is suggested by the periodic nature of the177

orbits x(t ; x0, p0),178

x(t ; x0, p0) = �n[An(x0, p0) sin(nω t )

+Bn(x0, p0) cos(nω t )], (3.1)

where the coefficients follow from the Fourier integrals179

An ≡ (2/T )
∫ T
0 dt x(t ; x0, p0) sin(n ωt ) and Bn ≡ (2/T )180 ∫ T

0 dt x(t ; x0, p0) cos(n ωt ). The period of any orbit with181

energy E ≡ p20/2 + x40/4 is given by T = 2
∫ xm
−xm

dx[2(E −182

x4/4)]−1/2, where the maximum elongation is xm ≡ (4E )1/4.183

The energy dependence of the corresponding frequency184

ω ≡ 2π/T follows as ω(E ) = 1.19814E1/4 as shown in185

Appendix A.186

If we introduce the phase-space angle θ , then x0 ≡187

(4E )1/4 cos (θ )1/2 and p0 ≡ (2E )1/2 sin(θ ), all expansion co-188

efficients have the same universal energy dependence and we189

obtain the expansion190

x(t ; x0, p0) = E1/4�n=odd[an(θ ) sin (nω t )

+ bn(θ ) cos (nωt )]. (3.2)

This can lead to a significant simplification if either x0191

or p0 vanishes. For example, for x0 = 0, corresponding192

to θ = π/2, we can solve d2x/dt2 = −x3 numerically193

and derive from the Fourier integrals the expressions194

for the lowest-order coefficients a1(π/2) = 1.350 58,195

a3(π/2) = −6.088 11 × 10−2, a5(π/2) = 2.631 14 × 10−3
196

and a7(π/2) = −1.165 34 × 10−4, while all bn(π/2)197

vanish. Similarly, for p0 = 0, corresponding to θ = 0,198

we find a remarkable symmetry. Here all an(0) vanish and199

b1(0) = a1(π/2), b3(0) = −a3(π/2), b5(0) = a5(π/2),200

and b7(0) = −a7(π/2). The coefficients therefore fall201

off rather rapidly with increasing order, which suggests202

that the lowest-order approximation for x(t ; x0, p0) ≈203

E1/4[a1(θ ) sin(ωt ) + b1(θ ) cos(ωt )] is qualitatively not204

so bad.205

In the case of p0 = 0, we can therefore model each single-206

particle trajectory approximately by its first few terms in the207

harmonic expansion,208

x(t ; x0) = 2−1/2x0[b1 cos(ωt ) + b3 cos(3ωt )

+ b5 cos(5ωt ) + · · · ] (3.3)

with b1 = 1.350 58, b3 = 6.088 11 × 10−2, and b5 =209

2.631 14 × 10−3. Here the frequency ω = ω(x0) is a210

function of the initial position x0; see the discussion above.211

The coefficients fall off rather rapidly with increasing212

order, which suggests that an approximation to x(t )213

based on only the lowest three terms might be sufficient.214

For example, for the initial condition t = 0 we obtain215

x(t = 0; x0) ≈ 2−1/2x0(b1 + b3 + b5) = 0.999 914x0, which216

is excellent compared to the exact value x0.217

If we insert the expansion (3.3) for each single orbit into218

Eq. (2.1) based on Lorentz distribution ρ(x0), we obtain for219

the position average X (t ) the following expression: 220

X (t ) =
∫

dx0 ρ(x0) x(t ; x0)

=
∫

dx0 ρ(x0) 2
–1/2x0[b1 cos(ωt ) + b3 cos(3ωt )

+ b5 cos(5ωt ) + · · · ]
= X0 2

–1/2{b1 exp(–	t ) [cos(
t ) + 	 sin(
t )/
]

+ b3 exp(–3	t )[cos(3
t ) + 	 sin(3
t )/
]

+ b5 exp(−5	t )[cos(5
t ) + 	 sin(5
t )/
]

+ · · · }. (3.4)

Note that for a cubic oscillator (see Appendix A) the fre- 221

quency ω(x0) = 2π/Tperiod = � x0 happens to be just a linear 222

function of the initial elongation x0, where � ≡ 0.8472. This 223

relationship permits us to perform the integration over all 224

positions x0. In Eq. (3.4) we have also introduced the decay 225

constant 	 ≡ ��X0, which depends linearly on the initial 226

spatial width �X0 of the ensemble. The central frequency 227

of X (t ), defined here as 
 ≡ �|X0|, is related to the initial 228

average position of the ensemble. 229

IV. ANALYTICAL ANALYSIS OF THE LONG-TIME 230

BEHAVIOR OF X (t ) AND NONMONOTONIC DECAYS 231

Higher order terms in Eq. (3.4) decay faster than the first 232

term. As a result, in the long-time limit only the first term 233

survives. Using this fact, we can consider the long-time be- 234

havior of the ensemble average position of arbitrary initial 235

position distribution ρ(x0). Using the substitution ω ≡ � x0, 236

we can replace the integration over the (weighted) initial posi- 237

tions x0 by the frequency integral X (t ) = �−2 ∫ dω ωρ(x0 = 238

ω�−1)2−1/2b1 cos(ω t ), which then can be re-expressed as 239

X (t ) = 2−1/2b1�
−2d/dt

× Im

{∫
dωρ(x0 = ω�−1) exp(iωt )

}
. (4.1)

This form suggests that the ensemble’s approximate time 240

evolution of X (t ) is directly related to the time derivative 241

of the imaginary part of the Fourier transformation of the 242

probability distribution of the initial positions. Equation (4.1) 243

provides a unique one-to-one mapping of the initial den- 244

sity ρ(x0) to the resulting decay of X (t ). This relationship 245

might be even (within some mathematical constraints) fully 246

reversible. This means that each ρ(x0) has its own unique 247

dephasing mechanism. This result allows us to study various 248

interesting decay patterns in more generality. For example, let 249

us examine the decay law associated with the three frequently 250

used probability densities given by Lorentz, Gaussian, and 251

uniform distributions. Each is centered around the average 252

position X0 and has a spatial width proportional to �X0, 253

ρL(x0) ≡ (1/π )�X−1
0 /

[
1 + (x0 − X0)

2/�X 2
0

]
, (4.2a)

ρG(x0) ≡ (2π )−1/2�X−1
0 exp

[−(x0 − X0)
2/(2�X0)

2
]
,

(4.2b)

ρU (x0) ≡ (2�X0)
−1θ (x0 − �X0)θ (x0 + �X0), (4.2c)
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FIG. 2. Comparison of the time evolution of the approximate ensemble averages XL(t ), XG(t ) and XU(t ) with the exact averages over 10 000
orbits of the cubic nonlinear oscillator, where X0 = −40 and �X0 = 2.

where θ (x) ≡ x/|x| + 1 denotes the Heaviside unit-step func-254

tion. For each case, the corresponding integral (4.1) can be255

performed fully analytically, leading to the following three256

decay laws:257

XL(t ) = X0 exp(−	t )[cos(
t ) + 	 sin(
t )/
], (4.3a)

XG(t ) = exp(−	2 t2/2)[X0 cos(
t ) − t 	2/� sin(
t )],

(4.3b)

XU (t ) = X0 sinc(	t ) [cos(
t ) − sinc(
t )]

+X0 sinc(
t )cos(	t ), (4.3c)

where sinc(x) ≡ sin(x)/x and where again the decay constant258

is 	 ≡ ��X0 and the central frequency is 
 ≡ �X0.259

In general, the usual inverse scaling relationship between260

the variances of the frequency and temporal distributions261

suggests that an increasing frequency width (measured by262

the spatial width �X0) leads to a decreasing temporal width263

(measured by the inverse of the decay constant 	). This264

suggests the proportionality 	 ∼ �X0 for any general initial265

distribution ρ(x0). For the three specific examples discussed,266

we found consistently for the decay constant 	 = 0.8472�X0.267

To examine the accuracy of these predictions, in Fig. 2268

we have compared the approximate solutions XL(t ), XG(t )269

and XU(t ) with the exact ensemble averages over the true270

orbits associated with the quartic potential V (x) = x4/4. The271

agreement even for shorter times is quite impressive.272

While most decay processes based on various dephasing273

mechanisms follow an exponential decay, we see that depend-274

ing on the initial distribution of the positions, also a more275

rapid Gaussian decay process is possible. While Gaussian276

distributions for all kinds of random variables are routinely277

being studied, to the best of our knowledge, the possibility of278

a temporal Gaussian decay has been considered only twice in279

the literature [9,10]. The most interesting decay form, how-280

ever, occurs for initially uniformly distributed positions. Here281

the dephasing of all particles leads to a nonmonotonic decay282

that is characterized by periodic reversals.283

It is rather interesting that an irreversible dephasing mech-284

anism based on a continuous distribution of particles can lead285

in some cases even to a nonmonotonic decay law for the286

decaying envelope function of X (t ). It is certainly well known287

that in quantum mechanical systems collapses can be accom-288

panied with revivals [5,6], which are a direct consequence of289

the underlying discrete energy level structures of some quan-290

tum systems. However, in our classical mechanical system 291

there is no discreteness as we have a continuous distribution 292

of all time scales, each given by Tperiod = 7.416 298 71x−1
0 . 293

The asymptotic long-time behavior of XU(t ) in Eq. (4.3c) is 294

given by XU(t ) = X0 sinc(σ t ) cos(λt ), where σ ≡ min(	,
) 295

and λ ≡ max(	,
). This means that the characteristic revival 296

times occur with a period of 2π/σ . This characteristic time 297

scale for ρU(x0) is entirely different from the Poincaré reversal 298

time, which would characterize the dynamics if the number of 299

orbits was chosen finite [15]. 300

V. DIFFERENTIAL EQUATIONS FOR THE LORENTZ 301

DISTRIBUTED INITIAL CONDITIONS 302

Let us examine the Lorentz initial condition in more detail. 303

As the orbit {x(t ), v(t )} shown in Fig. 1 does not cross itself, 304

X and dX/dt could be considered as phase-space variables, 305

whose evolution might be describable by two first-order dif- 306

ferential equations. We therefore feel motivated to search for 307

differential equations that could describe the long-time behav- 308

ior of X (t ). 309

Equation (3.4) predicts that the exponential decay rates 310

increase linearly with the increasing (odd) order of the har- 311

monics of 
. This suggests that the long-time behavior is 312

described by just the first two terms that are proportional to b1. 313

This long-time function, proportional to exp(−	t )[cos(
t ) + 314

	 sin(
t )/
], fulfills the second-order differential equation 315

of a simple linearly damped harmonic oscillator, 316

d2X/dt2 = −2	 dX/dt − (	2 + 
2)X. (5.1)

If we include the third-order harmonic term with frequency 317

3
 in X (t ) of Eq. (3.4), then this solution is the sum of the 318

orbits of two harmonic oscillators with frequencies 
 and 3
 319

and dissipation rates 	 and 3	, respectively. While this seems 320

to be just a linear superposition of two solutions, X (t ) no 321

longer satisfies a second-order differential equation. However, 322

one can derive that X (t ) satisfies a fourth-order differential 323

equation, which is (surprisingly) again linear. It takes the form 324

d4X/dt4 = −8	dX 3/dt3 − 2(11	2 + 5
2)dX 2/dt2

− 24(	2 + 
2)	dX/dt − 9 (	2 + 
2)2X. (5.2)

Its structure is obviously richer than the simple gener- 325

alization of Eq. (5.1), which is not even unique and, for 326

002200-4
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example, could also read d4X/dt4 = −2	dX 3/dt3 − (	2 +327


2) dX 2/dt2.328

The rather slow fall off of the Lorentzian density329

ρL(x0) with increasing |x0| leads to the interesting fact330

about a discontinuity in the second derivative of X (t ).331

In fact, the initial average acceleration d2X/dt2(t = 0) =332 ∫
dx0ρ(x0)d2x/dt2(t = 0; x0) = − ∫

dx0ρ(x0)x30 is not finite.333

This means that one cannot use t = 0 as an initial condition334

for the fourth-order differential equation (5.2). However, this335

is not a contradiction as this equation is valid anyway only in336

the long-time limit when d2X/dt2 is finite.337

As a last point, we should remark that the observation338

that a simple second-order differential equation can govern339

the long-time ensemble dynamics is not at all obvious or340

even expected. Let us illustrate this for an ensemble of N341

different linear oscillators, whose positions are governed by342

Hooke’s law d2xj/dt2 = −
2
j xj with j = 1, 2, . . . ,N . While343

for N = 1, a single differential equation is trivially sufficient344

to describe the average position X (t ) ≡ x1(t ), for the N = 2345

system, the position X (t ) ≡ [x1(t ) + x2(t )]/2 requires already346

a fourth-order equation. In order to derive the equation for the347

N-oscillator average X (t ) ≡ N−1�N
j xj(t ) for a general N, we348

can first construct the set of N linear differential equations for349

M = 0, 2, 4, . . . , 2N−2,350

dMX/dtM = N−1�N
j

(−
 j
2
)M/2

x j, (5.3)

where we have used the corresponding equations for each351

oscillator �N
j d

Mxj/dtM = �N
j (−
2

j )
M/2xj. These N equations352

are obviously linear in xj and therefore they can be inverted to353

construct each of the N orbits xj(t ) in terms of all even-order354

derivatives of X up to the (2N−2)th order. We would then355

obtain x j = f j (X, d2X/dt2, d4X/dt4, . . . , d2MX/dt2M). If356

we insert these expressions for xj back into the right-hand side357

of the single 2Nth order differential equation d2NX/dt2N =358

N−1�N
j (−
2

j )
Nxj we obtain359

d2NX/dt2N = N−1�N
j

(−
2
j

)N
f j (X, d2X/dt2,

d4X/dt4, . . . , d2N−2X/dt2N−2). (5.4)

This final expression shows that the time evolution of the360

average position of this N-particle system is governed by a lin-361

ear differential equation of order 2N − 2. Quite interestingly,362

this would suggest that in the limit of infinite numbers N a363

governing differential equation would have to be of infinite364

order and therefore cannot be found. However, quite remark-365

ably, in the (continuum) limit of infinitely many oscillators366

(N → ∞), as we have shown in this section, the long-time367

behavior can actually be described by a single equation of just368

second order; see Eq. (5.1).369

Traditionally, nonlinear dynamical systems can be ana-370

lyzed by a Liouville equation approach in phase space as we371

outlined in Appendix B. However, due to the nonlinearity, the372

differential equation for the position average is coupled to all373

moments of products for space and momentum. This leads to374

an infinite set of coupled first-order but nonlinear equations.375

A truncation of the infinite set of equations has not been376

found possible and any truncation for computational sake,377

as illustrated in Appendix B, has proven to be completely378

inadequate. In fact, not even a single oscillation of X (t ) can379

be recovered before it diverges away from the true solution.380

VI. QUANTUM MECHANICAL COUNTERPART 381

OF THE DEPHASING MECHANISM 382

In this section, we will briefly sketch a suggestion for 383

future studies about the question of whether the various decay 384

patterns (predicted from the classical mechanical analysis) 385

have any qualitative counterpart in quantum mechanics. To do 386

so, we have to solve the time-dependent Schrödinger equation 387

of an initial quantum wave packet in the oscillator potential 388

V (x) and examine the time evolution of the expectation value 389

of its position. 390

In atomic units and in one spatial dimension, the time 391

evolution of the initial quantum wave function �(x, t = 0) 392

is determined by i∂�(x, t )/∂t = −(1/2)∂2�(x, t )/∂x2 + 393

V (x)�(x, t ). In general, it is not possible to uniquely con- 394

struct a wave function �(x, t = 0) from a classical ensemble 395

phase-space density ρ(x, p) = ρx(x)ρp(p). In our case, dis- 396

cussed above, we had ρp(p) = δ(p− 0), representing all 397

particles to be initially at rest. To establish the relationship 398

to the initial spatial distributions of the classical ensem- 399

bles of Eqs. (4.2), we have used the three initial wave 400

functions �L(x, t = 0) ≡ ρL(x)1/2, �G(x, t = 0) ≡ ρG(x)1/2 401

and �U(x, t = 0) ≡ ρU(x)1/2. These particular choices nat- 402

urally guarantee that the spatial probability |�(x, t = 0)|2 403

matches initially exactly the corresponding density ρx(x) 404

of the corresponding classical ensemble. As �(x, t = 0) 405

was chosen real, the initial momentum expectation value 406

vanishes, 〈p〉(t = 0) = 0, corresponding to a quantum parti- 407

cle at rest. However, the associated momentum distribution 408

|φ(p, t )|2 with φ(p, t ) ≡ (2π )−1/2 ∫ dx exp(−ipx) �(x, t ) 409

has a nonzero width 〈�p〉 
= 0, which is different from the 410

classical distribution, where we assumed that all particles 411

were initially at rest. This nonvanishing momentum variance 412

is, of course, unavoidable due to the Heisenberg uncertainty 413

principle as the position variance 〈�x〉(t = 0) = �X0 was not 414

infinite. 415

Before we discuss the nonlinearity induced irreversible de- 416

cay forV (x) = x4/4, we summarize the linear case forV (x) = 417

x2/2. Here for any initial quantum mechanical wave function, 418

the quantum expectation value 〈x〉(t ) remains oscillatory and 419

does not decay. In fact, it is identical to the classical ensemble 420

average at all times. 421

In Fig. 3 we have graphed the time evolution of 422

the quantum expectation value of the position 〈x〉(t ) ≡ 423

∫ dx�∗(x, t )x�(x, t ) for the three different initial wave func- 424

tions for the nonlinear potential V (x) = x4/4. 425

Fully consistent with the predictions of the classical 426

mechanical ensemble, we find also here that the spatially 427

Gaussian quantum distribution leads to a temporally Gaus- 428

sian decay of the position’s envelope and the Lorentzian-like 429

distributed wave function leads to an exponential decay. It is 430

quite remarkable that even the revival-based predictions for 431

ρU(x) find in the wave function �U(x, t ) their direct quantum 432

mechanical counterpart. Obviously, the nonvanishing mo- 433

mentum variance 〈�p〉(t = 0) could add another dephasing 434

mechanism that might contribute to the overall decay, but at 435

least for our chosen sets of initial conditions for X0 = −10 436

and �X0 = 0.5, the agreement with the analytical expressions 437

Eqs. (4.3) that were derived for the classical mechanical en- 438

semble averages is still superb. 439
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FIG. 3. Comparison of the time evolution of the quantum mechanical average values X (t ) ≡ 〈x〉(t ) with the analytical expressions
Eqs. (4.3), which are based on classical mechanical ensemble averages. The initial wave functions were chosen to be �(x, t = 0) = ρ(x)1/2

with the corresponding densities of Eq. (4.2). The Schrödinger equation was solved on a 9000 × 300 space-time grid with equidistant spacings
�x = 0.0033 and �t = 0.066. The initial densities were Lorentzian ρL(x) from Eq. (4.2a) with X0 = −7 and �X0 = 0.2, Gaussian ρG(x)
(4.2b) with X0 = −7 and �X0 = 0.2, and uniform ρU(x) (4.2c) with X0 = −10 and �X0 = 0.5.

As a last comment, we note that, due the noncommutativity440

of the position and momentum quantum operators, the corre-441

sponding Heisenberg equations of motion for the expectation442

values 〈xnpm〉 are in principle different than those equations443

derived in Appendix B based on the classical mechanical444

Liouville equation. But apparently, these differences do not445

affect the time evolution of 〈x〉 too much.446

VII. SUMMARY AND OUTLOOK INTO447

FUTURE CHALLENGES448

In the present work, we have discussed the decay mecha-449

nisms based on the dephasing of ensembles of single orbits450

with different frequencies each. We suggest that in the long-451

time limit, it is possible to design the initial distribution in a452

way to produce a wide variety of temporal decay behaviors453

for the ensemble-averaged position beyond the usual expo-454

nential decay. To be concrete, we have focused our attention455

on individual orbits in a quartic potential. However, the main456

conclusions obtained here can be generalized to other classes457

of nonlinear oscillators as well. Our analysis has relied on the458

periodicity of the average position as well as the knowledge459

about how the local frequency depends on each particle’s460

turning point coordinate.461

To better understand the dynamics under which mech-462

anisms are nonlinear classical as well as which quantum463

systems can relax into their steady states is, of course, of wide464

interest to the atomic and molecular physics communities.465

In our example, we have also assumed that particles do not466

interact with each other, apart from their interactions with467

the potential. The possibility of an interparticle interaction468

will likely present an additional challenge, which would cer-469

tainly be of interest also to the many-body particle physics470

community. We have also assumed that each orbit is in an471

isolated environment. It might be interesting to observe how472

the inclusion of dissipative mechanisms on each orbit would473

affect the global dephasing behavior.474

The present investigation has been completely based on475

a classical mechanical analysis. If, in addition, the internal476

energy spectrum needs to be considered as discrete, the finite477

energy spacing in that case will serve as an additional degree478

of freedom in how the ensemble average may vary in time.479

The excellent agreement between the classical mechanical 480

and quantum mechanical wave packet calculations suggests 481

that the various aspects of the newly predicted decay pat- 482

terns can possibly also have experimental implications. For 483

example, using suitable tuned and tailored laser pulses, it has 484

become possible to prepare electronic (as well as vibrational) 485

states in atoms and molecules as spatially localized wave 486

packets. For example, following some theoretical sugges- 487

tions [16,17], the pioneering experimental work by the Stroud 488

group [18] created wave packets in sodium atoms. Here the 489

electron was localized by exciting a stationary extreme Stark 490

state from the n = 30 manifold in a DC electric field followed 491

by the application of a terahertz electromagnetic half-cycle 492

pulse. While the resulting classicallike orbit was governed 493

here by the nonlinearity of the Coulomb potential, the non- 494

linear dephasing mechanism of this initially localized wave 495

packet could be described by a similar approach as outlined 496

in the present work. All these are interesting questions to be 497

further investigated. 498
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APPENDIX A: ANALYTICAL ANALYSIS FOR A SINGLE 506

ORBIT OF THE CUBIC OSCILLATOR 507

The solutions to the equation, d2x/dt2 = −x3 with the ini- 508

tial conditions x(t = 0) = x0 and p(t = 0) = dx/dt (t = 0) = 509

p0 can be expressed [19] in terms of the complicated Ja- 510

cobi elliptic sine function Jsn(x) with parameter −1. This 511

meromorphic and periodic function oscillates between −1 512

and 1 and can be defined as an inverse of an incomplete 513

elliptic integral, such that Jsn[u(α)] = sin(α), where u(α) ≡ 514∫ α

0 dτ [1 + sin2(τ )]−1/2. The exact solution is 515

x(t ; x0, p0) = se 21/2 Jsn(et + φ), (A1)
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where s ≡ p0/|p0| is just a sign factor, the “scaled frequency”516

e ≡ E1/4 ≡ [p20/2 + x40/4]
1/4 is related to the energy E, and517

the “phase” is defined in terms of the inverse Jacobi elliptic518

function IJsn as φ ≡ s IJsn[x02−1/2/e] with parameter −1.519

The occurrence of the sign factor s is not so unusual, as it520

is also required in the sine solution of the ordinary harmonic521

oscillator. The amount of the prefactor e21/2 is the maxi-522

mum amplitude, such that (e21/2)4/4 = p20/2 + x40/4, which523

follows from energy conservation. The Jacobi function Jsn(t )524

has a period of 4E (−1) = 5.24412 . . ., where E (t ) is the525

complete elliptic integral of the first kind. As we also show526

in our analysis below, the solution (A1) has therefore a period527

T = 5.244/e corresponding to a true frequency defined as528

ω(E ) ≡ 2π/T = 1.1981e.529

When p0 = 0, using energy conservation (dx/dt )2/2 +530

xn/n = xn0/n, the period of a particle of mass m = 1 evolv-531

ing in any nonlinear binding potential V (x) = xn/n is given532

by Tperiod = 2(n/2)1/2
∫ x0
−x0

dx[xn0 − xn]−1/2, which amounts533

for our case of the quartic potential (n = 4) to Tperiod =534

7.416 298 71x−1
0 . This means that for this oscillator the fre-535

quency ω(x0) = 2π/Tperiod = �x0 is just a linear function of536

the initial elongation x0, where � ≡ 0.8472.537

APPENDIX B: LIOUVILLE EQUATION APPROACH538

To the best of our knowledge, the only way to derive539

systematically the governing equations of motions for en-540

semble averages [20–22] is based on the Liouville equation541

for the time evolution of the phase-space density ρ(x, p, t ).542

We will illustrate in this appendix that, while this indirect543

approach for X (t ) is in principle exact, it cannot be easily im-544

plemented numerically. For an ensemble of classical mutually545

noninteracting particles of unit mass, the phase-space density546

ρ(x, p, t ) in a potential V (x) follows from the preservation of547

the local phase-space volume dρ/dt = 0 as548

∂ ρ(x, p, t )/∂t = −p ∂ ρ(x, p, t )/∂x

+ dV (x)/dx ∂ ρ(x, p, t )/∂ p. (B1)

This partial differential equation in t , x, and p allows549

us to derive the set of governing equations of motion550

for any ensemble average value, defined as 〈xnpm〉(t ) ≡551 ∫∫
dxd p xnpmρ(x, p, t ) for any integers n and m. Taking first552

the time derivative of this average value 〈xnpm〉, transferring553

the derivative to ρ inside the integral, and using integration by554

parts with regard to x and p, we obtain555

d〈xnpm〉/dt = n〈xn−1pm+1〉 − m〈xnpm−1dV/dx〉. (B2)

This means that for general potentials V (x) that contain556

higher powers than x2, each moment is typically coupled to557

moments of even higher power. For our specific case, where558

V (x) = x4/4, there is an infinite set of coupled first-order559

linear differential equations for 〈xnpm〉. For example, the first560

eight equations that govern the time evolution of X (t ) = 〈x〉561

are562

n = 1, m = 0, dX/dt = 〈p〉, (B3a)

n = 0, m = 1, d〈p〉/dt = −〈x3〉, (B3b)

n = 3, m = 0, d〈x3〉/dt = 3〈x2p〉, (B3c)

n = 2, m = 1, d〈x2p〉/dt = 2〈xp2〉 − 〈x5〉, (B3d)
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-1

0

1
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time (a.u.)

X
G
(t)

28 coupled Eqs.

8 coupled Eqs.

FIG. 4. The time evolution of the ensemble average XG(t ) ob-
tained from the truncated set of coupled eight and 28 first-order
differential equations (B3) for X0 = −3 and �X0 = 0.1. It is com-
pared to the exact graph obtained by averaging over 10 000 orbits.

n = 1, m = 2, d〈xp2〉/dt = 〈p3〉 − 2〈x4p〉, (B3e)

n = 5, m = 0, d〈x5〉/dt = 5〈x4p〉, (B3f)

n = 0, m = 3, d〈p3〉/dt = −3〈x3p2〉, (B3g)

n = 4, m = 1, d〈x4p〉/dt = 4〈x3p2〉 − 〈x7〉. (B3h)

While it can be shown that any single differential equation 563

of Nth order is equivalent to N sets of coupled equations of 564

first-order, the reverse is not always true in general. We have 565

not been able to rewrite Eqs. (B3) to construct a single (even 566

just approximate) differential equation for X (t ). In addition, 567

the set of Eqs. (B3) is also rather unsuitable for obtaining 568

numerical solutions for X (t ). Unfortunately, these eight cou- 569

pled equations cannot be solved consistently, as this set is not 570

closed and we would need the corresponding equations for 571

〈x3p2〉 and 〈x7〉. If we were able to find an approximation such 572

that we could replace these two specific moments in terms of 573

functions of the lower moments, then this set would be closed, 574

as is the case for linear and quadratic potentials. 575

There are some special cases for which these approxima- 576

tions are reasonable, for example if the initial phase-space 577

density is sharp, i.e., ρ(x, p, t = 0) = δ(x − X0)δ(p− P0), 578

then all initial moments would factorize, i.e., 〈xnpm〉(t ) ≡ 579

Xn
0 (t ) P

m
0 (t ). In order to evaluate the predictive power of this 580

Liouville-based approach, we have artificially truncated the 581

set of equations by setting the higher-order moments equal to 582

zero. In the first case, we put the right-hand side of Eqs. (B3g) 583

and (B3h) equal to zero, i.e., d〈p3〉/dt = d〈x4p2〉/dt = 0 584

and solved the resulting closed set of eight equations. 585

In the second case, we assumed that d〈xp6〉/dt = 586

d〈x5p4〉/dt = d〈x9p2〉/dt = d〈x13〉/dt = 0 and solved 587

the 28 coupled equations. In each case, we assumed 588

an initial Gaussian phase-space density ρ(x, p, t = 0) = 589

δ(p) �X−1
0 (2π )−1/2 exp[−(x − X0)22−1�X−2

0 ] with 590

X0 = −3 and �X0 = 0.1 to calculate the initial moments. 591

The initial values for the moments 〈xnpm〉 with m 
= 0 vanish, 592

while 〈xn〉 was computed via
∫∫

dxd pxnρ(x, p). 593

In Fig. 4 we compare the two solutions for X (t ) with 594

the exact graph, obtained numerically from the average over 595

10 000 initially Gaussian distributed orbits. It is clear that with 596
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eight as well as 28 coupled equations, the predictions of the597

Liouville-based approach fail completely to predict correctly598

even just the very first quarter cycle of X (t ). It might be599

possible to find some truncation schemes that might accelerate600

the convergence of these equations, but this challenge is far601

beyond the scope of this appendix, whose main purpose was to 602

show that this systematic Liouville-based approach to derive 603

a governing equation of motion for X (t ) is very problematic 604

for the cubic oscillator. 605
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