
Vol.:(0123456789)

SN Computer Science (2022) 3:209
https://doi.org/10.1007/s42979-022-01094-0

SN Computer Science

ORIGINAL RESEARCH

Evolutionary Symbolic Regression from a Probabilistic Perspective

Chi Gong1,2 · Jordan Bryan1 · Alex Furcoiu1 · Qichang Su1  · Rainer Grobe1

Received: 5 November 2021 / Accepted: 14 March 2022
© The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd 2022

Abstract
We examine the genetic evolution-based algorithm for symbolic regression from a probabilistic dynamical perspective.
This approach permits us to follow the evolution of the search candidate functions from generation to generation as they
improve their fitness and finally converge to the best function that matches a given data set. In particular, we use this statisti-
cal framework to explore the optimal external parameters that govern a special mutation operator, which can systematically
improve the numerical value of constants contained in each candidate formula of the search space. We then apply symbolic
regression to the chaotic logistic map and the Lorenz system.

Keywords  Symbolic regression · Constant mutation operator

Introduction

Symbolic regression (SR) is an iterative stochastic algorithm
to search the space of mathematical expressions with the goal
to identify the one that best describes a given experimental
or simulated data set. It has been playing a small part in the
general trend to include modern machine learning techniques
and artificial intelligence [1] into scientific applications. To
name a few recent examples, SR has been applied in weather
data analysis [2, 3], pharmaceutical systems [4], astronomy
[5], Newtonian mechanics [6], fundamental physics equa-
tions [7–9], solar electricity [10], fluid dynamics [11], dis-
crete field theories [12], and in quantum field theory [13].

Within the applications in physics, SR has demonstrated
its power in recovering algebraic and differential equations
of known physical laws in the recent past. The great promise
of such a new tool would be to offer nontrivial expressions,
solutions, or differential equations for those situations that
are not easily obtainable by traditional theoretical analysis.
This powerful tool would no doubt assist us to extend the
range of investigations in many nonlinear and non-pertur-
bative physics problems. The general task of predicting the
general dynamics from time series has been one of the goals
of reservoir computing, which is a prominent machine learn-
ing technique [14, 15]. It has been applied successfully to
accurate short-term prediction and attractor reconstruction
of chaotic dynamical systems from time series data [16].
While these machine-learning based predictions are highly
valuable, they do not provide analytical models, which could
make further interpretations and mathematical analysis pos-
sible. We will illustrate below for the logistic map and the
Lorenz system that SR can also be used to predict the cha-
otic dynamics from the time iterates associated within the
regular domain.

Symbolic regression randomly combines an initial set of
provided mathematical operators, functions, variables and
constant parameters to uncover the relationships represented
by the data [17–20]. It requires a wide choice for its many
genetic programing related computational features, such as
the number of individua per generation, the type of selec-
tion criteria, the evolutionary strategies, the mutation and
crossover probabilities and the fitness criteria, to name just

 *	 Qichang Su
	 qcsu@ilstu.edu

	 Chi Gong
	 cgong1@ilstu.edu

	 Jordan Bryan
	 jnbrya1@ilstu.edu

	 Alex Furcoiu
	 aafurco@ilstu.edu

	 Rainer Grobe
	 grobe@ilstu.edu

1	 Intense Laser Physics Theory Unit, Department of Physics,
Illinois State University, Normal, IL 61790‑4560, USA

2	 State Key Laboratory for GeoMechanics and Deep
Underground Engineering, China University of Mining
and Technology, Beijing 100083, China

http://orcid.org/0000-0002-9456-3968
http://crossmark.crossref.org/dialog/?doi=10.1007/s42979-022-01094-0&domain=pdf

	 SN Computer Science (2022) 3:209 209   Page 2 of 15

SN Computer Science

a few. Due to this complexity, the numerical implementation
of SR has to be viewed as a black-box algorithm. While in
our opinion the SR has the enormous potential to become a
valuable tool in the physical sciences, the determination of
its optimal numerical working conditions requires often tedi-
ous and trial-and-error-based procedures, which depend sen-
sitively on the details of the particular application. It would
therefore be quite helpful to establish first steps towards a
statistical foundation that could be used to examine the effi-
ciency of these evolutionary stochastic algorithms.

A major challenge in SR is not only to discover the correct
functional relationship among the independent variables, but
also to determine the optimum numerical values of the param-
eters (constants) that can best fit the given data set. In its tradi-
tional implementation using genetic programming, state vari-
ables and parameters are being treated on an identical footing
[21, 22]. In contrast to genetic algorithms, where the structure
of the individuals is homogeneous and their format is fixed [23],
genetic programming-based SR has to encompass the discrete
sets of different functional forms as well as the infinite con-
tinuous spaces of the constants. If all constants in the target
function (to be uncovered) happen to be just integers, SR can
identify even complicated multi-variable dependences rather
efficiently. However, more generally, once the data set requires
parameters with non-integer values, SR has enourmous diffi-
culties as numerical values are assigned randomly to constants
(free parameters) for the first generation of the pool of candi-
date expressions. During the evolution, the code usually cannot
directly update these assignments. The only way of obtaining
improved numerical values is by using operational combinations
of these fixed values, such as “mul(2.0,add(1.1, 1.8))”, to repre-
sent the new “parameter” with value 5.8. The usual implemen-
tation of the evolutionary code does not allow for these types
of simplifications to construct new leaves. This means that the
complexity of expression trees can grow unnecessarily over time
(bloat) and potentially good search candidates are eliminated
despite their low errors due to parsimony constraints.

The goal of the present work is two-fold. First, we aim
to introduce a statistical theoretical framework for SR that
can provide us with better intuition and some first guidance
about how to improve the efficiency of the algorithm. Sec-
ond, using this probabilistic framework, we introduce a new
special purpose mutation operator that can supplement the
traditional mutation and crossover operators. In contrast to
the latter operators that are usually employed in the explora-
tory phase to increase the diversity of the search space, this
particular operator is aimed at accelerating the convergence
by solely improving the numerical values of the parameters.

The article is organized as follows. In “Evolution of the
fitness probability density based on deterministic tournament

selection”, the probabilistic concepts of the fitness density
and function classes are introduced. “An illustration of the
probabilistic theory of the symbolic regression for M = 3
function classes” provides a concrete example of the SR
evolution, where each generational step can be followed
from a probabilistic perspective. “In the constant-mutation
operator (CMO)”, the constant-mutation operator (CMO)
is introduced. “Impact of the adaptive CMO in symbolic
regression with mutations and cross-overs”, we illustrate
the power of including the adaptive CMO in SR. In “SR-
guided reconstruction of iterative maps or differential equa-
tions from chaotic time series”, an application of SR to the
logistic map and the Lorenz system is examined. Finally, in
“Summary and outlook into future challenges” we present a
summary and outlook into future challenges.

Evolution of the Fitness Probability Density
Based on Deterministic Tournament
Selection

As in most genetic programs, the evolution from generation
to generation is based on iterated sequences of two consecu-
tive actions. The first one is the selection of the new mating
pool from the first generation of search candidates, which is
then followed by the application of various types of mutation
and crossover operations. There are basically four different (and
commonly used) selection schemes, including proportionate,
ranking, steady state and tournament selection [24–27].

We will focus here on the tournament selection, where nT
candidates are randomly chosen from the entire population of
Npop individua. There are deterministic as well as probabalistic
versions of the tournament rules. In the latter, the ranked individ-
uals are assigned a survival probability that is related to their fit-
ness. In this work, we focus on the deterministic version, where
among these nT individuals, only the single winner (the one with
the best fitness) is chosen to join the mating pool. These tourna-
ments are then repeated as often as desired (usually until the new
mating pool with Npop members is filled). Due to the consecutive
nature of the selection and evolutionary action, we can consider
them separately. In this section, we focus entirely on the selec-
tion procedure and therefore neglect any consecutive mutation/
crossover operations such that the selected mating pool becomes
identical here to the next generation.

In “Parse-tree representation of expressions and function
classes” below, we will introduce the underlying statistical
framework for the tournament selection, by proposing new
concepts of the total fitness probability density �tot (f , t) as well
as the density �m(f , t) and the proportion Pm(t) of each function
class.

SN Computer Science (2022) 3:209 	 Page 3 of 15  209

SN Computer Science

Parse‑Tree Representation of Expressions
and Function Classes

The Hilbert space of the candidate functions (primitive set)
in the zeroth generation is encoded here by an LISP-style
flattened inverted syntax tree representation. We assume the
initiation method is provided by the so-called “full” pat-
tern resulting in sets of fully symmetric parse-trees of depth
D and corresponding length L = 2D+1 − 1 (defined by the
number of nodes) with the number of terminals given by
2D . As the main ideas of this work can be easily general-
ized to multi-variable target functions, we can focus here
on those input data that were generated by a target function
gtarget (x) , which depends only on one independent variable
x. This means that the terminals (leaves) of each parse-tree
represent either this variable x or a constant numerical value
of a parameter, which we denote by c. Let us further assume
that these two choices are picked randomly with equal prob-
ability of 50%. The initial random values for all constants c
follow a chosen parameter probability density ppara(c) with
normalization ∫ ∞

−∞
dc ppara(c) = 1.

Unfortunately, there is a huge undesirable redundancy
of different tree structures that lead to the same functional
mathematical dependence on x. For example, while the func-
tion space defined by the two arithmetic operations “addi-
tion” and “multiplication” (with arity = 2) with depth = 2
(and resulting length L = 7 ) permits 128 different tree struc-
tures, it represents only M = 8 different types of mathemati-
cal functional relationships. We associate those functions
that differ only by their particular values of the constants
with the same function class, which we label by the subscript
m = 1, 2,… ,M . Therefore, the total number M of different
function classes can be directly associated with the diversity
of the population in this generation.

The Fitness Probability Density, Proportions
and Parameter Distributions

To have a concrete realization for the fitness for each func-
tion class, let us assume the argument x of the target function
gtarget (x) , from which the input data are generated, is in the
range a ≤ x ≤ b . For example, we can associate the error
between gtarget (x) and the search candidate gm(x) with its
fitness fm , i.e., fm ≡ ∫ b

a
dx |gtarget (x) − gm(x)| . For each indi-

vidual gm(x) in a class m, this fitness can be evaluated as a
funct ion of the constants (c1, c2,… , cn) ≡ � as
fm = fm(c1, c2,… , cn) ≡ fm(�) . As the initial probability den-
sity for the constants �para(�) for the zeroth generation is
known ( =chosen), it can be used to compute the initial prob-
ability distribution of the fitness �m(f) for each function
class, given as �m(f) ≡ ∫ dnc �[f − fm(�)]�para(c1)… �para(cn) .

As the distribution of each of the constants changes during
the evolution, so does the characteristic fitness density �m(f) .
For example, it follows that ∫ f2

f1
df ��m(f

�) is therefore the
total probability that a representative function gm(x) has a
fitness value inside the interval (f1, f2) [28, 29]. The concept
of the fitness density �m(f) should not be confused with the
well-known fitness landscape, which is used in evolutionary
optimization [28–31], which in our context resembles more
fm(�) for each class.

In each generation (indexed by the generational integer
time t = 0, 1, 2,… ), the proportions Pm for each class of
functions is defined by the ratio of the number of functions
Nm(t) belonging to class m and the total number of functions
in the population, denoted by Npop . We denote these pro-
portion (fractions) by Pm(t) ≡ Nm(t)∕Npop and they naturally
fulfill

∑M

m=1
Pm(t) = 1 . For function spaces associated with

parse-tree representations of small depth, the correspond-
ing initial proportions Pm(t = 0) can be determined directly
from the possible structures of the tree. This means that we
can determine the total fitness probability density for each
generation �tot (f , t) . It follows naturally as

This is the central quantity of symbolic regression. The ulti-
mate goal of the evolutionary algorithm [27] is to iteratively
change the type of function classes, their proportions and
their fitness densities for each generation, such that the den-
sity �tot (f , t) can be maximized for small arguments f.

Probabilistic Theory for the Tournament Selection
Scheme

In order to study the dynamics of the three types of key
characteristics �tot (f , t) , Pm(t) and �m(f , t) from generation to
generation, we have to examine first the tournament selec-
tion from a probabilistic perspective. As mentioned above,
here out of the group of all Npop individuals, nT are randomly
chosen to participate in each tournament. The tournament
winner in this subset competition is the one with the mini-
mum fitness among a set of nT alternatives and it is then
selected to move on to the next generation. In other words,
�tot (f , t + 1) is precisely the distribution of the minima
(=winners) of groups of nT samples randomly drawn from
the generation associated with �tot (f , t) . This parameter nT
naturally controls the selection pressure, we note that even
for the least pressure, i.e., for the least elitist scheme with
nT = 1 , there is for each tree a chance of exp(−nT) = 36.8%
to not be selected, even if its fitness value happens to be
the best in that entire generation. Due to this “omission”
mechanism, this average fitness (and also the fitness of the

(1)�tot (f , t) ≡
M∑

m=1

Pm(t)�m(f , t)

	 SN Computer Science (2022) 3:209 209   Page 4 of 15

SN Computer Science

best individuum) does not necessarily decrease monotoni-
cally from generation to generation. In the opposite (most
elitist) scheme, nT = Npop , the new generation contains Npop
identical copies of that individuum which had the least fit-
ness of the prior generation.

The probability density �tot (f , t + 1) can be computed
from �tot (f , t) of the prior generation based on the follow-
ing probabilistic arguments: Given the original distribu-
tion of fitnesses �tot (f , t) , the probability that a randomly
picked individuum has a fitness that is larger than f is
given by the integral ∫ ∞

f
df � �tot (f

�, t) = 1 − ∫ f

0
df � �tot (f

�, t) .
Likewise, if nT individual are chosen from the same origi-
nal group, then the probability that all of the associated nT
f i t n e s s e s a r e l a rge r t h a n f i s g i ve n by
Pr(nT) ≡ [1 − ∫ f

0
df � �tot (f

�, t)]nT , where the simple product
form reflects the fact that these consecutive random picks
are uncorrelated with each other. This expression for
Pr(nT) has to be identical to the probability that a randomly
picked fitness among the new group of tournament winners
with density �tot (f �, t + 1) takes a value larger than f. The
latter would be calculated as Pr(nT) = ∫ ∞

f
df � �tot (f

�, t) . As
these two expressions for Pr(nT) have to be identical to
each other for each value of f, we can obtain �tot (f , t + 1)
as −dPr(nT)∕df  . Applying this derivative with respect to f
to the original product form of Pr(nT) , we obtain

This means that the orginal fitness density �tot (f , t)
gets improved by multiplying i t with a col-
l ec t i ve shape -chang ing func t ion , g iven by
S(f , t) ≡ nT [1 −

∑M

m=1
Pm(t) ∫ f

0
df ��m(f

�, t)]nT−1 . This is
apparently the key operator for the tournament-based selec-
tion as it describes the highly nonlinear impact of this selec-
tion scheme on the fitness density. Using the relationship
�tot (f , t) =

∑M

m=1
Pm(t)�m(f , t) from Eq. (2), the new density

can naturally be written in terms of the individual original
fitness densities for each class as

If we integrate both sides of this equation over all fit-
ness values f, we obtain ∫ ∞

0
df ��tot (f

�, t + 1) and therefore ∑M

m=1
Pm(t) ∫ ∞

0
df S(f , t)�m(f , t) ≡ ∑M

m=1
Pm(t + 1) . Th i s

equation suggests that the new fraction Pm(t + 1) of the
individuals of class m after the tournament can be obtained
from the integral

(2)�tot (f , t + 1) = �tot (f , t)nT

⎡⎢⎢⎣
1 −

f

∫
0

df � �tot (f
�, t)

⎤⎥⎥⎦

nT−1

(3)�tot (f , t + 1) =

M∑
m=1

Pm(t)S(f , t)�m(f , t)

As the shape-changing function S(f,t) itself is a highly non-
linear function of the Pm(t) as well as the �m(f , t) , the itera-
tive map from the set of the proportions Pm(t) to their new
values Pm(t + 1) for the next generation turns out to be rather
nontrivial.

Us ing t he new p ropor t ions Pm(t + 1) , t he
new density at t ime t + 1 can be expressed as
�tot (f , t + 1) =

∑M

m=1
Pm(t + 1)�m(f , t + 1)   , w h i c h

effectively defines the new individual densities
�m(f , t + 1) . As we can rewrite the total density as
�tot (f , t + 1) =

∑M

m=1
Pm(t)�m(f , t)S(f , t) [see Eq. (3)], this

suggests that the new density for class m is given by the
multiplication �m(f , t + 1) = Pm(t)S(f , t)�m(f , t)∕Pm(t + 1) .
If we insert the normalization factor ∫ ∞

0
df S(f , t) �m(f , t)

from Eq. (4), we obtain the iterative map

There are two particular limits of the general equation (4),
for which more simplified expressions for the new propor-
tions of each class Pm(t + 1) can be obtained. In the first
limit, where the densities �m(f , t) are so narrow as a function
of f that they do not overlap with each other, it is possible to
derive a much simpler and direct iterative scheme to com-
pute the time evolution of the proportions Pm(t + 1) directly
from the set of all Pm(t) . In Appendix A, we derive that these
equations take the form

As these equations assume that the associate average fit-
nesses fm , defined as fm ≡ ∫ ∞

0
df f �m(f) , can be ordered,

i.e., fm < fm+1 , the Pm(t + 1) do not depend on �m(f) nor fm .
In Appendix A, we also provide a simple numerical exam-
ple of time evolution. For example, we show there that the
proportion associated with the best fit individua (m = 1)
approaches P1(t) → 1 in times as P1 = 1 − [1 − P1(0)]

t nT .
If we solve P1(t1∕2) = 0.5 for time t1∕2 , we find that after
a number of generations given by (the integer part of)
t1∕2 ≡ −n−1

T
ln 2∕ ln[1 − P1(0)] , the fraction P1 becomes the

dominant function class as it exceeds 50%.
This solution for t1∕2 allows us to suggest that the total

CPU time (required for the best proportion to reach 50%)
is actually independent of our choice of nT . As each single
tournament requires the evaluation of nT fitnesses, and we

(4)Pm(t + 1) = Pm(t)

∞

∫
0

df S(f , t)�m(f , t)

(5)�m(f , t + 1) = S(f , t)�m(f , t)∕∫
∞

0

df � S(f �, t) �m(f
�, t)

(6)Pm(t + 1) =

[
1 −

m−1∑
m�=1

Pm� (t)

]nT

−

[
1 −

m∑
m�=1

Pm� (t)

]nT

SN Computer Science (2022) 3:209 	 Page 5 of 15  209

SN Computer Science

require a total of Npop tournaments to select all Npop members
of the next generation, the CPU-time for one generation is
proportional to nT Npop . This means that the total CPU-time
for a total number of t1∕2 generations (given by t1∕2 nT Npop )
does not depend on our choice for nT at all. This is interest-
ing, as the evaluation of the fitnesses are the typical compu-
tational bottleneck in SR.

Let us now discuss the second (opposite) limit of
Eq. (4), where the overlap of all fitness densities is
assumed to be maximum such that we can assume that
the �m(f , t) are independent of m. This means that the fac-
tor ∫ ∞

0
df S(f , t) �m(f , t) , which we abbreviate as �(t) , is

identical for each class and, according to Eq. (4) leads to
Pm(t + 1) = Pm(t)�(t) . In order to preserve the normaliza-
tion 1 ≡ ∑M

m=1
Pm(t + 1)�(t) , we find that the proportions

of each class do not change in time, Pm(t) = Pm(t = 0) . For
a general evolution, the dynamics of the Pm(t) will be some-
where between these two limiting cases. We compare it to
the evolution of a concrete example from symbolic regres-
sion in the next section.

An Illustration of the Probabilistic Theory
of the Symbolic Regression for M = 3
Function Classes

Without any loss of generality, we assume here that the input
data were derived from a target function that is simply given
by the constant gtarget (x) = 0 in the range 0 ≤ x ≤ 1 . To keep
this example as transparent and illustrative as possible, let
us define the primitive set of initial candidate functions by
those that can be represented by a syntax tree of depth D = 1
and corresponding tree length L = 3 with the sole arithmetic
operation “add”. This means that the two input terminals
(leaves) represent either the independent variable x or a con-
stant c. This space can represent only M = 3 different types
of mathematical functional relationships. They are given
by the three sets g1(x) = c1 + c2 (denoted by class m = 1 ),
g2(x) = x + c1 (class m = 2 ) and g3(x) = 2x (class m = 3 ).
While this is obviously an extremely simple toy model, it
actually contains many aspects of a real SR algorithm.

Let us assume that the computer algorithm is set up in
such a way that the numerical values of all constants for
the members of the 0th generation are chosen to be equally
distributed inside the interval 0 ≤ c ≤ 1 . This means that
ppara(c) is just a product of uniform distributions for each
constant, each centered at 0.5 and with a standard deviation
0.288. Using � ≡ ∫ ∞

−∞
dnc �[f � − f (�)]ppara(�) , we obtain for

the specific fitness densities for each class

(7)�1(f , t = 0) =fU(f , 1 − f) + (2 − f)U(f , 1 − f)

(8)�2(f , t = 0) =U(f − 0.5, 1.5 − f)

(9)�3(f , t = 0) =�(f − 1)

0

1

2

3

5

0 0.5 1 2

ρ
tot

(f)
n

T
=100

n
T
=10

ρ
tot

(f; t=0)

fitness f

0

4

8

12

16

0 0.5 1 2

ρ
tot

(f,t)

n
T
 = 5

t=0t=1

t=2
t=3

t=4

t=5

fitness f

0

0.5

1

0 2 4 6

P
m

(t) n
T
 = 2

P
1

P
2

P
3

theory Eq. (2.4)

SR simulation

generation t

Fig. 1   (a, top) Change of the fitness probability density �tot (f) (blue)
after a tournament selection of sizes nT = 10 and 100. They take the
average values f = 1.0, 0.55 and 0.25. (b, middle) The evolution of
the fitness probability density �tot (f , t) for the first five generations for
the tournament size nT = 5 . (c, bottom) The time-dependence of the
three proportions P1(t) , P2(t) and P3(t) for tournament sizes nT = 2
for a simulation with a population of 20,000 together with the analyti-
cal predictions of the probabilistic theory of Eq. (4)

	 SN Computer Science (2022) 3:209 209   Page 6 of 15

SN Computer Science

where U() denotes the generalized unit step function defined
as U(a, b) = 1 if both a ≥ 0 and b ≥ 0 and U(a, b) = 0 oth-
erwise. Here �(f − 1) denotes the Dirac delta function. All
three densities happen to have the same average fitness
value fm = ⟨f ⟩ = ∫ ∞

0
df f �m(f , t = 0) = 1 . While all three

densities vanish for f = 0 , the probability to find a candidate
function for which ∫ fmax

0
df 𝜌m(f , t = 0) > 0 for any arbitrarily

small (but nonzero) fmax does not vanish for class one, i.e.,
�1(f , t = 0) . This means that the set of class m = 1 candidate
functions contains the target function gtarget (x) = 0 . Obvi-
ously, g1(x) = c1 + c2 is equal to the target, if both c1 and c2
approach zero.

In Fig. 1a, we graph the modification of the original fit-
ness probability �tot (f , t = 0) =

∑3

m=1
Pm(t = 0)�m(f , t = 0)

due to two tournaments of sizes nT = 10 and 100 as pre-
dicted from the numerical evaluation of Eq. (2). We see that
the non-linear character of the tournament selection mani-
fests itself in the formation of rather unusually shaped den-
sities. Their precise shape of the new densities can hardly
be guessed, but we see the expected overall shift to smaller
fitness values. We also see that the density �tot (f , t = 0) ,
which due to the original uniform distributions of the con-
stants had discontinuities at f = 0.5, 1 and 1.5, develops into
a smoother structure with increasing nT.

In Fig. 1b, we display the dyamical evolution of the fit-
ness density �tot (f , t) for the first five generations for a fixed
tournament size nT = 5 . Overall, the trend with increasing
time is very similar to the data shown in Fig. 1a as it reflects
how the three fitness densities are deformed. In addition to
the deformation, also the weight factors of each function
Pm(t) class are changing.

In Fig. 1c, we monitor the (generational) time evolution of
the three proportions from there initial values P1(t) = 0.25 ,
P2(t) = 0.5 and P3(t) = 0.25 for the same tournament size
as in Fig. 1b. We find that (independent of the size nT ) the
evolution in each case approaches P1(t → ∞) = 1 . However,
the evolution is non-monotonic, for example, we see that
P2(t → ∞) grows first, before it decays to zero. As there are
no approximations, the analytical data based on the numeri-
cal solutions to the iterative set agree perfectly with the
fractions of the actual SR simulation with sufficient large
population ( Npop > 20, 000 ) as shown by the open circles.
In summary, qualitatively, the dynamics of the proportions
in this SR simulation are similar to the corresponding pre-
dictions of the non-overlapping fitness model introduced in
Appendix A. This agreement gives some credence to this
simpler model, even though the original fitness densities of
Eqs. (7–9) did have a significant overlap.

The Constant‑Mutation Operator (CMO)

Operational Definition and Its Impact on the Fitness
Density

In contrast to most genetic operators (such as mutations or
two- or multi-parent crossovers) that are created to mainly
increase the diversity and permit us to explore new areas, the
CMO operator introduced below is a special purpose operator
that exploits a known area and aims at increasing the conver-
gence to a minimum fitness within a given class of individuals.
To overcome the principal bottleneck of most SR algorithms,
which is the slow convergence with regard to reproducing the
(non-integer) constants contained by the target function, we
have supplemented the usual mutation and crossover opera-
tions by a new one that does not change the function class, but
improves on the numerical value(s) of the constant(s) con-
tained in an individual. If the CMO is being selected to act on
the respective tournament winner, it first identifies the associ-
ated constant parameters of this expression. If it does not con-
tain any, it acts as the unit-operator and keeps this individuum
unchanged. If the expression contains numerous constants, it
randomly picks out of this expression any constant c. The fit-
ness value of this expression f(c) is then compared to f(g),
where g denotes an alternative random guess chosen from a
given probability density G(g). If f (c) ≤ f (g) , then original
value of the parameter is maintained and CMO would act as
the unit operator. If, however, f (g) ≤ f (c) , then the (better)
numerical value g will be inserted into the individuum and
forwarded to the pool of search candidates for next genera-
tion. The CMO is therefore a very specialized version of the
point mutation operator, which acts on any node independent
of whether it contains a constant, an operation or a variable.

As during the early generational time frame (of mainly
exploratory searches) most of the fitness densities for each
function class have typically widely distributed parameter val-
ues, the particular numerical choice for g is not so relevant.
However, as later generation are comprised of mutated former
tournaments winners, we can assume that the fitness density
�m(f) of each class has improved already that the associated
value of the parameter c is already close to one that can mini-
mize the fitness. This means that the choice of g should take
this knowledge of c into account. Therefore g should be cor-
related to c suggesting that the more general G = G(g, c) is
more efficient. This also means that it becomes a conditional
probability density, which also depends on the value for c, such
that ∫ G(g, c) = 1 for any c. Furthermore, we will show below,
that adapting the shape of G(g, c) not only to c, but permitting

SN Computer Science (2022) 3:209 	 Page 7 of 15  209

SN Computer Science

it to change from generation to generation, i.e., G = G(g, c, t) ,
can further accelerate the rate of convergence.

To establish which functional forms of G(g, c, t) are a pri-
ori most advantageous, we need to establish first a theoretical
framework for how the action of the CMO modifies the fit-
ness probability densities. Unfortunately, this action cannot
be formally expressed as �m(f , t + 1) ≡ CMO[�m(f , t)] , as it
is actually not a unique one-to-one mapping. However, for the
iteration map ppara(c, t + 1) ≡ CMO[ppara(c, t)] an explicit
and unique operational scheme can be found based on the
corresponding joint (and fully correlated) probability density
ppara(c, t)G(g, c, t) . It is given by

where we denote with D the domains in two-dimen-
sional integration (c�, g�) space, where the fitness
satisfies f (c�) ≤ f (g�) , meaning that here we have
ArgMin(c�∈R,g�∈R)(f (c

�), f (g�)) = c� . Similarly, the com-
plementary area E is defined by f (g�) ≤ f (c�) , such that
ArgMin(c�∈R,g�∈R)(f (c

�), f (g�)) = g�.
As we can safely assume that after several generations the

distribution of values of the parameter c is already close to
the one that can minimize the fitness density, we can assume
that in this region the fitness is a monotonically increasing
function of |c − co| . Here co is the specific parameter value
that minimizes the fitness. This monotonicity permits us to
identify the integration spaces D and E and to perform the
integration along the c′ or g′ axis. We obtain

where we use ∫ ∞

−∞
dg�G(g�, c, t) = 1 . These expressions per-

mit for an illustrative interpretation. For example, the prefac-
tor [1−...] to ppara(c, t) is the total probability that a randomly
picked value for g′ is further away from co than the value c,

(10)

ppara(c, t + 1) = CMO[ppara(c, t)]

= ∫ ∫ dc�dg��[c − ArgMin(c�∈R,g�∈R)

(f (c�), f (g�))]

ppara(c
�, t)G(g�, c�, t)

= ∫ ∫
D

dc�dg��[c − c�]ppara(c
�, t)G(g�, c�, t)

+ ∫ ∫
E

dc�dg��[c − g�]ppara(c
�, t)G(g, c�, t)

(11)

ppara(c, t + 1)

=

⎡⎢⎢⎣

Min(2co−c,c)

∫
−∞

+

∞

∫
Max(2co−c,c)

⎤⎥⎥⎦
dc�ppara(c

�, t)G(c, c�)

+ ppara(c, t)

⎡⎢⎢⎣
1 −

Max(2co−c,c)

∫
Min(2co−c,c)

dg�G(g�, c)

⎤⎥⎥⎦

meaning that f (c) < f (g�) . In other words, in this case, a
proposed new value g cannot improve the fitness originally
associated with value c, distributed according to ppara(c, t) .
The same interpretation applies to the first term, where the
associated contribution of the weighted density G(c, c�) to
ppara(c, t + 1) is provided.

While ppara(c, t) does not necessarily take its maxi-
mum at c = co , the action of the CMO operation on
ppara(c, t) has an interesting “probability density dou-
bling” property, when evaluated at the optimal param-
eter value c = co . This can be easily seen, if we evalu-
ate Eq. (11) for the specific value c = co . It simplifies to
ppara(co, t + 1) = ∫ ∞

−∞
dc�ppara(c

�, t)G(co, c
�) + ppara(co, t)   .

If we assume that G(co, c�) is sufficiently narrowly cen-
tered around c� = co , we can factor ppara(co, t) out of
the integral and using ∫ ∞

−∞
dg�G(g�, c) = 1 we obtain

ppara(co, t + 1) = 2ppara(co, t) . This interesting feature is illus-
trated in Fig. 2, where we show the change of a initial Gauss-
ian parameter distribution �para(c) = (2�)−1∕2Exp(−c2∕2)
under the CMO operation based on the conditional density
G(g, c) = (2�)−1∕2Exp[−(g − c)2∕(2�2)].

While to have a fully analytical access to the way the
action of the CMO modifies the distribution of the param-
eter from ppara(c, t) to ppara(c, t + 1) is beneficial, what is
more relevant is how the associated fitness density �(f , t)
is improved to �(f , t + 1) . To convert the probability dis-
tribution ppara back to the associated density of the fitness,
i.e.,�(f) = ∫ dc �[f − f (c)]ppara(c) can be easily obtained in
general, if we know how the fitness value f is related to the

0

0.1

0.2

0.3

0.4

0.5

-3 -2 -1 0 1

ρ
para

(c,t)

t=0

constant c

t=1

0.48

0.24

Fig. 2   Illustration of the probability density doubling fea-
ture of the CMO operation for the fitness minimizing param-
eter c = co . We used ppara(c, t) = (2�)−1∕2Exp(−c2∕2) and
G(g, c) = (2�)−1∕2�−1Exp[−(g − c)2∕(2�2)] with � = 0.5 . We
see how the particular value of the density at the optimal param-
eter (chosen here to be co = 1 ) is doubled from ppara(co, t) ≈ 0.24 to
ppara(co, t + 1) ≈ 0.48

	 SN Computer Science (2022) 3:209 209   Page 8 of 15

SN Computer Science

parameter c. With the ultimate goal in mind that a highly
desirable density should be narrowly localized close to the
minimum value of f, there are obviously numerous single val-
ues that could be defined to measure and quantitatively com-
pare the quality of several fitness densities. A good example
could be either the mode of this distribution or the average
fitness value defined as ⟨f ⟩ ≡ ∫ ∞

0
df � f ��(f �) . The computa-

tion of the mean value can be quite conveniently and directly
obtained from ppara(c) . If we exchange the integration order
and perform the integration of the Dirac delta function, then
⟨f ⟩ ≡ ∫ ∞

0
df � f � ∫ ∞

−∞
dc �[f � − f (c)]ppara(c) = ∫ ∞

−∞
dcf (c)ppara(c) . If

we apply the same procedure to the CMO modified density
ppara(c, t + 1) , we can perform the delta-function integration
over c first and then over f ′ and obtain

As ⟨f ⟩(t) cannot be uniquely tracked back to ppara(c, t) , it
is unfortunately not possible to construct a direct iteration
scheme that permits us to relate ⟨f ⟩(t) directly to ⟨f ⟩(t + 1) .
This means that if two different ppara(c, t) happen to have
the same mean value ⟨f ⟩(t) , their CMO-improved value
⟨f ⟩(t + 1) can be nevertheless different in general. To exam-
ine how the conditional probability G(g�, c�, t) can be chosen
to lower the average fitness ⟨f ⟩ in a most efficient way, we
need to examine a concrete example, which we present in
the next section.

Variance Matching to Optimize the Reduction
of the Average Fitness

While it is obviously advantageous to have the condi-
tional probability G(g, c) centered around the original
value c, which is distributed according to ppara(c, t) , it is
not clear how the optimum width of G(g, c) should be cho-
sen to maximize the reduction of the average fitness from
ppara(c, t) to ppara(c, t + 1) . To examine this question numeri-
cally, we have considered first for simplicity the uniform
probability G(g, c) ≡ B−1�[g − (c − B∕2)]�[(B∕2 + c) − g]
of width B and a similarly simple uniform distribution
ppara(c, t) ≡ �(c + 0.5)�(c − 0.5) , where � denotes the
Heaviside unit-step function. The fitness is modeled here
as f (c) = (c − co)

2.

(12)

⟨f ⟩(t + 1) ≡
∞

�
0

df � f ��(f �, t + 1)

=

∞

�
0

df � f �

∞

�
0

dz �(f � − f (c))ppara(c, t + 1)

=

∞

�
−∞

dc�

∞

�
−∞

dg� f (ArgMin[f (c�), f (g�)])

ppara(c
�, t)G(g, c�, t)

There are two special opposite cases for the choice of the
width B that are of interest. In both extreme limits for a very
narrow distribution, B → 0 , as well as for B → ∞ , the trans-
formation from ppara(c, t) to ppara(c, t + 1) becomes the unit-
operator. In other words, we have ppara(c, t + 1) = ppara(c, t)
and therefore �(f , t + 1) = �(f , t) . As a result, there is no
improvement of the fitness under the CMO operation. As
neither limit ( B → 0 nor B → ∞ ) improves the fitness, there
must be an optimum width (denoted by Bopt ), for which the
CMO transformation leads to a maximum reduction of the
fitness value.

To find this optimum width for a given value of
co , we have calculated ppara(c, t + 1) according to
Eq. (10) above for a wide range of widths B. We
have then recorded the width Bopt that minimized the
final average fitness ⟨f ⟩ ≡ ∫ ∞

0
df � f ��(f , t + 1) , where

�(f , t + 1) = ∫ dc��[f − c�2]ppara(c
�, t + 1) . In Fig. 3, we have

graphed the optimum width Bopt as a function of co.
Here the distribution of the original constant c ppara(c, t)

was uniform with a width of 1 and centered around 0. The
conditional probability for CMO was also uniform, but was
centered around g = c with a variable width of B.

The data in Fig. 2 suggest two important conclusions.
First, the optimimum width Bopt associated with the CMO
operation takes its lowest value if the original parameter
distribution ppara(c, t) is centered around the optimal param-
eter co , which happens if co is equal to zero. In this par-
ticular case, the optimum width Bopt is 1, which matches
precisely the width of the original distribution ppara(c, t) .
The fact that the associated variance of ppara(c, t) , i.e.,
�2 = ∫ ∞

−∞
dc(c − co)

2ppara(c, t) , which is equal to � = 0.288 ,

0

2

4

6

8

0 0.5 1 1.5 2 2.5

optimal width Bopt

optimal constant c
o

B = 1 + 2.5 copt o

Fig. 3   The optimum width B of the conditional probabil-
ity G(g, c) = B−1�[g − (c − B∕2)]�[(B∕2 + c) − g] to mini-
mize the average ⟨f ⟩(t + 1) = ∫ ∞

−∞
dc ppara(c, t + 1) . Here the fit-

ness is modelled as f (c) = (c − co)
2 and the original density is

ppara(c) = �(c + 0.5)�(0.5 − c) . For comparison, the dashed line is
Bopt = 1 + 2.5|co|

SN Computer Science (2022) 3:209 	 Page 9 of 15  209

SN Computer Science

is precisely matched by the corresponding variance of the
conditional probabililty, i.e., ∫ ∞

−∞
dg(g − g0)

2G(g, c) , is
not coincidental and valid for more general forms of the
densities G(g, c). For example, for a Gaussian choice, i.e.,
G(g, c) = (2�)−1∕2�−1

g
Exp[−(g − c)∕(2�2

g
)] , we find for

co = 0 that the optimum value of the variance is �g = 0.31 ,
which differs only by 7% from the associated variance 0.288
of ppara(c, t) . This finding suggests that the action of the
CMO can be optimal, if the variance of G(g, c) is chosen to
match that of ppara(c, t).

The second conclusion from Fig. 3 is that the required
optimal value of Bopt increases with the distance between
the center of ppara(c, t) and co . For the uniformly distrib-
uted G(g, c) examined in this figure, the linear relation-
ship Bopt = 1 + 2.5co approximates this increase very well.
However, as the probability density doubling mechanism
for c = co discussed suggests, after a few generations and
applications of the CMO, the density ppara(c, t) will naturally
become centered around co , such that the variance matching
of ppara(c, t) and G(g, c) promises the best performance of
the CMO is general.

Finally, we have to examine how the width (variance)
of ppara(c, t) is reduced under consecutive actions of the
CMO operation based on Eq. (11). To have another con-
crete example, we have used simple Gaussian distribu-
t i o n s ppara(c, t = 0) = (2�)−1∕2�(0)−1Exp[−c2∕(2�(0)2)]
and G(g, c) = (2�)−1∕2�−1

g
 Exp[−(g − c)∕(2�2

g
)] , and com-

puted ppara(c, t) after consecutive applications of the CMO
for t = 1, 2,… , 7 . We then computed the new variances
�2(t) ≡ ∫ ∞

−∞
dc c2ppara(c, t) . While the functional forms

ppara(c, 0) , ppara(c, 1) , ..., are quite different from each other,
the variances �2(t) are reduced by an indentical factor � that
is independent of t, i.e., �(t + 1)∕�(t) = � . This time inde-
pendent factor � is a decreasing function of the ratio �(0)∕�g .
For example, for �g = �0 we find � ≈ 0.85 , for �g = �(0)∕2
we find � ≈ 0.88 , or for �g = �(0)∕3 we find � ≈ 0.91 . This
means that the reduction of the width for consecutive CMO
operation is simply given by the power law �(t) = �(0)� t . In
Sect. 5 we will see the impact of this scaling with regard to
the fitness reduction in a full SR simulation.

The Scaling of the Variance Reduction of ppara(c, t)
with the Tournament Size nT

As for an efficient application of the CMO operation the
value of the variance �2 of the parameter density ppara(c)
plays an important role, we discuss here how it is reduced
due to the tournament selection. To have a simple model, we
assume that ppara(c) is symmetric around c = co = 0 , which
minimizes the associated fitness. Following a similar statisti-
cal argument based on the total probability from Sect. 2.3,

one can show that ppara(c, t) changes to the distribution of
tournament winners ppara(c, t + 1) according to

T o t a k e a c o n c r e t e e x a m p l e , i f
�(c�, t) = (2�)−1∕2�−1Exp[−c2∕(2�2)] , t hen we can
use Eq. (13) to compute numerically the new variance
�2(t + 1) ≡ ∫ ∞

−∞
dc c2ppara(c, t + 1) . In the range 1 ≤ nT ≤ 50

the fitted expression given by �(t + 1) ≈ �(t)1.65∕(0.65 + nT)
matches the true tournament size dependence of �(t + 1)
with an error of less than 6%. In other words, we can assume
that for large nT the application of the tournament reduces
the width by a factor that is inversely proportional to nT . To
gain some confidence into the universality of this scaling of
the width, we have repeated the calculation with a uniform
density �(c, t) = �(c + 0.5)�(0.5 − c) . For this distribution,
a similar relationship �(t + 1) ≈ �(t)2.4∕(1.4 + nT) matches
the true dependence of �(t + 1) with an error of less than 1%.

As the CPU time increases linearly with nT due to the
required ranking for each tournament, one can address
the question if the application of two consecutive tour-
naments (with a small size nT ,2 each) is more effective in
the reducing the width s than the application of a single
tournament (with a larger nT ,1 ). If we assume the gen-
eral dependence �(t + 1, nT) ≈ �(t)(� + 1)∕(� + nT) sug-
gested above and equate the corresponding two widths
�(t + 1, nT ,1) = �(t + 2, nT ,2) , the same starting width �(t)
cancels out and we obtain nT ,1 = (� + nT ,2)

2∕(� + 1) − � .
For example, if we assume � = 1 and nT ,2 = 5 , then only for
nT ,1 ≥ 17 we obtain �(t + 1, nT ,1) ≤ �(t + 2, nT ,2) . As here
the required nT ,1 is much more than twice of nT ,1 , two con-
secutive tournament selections (with nT ,2 ) are clearly much
more CPU time efficient in reducing the fitness than a single
selection.

Impact of the Adaptive CMO in Symbolic
Regression with Mutations and Cross‑overs

After the probabilistic analysis of the prior sections, where
the statistical features of the tournament selection and the
CMO were examined in isolation, we will now provide an
example of a practical situation. Here numerous evolution
operations can act on the tournament winners, such as the
traditional crossovers, and subtree-, point- and hoist-muta-
tions as well as simple reproductions with the specified prob-
abilities. In Table 1, we summarize the main characteristics
of these SR evolutions. To keep the numerical example as

(13)ppara(c, t + 1) = nT�(c, t)

⎡
⎢⎢⎣
1 − 2

�c�

∫
0

dc��(c�, t)

⎤
⎥⎥⎦

nT−1

	 SN Computer Science (2022) 3:209 209   Page 10 of 15

SN Computer Science

simple and reproducable as possible, we have used the target
function gtarget (x) = 0.5 + 0.1x2 , which was sampled at 20
positions xn = (n − 1)∕20 for n = 1, 2,… , 20 . So the input
data is the set of 20 points xn, yn.

To have a general case where the initial generation does
not contain the function class of the target function gtarget (x) ,

we purposely restricted the initial generation to trees of
small length L = 3 . This population contains only the M = 4
different function classes c1 , c1 + x , c1x and x2 . Among these
four classes, the first class with g1(x) = 0.53087 with an
(rmse) fitness of 0.0284 is the best fit. In order to add the
relevant function class c1 + c2x

2 to the population (which
has the minimum tree length L = 7 ), the multiple applica-
tions of the mutation and crossover operations over several
generations are required.

In Fig. 4, we compare the evolutionary improvement
of the fitness associated with the best individum of all
Npop = 5000 search functions (and also the average fitness)
over 30 generations for three groups of strategies. The red
graph relies solely on a mixture of traditional evolution oper-
ators as indicated in Table 1. For the next group, represented
by the blue and green graphs, the CMO operator with a fixed
width B = 0.1 and 0.001 and uniform conditional probability
density G(g, c) = B−1�[g − (c − B∕2)]�[(B∕2 + c) − g] , was
included with a probability of 20% in the evolution. The
black graph is based on a variable width B, where a fixed
B = 0.01 (to form the generations 1 ≤ t ≤ 5 ) was followed
by B(t) = 10−0.5t for 6 ≤ t.

Let us now discuss the success rate of these three evo-
lution strategies separately. The consecutive actions of the
traditional evolution operators manage to decrease the fitness
of the best individuum from its initial value f = 0.0284 for
t = 0 down to f = 2.1 × 10−3 for t = 30 . We note that this
final expression was actually represented by a complicated
tree of large length, containing combinations of many dif-
ferent constants. As we pointed out in the introduction, the
traditional operations cannot directly update these numerical
assignments to constants. Therefore, the only way of obtain-
ing improved numerical values is using operational combi-
nations of multiple constants. While these operations can
reduce the optimum fitness by less than one order in magni-
tude during the first two generations, during the following 22
generations (up to t = 24 ) the improvements are miniscule.

This problem is significantly improved when the CMO
operation (with a reasonable width B) is permitted to partici-
pate in the evolution. For example, for B = 0.1 , the fitness is
steadily reduced during the first 15 generations, after which
this choice of B is too large to effectively further reduce
the fitness. In contrast, for a width a hundred times smaller
B = 0.001 , the fitness decreases at a much smaller rate (up
to t ≈ 15 ), as B is too small compared to the average width
of the parameter distribution during those generations.
However, once this average width becomes comparable to
the actual fitness width of the search function, CMO can
act much more effectively and the fitness begins to reduce
more efficiently. After 20 generations, however, average
width has become less than B, and the CMO loses its ability

Table 1   Parameters used in the symbolic regression leading to the
eight curves in Fig. 4. For the point mutation operation, each node
or leaf had a 20% replacement probability. For the plus-selection, an
offspring only advances if its fitness is less than its parent, otherwise
the parent advances

Evolution characteristics
 Selection scheme Tournament
 Tournament style Deterministic
 Tournament size nT 20
 Selection type Plus
 Operation set {+, ∗}

 Terminal set {c, x}

 Uniform constant range [0, 1]
 Initial length of trees L 3
 Population size Npop 5000
 Number of generations 31
 Criterion for fitness rmse

Probabilities of evolutionary operations
 Two-parent crossover 50%
 Sub-tree mutation 10%
 Hoist mutation 10%
 Point mutation, red curve 10%
 Point mutation, other curves 0%
 CMO, red curve 0%
 CMO, other curves 20%
 Reproduction, red curve 10%
 Reproduction, other curves 0%

10-17

10-13

10-9

10-5

10-1

0 5 10 15 30

fitnessno CMO

B = 0.1

B = adapted

B = 0.001

generation t

2.1 x 10–3

3.8 x 10 –6

6.1 x 10 –7

4.3 x 10–17

fitness

average
best

fitness

Fig. 4   The fitness f = {
∑20

n=1
[yn − g(xn)]

2}1∕2 associated with the
best individuum (and the average) per generation as a function of
the generational time t. The conditional probability for the CMO was
G(g, c) = B−1�[g − (c − B∕2)]�[(B∕2 + c) − g]

SN Computer Science (2022) 3:209 	 Page 11 of 15  209

SN Computer Science

to finetune the corresponding parameters in the optimum
search function.

The black graph presents the best of both worlds as
it continues to shrink the width of the CMO operation
with the average parameter width. Here the final fitness
is less that 4.3 × 10−17 corresponding to the optimum
g(x) = 0.5 + 0.1x2 , where each of the two constants is cor-
rect for all of its significant (16) digits. Furthermore, the
nearly straight line for the logarithmic axis shows that the
reduction of the fitness is nearly perfectly exponential, i.e.,
fopt (t) = 0.01 × e−1.1t . Quite interestingly, the average fit-
ness of the entire population follows a similar trend, i.e.,
⟨f ⟩(t) = 0.2 × e−1.1t.

In summary, we note that the CMO with adaptive vari-
ance matching can improve the final optimum fitness after
30 generations from fopt = 2.1 × 10−3 to fopt = 4.3 × 10−17 ,
which is a highly impressive improvement of about 13 orders
in magnitude. Equivalently, this corresponds to a change in
accuracy of the parameters c1 and c2 from 3 to 16 significant
digits.

SR‑Guided Reconstruction of Iterative Maps
or Differential Equations from Chaotic Time
Series

The Logistic Map with Noise

Since its popularization by May in 1976 [32], the logistic
map xn+1 = rxn(1 − xn) has become the archetypical pro-
totype of a nonlinear recurrence relation of degree 2. Due
to its non-linear dissipative and non-invertible structure,
all iterates converge to either regular n-cycles or to chaotic
limit cycles, which depend on the control parameter r. In
1999, Tan has demonstrated [33] that some state-of-the-art
machine learning technique based on recurrent parametri-
zation networks can correctly predict the chaotic dynamics
(3.4 < r < 4) from the non-chaotic training time series of the
stable regular regime (0 < r < 3.4) . We use this system here
as a concrete example to show that SR can also recover the
governing discrete map from its iterates xn , requiring much
less computational effort.

We have computed the first five iterates xn(rj) ( n = 0 ,
1,..., 4) with the initial value x0 = 0.9 for the two control
values r1 = 1 and r2 = 2 . In this regular domain all iterates
approach a single fix point given by xn=∞ = 0 (for 0 ≤ r < 1 )
and xn=∞ = (r − 1)∕r (for 1 ≤ r < 3 ). The SR algorithm was
then fed a list of eight triples Yinput = {xn+1(rj), xn(rj), rj} as
training sets with the goal to discover the most accurate and
simplest expression that can relate xn+1(rj) to xn(rj) and rj .
Using an initial population of Npop = 40, 000 trial expres-
sions, the algorithm predicted correctly the logistic map
xn+1 = rxn(1 − xn) after only a few seconds of CPU time.

To examine the robustness with regard to numerical inac-
curacies, we have superimposed a 1% multiplicative noise to
each of the eight iterates, by multiplying each of the exact
iterates with 1.01 Rand, where Rand was a uniformly distrib-
uted random number between −1 and 1. For these noisy data,
the SR algorithm predicted xn+1 = rxn(0.992 − xn) , which is
still remarkably close to the functional form of the logistic
map, albeit with a slightly different parameter. We have then
repeated the same simulation, but this time we used the first
20 iterates, instead of only 5. For this larger training set, the
noise was less relevant and the SR algorithm was able to
fully recover the exact logistic map.

These simulations nicely reveal that the transient dynam-
ics for the regular domain contains sufficient information to
reconstruct the entire map even from noisy data. Once the
map is recovered, it can then be applied to predict also the
chaotic domain correctly. For completeness, we have also
repeated the simulations for two sets ( r = 3.8 and r = 4 ) in
the chaotic regime, and again a small training set of only
four iterates was required to identify the correct map, while
noisy data required consistently a larger training set.

Reconstructing the Set of Lorenz Differential
Equations from Noisy Chaotic Data

Finally, we illustrate how SR can be used to re-construct
the multiple sets of differential equations from chaotic time
series in several coupled variables. As an example, we exam-
ine here the famous Lorenz equations [34], dx∕dt = �(y − x) ,
dy∕dt = x(� − z) − y and dz∕dt = xy − �z . Using stand-
ard numerical solutions techniques (such as Runge–Kutta
fourth-order schemes with self-adapting step size), these
equations can be solved numerically in the chaotic regime
( � = 10 , � = 8∕3 and � = 28 ) for the initial conditions
x(0) = y(0) = z(0) = 10 . Alternatively, one can also per-
form numerical convergence tests by comparisons with the
corresponding solutions obtained by black-box techniques,
such as the ones provided by Mathematica. The three time-
dependent solutions {x(t), y(t), z(t)} and their derivatives
{dx∕dt, dy∕dt, dz∕dt} were then discretized at times tn = n
(with n = 0 , 1, 2,...,49) and the resulting six 50-dimensional
lists were used as the training input for the SR evolution. We
used Npop = 40, 000 initial random analytical expressions,
the standard binary operations (+,−, ∗, ∕) , and the probabili-
ties similar to those in Table 1. After only 10 generations
SR reproduced correctly each of the three Lorenz equations.
This rapid convergence is actually not so surprising as the

	 SN Computer Science (2022) 3:209 209   Page 12 of 15

SN Computer Science

functional dependence of the three derivatives on x, y and
z is actually not too complicated, despite having fully cha-
otic solutions. The differential equations do not contain any
special functions, beyond simple products and additions, and
therefore are recoverable by SR.

We should remark that while the nonlinear coupling of
the three differential equations makes analytical solutions
extremely difficult (if not impossible) to obtain, the SR
approach is fortunately not affected by this complication.
The reason for this advantage is the fact that the SR can con-
struct each differential equation completely independently
of the other two, i.e., the differential equations can be deter-
mined sequentially.

To examine the robustness of the genetic algorithm with
regard to inaccuracies, we have repeated the schemes with
noised data. The key question of interest is whether these
perturbations will maintain the basic structure of the pre-
dicted differential equations [with possibly slightly corrected
values of the parameters ( � , � and � )] or whether SR predicts
that entirely different functional forms are required for the
differential equations, in order to minimize the errors with
respect to the given data.

To examine this, we have added to each solution at each
moment in time a uniformly distributed random number in
the range [ −0.1 , 0.1]. In the time interval 0 < t < 50 , the set
of three solutions x(tn) , y(tn) , z(tn) is highly oscillatory with
about 90 local maxima und minima between ±17 for x, ±22
for y and 10 < z < 43 for z(t), so therefore these perturba-
tions can be significant on a relative scale. We found that
the equations for x and y were predicted to be identical to
the original ones, suggesting a remarkable robustness of the
SR scheme. However, we note that one can “manipulate” a
little bit the final prediction by choosing a relatively large
parsimony coefficient (large penalty for complicated expres-
sions), which then favored the original equations, which are
simpler in nature.

While reducing a coupled set of differential equations to a
single equation is not always possible in general, the set of Lor-
enz equations happens to be equivalent to just a single autono-
mous differential equation of third-order for x(t). However,
as one might have expected, this new equation for d3x∕dt3 is
rather complicated and a highly non-linear function of x, dx∕dt ,
d2x∕dt2 , � , � and � such that the SR algorithm was not able
to re-construct its functional form from the data x(tn) within a
reasonable CPU time. This suggests that it might be algorithmi-
cally more efficient for the genetic algorithm to construct the
easier but coupled sets of differential equations (of lower order)
rather than attempting to predict a single equation of a much
more complicated structure. This is especially true due to the
advantageous sequential nature (mentioned above) of recovering
sets of equations.

We should finish here with a technical comment concern-
ing the numerical platform used in our calculations. While the

computational realization of genetic algorithms can generally
be implemented in several programming languages, we found
that an object-oriented language like Python provided us with
the largest flexibility. Our results can be easily reproduced on
any computational platform. For a small number of generations
and small population sizes Npop , most of the simulations can be
performed on a simple lab top computer with CPU times of less
than a few hours. For sophisticated simulations that can benefit
from multi-threading, we had access to twentyfour computing
nodes, where each node had two IntelⓇ Xeon Gold 6248R 3 GHz
CPUs, with 24 threads each. However, to improve on the most
efficient method to implement symbolic regression algorithms
into multi-processor and multi-threading environments remains
an important challenge for future work.

Summary and Outlook into Future
Challenges

The purpose of this work was two-fold, to accompany the
symbolic regression algorithm with a theoretical framework
that permits us to obtain some first insight into the formation
of optimal solutions under tournament selection. To alleviate
the problem with finding the optimum values of free param-
eters, we have introduced a new constant-mutation opera-
tor that can significantly improve the rate of convergence.
Using the statistical framework, we have examined the most
efficient working conditions for this operator based on an
adaptive variance matching. For a simple illustrative exam-
ple, we have shown that the CMO can decrease the fitness
of the optimum search function by 13 orders in magnitude.

Obviously, there are many questions that can be addressed
in future studies. For example, the concrete example in
“Impact of the adaptive CMO in symbolic regression with
mutations and cross-overs” suggested an exponential reduction
of the fitness of the best individuum (as well as of the aver-
age fitness) of the entire population. It would be interesting to
determine how the corresponding rate depends on the many
numerical parameters that characterize the evolution. Also, the
CMO operation was employed for a (time-dependent) width
B(t), which was chosen independent of the particular value the
constant takes. Our preliminary studies have shown that if this
width is chosen as a (time-dependent) fraction of the absolute
value of this constant, the convergence can possibly be acceler-
ated even more. However, more systematic numerical as well
as statistical theoretical studies are required to establish the
universal efficiency of this particular chosen for the width for
the �.

In all of our studies, the probabilities for all mutation,
cross-over and CMO operations to be applied to the respec-
tive tournament winners were held constant in time. As
some serve to increase the diversity (in the early exploratory
phases) and others serve more to enhance the convergence

SN Computer Science (2022) 3:209 	 Page 13 of 15  209

SN Computer Science

of a function class (later finetuning or convergence phases),
experimenting with time dependent probabilities could be
advantageous. The theoretical part of these studies might
also employ the statistical framework based on the concepts
of fitness densities and proportions, which is outlined in this
work.

Appendix

(A) P
m
(t) for a model system of M classes

To get some first insight into the time scales of the temporal
evolution of the proportions Pm(t) of each class under the
tournament selection, we present in this appendix an over-
simplified system of M classes, where the corresponding
initial fitness densities �m(f , t = 0) are so narrow that they
do not overlap with each other. This permits us to derive
a universal iteration scheme, where the proportions Pm(t)
can be computed directly from the set of Pm(t = 0) without
specifying the shape of �m(f , t = 0).

In general, the new set of proportions Pm(t + 1) after the
application of all Npop tournaments can be obtained via the
expression

The assumption of non-overlapping densities means that we
can assign each class a unique mean fitness value, defined
as ∫ ∞

0
df � f ��m(f

�, t) ≡ fm . This permits us to order the class
labels such that their associated mean fitness increases with
increasing label m, i.e., fm < fm+1 . If we further assume that
each �m(f , t) is basically non-zero only in the interval
[fm − �f∕2, fm + �f∕2] , then the integration range of first
integral ∫ ∞

0
df of Eq. (14) can be approximated by

∫ fm+�f∕2

fm−�f∕2
df  . This means that the largest upper integration

value f of the second integral ∫ f

0
df ′ is at most f = fm + �f∕2 .

A s a r e s u l t , s o m e o f t h e i n t e g r a l s i n
S(f , t) = nT [1 −

∑M

m�=1
Pm� (t) ∫ f

0
df ��m� (f �, t)]nT−1 can be par-

tially evaluated and therefore simplify significantly. The
densities �m� (f �, t) with a fitness lower than fm are integrated
ove r t he i r en t i r e ex ten t and we can use
∫ fm+�f∕2

fm−�f∕2
df�m� (f �, t) = 1 . As a resul t , we obta in

Pm� (t) ∫ f

0
df ��m� (f �, t) =

∑m−1

m�=1
Pm� (t) + ∫ f

0
df ��m� (f , t) . This

permits us to represent the entire integrand in S(f, t) as a total
derivative and we obtain

(14)

Pm(t + 1) =

∞

∫
0

dfPm(t)�m(f , t)nT

⎡⎢⎢⎣
1 −

M�
m�=1

Pm� (t)

f

∫
0

df ��m� (f �, t)

⎤⎥⎥⎦

nT−1

If we expand this set of equations, we obtain the sequences
of mutually coupled iterations

(15)

Pm(t + 1) =

fm−�f∕2

∫
fm−�f∕2

df Pm(t)�m(f , t)nT

⎡⎢⎢⎣
1 −

M�
m�=1

Pm� (t) −

f

∫
0

df �Pm(t)�m(f
�, t)

⎤⎥⎥⎦

nT−1

=

fm+�f∕2

∫
fm−�f∕2

df (−)d∕df

⎡⎢⎢⎣
1 −

M�
m�=1

Pm� (t) −

f

∫
0

df �Pm(t)�m(f
�, t)

⎤⎥⎥⎦

nT

= (−)

⎡⎢⎢⎣
1 −

m−1�
m�=1

Pm� (t) −

f

∫
0

df �Pm(t)�m(f
�, t)

⎤⎥⎥⎦

nT

�fm+�f∕2
fm−�f∕2

=

�
1 −

m−1�
m�=1

Pm� (t)

�nT

−

�
1 −

m�
m�=1

Pm� (t)

�nT

(16)

P1(t + 1) =1 − [1 − P1(t)]
nT

P2(t + 1) =[1 − P1(t)]
nT − [1 − P1(t) − P2(t)]

nT

P3(t + 1) =[1 − P1(t) − P2(t)]
nT − [1 − P1(t) − P2(t) − P3(t)]

nT

…

PM(t + 1) =[1 − P1(t) − P2(t) − P3(t) −⋯ − PM−1(t)]
nT

Fig. 5   Evolution of the proportions Pm(t) for M = 10 classes for
the first five generations according to the model given by Eq. (16).
The initial proportion were chosen Pm(t = 0) = 1∕M . We have only
labeled the three proportions with the lowest three fitnesses

	 SN Computer Science (2022) 3:209 209   Page 14 of 15

SN Computer Science

This means that we have obtained an iteration scheme
to calculate the class populations Pm(t + 1) of the next
generation solely from the set of Pm(t) , which have a
lesser (or equal fitness). One can easily convince one-
self that the norm is preserved by this set of maps. i.e., ∑M

m=1
Pm(t + 1) =

∑M

m=1
Pm(t) = 1.

As an interesting side-note, we remark that despite
the nonlinear feature of these iterative maps, for the class
with the lowest fitness m = 1 , we have the simpler itera-
tive scheme P1(t + 1) = 1 − [1 − P1(t)]

nT , which converges
consistently to P1(t → ∞) → 1 . If we introduce the com-
plementary proportion Q1(t + 1) ≡ 1 − P1(t + 1) , we have
1 − P1(t + 1) = [1 − P1(t)]

nT such that Q1(t + 1) = Q1(t)
nT .

This has the solution Q1(t) = Q1(0)
tnT such that we have

P1(t) = 1 − [1 − P1(0)]
tnT , so P1(t) grows monotonically on

the time scale proportional to n−1
T

 and independent of the
proportions Pm of the other classes, as one might expect.
While the decay is monotonic, its time scale depends not
only on nT , but also very sensitively on its initial value P1(0) .
If P1(0) ≪ 1 , then for short times P1(t) grows linearly in time
with a slope proportional to nTP1(0) , i.e., P1(t) = nTP1(0)t.

On the opposite side, if m matches the total number of
classes, i.e., m = M, then the iteration scheme for the class
with the largest fitness fM simplifies to

This permits us to find the complete time evolution for
t = 1, 2,… , as PM(t) = PM(0)

tnT following a universal mono-
tonic exponential decay with decay time proportional to n−1

T
.

The time evolution of all the other proportions PM(t)
for m ≠ 1 and m ≠ M can be non-momotonic. As an exam-
ple, in Fig. 5 we show the evolution of M = 10 classes and
Pm(t = 0) = 1∕M for the first five generations with a tourna-
ment size nT = 2 . We see that the low-fitness proportions,
Pm(t) (for m = 1 , ..., 5) increase first and then decay, except
P1(t) , which approaches monotonically 1.

Acknowledgements  We would like to thank Profs. B.K. Clark, X.
Fang, Z.L. Li, Y.J. Li and G.H. Rutherford, and G. Jacob, Z. Smozh-
anyk, and T. Walsh for many helpful discussions and suggestions. This
work has been supported by the NSF. C.G. would like to thank ILP
for the nice hospitality during his visit to Illinois State University and
acknowledges the China Scholarship Council program for his PhD
research. We also acknowledge access to the HPC cluster provided by
Illinois State University.

Declarations 

Conflict of interest  The authors declare that they have no conflict of
interest.

(17)

PM(t + 1) =

[
1 −

M−1∑
m�=1

Pm� (t)

]nT

= [1 − {1 − PM(t)}]
nT = PM(t)

nT

References

	 1.	 Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge:
MIT Press; 2016.

	 2.	 Sarachik ES, Cane MA. The El-Nino southern oscillation phe-
nomena. Cambridge, UK: Cambridge University Press; 2010.

	 3.	 Vladislavleva E, Friedrich T, Neumann F, Wagner M. Predicting
the energy output of wind farms based on weather data: important
variables and their correlation. Renew Energy. 2013;50:236.

	 4.	 Fitzsimmons J, Moscato P. Symbolic regression modelling of drug
responses. In: First IEEE Conference on Artificial Intelligence for
Industries; 2018.

	 5.	 Graham MJ, Djorgovski SG, Mahabal A, Donalek C, Drake A,
Longo G. Data challenges of time domain astronomy. Distr Paral-
lel Databases. 2012;30(5):371.

	 6.	 Schmidt M, Lipson H. Distilling free-form natural laws from
experimental data. Science. 2009;324(5923):81.

	 7.	 Udrescu SM, Tegmark M. The Feynman database for symbolic
regression. https://​space.​mit.​edu/​home/​tegma​rk/​aifey​nman.​html;
2020

	 8.	 Udrescu SM, Tegmark M. AI Feynman: a physics-inspired method
for symbolic regression. Sci Adv. 2019;6(16):2631.

	 9.	 Durasevic M, Domagoj J, Scoczynski Ribeiro Martins M, Stjepan
Picek P, Wagner M. Fitness landscape analysis of dimensionally-
aware genetic programming featuring Feynman equations. arXiv:​
2004.​12762​v1 [cs.NE]; 2020.

	10.	 Quade M, Abel M, Shafi K, Niven RK, Noack BR. Prediction
of dynamical systems by symbolic regression. Phys Rev E.
2016;94:012214.

	11.	 Gautier N, Aider JL, Duriez T, Noack B, Segond M, Abel M.
Closed-loop separation control using machine learning. J Fluid
Mech. 2015;770:442.

	12.	 Qin H. Machine learning and serving of discrete field theories
- when artificial intelligence meets the discrete universe. arXiv:​
1910.​10147; 2019.

	13.	 Gong C, Su Q, Grobe R. Machine learning techniques in the
examination of the electron-positron pair creation process. J Opt
Soc Am B. 2021;38:3582–91.

	14.	 Zimmermann RS, Parlitz U. Observing spatio-temporal dynam-
ics of excitable media using reservoir computing. Chaos.
2018;28:043118.

	15.	 Tanaka G, Yamane T, HšŠroux JB, Nakane R, Kanazawa N,
Takeda S, Numata H, Nakano D, Hirose A. Recent advances
in physical reservoir computing: a review. Neural Netw.
2019;115:100.

	16.	 Lu Z, Hunt BR, Ott E. Attractor reconstruction by machine learn-
ing. Chaos. 2018;28:061104.

	17.	 Symbolic regression is a relatively young research field and there
are no extensive reviews for direct applications in physics yet. Two
interesting early articles are [17,18].

	18.	 Vladislavleva K. Model-based problem solving through symbolic
regression via Pareto genetic programming. PhD thesis, Tilburg
University; 2008.

	19.	 Minnebo W, Stijven S. Empowering knowledge computing with
variable selection. M Sc thesis: University of Antwerp; 2011.

	20.	 Bruneton JP, Cazenille L, Douin A, Reverdy V. Exploration and
exploitation in symbolic regression using quality-diversity and
evolutionary strategies algorithms. arXiv:​1906.​03959​v1 [cs.NE];
2019.

	21.	 Koza JR. Genetic programming: on the programming of comput-
ers by means of natural selection. Cambridge: MIT Press; 1992.

	22.	 Koza JR. Genetic programming. Cambridge: MIT Press; 1998.
	23.	 Lambora A, Gupta K, Chopra K. Genetic algorithm—a literature

review. In: International conference on machine learning, big data,
cloud and parallel computing (COMITCon); 2019, p 380.

https://space.mit.edu/home/tegmark/aifeynman.html
http://arxiv.org/abs/2004.12762v1
http://arxiv.org/abs/2004.12762v1
http://arxiv.org/abs/1910.10147
http://arxiv.org/abs/1910.10147
http://arxiv.org/abs/1906.03959v1

SN Computer Science (2022) 3:209 	 Page 15 of 15  209

SN Computer Science

	24.	 Miller B, Goldberg D. Genetic algorithms, tournament selection
and the effects of noise. Complex Syst. 1995;9:193.

	25.	 Blickle T, Thiele L. A comparison of selection schemes used in
evolutionary algorithms. Evol Comput. 1996;4:361.

	26.	 Goldberg D, Deb K. A comparative analysis of selection schemes
used in genetic algorithms. Found Genet Algor. 1991;1:69.

	27.	 Holland JH. Adaptation in natural and artificial systems. Cam-
bridge: MIT Press; 1975.

	28.	 Gavrilets S. Fitness landscapes and the origin of species. Prince-
ton: Princeton University Press; 2004.

	29.	 McCandlish DM. Visualizing fitness landscapes. Evolution.
2011;65:1544.

	30.	 Wright S. The roles of mutation, inbreeding, crossbreeding, and
selection in evolution. Proc Six Int Congr Genet. 1932;1:355.

	31.	 Richter H, Engelbrecht A. Recent advances in the theory and
application of fitness landscapes. Heidelberg: Springer; 2014.

	32.	 May R. Simple mathematical models with very complicated
dynamic. Nature. 1976;261:459.

	33.	 Tan JPL. Simulated extrapolated dynamics with parametrization
networks. arXiv:​1902.​03440​v1 [nlin.CD]; 2019.

	34.	 Lorenz EN. Deterministic nonperiodic flow. J Atmos Sci.
1963;20(2):130.

Publisher's Note  Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

http://arxiv.org/abs/1902.03440v1

	Evolutionary Symbolic Regression from a Probabilistic Perspective
	Abstract
	Introduction
	Evolution of the Fitness Probability Density Based on Deterministic Tournament Selection
	Parse-Tree Representation of Expressions and Function Classes
	The Fitness Probability Density, Proportions and Parameter Distributions
	Probabilistic Theory for the Tournament Selection Scheme

	An Illustration of the Probabilistic Theory of the Symbolic Regression for Function Classes
	The Constant-Mutation Operator (CMO)
	Operational Definition and Its Impact on the Fitness Density
	Variance Matching to Optimize the Reduction of the Average Fitness
	The Scaling of the Variance Reduction of with the Tournament Size

	Impact of the Adaptive CMO in Symbolic Regression with Mutations and Cross-overs
	SR-Guided Reconstruction of Iterative Maps or Differential Equations from Chaotic Time Series
	The Logistic Map with Noise
	Reconstructing the Set of Lorenz Differential Equations from Noisy Chaotic Data

	Summary and Outlook into Future Challenges
	Acknowledgements
	References

