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Abstract
We examine the genetic evolution-based algorithm for symbolic regression from a probabilistic dynamical perspective. 
This approach permits us to follow the evolution of the search candidate functions from generation to generation as they 
improve their fitness and finally converge to the best function that matches a given data set. In particular, we use this statisti-
cal framework to explore the optimal external parameters that govern a special mutation operator, which can systematically 
improve the numerical value of constants contained in each candidate formula of the search space. We then apply symbolic 
regression to the chaotic logistic map and the Lorenz system.

Keywords  Symbolic regression · Constant mutation operator

Introduction

Symbolic regression (SR) is an iterative stochastic algorithm 
to search the space of mathematical expressions with the goal 
to identify the one that best describes a given experimental 
or simulated data set. It has been playing a small part in the 
general trend to include modern machine learning techniques 
and artificial intelligence [1] into scientific applications. To 
name a few recent examples, SR has been applied in weather 
data analysis [2, 3], pharmaceutical systems [4], astronomy 
[5], Newtonian mechanics [6], fundamental physics equa-
tions [7–9], solar electricity [10], fluid dynamics [11], dis-
crete field theories [12], and in quantum field theory [13].

Within the applications in physics, SR has demonstrated 
its power in recovering algebraic and differential equations 
of known physical laws in the recent past. The great promise 
of such a new tool would be to offer nontrivial expressions, 
solutions, or differential equations for those situations that 
are not easily obtainable by traditional theoretical analysis. 
This powerful tool would no doubt assist us to extend the 
range of investigations in many nonlinear and non-pertur-
bative physics problems. The general task of predicting the 
general dynamics from time series has been one of the goals 
of reservoir computing, which is a prominent machine learn-
ing technique [14, 15]. It has been applied successfully to 
accurate short-term prediction and attractor reconstruction 
of chaotic dynamical systems from time series data [16]. 
While these machine-learning based predictions are highly 
valuable, they do not provide analytical models, which could 
make further interpretations and mathematical analysis pos-
sible. We will illustrate below for the logistic map and the 
Lorenz system that SR can also be used to predict the cha-
otic dynamics from the time iterates associated within the 
regular domain.

Symbolic regression randomly combines an initial set of 
provided mathematical operators, functions, variables and 
constant parameters to uncover the relationships represented 
by the data [17–20]. It requires a wide choice for its many 
genetic programing related computational features, such as 
the number of individua per generation, the type of selec-
tion criteria, the evolutionary strategies, the mutation and 
crossover probabilities and the fitness criteria, to name just 
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a few. Due to this complexity, the numerical implementation 
of SR has to be viewed as a black-box algorithm. While in 
our opinion the SR has the enormous potential to become a 
valuable tool in the physical sciences, the determination of 
its optimal numerical working conditions requires often tedi-
ous and trial-and-error-based procedures, which depend sen-
sitively on the details of the particular application. It would 
therefore be quite helpful to establish first steps towards a 
statistical foundation that could be used to examine the effi-
ciency of these evolutionary stochastic algorithms.

A major challenge in SR is not only to discover the correct 
functional relationship among the independent variables, but 
also to determine the optimum numerical values of the param-
eters (constants) that can best fit the given data set. In its tradi-
tional implementation using genetic programming, state vari-
ables and parameters are being treated on an identical footing 
[21, 22]. In contrast to genetic algorithms, where the structure 
of the individuals is homogeneous and their format is fixed [23], 
genetic programming-based SR has to encompass the discrete 
sets of different functional forms as well as the infinite con-
tinuous spaces of the constants. If all constants in the target 
function (to be uncovered) happen to be just integers, SR can 
identify even complicated multi-variable dependences rather 
efficiently. However, more generally, once the data set requires 
parameters with non-integer values, SR has enourmous diffi-
culties as numerical values are assigned randomly to constants 
(free parameters) for the first generation of the pool of candi-
date expressions. During the evolution, the code usually cannot 
directly update these assignments. The only way of obtaining 
improved numerical values is by using operational combinations 
of these fixed values, such as “mul(2.0,add(1.1, 1.8))”, to repre-
sent the new “parameter” with value 5.8. The usual implemen-
tation of the evolutionary code does not allow for these types 
of simplifications to construct new leaves. This means that the 
complexity of expression trees can grow unnecessarily over time 
(bloat) and potentially good search candidates are eliminated 
despite their low errors due to parsimony constraints.

The goal of the present work is two-fold. First, we aim 
to introduce a statistical theoretical framework for SR that 
can provide us with better intuition and some first guidance 
about how to improve the efficiency of the algorithm. Sec-
ond, using this probabilistic framework, we introduce a new 
special purpose mutation operator that can supplement the 
traditional mutation and crossover operators. In contrast to 
the latter operators that are usually employed in the explora-
tory phase to increase the diversity of the search space, this 
particular operator is aimed at accelerating the convergence 
by solely improving the numerical values of the parameters.

The article is organized as follows. In “Evolution of the 
fitness probability density based on deterministic tournament 

selection”, the probabilistic concepts of the fitness density 
and function classes are introduced. “An illustration of the 
probabilistic theory of the symbolic regression for M = 3 
function classes” provides a concrete example of the SR 
evolution, where each generational step can be followed 
from a probabilistic perspective. “In the constant-mutation 
operator (CMO)”, the constant-mutation operator (CMO) 
is introduced. “Impact of the adaptive CMO in symbolic 
regression with mutations and cross-overs”, we illustrate 
the power of including the adaptive CMO in SR. In “SR-
guided reconstruction of iterative maps or differential equa-
tions from chaotic time series”, an application of SR to the 
logistic map and the Lorenz system is examined. Finally, in 
“Summary and outlook into future challenges” we present a 
summary and outlook into future challenges.

Evolution of the Fitness Probability Density 
Based on Deterministic Tournament 
Selection

As in most genetic programs, the evolution from generation 
to generation is based on iterated sequences of two consecu-
tive actions. The first one is the selection of the new mating 
pool from the first generation of search candidates, which is 
then followed by the application of various types of mutation 
and crossover operations. There are basically four different (and 
commonly used) selection schemes, including proportionate, 
ranking, steady state and tournament selection [24–27].

We will focus here on the tournament selection, where nT 
candidates are randomly chosen from the entire population of 
Npop individua. There are deterministic as well as probabalistic 
versions of the tournament rules. In the latter, the ranked individ-
uals are assigned a survival probability that is related to their fit-
ness. In this work, we focus on the deterministic version, where 
among these nT individuals, only the single winner (the one with 
the best fitness) is chosen to join the mating pool. These tourna-
ments are then repeated as often as desired (usually until the new 
mating pool with Npop members is filled). Due to the consecutive 
nature of the selection and evolutionary action, we can consider 
them separately. In this section, we focus entirely on the selec-
tion procedure and therefore neglect any consecutive mutation/
crossover operations such that the selected mating pool becomes 
identical here to the next generation.

In “Parse-tree representation of expressions and function 
classes” below, we will introduce the underlying statistical 
framework for the tournament selection, by proposing new 
concepts of the total fitness probability density �tot (f , t) as well 
as the density �m(f , t) and the proportion Pm(t) of each function 
class.
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Parse‑Tree Representation of Expressions 
and Function Classes

The Hilbert space of the candidate functions (primitive set) 
in the zeroth generation is encoded here by an LISP-style 
flattened inverted syntax tree representation. We assume the 
initiation method is provided by the so-called “full” pat-
tern resulting in sets of fully symmetric parse-trees of depth 
D and corresponding length L = 2D+1 − 1 (defined by the 
number of nodes) with the number of terminals given by 
2D . As the main ideas of this work can be easily general-
ized to multi-variable target functions, we can focus here 
on those input data that were generated by a target function 
gtarget (x) , which depends only on one independent variable 
x. This means that the terminals (leaves) of each parse-tree 
represent either this variable x or a constant numerical value 
of a parameter, which we denote by c. Let us further assume 
that these two choices are picked randomly with equal prob-
ability of 50%. The initial random values for all constants c 
follow a chosen parameter probability density ppara(c) with 
normalization ∫ ∞

−∞
dc ppara(c) = 1.

Unfortunately, there is a huge undesirable redundancy 
of different tree structures that lead to the same functional 
mathematical dependence on x. For example, while the func-
tion space defined by the two arithmetic operations “addi-
tion” and “multiplication” (with arity = 2) with depth = 2 
(and resulting length L = 7 ) permits 128 different tree struc-
tures, it represents only M = 8 different types of mathemati-
cal functional relationships. We associate those functions 
that differ only by their particular values of the constants 
with the same function class, which we label by the subscript 
m = 1, 2,… ,M . Therefore, the total number M of different 
function classes can be directly associated with the diversity 
of the population in this generation.

The Fitness Probability Density, Proportions 
and Parameter Distributions

To have a concrete realization for the fitness for each func-
tion class, let us assume the argument x of the target function 
gtarget (x) , from which the input data are generated, is in the 
range a ≤ x ≤ b . For example, we can associate the error 
between gtarget (x) and the search candidate gm(x) with its 
fitness fm , i.e., fm ≡ ∫ b

a
dx |gtarget (x) − gm(x)| . For each indi-

vidual gm(x) in a class m, this fitness can be evaluated as a 
funct ion of  the  constants  (c1, c2,… , cn) ≡ �  as 
fm = fm(c1, c2,… , cn) ≡ fm(�) . As the initial probability den-
sity for the constants �para(�) for the zeroth generation is 
known ( =chosen), it can be used to compute the initial prob-
ability distribution of the fitness �m(f ) for each function 
class, given as �m(f ) ≡ ∫ dnc �[f − fm(�)]�para(c1)… �para(cn) . 

As the distribution of each of the constants changes during 
the evolution, so does the characteristic fitness density �m(f ) . 
For example, it follows that ∫ f2

f1
df ��m(f

�) is therefore the 
total probability that a representative function gm(x) has a 
fitness value inside the interval (f1, f2) [28, 29]. The concept 
of the fitness density �m(f ) should not be confused with the 
well-known fitness landscape, which is used in evolutionary 
optimization [28–31], which in our context resembles more 
fm(�) for each class.

In each generation (indexed by the generational integer 
time t = 0, 1, 2,… ), the proportions Pm for each class of 
functions is defined by the ratio of the number of functions 
Nm(t) belonging to class m and the total number of functions 
in the population, denoted by Npop . We denote these pro-
portion (fractions) by Pm(t) ≡ Nm(t)∕Npop and they naturally 
fulfill 

∑M

m=1
Pm(t) = 1 . For function spaces associated with 

parse-tree representations of small depth, the correspond-
ing initial proportions Pm(t = 0) can be determined directly 
from the possible structures of the tree. This means that we 
can determine the total fitness probability density for each 
generation �tot (f , t) . It follows naturally as

This is the central quantity of symbolic regression. The ulti-
mate goal of the evolutionary algorithm [27] is to iteratively 
change the type of function classes, their proportions and 
their fitness densities for each generation, such that the den-
sity �tot (f , t) can be maximized for small arguments f.

Probabilistic Theory for the Tournament Selection 
Scheme

In order to study the dynamics of the three types of key 
characteristics �tot (f , t) , Pm(t) and �m(f , t) from generation to 
generation, we have to examine first the tournament selec-
tion from a probabilistic perspective. As mentioned above, 
here out of the group of all Npop individuals, nT are randomly 
chosen to participate in each tournament. The tournament 
winner in this subset competition is the one with the mini-
mum fitness among a set of nT alternatives and it is then 
selected to move on to the next generation. In other words, 
�tot (f , t + 1) is precisely the distribution of the minima 
(=winners) of groups of nT samples randomly drawn from 
the generation associated with �tot (f , t) . This parameter nT 
naturally controls the selection pressure, we note that even 
for the least pressure, i.e., for the least elitist scheme with 
nT = 1 , there is for each tree a chance of exp(−nT ) = 36.8% 
to not be selected, even if its fitness value happens to be 
the best in that entire generation. Due to this “omission” 
mechanism, this average fitness (and also the fitness of the 

(1)�tot (f , t) ≡
M∑

m=1

Pm(t)�m(f , t)
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best individuum) does not necessarily decrease monotoni-
cally from generation to generation. In the opposite (most 
elitist) scheme, nT = Npop , the new generation contains Npop 
identical copies of that individuum which had the least fit-
ness of the prior generation.

The probability density �tot (f , t + 1) can be computed 
from �tot (f , t) of the prior generation based on the follow-
ing probabilistic arguments: Given the original distribu-
tion of fitnesses �tot (f , t) , the probability that a randomly 
picked individuum has a fitness that is larger than f is 
given by the integral ∫ ∞

f
df � �tot (f

�, t) = 1 − ∫ f

0
df � �tot (f

�, t) . 
Likewise, if nT individual are chosen from the same origi-
nal group, then the probability that all of the associated nT 
f i t n e s s e s  a r e  l a rge r  t h a n  f  i s  g i ve n  by 
Pr(nT ) ≡ [1 − ∫ f

0
df � �tot (f

�, t)]nT , where the simple product 
form reflects the fact that these consecutive random picks 
are uncorrelated with each other. This expression for 
Pr(nT ) has to be identical to the probability that a randomly 
picked fitness among the new group of tournament winners 
with density �tot (f �, t + 1) takes a value larger than f. The 
latter would be calculated as Pr(nT ) = ∫ ∞

f
df � �tot (f

�, t) . As 
these two expressions for Pr(nT ) have to be identical to 
each other for each value of f, we can obtain �tot (f , t + 1) 
as −dPr(nT )∕df  . Applying this derivative with respect to f 
to the original product form of Pr(nT ) , we obtain

This means that the orginal fitness density �tot (f , t) 
gets improved by multiplying i t  with a col-
l ec t i ve  shape -chang ing  func t ion ,  g iven  by 
S(f , t) ≡ nT [1 −

∑M

m=1
Pm(t) ∫ f

0
df ��m(f

�, t)]nT−1 .  This  is 
apparently the key operator for the tournament-based selec-
tion as it describes the highly nonlinear impact of this selec-
tion scheme on the fitness density. Using the relationship 
�tot (f , t) =

∑M

m=1
Pm(t)�m(f , t) from Eq. (2), the new density 

can naturally be written in terms of the individual original 
fitness densities for each class as

If we integrate both sides of this equation over all fit-
ness values f, we obtain ∫ ∞

0
df ��tot (f

�, t + 1) and therefore ∑M

m=1
Pm(t) ∫ ∞

0
df S(f , t)�m(f , t) ≡ ∑M

m=1
Pm(t + 1) .  Th i s 

equation suggests that the new fraction Pm(t + 1) of the 
individuals of class m after the tournament can be obtained 
from the integral

(2)�tot (f , t + 1) = �tot (f , t)nT

⎡⎢⎢⎣
1 −

f

∫
0

df � �tot (f
�, t)

⎤⎥⎥⎦

nT−1

(3)�tot (f , t + 1) =

M∑
m=1

Pm(t)S(f , t)�m(f , t)

As the shape-changing function S(f,t) itself is a highly non-
linear function of the Pm(t) as well as the �m(f , t) , the itera-
tive map from the set of the proportions Pm(t) to their new 
values Pm(t + 1) for the next generation turns out to be rather 
nontrivial.

Us ing  t he  new p ropor t ions  Pm(t + 1) ,  t he 
new density at t ime t + 1 can be expressed as 
�tot (f , t + 1) =

∑M

m=1
Pm(t + 1)�m(f , t + 1)   ,  w h i c h 

effectively defines the new individual densities 
�m(f , t + 1) . As we can rewrite the total density as 
�tot (f , t + 1) =

∑M

m=1
Pm(t)�m(f , t)S(f , t) [see Eq. (3)], this 

suggests that the new density for class m is given by the 
multiplication �m(f , t + 1) = Pm(t)S(f , t)�m(f , t)∕Pm(t + 1) . 
If we insert the normalization factor ∫ ∞

0
df S(f , t) �m(f , t) 

from Eq. (4), we obtain the iterative map

There are two particular limits of the general equation (4), 
for which more simplified expressions for the new propor-
tions of each class Pm(t + 1) can be obtained. In the first 
limit, where the densities �m(f , t) are so narrow as a function 
of f that they do not overlap with each other, it is possible to 
derive a much simpler and direct iterative scheme to com-
pute the time evolution of the proportions Pm(t + 1) directly 
from the set of all Pm(t) . In Appendix A, we derive that these 
equations take the form

As these equations assume that the associate average fit-
nesses fm , defined as fm ≡ ∫ ∞

0
df f �m(f ) , can be ordered, 

i.e., fm < fm+1 , the Pm(t + 1) do not depend on �m(f ) nor fm . 
In Appendix A, we also provide a simple numerical exam-
ple of time evolution. For example, we show there that the 
proportion associated with the best fit individua (m = 1) 
approaches P1(t) → 1 in times as P1 = 1 − [1 − P1(0)]

t nT . 
If we solve P1(t1∕2) = 0.5 for time t1∕2 , we find that after 
a number of generations given by (the integer part of) 
t1∕2 ≡ −n−1

T
ln 2∕ ln[1 − P1(0)] , the fraction P1 becomes the 

dominant function class as it exceeds 50%.
This solution for t1∕2 allows us to suggest that the total 

CPU time (required for the best proportion to reach 50%) 
is actually independent of our choice of nT . As each single 
tournament requires the evaluation of nT fitnesses, and we 

(4)Pm(t + 1) = Pm(t)

∞

∫
0

df S(f , t)�m(f , t)

(5)�m(f , t + 1) = S(f , t)�m(f , t)∕∫
∞

0

df � S(f �, t) �m(f
�, t)

(6)Pm(t + 1) =

[
1 −

m−1∑
m�=1

Pm� (t)

]nT

−

[
1 −

m∑
m�=1

Pm� (t)

]nT
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require a total of Npop tournaments to select all Npop members 
of the next generation, the CPU-time for one generation is 
proportional to nT Npop . This means that the total CPU-time 
for a total number of t1∕2 generations (given by t1∕2 nT Npop ) 
does not depend on our choice for nT at all. This is interest-
ing, as the evaluation of the fitnesses are the typical compu-
tational bottleneck in SR.

Let us now discuss the second (opposite) limit of 
Eq.  (4), where the overlap of all fitness densities is 
assumed to be maximum such that we can assume that 
the �m(f , t) are independent of m. This means that the fac-
tor ∫ ∞

0
df S(f , t) �m(f , t) , which we abbreviate as �(t) , is 

identical for each class and, according to Eq. (4) leads to 
Pm(t + 1) = Pm(t)�(t) . In order to preserve the normaliza-
tion 1 ≡ ∑M

m=1
Pm(t + 1)�(t) , we find that the proportions 

of each class do not change in time, Pm(t) = Pm(t = 0) . For 
a general evolution, the dynamics of the Pm(t) will be some-
where between these two limiting cases. We compare it to 
the evolution of a concrete example from symbolic regres-
sion in the next section.

An Illustration of the Probabilistic Theory 
of the Symbolic Regression for M = 3 
Function Classes

Without any loss of generality, we assume here that the input 
data were derived from a target function that is simply given 
by the constant gtarget (x) = 0 in the range 0 ≤ x ≤ 1 . To keep 
this example as transparent and illustrative as possible, let 
us define the primitive set of initial candidate functions by 
those that can be represented by a syntax tree of depth D = 1 
and corresponding tree length L = 3 with the sole arithmetic 
operation “add”. This means that the two input terminals 
(leaves) represent either the independent variable x or a con-
stant c. This space can represent only M = 3 different types 
of mathematical functional relationships. They are given 
by the three sets g1(x) = c1 + c2 (denoted by class m = 1 ), 
g2(x) = x + c1 (class m = 2 ) and g3(x) = 2x (class m = 3 ). 
While this is obviously an extremely simple toy model, it 
actually contains many aspects of a real SR algorithm.

Let us assume that the computer algorithm is set up in 
such a way that the numerical values of all constants for 
the members of the 0th generation are chosen to be equally 
distributed inside the interval 0 ≤ c ≤ 1 . This means that 
ppara(c) is just a product of uniform distributions for each 
constant, each centered at 0.5 and with a standard deviation 
0.288. Using � ≡ ∫ ∞

−∞
dnc �[f � − f (�)]ppara(�) , we obtain for 

the specific fitness densities for each class

(7)�1(f , t = 0) =fU(f , 1 − f ) + (2 − f )U(f , 1 − f )

(8)�2(f , t = 0) =U(f − 0.5, 1.5 − f )

(9)�3(f , t = 0) =�(f − 1)
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Fig. 1   (a, top) Change of the fitness probability density �tot (f ) (blue) 
after a tournament selection of sizes nT = 10 and 100. They take the 
average values f = 1.0, 0.55 and 0.25. (b, middle) The evolution of 
the fitness probability density �tot (f , t) for the first five generations for 
the tournament size nT = 5 . (c, bottom) The time-dependence of the 
three proportions P1(t) , P2(t) and P3(t) for tournament sizes nT = 2 
for a simulation with a population of 20,000 together with the analyti-
cal predictions of the probabilistic theory of Eq. (4)
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where U() denotes the generalized unit step function defined 
as U(a, b) = 1 if both a ≥ 0 and b ≥ 0 and U(a, b) = 0 oth-
erwise. Here �(f − 1) denotes the Dirac delta function. All 
three densities happen to have the same average fitness 
value fm = ⟨f ⟩ = ∫ ∞

0
df f �m(f , t = 0) = 1 . While all three 

densities vanish for f = 0 , the probability to find a candidate 
function for which ∫ fmax

0
df 𝜌m(f , t = 0) > 0 for any arbitrarily 

small (but nonzero) fmax does not vanish for class one, i.e., 
�1(f , t = 0) . This means that the set of class m = 1 candidate 
functions contains the target function gtarget (x) = 0 . Obvi-
ously, g1(x) = c1 + c2 is equal to the target, if both c1 and c2 
approach zero.

In Fig. 1a, we graph the modification of the original fit-
ness probability �tot (f , t = 0) =

∑3

m=1
Pm(t = 0)�m(f , t = 0) 

due to two tournaments of sizes nT = 10 and 100 as pre-
dicted from the numerical evaluation of Eq. (2). We see that 
the non-linear character of the tournament selection mani-
fests itself in the formation of rather unusually shaped den-
sities. Their precise shape of the new densities can hardly 
be guessed, but we see the expected overall shift to smaller 
fitness values. We also see that the density �tot (f , t = 0) , 
which due to the original uniform distributions of the con-
stants had discontinuities at f = 0.5, 1 and 1.5, develops into 
a smoother structure with increasing nT.

In Fig. 1b, we display the dyamical evolution of the fit-
ness density �tot (f , t) for the first five generations for a fixed 
tournament size nT = 5 . Overall, the trend with increasing 
time is very similar to the data shown in Fig. 1a as it reflects 
how the three fitness densities are deformed. In addition to 
the deformation, also the weight factors of each function 
Pm(t) class are changing.

In Fig. 1c, we monitor the (generational) time evolution of 
the three proportions from there initial values P1(t) = 0.25 , 
P2(t) = 0.5 and P3(t) = 0.25 for the same tournament size 
as in Fig. 1b. We find that (independent of the size nT ) the 
evolution in each case approaches P1(t → ∞) = 1 . However, 
the evolution is non-monotonic, for example, we see that 
P2(t → ∞) grows first, before it decays to zero. As there are 
no approximations, the analytical data based on the numeri-
cal solutions to the iterative set agree perfectly with the 
fractions of the actual SR simulation with sufficient large 
population ( Npop > 20, 000 ) as shown by the open circles. 
In summary, qualitatively, the dynamics of the proportions 
in this SR simulation are similar to the corresponding pre-
dictions of the non-overlapping fitness model introduced in 
Appendix A. This agreement gives some credence to this 
simpler model, even though the original fitness densities of 
Eqs. (7–9) did have a significant overlap.

The Constant‑Mutation Operator (CMO)

Operational Definition and Its Impact on the Fitness 
Density

In contrast to most genetic operators (such as mutations or 
two- or multi-parent crossovers) that are created to mainly 
increase the diversity and permit us to explore new areas, the 
CMO operator introduced below is a special purpose operator 
that exploits a known area and aims at increasing the conver-
gence to a minimum fitness within a given class of individuals. 
To overcome the principal bottleneck of most SR algorithms, 
which is the slow convergence with regard to reproducing the 
(non-integer) constants contained by the target function, we 
have supplemented the usual mutation and crossover opera-
tions by a new one that does not change the function class, but 
improves on the numerical value(s) of the constant(s) con-
tained in an individual. If the CMO is being selected to act on 
the respective tournament winner, it first identifies the associ-
ated constant parameters of this expression. If it does not con-
tain any, it acts as the unit-operator and keeps this individuum 
unchanged. If the expression contains numerous constants, it 
randomly picks out of this expression any constant c. The fit-
ness value of this expression f(c) is then compared to f(g), 
where g denotes an alternative random guess chosen from a 
given probability density G(g). If f (c) ≤ f (g) , then original 
value of the parameter is maintained and CMO would act as 
the unit operator. If, however, f (g) ≤ f (c) , then the (better) 
numerical value g will be inserted into the individuum and 
forwarded to the pool of search candidates for next genera-
tion. The CMO is therefore a very specialized version of the 
point mutation operator, which acts on any node independent 
of whether it contains a constant, an operation or a variable.

As during the early generational time frame (of mainly 
exploratory searches) most of the fitness densities for each 
function class have typically widely distributed parameter val-
ues, the particular numerical choice for g is not so relevant. 
However, as later generation are comprised of mutated former 
tournaments winners, we can assume that the fitness density 
�m(f ) of each class has improved already that the associated 
value of the parameter c is already close to one that can mini-
mize the fitness. This means that the choice of g should take 
this knowledge of c into account. Therefore g should be cor-
related to c suggesting that the more general G = G(g, c) is 
more efficient. This also means that it becomes a conditional 
probability density, which also depends on the value for c, such 
that ∫ G(g, c) = 1 for any c. Furthermore, we will show below, 
that adapting the shape of G(g, c) not only to c, but permitting 
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it to change from generation to generation, i.e., G = G(g, c, t) , 
can further accelerate the rate of convergence.

To establish which functional forms of G(g, c, t) are a pri-
ori most advantageous, we need to establish first a theoretical 
framework for how the action of the CMO modifies the fit-
ness probability densities. Unfortunately, this action cannot 
be formally expressed as �m(f , t + 1) ≡ CMO[�m(f , t)] , as it 
is actually not a unique one-to-one mapping. However, for the 
iteration map ppara(c, t + 1) ≡ CMO[ppara(c, t)] an explicit 
and unique operational scheme can be found based on the 
corresponding joint (and fully correlated) probability density 
ppara(c, t)G(g, c, t) . It is given by

where we denote with D the domains in two-dimen-
sional integration (c�, g�) space, where the fitness 
satisfies f (c�) ≤ f (g�) , meaning that here we have 
ArgMin(c�∈R,g�∈R)(f (c

�), f (g�)) = c� . Similarly, the com-
plementary area E is defined by f (g�) ≤ f (c�) , such that 
ArgMin(c�∈R,g�∈R)(f (c

�), f (g�)) = g�.
As we can safely assume that after several generations the 

distribution of values of the parameter c is already close to 
the one that can minimize the fitness density, we can assume 
that in this region the fitness is a monotonically increasing 
function of |c − co| . Here co is the specific parameter value 
that minimizes the fitness. This monotonicity permits us to 
identify the integration spaces D and E and to perform the 
integration along the c′ or g′ axis. We obtain

where we use ∫ ∞

−∞
dg�G(g�, c, t) = 1 . These expressions per-

mit for an illustrative interpretation. For example, the prefac-
tor [1−...] to ppara(c, t) is the total probability that a randomly 
picked value for g′ is further away from co than the value c, 

(10)

ppara(c, t + 1) = CMO[ppara(c, t)]

= ∫ ∫ dc�dg��[c − ArgMin(c�∈R,g�∈R)

(f (c�), f (g�))]

ppara(c
�, t)G(g�, c�, t)

= ∫ ∫
D

dc�dg��[c − c�]ppara(c
�, t)G(g�, c�, t)

+ ∫ ∫
E

dc�dg��[c − g�]ppara(c
�, t)G(g, c�, t)

(11)

ppara(c, t + 1)

=

⎡⎢⎢⎣

Min(2co−c,c)

∫
−∞

+

∞

∫
Max(2co−c,c)

⎤⎥⎥⎦
dc�ppara(c

�, t)G(c, c�)

+ ppara(c, t)

⎡⎢⎢⎣
1 −

Max(2co−c,c)

∫
Min(2co−c,c)

dg�G(g�, c)

⎤⎥⎥⎦

meaning that f (c) < f (g�) . In other words, in this case, a 
proposed new value g cannot improve the fitness originally 
associated with value c, distributed according to ppara(c, t) . 
The same interpretation applies to the first term, where the 
associated contribution of the weighted density G(c, c�) to 
ppara(c, t + 1) is provided.

While ppara(c, t) does not necessarily take its maxi-
mum at c = co , the action of the CMO operation on 
ppara(c, t) has an interesting “probability density dou-
bling” property, when evaluated at the optimal param-
eter value c = co . This can be easily seen, if we evalu-
ate Eq. (11) for the specific value c = co . It simplifies to 
ppara(co, t + 1) = ∫ ∞

−∞
dc�ppara(c

�, t)G(co, c
�) + ppara(co, t)   . 

If we assume that G(co, c�) is sufficiently narrowly cen-
tered around c� = co , we can factor ppara(co, t) out of 
the integral and using ∫ ∞

−∞
dg�G(g�, c) = 1 we obtain 

ppara(co, t + 1) = 2ppara(co, t) . This interesting feature is illus-
trated in Fig. 2, where we show the change of a initial Gauss-
ian parameter distribution �para(c) = (2�)−1∕2Exp(−c2∕2) 
under the CMO operation based on the conditional density 
G(g, c) = (2�)−1∕2Exp[−(g − c)2∕(2�2)].

While to have a fully analytical access to the way the 
action of the CMO modifies the distribution of the param-
eter from ppara(c, t) to ppara(c, t + 1) is beneficial, what is 
more relevant is how the associated fitness density �(f , t) 
is improved to �(f , t + 1) . To convert the probability dis-
tribution ppara back to the associated density of the fitness, 
i.e.,�(f ) = ∫ dc �[f − f (c)]ppara(c) can be easily obtained in 
general, if we know how the fitness value f is related to the 
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ρ
para

(c,t)
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constant c

t=1

0.48

0.24

Fig. 2   Illustration of the probability density doubling fea-
ture of the CMO operation for the fitness minimizing param-
eter c = co . We used ppara(c, t) = (2�)−1∕2Exp(−c2∕2) and 
G(g, c) = (2�)−1∕2�−1Exp[−(g − c)2∕(2�2)] with � = 0.5 . We 
see how the particular value of the density at the optimal param-
eter (chosen here to be co = 1 ) is doubled from ppara(co, t) ≈ 0.24 to 
ppara(co, t + 1) ≈ 0.48
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parameter c. With the ultimate goal in mind that a highly 
desirable density should be narrowly localized close to the 
minimum value of f, there are obviously numerous single val-
ues that could be defined to measure and quantitatively com-
pare the quality of several fitness densities. A good example 
could be either the mode of this distribution or the average 
fitness value defined as ⟨f ⟩ ≡ ∫ ∞

0
df � f ��(f �) . The computa-

tion of the mean value can be quite conveniently and directly 
obtained from ppara(c) . If we exchange the integration order 
and perform the integration of the Dirac delta function, then 
⟨f ⟩ ≡ ∫ ∞

0
df � f � ∫ ∞

−∞
dc �[f � − f (c)]ppara(c) = ∫ ∞

−∞
dcf (c)ppara(c) . If 

we apply the same procedure to the CMO modified density 
ppara(c, t + 1) , we can perform the delta-function integration 
over c first and then over f ′ and obtain

As ⟨f ⟩(t) cannot be uniquely tracked back to ppara(c, t) , it 
is unfortunately not possible to construct a direct iteration 
scheme that permits us to relate ⟨f ⟩(t) directly to ⟨f ⟩(t + 1) . 
This means that if two different ppara(c, t) happen to have 
the same mean value ⟨f ⟩(t) , their CMO-improved value 
⟨f ⟩(t + 1) can be nevertheless different in general. To exam-
ine how the conditional probability G(g�, c�, t) can be chosen 
to lower the average fitness ⟨f ⟩ in a most efficient way, we 
need to examine a concrete example, which we present in 
the next section.

Variance Matching to Optimize the Reduction 
of the Average Fitness

While it is obviously advantageous to have the condi-
tional probability G(g,  c) centered around the original 
value c, which is distributed according to ppara(c, t) , it is 
not clear how the optimum width of G(g, c) should be cho-
sen to maximize the reduction of the average fitness from 
ppara(c, t) to ppara(c, t + 1) . To examine this question numeri-
cally, we have considered first for simplicity the uniform 
probability G(g, c) ≡ B−1�[g − (c − B∕2)]�[(B∕2 + c) − g] 
of width B and a similarly simple uniform distribution 
ppara(c, t) ≡ �(c + 0.5)�(c − 0.5) , where � denotes the 
Heaviside unit-step function. The fitness is modeled here 
as f (c) = (c − co)

2.

(12)

⟨f ⟩(t + 1) ≡
∞

�
0

df � f ��(f �, t + 1)

=

∞

�
0

df � f �

∞

�
0

dz �(f � − f (c))ppara(c, t + 1)

=

∞

�
−∞

dc�

∞

�
−∞

dg� f (ArgMin[f (c�), f (g�)])

ppara(c
�, t)G(g, c�, t)

There are two special opposite cases for the choice of the 
width B that are of interest. In both extreme limits for a very 
narrow distribution, B → 0 , as well as for B → ∞ , the trans-
formation from ppara(c, t) to ppara(c, t + 1) becomes the unit-
operator. In other words, we have ppara(c, t + 1) = ppara(c, t) 
and therefore �(f , t + 1) = �(f , t) . As a result, there is no 
improvement of the fitness under the CMO operation. As 
neither limit ( B → 0 nor B → ∞ ) improves the fitness, there 
must be an optimum width (denoted by Bopt ), for which the 
CMO transformation leads to a maximum reduction of the 
fitness value.

To find this optimum width for a given value of 
co , we have calculated ppara(c, t + 1) according to 
Eq.  (10) above for a wide range of widths B. We 
have then recorded the width Bopt that minimized the 
final average fitness ⟨f ⟩ ≡ ∫ ∞

0
df � f ��(f , t + 1) , where 

�(f , t + 1) = ∫ dc��[f − c�2]ppara(c
�, t + 1) . In Fig. 3, we have 

graphed the optimum width Bopt as a function of co.
Here the distribution of the original constant c ppara(c, t) 

was uniform with a width of 1 and centered around 0. The 
conditional probability for CMO was also uniform, but was 
centered around g = c with a variable width of B.

The data in Fig. 2 suggest two important conclusions. 
First, the optimimum width Bopt associated with the CMO 
operation takes its lowest value if the original parameter 
distribution ppara(c, t) is centered around the optimal param-
eter co , which happens if co is equal to zero. In this par-
ticular case, the optimum width Bopt is 1, which matches 
precisely the width of the original distribution ppara(c, t) . 
The fact that the associated variance of ppara(c, t) , i.e., 
�2 = ∫ ∞

−∞
dc(c − co)

2ppara(c, t) , which is equal to � = 0.288 , 

0

2

4

6

8

0 0.5 1 1.5 2 2.5

optimal width Bopt

optimal constant c
o

B      = 1 + 2.5 copt o

Fig. 3   The optimum width B of the conditional probabil-
ity G(g, c) = B−1�[g − (c − B∕2)]�[(B∕2 + c) − g] to mini-
mize the average ⟨f ⟩(t + 1) = ∫ ∞

−∞
dc ppara(c, t + 1) . Here the fit-

ness is modelled as f (c) = (c − co)
2 and the original density is 

ppara(c) = �(c + 0.5)�(0.5 − c) . For comparison, the dashed line is 
Bopt = 1 + 2.5|co|
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is precisely matched by the corresponding variance of the 
conditional probabililty, i.e., ∫ ∞

−∞
dg(g − g0)

2G(g, c) , is 
not coincidental and valid for more general forms of the 
densities G(g, c). For example, for a Gaussian choice, i.e., 
G(g, c) = (2�)−1∕2�−1

g
Exp[−(g − c)∕(2�2

g
)] , we find for 

co = 0 that the optimum value of the variance is �g = 0.31 , 
which differs only by 7% from the associated variance 0.288 
of ppara(c, t) . This finding suggests that the action of the 
CMO can be optimal, if the variance of G(g, c) is chosen to 
match that of ppara(c, t).

The second conclusion from Fig. 3 is that the required 
optimal value of Bopt increases with the distance between 
the center of ppara(c, t) and co . For the uniformly distrib-
uted G(g, c) examined in this figure, the linear relation-
ship Bopt = 1 + 2.5co approximates this increase very well. 
However, as the probability density doubling mechanism 
for c = co discussed suggests, after a few generations and 
applications of the CMO, the density ppara(c, t) will naturally 
become centered around co , such that the variance matching 
of ppara(c, t) and G(g, c) promises the best performance of 
the CMO is general.

Finally, we have to examine how the width (variance) 
of ppara(c, t) is reduced under consecutive actions of the 
CMO operation based on Eq. (11). To have another con-
crete example, we have used simple Gaussian distribu-
t i o n s  ppara(c, t = 0) = (2�)−1∕2�(0)−1Exp[−c2∕(2�(0)2)] 
and G(g, c) = (2�)−1∕2�−1

g
 Exp[−(g − c)∕(2�2

g
)] , and com-

puted ppara(c, t) after consecutive applications of the CMO 
for t = 1, 2,… , 7 . We then computed the new variances 
�2(t) ≡ ∫ ∞

−∞
dc c2ppara(c, t) . While the functional forms 

ppara(c, 0) , ppara(c, 1) , ..., are quite different from each other, 
the variances �2(t) are reduced by an indentical factor � that 
is independent of t, i.e., �(t + 1)∕�(t) = � . This time inde-
pendent factor � is a decreasing function of the ratio �(0)∕�g . 
For example, for �g = �0 we find � ≈ 0.85 , for �g = �(0)∕2 
we find � ≈ 0.88 , or for �g = �(0)∕3 we find � ≈ 0.91 . This 
means that the reduction of the width for consecutive CMO 
operation is simply given by the power law �(t) = �(0)� t . In 
Sect. 5 we will see the impact of this scaling with regard to 
the fitness reduction in a full SR simulation.

The Scaling of the Variance Reduction of ppara(c, t) 
with the Tournament Size nT

As for an efficient application of the CMO operation the 
value of the variance �2 of the parameter density ppara(c) 
plays an important role, we discuss here how it is reduced 
due to the tournament selection. To have a simple model, we 
assume that ppara(c) is symmetric around c = co = 0 , which 
minimizes the associated fitness. Following a similar statisti-
cal argument based on the total probability from Sect. 2.3, 

one can show that ppara(c, t) changes to the distribution of 
tournament winners ppara(c, t + 1) according to

T o  t a k e  a  c o n c r e t e  e x a m p l e ,  i f 
�(c�, t) = (2�)−1∕2�−1Exp[−c2∕(2�2)] ,  t hen  we  can 
use Eq.  (13) to compute numerically the new variance 
�2(t + 1) ≡ ∫ ∞

−∞
dc c2ppara(c, t + 1) . In the range 1 ≤ nT ≤ 50 

the fitted expression given by �(t + 1) ≈ �(t)1.65∕(0.65 + nT ) 
matches the true tournament size dependence of �(t + 1) 
with an error of less than 6%. In other words, we can assume 
that for large nT the application of the tournament reduces 
the width by a factor that is inversely proportional to nT . To 
gain some confidence into the universality of this scaling of 
the width, we have repeated the calculation with a uniform 
density �(c, t) = �(c + 0.5)�(0.5 − c) . For this distribution, 
a similar relationship �(t + 1) ≈ �(t)2.4∕(1.4 + nT ) matches 
the true dependence of �(t + 1) with an error of less than 1%.

As the CPU time increases linearly with nT due to the 
required ranking for each tournament, one can address 
the question if the application of two consecutive tour-
naments (with a small size nT ,2 each) is more effective in 
the reducing the width s than the application of a single 
tournament (with a larger nT ,1 ). If we assume the gen-
eral dependence �(t + 1, nT ) ≈ �(t)(� + 1)∕(� + nT ) sug-
gested above and equate the corresponding two widths 
�(t + 1, nT ,1) = �(t + 2, nT ,2) , the same starting width �(t) 
cancels out and we obtain nT ,1 = (� + nT ,2)

2∕(� + 1) − � . 
For example, if we assume � = 1 and nT ,2 = 5 , then only for 
nT ,1 ≥ 17 we obtain �(t + 1, nT ,1) ≤ �(t + 2, nT ,2) . As here 
the required nT ,1 is much more than twice of nT ,1 , two con-
secutive tournament selections (with nT ,2 ) are clearly much 
more CPU time efficient in reducing the fitness than a single 
selection.

Impact of the Adaptive CMO in Symbolic 
Regression with Mutations and Cross‑overs

After the probabilistic analysis of the prior sections, where 
the statistical features of the tournament selection and the 
CMO were examined in isolation, we will now provide an 
example of a practical situation. Here numerous evolution 
operations can act on the tournament winners, such as the 
traditional crossovers, and subtree-, point- and hoist-muta-
tions as well as simple reproductions with the specified prob-
abilities. In Table 1, we summarize the main characteristics 
of these SR evolutions. To keep the numerical example as 

(13)ppara(c, t + 1) = nT�(c, t)

⎡
⎢⎢⎣
1 − 2

�c�

∫
0

dc��(c�, t)

⎤
⎥⎥⎦

nT−1
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simple and reproducable as possible, we have used the target 
function gtarget (x) = 0.5 + 0.1x2 , which was sampled at 20 
positions xn = (n − 1)∕20 for n = 1, 2,… , 20 . So the input 
data is the set of 20 points xn, yn.

To have a general case where the initial generation does 
not contain the function class of the target function gtarget (x) , 

we purposely restricted the initial generation to trees of 
small length L = 3 . This population contains only the M = 4 
different function classes c1 , c1 + x , c1x and x2 . Among these 
four classes, the first class with g1(x) = 0.53087 with an 
(rmse) fitness of 0.0284 is the best fit. In order to add the 
relevant function class c1 + c2x

2 to the population (which 
has the minimum tree length L = 7 ), the multiple applica-
tions of the mutation and crossover operations over several 
generations are required.

In Fig. 4, we compare the evolutionary improvement 
of the fitness associated with the best individum of all 
Npop = 5000 search functions (and also the average fitness) 
over 30 generations for three groups of strategies. The red 
graph relies solely on a mixture of traditional evolution oper-
ators as indicated in Table 1. For the next group, represented 
by the blue and green graphs, the CMO operator with a fixed 
width B = 0.1 and 0.001 and uniform conditional probability 
density G(g, c) = B−1�[g − (c − B∕2)]�[(B∕2 + c) − g] , was 
included with a probability of 20% in the evolution. The 
black graph is based on a variable width B, where a fixed 
B = 0.01 (to form the generations 1 ≤ t ≤ 5 ) was followed 
by B(t) = 10−0.5t for 6 ≤ t.

Let us now discuss the success rate of these three evo-
lution strategies separately. The consecutive actions of the 
traditional evolution operators manage to decrease the fitness 
of the best individuum from its initial value f = 0.0284 for 
t = 0 down to f = 2.1 × 10−3 for t = 30 . We note that this 
final expression was actually represented by a complicated 
tree of large length, containing combinations of many dif-
ferent constants. As we pointed out in the introduction, the 
traditional operations cannot directly update these numerical 
assignments to constants. Therefore, the only way of obtain-
ing improved numerical values is using operational combi-
nations of multiple constants. While these operations can 
reduce the optimum fitness by less than one order in magni-
tude during the first two generations, during the following 22 
generations (up to t = 24 ) the improvements are miniscule.

This problem is significantly improved when the CMO 
operation (with a reasonable width B) is permitted to partici-
pate in the evolution. For example, for B = 0.1 , the fitness is 
steadily reduced during the first 15 generations, after which 
this choice of B is too large to effectively further reduce 
the fitness. In contrast, for a width a hundred times smaller 
B = 0.001 , the fitness decreases at a much smaller rate (up 
to t ≈ 15 ), as B is too small compared to the average width 
of the parameter distribution during those generations. 
However, once this average width becomes comparable to 
the actual fitness width of the search function, CMO can 
act much more effectively and the fitness begins to reduce 
more efficiently. After 20 generations, however, average 
width has become less than B, and the CMO loses its ability 

Table 1   Parameters used in the symbolic regression leading to the 
eight curves in Fig.  4. For the point mutation operation, each node 
or leaf had a 20% replacement probability. For the plus-selection, an 
offspring only advances if its fitness is less than its parent, otherwise 
the parent advances

Evolution characteristics
 Selection scheme Tournament
 Tournament style Deterministic
 Tournament size nT 20
 Selection type Plus
 Operation set {+, ∗}

 Terminal set {c, x}

 Uniform constant range [0, 1]
 Initial length of trees L 3
 Population size Npop 5000
 Number of generations 31
 Criterion for fitness rmse

Probabilities of evolutionary operations
 Two-parent crossover 50%
 Sub-tree mutation 10%
 Hoist mutation 10%
 Point mutation, red curve 10%
 Point mutation, other curves 0%
 CMO, red curve 0%
 CMO, other curves 20%
 Reproduction, red curve 10%
 Reproduction, other curves 0%
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Fig. 4   The fitness f = {
∑20

n=1
[yn − g(xn)]

2}1∕2 associated with the 
best individuum (and the average) per generation as a function of 
the generational time t. The conditional probability for the CMO was 
G(g, c) = B−1�[g − (c − B∕2)]�[(B∕2 + c) − g]
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to finetune the corresponding parameters in the optimum 
search function.

The black graph presents the best of both worlds as 
it continues to shrink the width of the CMO operation 
with the average parameter width. Here the final fitness 
is less that 4.3 × 10−17 corresponding to the optimum 
g(x) = 0.5 + 0.1x2 , where each of the two constants is cor-
rect for all of its significant (16) digits. Furthermore, the 
nearly straight line for the logarithmic axis shows that the 
reduction of the fitness is nearly perfectly exponential, i.e., 
fopt (t) = 0.01 × e−1.1t . Quite interestingly, the average fit-
ness of the entire population follows a similar trend, i.e., 
⟨f ⟩(t) = 0.2 × e−1.1t.

In summary, we note that the CMO with adaptive vari-
ance matching can improve the final optimum fitness after 
30 generations from fopt = 2.1 × 10−3 to fopt = 4.3 × 10−17 , 
which is a highly impressive improvement of about 13 orders 
in magnitude. Equivalently, this corresponds to a change in 
accuracy of the parameters c1 and c2 from 3 to 16 significant 
digits.

SR‑Guided Reconstruction of Iterative Maps 
or Differential Equations from Chaotic Time 
Series

The Logistic Map with Noise

Since its popularization by May in 1976 [32], the logistic 
map xn+1 = rxn(1 − xn) has become the archetypical pro-
totype of a nonlinear recurrence relation of degree 2. Due 
to its non-linear dissipative and non-invertible structure, 
all iterates converge to either regular n-cycles or to chaotic 
limit cycles, which depend on the control parameter r. In 
1999, Tan has demonstrated [33] that some state-of-the-art 
machine learning technique based on recurrent parametri-
zation networks can correctly predict the chaotic dynamics 
(3.4 < r < 4) from the non-chaotic training time series of the 
stable regular regime (0 < r < 3.4) . We use this system here 
as a concrete example to show that SR can also recover the 
governing discrete map from its iterates xn , requiring much 
less computational effort.

We have computed the first five iterates xn(rj) ( n = 0 , 
1,..., 4) with the initial value x0 = 0.9 for the two control 
values r1 = 1 and r2 = 2 . In this regular domain all iterates 
approach a single fix point given by xn=∞ = 0 (for 0 ≤ r < 1 ) 
and xn=∞ = (r − 1)∕r (for 1 ≤ r < 3 ). The SR algorithm was 
then fed a list of eight triples Yinput = {xn+1(rj), xn(rj), rj} as 
training sets with the goal to discover the most accurate and 
simplest expression that can relate xn+1(rj) to xn(rj) and rj . 
Using an initial population of Npop = 40, 000 trial expres-
sions, the algorithm predicted correctly the logistic map 
xn+1 = rxn(1 − xn) after only a few seconds of CPU time.

To examine the robustness with regard to numerical inac-
curacies, we have superimposed a 1% multiplicative noise to 
each of the eight iterates, by multiplying each of the exact 
iterates with 1.01 Rand, where Rand was a uniformly distrib-
uted random number between −1 and 1. For these noisy data, 
the SR algorithm predicted xn+1 = rxn(0.992 − xn) , which is 
still remarkably close to the functional form of the logistic 
map, albeit with a slightly different parameter. We have then 
repeated the same simulation, but this time we used the first 
20 iterates, instead of only 5. For this larger training set, the 
noise was less relevant and the SR algorithm was able to 
fully recover the exact logistic map.

These simulations nicely reveal that the transient dynam-
ics for the regular domain contains sufficient information to 
reconstruct the entire map even from noisy data. Once the 
map is recovered, it can then be applied to predict also the 
chaotic domain correctly. For completeness, we have also 
repeated the simulations for two sets ( r = 3.8 and r = 4 ) in 
the chaotic regime, and again a small training set of only 
four iterates was required to identify the correct map, while 
noisy data required consistently a larger training set.

Reconstructing the Set of Lorenz Differential 
Equations from Noisy Chaotic Data

Finally, we illustrate how SR can be used to re-construct 
the multiple sets of differential equations from chaotic time 
series in several coupled variables. As an example, we exam-
ine here the famous Lorenz equations [34], dx∕dt = �(y − x) , 
dy∕dt = x(� − z) − y and dz∕dt = xy − �z . Using stand-
ard numerical solutions techniques (such as Runge–Kutta 
fourth-order schemes with self-adapting step size), these 
equations can be solved numerically in the chaotic regime 
( � = 10 , � = 8∕3 and � = 28 ) for the initial conditions 
x(0) = y(0) = z(0) = 10 . Alternatively, one can also per-
form numerical convergence tests by comparisons with the 
corresponding solutions obtained by black-box techniques, 
such as the ones provided by Mathematica. The three time-
dependent solutions {x(t), y(t), z(t)} and their derivatives 
{dx∕dt, dy∕dt, dz∕dt} were then discretized at times tn = n 
(with n = 0 , 1, 2,...,49) and the resulting six 50-dimensional 
lists were used as the training input for the SR evolution. We 
used Npop = 40, 000 initial random analytical expressions, 
the standard binary operations (+,−, ∗, ∕) , and the probabili-
ties similar to those in Table 1. After only 10 generations 
SR reproduced correctly each of the three Lorenz equations. 
This rapid convergence is actually not so surprising as the 
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functional dependence of the three derivatives on x, y and 
z is actually not too complicated, despite having fully cha-
otic solutions. The differential equations do not contain any 
special functions, beyond simple products and additions, and 
therefore are recoverable by SR.

We should remark that while the nonlinear coupling of 
the three differential equations makes analytical solutions 
extremely difficult (if not impossible) to obtain, the SR 
approach is fortunately not affected by this complication. 
The reason for this advantage is the fact that the SR can con-
struct each differential equation completely independently 
of the other two, i.e., the differential equations can be deter-
mined sequentially.

To examine the robustness of the genetic algorithm with 
regard to inaccuracies, we have repeated the schemes with 
noised data. The key question of interest is whether these 
perturbations will maintain the basic structure of the pre-
dicted differential equations [with possibly slightly corrected 
values of the parameters ( � , � and � )] or whether SR predicts 
that entirely different functional forms are required for the 
differential equations, in order to minimize the errors with 
respect to the given data.

To examine this, we have added to each solution at each 
moment in time a uniformly distributed random number in 
the range [ −0.1 , 0.1]. In the time interval 0 < t < 50 , the set 
of three solutions x(tn) , y(tn) , z(tn) is highly oscillatory with 
about 90 local maxima und minima between ±17 for x, ±22 
for y and 10 < z < 43 for z(t), so therefore these perturba-
tions can be significant on a relative scale. We found that 
the equations for x and y were predicted to be identical to 
the original ones, suggesting a remarkable robustness of the 
SR scheme. However, we note that one can “manipulate” a 
little bit the final prediction by choosing a relatively large 
parsimony coefficient (large penalty for complicated expres-
sions), which then favored the original equations, which are 
simpler in nature.

While reducing a coupled set of differential equations to a 
single equation is not always possible in general, the set of Lor-
enz equations happens to be equivalent to just a single autono-
mous differential equation of third-order for x(t). However, 
as one might have expected, this new equation for d3x∕dt3 is 
rather complicated and a highly non-linear function of x, dx∕dt , 
d2x∕dt2 , � , � and � such that the SR algorithm was not able 
to re-construct its functional form from the data x(tn) within a 
reasonable CPU time. This suggests that it might be algorithmi-
cally more efficient for the genetic algorithm to construct the 
easier but coupled sets of differential equations (of lower order) 
rather than attempting to predict a single equation of a much 
more complicated structure. This is especially true due to the 
advantageous sequential nature (mentioned above) of recovering 
sets of equations.

We should finish here with a technical comment concern-
ing the numerical platform used in our calculations. While the 

computational realization of genetic algorithms can generally 
be implemented in several programming languages, we found 
that an object-oriented language like Python provided us with 
the largest flexibility. Our results can be easily reproduced on 
any computational platform. For a small number of generations 
and small population sizes Npop , most of the simulations can be 
performed on a simple lab top computer with CPU times of less 
than a few hours. For sophisticated simulations that can benefit 
from multi-threading, we had access to twentyfour computing 
nodes, where each node had two IntelⓇ Xeon Gold 6248R 3 GHz 
CPUs, with 24 threads each. However, to improve on the most 
efficient method to implement symbolic regression algorithms 
into multi-processor and multi-threading environments remains 
an important challenge for future work.

Summary and Outlook into Future 
Challenges

The purpose of this work was two-fold, to accompany the 
symbolic regression algorithm with a theoretical framework 
that permits us to obtain some first insight into the formation 
of optimal solutions under tournament selection. To alleviate 
the problem with finding the optimum values of free param-
eters, we have introduced a new constant-mutation opera-
tor that can significantly improve the rate of convergence. 
Using the statistical framework, we have examined the most 
efficient working conditions for this operator based on an 
adaptive variance matching. For a simple illustrative exam-
ple, we have shown that the CMO can decrease the fitness 
of the optimum search function by 13 orders in magnitude.

Obviously, there are many questions that can be addressed 
in future studies. For example, the concrete example in 
“Impact of the adaptive CMO in symbolic regression with 
mutations and cross-overs” suggested an exponential reduction 
of the fitness of the best individuum (as well as of the aver-
age fitness) of the entire population. It would be interesting to 
determine how the corresponding rate depends on the many 
numerical parameters that characterize the evolution. Also, the 
CMO operation was employed for a (time-dependent) width 
B(t), which was chosen independent of the particular value the 
constant takes. Our preliminary studies have shown that if this 
width is chosen as a (time-dependent) fraction of the absolute 
value of this constant, the convergence can possibly be acceler-
ated even more. However, more systematic numerical as well 
as statistical theoretical studies are required to establish the 
universal efficiency of this particular chosen for the width for 
the �.

In all of our studies, the probabilities for all mutation, 
cross-over and CMO operations to be applied to the respec-
tive tournament winners were held constant in time. As 
some serve to increase the diversity (in the early exploratory 
phases) and others serve more to enhance the convergence 
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of a function class (later finetuning or convergence phases), 
experimenting with time dependent probabilities could be 
advantageous. The theoretical part of these studies might 
also employ the statistical framework based on the concepts 
of fitness densities and proportions, which is outlined in this 
work.

Appendix

(A)    P
m
(t) for a model system of M classes

To get some first insight into the time scales of the temporal 
evolution of the proportions Pm(t) of each class under the 
tournament selection, we present in this appendix an over-
simplified system of M classes, where the corresponding 
initial fitness densities �m(f , t = 0) are so narrow that they 
do not overlap with each other. This permits us to derive 
a universal iteration scheme, where the proportions Pm(t) 
can be computed directly from the set of Pm(t = 0) without 
specifying the shape of �m(f , t = 0).

In general, the new set of proportions Pm(t + 1) after the 
application of all Npop tournaments can be obtained via the 
expression

The assumption of non-overlapping densities means that we 
can assign each class a unique mean fitness value, defined 
as ∫ ∞

0
df � f ��m(f

�, t) ≡ fm . This permits us to order the class 
labels such that their associated mean fitness increases with 
increasing label m, i.e., fm < fm+1 . If we further assume that 
each �m(f , t) is basically non-zero only in the interval 
[fm − �f∕2, fm + �f∕2] , then the integration range of first 
integral ∫ ∞

0
df  of Eq.  (14) can be approximated by 

∫ fm+�f∕2

fm−�f∕2
df  . This means that the largest upper integration 

value f of the second integral ∫ f

0
df ′ is at most f = fm + �f∕2 . 

A s  a  r e s u l t ,  s o m e  o f  t h e  i n t e g r a l s  i n 
S(f , t) = nT [1 −

∑M

m�=1
Pm� (t) ∫ f

0
df ��m� (f �, t)]nT−1 can be par-

tially evaluated and therefore simplify significantly. The 
densities �m� (f �, t) with a fitness lower than fm are integrated 
ove r  t he i r  en t i r e  ex ten t  and  we  can  use 
∫ fm+�f∕2

fm−�f∕2
df�m� (f �, t) = 1 .  As  a  resul t ,  we  obta in 

Pm� (t) ∫ f

0
df ��m� (f �, t) =

∑m−1

m�=1
Pm� (t) + ∫ f

0
df ��m� (f , t) . This 

permits us to represent the entire integrand in S(f, t) as a total 
derivative and we obtain

(14)

Pm(t + 1) =

∞

∫
0

dfPm(t)�m(f , t)nT

⎡⎢⎢⎣
1 −

M�
m�=1

Pm� (t)

f

∫
0

df ��m� (f �, t)

⎤⎥⎥⎦

nT−1

If we expand this set of equations, we obtain the sequences 
of mutually coupled iterations

(15)

Pm(t + 1) =

fm−�f∕2

∫
fm−�f∕2

df Pm(t)�m(f , t)nT

⎡⎢⎢⎣
1 −

M�
m�=1

Pm� (t) −

f

∫
0

df �Pm(t)�m(f
�, t)

⎤⎥⎥⎦

nT−1

=

fm+�f∕2

∫
fm−�f∕2

df (−)d∕df

⎡⎢⎢⎣
1 −

M�
m�=1

Pm� (t) −

f

∫
0

df �Pm(t)�m(f
�, t)

⎤⎥⎥⎦

nT

= (−)

⎡⎢⎢⎣
1 −

m−1�
m�=1

Pm� (t) −

f

∫
0

df �Pm(t)�m(f
�, t)

⎤⎥⎥⎦

nT

�fm+�f∕2
fm−�f∕2

=

�
1 −

m−1�
m�=1

Pm� (t)

�nT

−

�
1 −

m�
m�=1

Pm� (t)

�nT

(16)

P1(t + 1) =1 − [1 − P1(t)]
nT

P2(t + 1) =[1 − P1(t)]
nT − [1 − P1(t) − P2(t)]

nT

P3(t + 1) =[1 − P1(t) − P2(t)]
nT − [1 − P1(t) − P2(t) − P3(t)]

nT

…

PM(t + 1) =[1 − P1(t) − P2(t) − P3(t) −⋯ − PM−1(t)]
nT

Fig. 5   Evolution of the proportions Pm(t) for M = 10 classes for 
the first five generations according to the model given by Eq. (16). 
The initial proportion were chosen Pm(t = 0) = 1∕M . We have only 
labeled the three proportions with the lowest three fitnesses
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This means that we have obtained an iteration scheme 
to calculate the class populations Pm(t + 1) of the next 
generation solely from the set of Pm(t) , which have a 
lesser (or equal fitness). One can easily convince one-
self that the norm is preserved by this set of maps. i.e., ∑M

m=1
Pm(t + 1) =

∑M

m=1
Pm(t) = 1.

As an interesting side-note, we remark that despite 
the nonlinear feature of these iterative maps, for the class 
with the lowest fitness m = 1 , we have the simpler itera-
tive scheme P1(t + 1) = 1 − [1 − P1(t)]

nT , which converges 
consistently to P1(t → ∞) → 1 . If we introduce the com-
plementary proportion Q1(t + 1) ≡ 1 − P1(t + 1) , we have 
1 − P1(t + 1) = [1 − P1(t)]

nT such that Q1(t + 1) = Q1(t)
nT . 

This has the solution Q1(t) = Q1(0)
tnT such that we have 

P1(t) = 1 − [1 − P1(0)]
tnT , so P1(t) grows monotonically on 

the time scale proportional to n−1
T

 and independent of the 
proportions Pm of the other classes, as one might expect. 
While the decay is monotonic, its time scale depends not 
only on nT , but also very sensitively on its initial value P1(0) . 
If P1(0) ≪ 1 , then for short times P1(t) grows linearly in time 
with a slope proportional to nTP1(0) , i.e., P1(t) = nTP1(0)t.

On the opposite side, if m matches the total number of 
classes, i.e., m = M, then the iteration scheme for the class 
with the largest fitness fM simplifies to

This permits us to find the complete time evolution for 
t = 1, 2,… , as PM(t) = PM(0)

tnT following a universal mono-
tonic exponential decay with decay time proportional to n−1

T
.

The time evolution of all the other proportions PM(t) 
for m ≠ 1 and m ≠ M can be non-momotonic. As an exam-
ple, in Fig. 5 we show the evolution of M = 10 classes and 
Pm(t = 0) = 1∕M for the first five generations with a tourna-
ment size nT = 2 . We see that the low-fitness proportions, 
Pm(t) (for m = 1 , ..., 5) increase first and then decay, except 
P1(t) , which approaches monotonically 1.
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]nT
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