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Abstract. Based on computational quantum field theory and solutions to the Dirac equation, we show
how the vacuum’s polarization density induced by strong external field can be calculated based on five
independent methods. We compare these methods for a spatially reduced dimensional system and show
that some approaches rely on energy renormalizations, energy cutoffs or periodic boundaries. We also
illustrate the spatial implications of the breakdown of the linear superposition principle for extremely high
intensity fields. A main focus of the article is to discuss future challenges for each approach that might

motivate new theoretical and computational studies.

1 Introduction

This is a brief progress report and a roadmap devoted to
discussing critically the recent theoretical developments
to obtain a better understanding of the vacuum polar-
ization process triggered by external electromagnetic
fields and to improve on our computational techniques
to study these intriguing and partially counterintuitive
processes. The non-linear property of the quantum vac-
uum is certainly one of the major topics in high field
QED physics [1-3], to which the special issue in this
journal is devoted. While the possibility to use static
charges (such as provided by highly charged nuclei) to
probe the response of the vacuum has been pioneered
already in the mid 1930s by Dirac [4], Heisenberg [5],
Serber [6] and Uehling [7], there are numerous new chal-
lenges that need to be addressed if the external field is
supercritical, non-Coulombic and even varying in time.

Despite a very rich history of vacuum polarization
studies mainly in nuclear physics, to the best of our
knowledge, most theoretical studies examined steady
state scenarios. In fact, computational techniques that
can give us some insight into time-dependent polariza-
tion processes have been proposed only recently [8, 9].
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These new techniques might supplement more tradi-
tional approaches in those situations, where the vac-
uum is distorted by an external electromagnetic field
configuration with a complicated space—time structure.

With very bright light sources planned or being devel-
oped, many interesting physical processes may be stud-
ied. The affected research areas include, but not lim-
ited to, basic and high-energy—density plasma physics,
materials and laboratory astrophysics, laser plasma-
wake field acceleration and related physics, high-field
physics and quantum electro-dynamics, high harmonic
generation and attosecond science, particle acceleration
(electrons, ions, neutrons, and positrons), and nuclear
photonics. Within the high-field physics and quantum
electro-dynamics sub-research area, in particular, there
are many urgent and unexplored conceptual, theoreti-
cal and experimental topics and challenges to be tack-
led [10-12]. This article intends to shed light on several
recently proposed computational algorithms to explore
fundamental QED processes.

As relevant high-power pulsed laser fields can vary
on very short temporal and spatial scales, traditional
approaches that have relied on electron pair creation
rates derived from space—time homogeneous fields need
to be revisited. There are also conceptual and funda-
mental issues about the electron—positron pair creation
process that have been re-examined recently. For exam-
ple, it was very difficult to study the detailed dynam-
ics of the electrons and positrons inside the high-field
pair creation zone and to separate their birth pro-
cess from their after-acceleration dynamics with full
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space—time resolution. Recent suggestions based on
machine-learning approaches [13] have suggested that
it might be possible now to distinguish electrons from
positrons inside the interaction region. In another work
from last year [14], the relationship between the simul-
taneous occurrence of vacuum polarization charges and
real electron—positron pairs for supercritical fields was
studied and it was suggested that these can occur
rather independently of each other. The classical view
of comparing the vacuum process to the usual polar-
ization mechanism of a dielectric optical medium is
inappropriate [15, 16]. In contrast to the polarization
of dielectrics, the vacuum’s polarization process can
occur even in those spatial regions, where the electric
field vanishes [14]. This suggests that the conceptual
picture, where a local electric field is solely responsi-
ble for inducing the charges in the vacuum, is there-
fore potentially misleading. The proposed high-power
laser experiments to systematically test the fundamen-
tal properties of the QED vacuum will naturally explore
also the electron—positron pair creation regime, where
actual charges will be measured as its main signature. It
is therefore desirable to accompany these explorations
with a better theoretical understanding of the precise
relationship between those charges that can be associ-
ated with the vacuum polarization and those dynamical
charges created due to the supercritical pair-creation
process.

To open up the discussion about the general con-
ceptual and theoretical challenges, we illustrate these
for a concrete model system. In this work, we will focus
mainly on the computational methods and discuss their
limitations with regard to visualizing the occurrence
of polarization charges in the vacuum. In Sect. 2 we
review briefly the key ideas behind computational quan-
tum field theory, which is our central approach, and
then devote Sect. 3 to a description of the advantages
and disadvantages of various approaches. Two of these
methods (Sect. 3.1.2 and 3.2.2) have not been discussed
in the literature before. In fact, one of them permits us
to contribute to the fundamental discussion about the
relativistic spatial localizability of particles. We will fin-
ish with an illustration of the spatial consequences of
the violation of the linear superposition principle, which
can be observed for sufficiently strong external fields.

2 The " physical” situation and its
theoretical modelling

We assume that initially there are no real particles in
the system, i.e., the initial quantum field theoretical
state is given by the Dirac vacuum state |@ (¢t = 0)) =
|vac). We further assume that a negative charge —Qext
is placed at location x = 0 such that it can attract
(hidden) positive charges. While this process of intro-
ducing a charge out of nowhere would violate the total
charge conservation law, it is nevertheless central to
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the general discussions and derivations in the litera-
ture of the vacuum polarization process. As in the usual
theoretical descriptions of strong field QED the inclu-
sion of truly photonic interactions can be modeled only
within the external field approximation, the Dirac the-
ory for the fermionic response requires the represen-
tation of this charge — g¢ext by its associated electro-
static potential, as provided by the (linear) Maxwell
equations. In contrast to the fermionic fields of the
Dirac theory, the functional forms of the electromag-
netic fields in Maxwell equations are very sensitive to
the spatial dimension. For example, our point charge
with the associated charge density pext(%) = —Qext 0()
corresponds, according to the stationary Maxwell equa-
tion 0% V(z)/01? = 47 ke pext(z), to an external
potential V(z) = 27 ke |2| dext (= Eolz|), where we
abbreviate Coulomb’s constant as k. = 1/(4meg), which
is related to the vacuum’s permittivity €o. With e we
denote the positive elementary charge of a positron.
The corresponding electric field E(z) = -0V (z)/0z =
—27 ke gext x/|z| does not fall off with the distance to
the charge, which is consistent with the real 3D electric
field of a charged infinitely extended plate. We should
mention, that in order to resemble more a spatially
decaying 3D Coulomb force, we could have faked the
force field also by choosing an alternative potential of
the form V(z) = —gext/(1 + 22)'/2. This one leads to
a true Rydberg series of electronic bound states and
has been pioneered by Eberly and collaborators [17,
18] in strong field photo ionization studies. We note
that a screening at x = 0 has also been done routinely
in nuclear physical calculations [19-21] to study hydro-
genic bound states beyond the nuclear charge Z = 137,
where the ground state energy turns imaginary.

As the fermionic dynamics is restricted to a numer-
ical box of finite size L, we can choose the charge qext
sufficiently small such that the resulting energy eV (z
= L/2) is less than 2mc?, i.e. Fy < 4mc?/(eL). This
restriction permits us to focus solely here on the vac-
uum polarization process in the absence of the super-
critical pair creation process.

The electrostatic potential V(z) can modify the ini-
tial state by inducing a (polarization) charge density
from the Dirac vacuum. This density can be determined
from the quantum field theoretical expectation value of
the time-like component of the electric current operator
[22, 23], defined in terms of the electron—positron field
operator ¥ as Q(z, t) = — e (V¥ — ¥ wl)/2. In the
Heisenberg and Schrédinger pictures this density can
be calculated as p(z, t) = (P(t = 0)| Q(z, t) |®(t = 0))
= (@(t)] Q(a, ¢ = 0) [@(t)).

In traditional nuclear physics, the external charge
was typically provided by a nucleus whose charge is
an integer multiple of the elementary charge Ze. As the
Dirac equation contains the potential energy for the
elementary charge e, which is proportional to e (ke Ze),
the field operator ¥(z, t) depends on powers of (ke
e2Z). If we include the pre-factor e from the definition
of the charge density, and introduce the fine structure
constant a [ = ke €2/(hc)], we see that p(z, t) is pro-
portional to e («Z)", with n being an odd integer.
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In the Appendix A, we review that the charge den-
sity p(z, t) can be obtained within computational quan-
tum field theory [24] from the complete set of all time-
evolved single-particle wave function solutions to the
time-dependent Dirac equation leading to

pla,t) = e [lop(d, 2, ~|op(u,2, )] /2 (1)

p

where the summation extends over the momentum p of
these states. While each sum over the positive [nega-
tive] energy states >_,|®,(u, z, t)]*[>°, |9, (d, z, t)|?]
is obviously infinite, the difference of the two sums is
finite.

3 Computational procedures, their
limitations and open questions

In this section, we will discuss and compare five dif-
ferent numerical approaches to obtain the steady state
charge density p (z, t), which characterizes the vac-
uum polarization. The first two methods (Sect. 3.1)
are dynamical and follow the evolution in time starting
from p (z, t = 0) = 0. The second set of (two) methods
(3) uses an energy cut-off in the Dirac-Hilbert space and
illustrates how the resulting unavoidable occurrence of
unphysical contributions to p (z, t) can be identified
and eliminated. The fourth and fifth methods (4) are
more traditional and use the energy eigenstates and the
lowest-order Feynman diagram. Each of the three sub-
sections is completed with a critical discussion of the
advantages and disadvantages of each method includ-
ing open questions that might motivate further studies.

3.1 Dynamical methods

To follow the time evolution from p (z, t = 0) = 0 to
p (z, t) is in our opinion the most direct and generally
applicable approach to study the dynamical develop-
ment of the vacuum polarization processes. Here the
time-dependent Dirac equation is used to evolve the
entire set of all negative and positive energy eigenstates
[of the unperturbed Hamiltonian with V(z) = 0] in
time. As is usually done in computational quantum field
theory (CQFT) [2, 24], the evolution of the quantum
field operator ¥(z, t) can be determined quite accu-
rately on a finite space—time grid, characterized by N
spatial and Ny temporal points, using the FFT-based
split-operator technique [25-28].

In this approach, the application of the unitary time
evolution operator on the quantum mechanical wave
functions is sequenced into several repeated steps. In
each step, the action of the total evolution opera-
tor is approximated by the subsequent application of
the kinetic part only which is then followed by the
application by the action of the interaction potential.
The application of the kinetic part can be performed
rather accurately in Fourier space, which also avoids
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any period doubling problem usually associated with
any finite-difference approximation to the momentum
operator. The application of the action associated with
the potential energy can be performed in position space.
As the required back and forth transformations between
both representations can be performed rather efficiently
using fully vectorizable FFT algorithms, this method-
ology is in our opinion among the most efficient ones
for the Dirac equation.

As a result of the discretization, the underlying infi-
nite dimensional single-particle Hilbert space becomes
finite with a total of 2Ny (unperturbed) energies +
e(pn) given by e(py) = (m2c* + 2py?)Y/? with
momentum p, = n 2n/Land n =-N/2 + 1, - N/2
+ 2, ..., N/2. The length parameter L is the exten-
sion of the numerical box. The characteristic spatial
scale of quantum field theoretical dynamics is naturally
provided by the fermions’ Compton wavelength A =
h/(mc) = 3.8 x 107!3 m, while a typical temporal scale
is given by 7 = h/(mc?) = 1.3 x 102! s, such that \ /7
= ¢ is the speed of light, which is ¢ = 137.036 in atomic
units.

3.1.1 Adiabatic turn-on of the external charge

There are two extreme limits of turning on the exter-
nal charge qext and therefore the associated potential
V(z). In the first case of a very slow turn-on, V(z) f(¢)
is increased to its maximum value f(¢) = 1 over a suf-
ficiently long time such that the lowest energetic quan-
tum field state, i.e. the bare vacuum state |vac), evolves
adiabatically into the corresponding fully dressed state,
denoted by |[VAC). The latter is the lowest energy eigen-
state of fully coupled quantum field theoretical Hamil-
tonian (including the potential V), which can be calcu-
lated in terms of bilinear products of the creation and
annihilation operators as H = [dz ¥T(z, t = 0) h ¥(z,
t =0).

As we show in Fig. 1, in this case, there are no extra
charges created that would escape to infinity.

For very early times, when external charge qext is
very small, the density develops from p (z, t = 0) =
0 to a very narrow distribution around x = 0. AS Qext
increases, the density’s width and height increases, how-
ever, keeping the overall shape approximately the same.
In other words, even though this is a time-dependent
simulation, the density p (z, t) matches at each time
the steady state density associated with the instanta-
neous value of qeyy at that time, as one can expect for
a truly adiabatic dynamics.

At first, the accumulation of the positive charge
density from zero to its final distribution seems to
contradict the required conservation law of the total
polarization charge, i.e. [ ¥/2 dz p (z, t). How-
ever, the numerical implementation based on the FFT-
method time-evolution exploits periodic boundaries,
such that at the boundaries the slope of the potential
dV/dz|, = 12 = — dV/dz|, — _ /5 corresponds effec-
tively to an extra positive charge qext/2 located at z =
+ L/2, around which a negative charge density builds
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Fig. 1 Adiabatic time evolution of the polarization charge
density p(z, t) as the magnitude of the external charge,
centered at x = 0 is very slowly increased to its maximal
size qoxt = — 10 a.u. via gext(t) = — 10 Sin?[rt/(2 T)], where
long turn-on time is T = 5.3 x 10* a.u (= 107). The units
of time and space are given by 7 = 1/(mc?), and A = //(mc),
respectively. [The numerical parameters are: numerical box
size L = 0.146 a.u. (= 20\) with Ny, = 2048 spatial grid
points and spacing Ax = 7.1 x 10° a.u., temporal grid
spacing At = 2.1 x 1077 a.u.]

up as well. Therefore, at the boundaries a similar charge
accumulation (but with opposite sign) is generated that
confirms that the required total charge conservation,
e, [ L/2 dz p (z, t) = 0 remains indeed valid at
all times as one might expect.

3.1.2 Sudden turn-on of the external charge

In contrast to the adiabatic case studied in the prior
section, where the time-scales of the temporal growth of
any induced charges was entirely dictated by the given
time-dependent growth of the external potential V(x)
f(t), the case of an abrupt turn-on is from a physical
perspective much more interesting as it allows us even
to make new observations about the natural time scales
of the intrinsic birth process of matter including fasci-
nating new observations concerning the spatial local-
ization properties of polarization charges at birth. As
the potential is chosen subcritical, this polarization pro-
cess should not be confused with the irreversible pair-
creation of real electrons and positrons.

While the computations of p (z, t) can presently be
performed only in the Heisenberg picture, based on the
evolution of the field operator ¥(z, t), the interpreta-
tion of the dynamics is easier in the Schrédinger pic-
ture, where the quantum field theoretical state |®(t))
is evolved in time. It is advantageous to expand the
initial bare vacuum state |®(¢t = 0)) =|vac) in terms
of the energy eigenstates of the fully coupled quan-
tum field theoretical Hamiltonian H. This expansion
leads to |vac) = cyac |vac) + cg|Z), showing that the
bare vacuum state |vac) “contains” already real phys-
ical particles as described by the multi-particle state
|Z), which is orthogonal to|vac). Here, the correspond-
ing expansion amplitude cyac = (VAC|vac) is the over-
lap between the bare and the physical (fully dressed)
vacuum states. The other state |Z) is a superposition
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Fig. 2 Time evolution of the charge density p(z, t) as the
result of an abrupt placement of the negative charge gext =
—10 a.u. at location z = 0. The four snapshots were recorded
at four times t1 = 5.3 x 10°° a.u., t2 = 1.06 x 10° a.u., t3
=21 x 10% a.u. and t4 = 1.06 x 10~ a.u. In the inset we
show the growth of the area gpoi(t) under p(z, t) between
z = =+ 0.012 a.u. (= £ 1.64)), corresponding to the total
amount of the induced charge. [The numerical parameters
are: numerical box size L = 0.367 a.u. (= 50\) with Ny =
8192 spatial grid points and spacing Az = 4.4 x 10° a.u.,
temporal grid spacing At = 2.2 x 10.7% a.u]

of various multi-particle states orthogonal to |vac). For
small external charges gext, the largest contribution to
|Z) is given by the electron—positron state, followed by
a state of two pairs.

In this expansion, the time evolution [after the abrupt
turn on of V(z)] is given by |®(t)) = cvac |vac) +
cz|E(t)), where we assumed that the associated energy
eigen value of the vacuum state |vac) is zero, such that
cvac(t) = cyac. As a result, the polarization charge
density p (z, t) is the sum of a constant and a time-
dependent part, p (z, t) =|cvac|? (VAC| Q(z, t =
0) |VAC) + p=(z, t). The second part, which is time-
dependent, is given by p=(z, t) = |ez|*(E(t)|Q(z, t =
0) [5(1)) + cvac (VAC| Q(xt = 0) [E(1)) + cec.

This expansion suggests the following picture for for-
mation of the steady state density ppoi(z) = (VAC]
Q(z, t = 0) |VAC)as illustrated in Fig. 2. The for-
mation of the build-up of the positive charge density
around x = 0 is only qualitatively similar to the one of
Fig. 1, however, and in contrast to the adiabatic evo-
lution of Fig. 1, here additional charged particles have
been created [and likely associated with p=(z, t)] that
escape away from z = 0.

At early times, the observed triangular shape of p (z,
t) seems to mirror the spatial structure of the underly-
ing potential V(x) associated with qext. In contrast to
the (shape-invariant) adiabatic growth of p (z, t) dis-
played in Fig. 1, we observe here an entirely different
growth pattern as well as a different (triangular-like)
shape. In fact, at our two earliest recorded times (¢; and
ta), the observed length of the triangle’s base extends
almost precisely from — ¢ ¢, to ¢ t,. This observation
clearly suggests that any induced positive charges from
the vacuum were exclusively created only at z = 0,
where the point charge —qext Was originally placed at ¢
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= 0, and charges do not occur in its immediate vicin-
ity. This extremely sharp localization is actually quite
interesting from a fundamental point of view [29-31].
It certainly supplements many prior studies of pair cre-
ation [24], where a (minimum) length scale is typically
given by the electron’s reduced Compton wavelength
A, which is significantly wider than the extension of
the observed induced positive charge cloud in Fig. 2. It
is also a challenging to interpret this interesting local-
ization feature with the corresponding Heisenberg-like
uncertainty principle suitable for charge densities.

As the induced charge grows, we see that the origi-
nal triangular shape of p (z, t) changes. The outgoing
portion of the charge density becomes even oscillatory,
reflecting possibly the interesting time-dependent inter-
ference patterns of the outgoing positronic and elec-
tronic contributions. For times longer than about t =
207, we see that close to the point charge a steady state
vacuum charge cloud has been established, which no
longer changes in time. To better estimate the temporal
scale, we have displayed in the inset the growth of the
total positive induced vacuum polarization charge den-
sity, gpoi(t) = [dz p (z, t) where we have extended the
integration region extend from z = —0.012 a.u. to 0.012
a.u.. We see that the actual induced charge approaches
its characteristic asymptotic steady state value in a
rather oscillatory fashion, which is not unusual in view
of the sudden turn-on of the potential V(). The result-
ing total charge g¢poi(t) approaches asymptotically a
value of around 2.2 x 1079 a.u., which is slightly less
than the amount 2.7 x 1079 a.u., obtained from Fig. 1
for gext = 10 a.u.. This is consistent with the fact
that|cyac|? =|(VAC|vac)|? is slightly smaller than unity
for our parameters.

3.1.3 Points of critique and open questions

In order to obtain the most accurate steady state dis-
tribution ppe1(z) from this time-dependent approach, it
would be desirable to maximize the interaction duration
to provide sufficient time for all particles to escape from
the creation region around z = 0. Unfortunately, due to
the required spatial periodicity and additional particles
returning back to z = 0 from the boundaries at = =
+ L/2, this reversal time cannot be chosen arbitrarily
large due to the occurrence of unwanted supercritical
pair creation mechanism (see above) for a too large box
size L. A recently published article [14] addresses the
interesting question, how the virtual charges associated
with the vacuum’s polarization are related to the real
physical particles that are created when the potential
is chosen supercritical.

One can certainly understand that the total charge
conservation is a global property and that it is guar-
anteed in our specific numerical situation by the peri-
odic boundaries, where the reversed charges are cre-
ated. However, we were surprised that charge conser-
vation within larger spatial domains around z = 0 is
even not guaranteed. In the traditional picture, the vac-
uum is visualized as a dielectric medium where virtual
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electron—positron dipole pairs can be rearranged by an
external field. However, this particular picture seems to
be inconsistent with the observed growth of mainly pos-
itive charges at x = 0 and the absence of any negative
charges of similar magnitude nearby. While one might
consider time-dependent techniques as merely indirect
theoretical tools to determine the steady state charge
distributions, we like to point out that they might also
play an important future role in simulating short-time
non-stationary process, which is quite relevant for inter-
actions induced by ultra-short laser pulses.

3.2 Energy-cutoff based approaches

While the prior methods require the summation of the
entire (in principle infinite) Hilbert space, one could
imagine that due to the finite value of the external
charge ¢eyxt only states with lower and intermediate
energies might be required for an accurate determina-
tion of the vacuum polarization. At first, it seems, there-
fore, reasonable in order to decrease the computational
time and also the memory requirements, to introduce an
effective cut-off energy E..; and exclude all those states
from the calculation in Eq. (1), whose magnitude of
the energy is larger than a chosen E,. This reduction
leading to peut(z, t) might be computationally advan-
tageous especially for calculations in higher than just
one spatial dimension. However, as we will show below,
any artificial energy cut will introduce some extra spu-
rious contributions to the density peut(z, t), denoted
by pspu(z, t), which (due to their additive nature) can
be subtracted out by either instantaneous approaches
(Sect. 3.1.1) or dynamical methods (Sect. 3.2.2).

3.2.1 Instantaneous removal of the spurious
contributions based on the FW theory

In Fig. 3, we have repeated a similar simulation for p(z,
t) as already displayed in Fig. 2, but this time, in the
required summation over the time-evolved negative and
positive energy states we have omitted contributions of
states whose energy has a magnitude of larger than E
= 257.36 mc?. As a reference, we should mention that
for our numerical parameters (Nx = 8192 and L = 0.367
a.u.) the entire Hilbert space is discrete with a largest
possible energy given by 514.72 mc?. We observe that
in this case pcut(z, t) is characterized by the occur-
rence of rather triangularly shaped density, denoted by
Pspu(Z, t), which grows in a shape invariant matter with
its base line extending from z = — ¢ ¢t to z = ¢ t. The
dynamics of these purely mathematical solutions is well
understood from a mathematical aspect [8]. In this arti-
cle from 2014, analytical expressions as well as their
relationship to the Maxwell equations were established,
but their direct physical interpretation is still not fully
understood to date. There are two immediate observa-
tions that suggest a purely mathematical character of
these particular (numerically fully converged) solutions.
The solutions grow without any limit if the numerical
box length L is sufficiently long, and the charges which
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Fig. 3 a Snapshots of temporal evolution of the vacuum
polarization charge density peut(z, t) at times t1 = 2.67
x 10* au. (= 57), to = 8 x 10°* au. (= 15 7) and t3
= 1.33 x 107 a.u. (= 257) indicated by the dashed lines.
In the calculation of peut(z, t) the maximum energy of the
Hilbert space was limited to Ecut/(mc?) = 257.36. For com-
parison, the largest energy of the Hilbert space is associated
with E/(mc?) = 514.72. The corresponding continuous lines
are the corresponding densities prweus(z, t) obtained by
the Foldy-Wouthuysen theory with the same cut-off energy.
b The corresponding three physical polarized charge densi-
ties obtained by the subtraction by p(z, t) = peut(z, t) —
prweut (Z, t). The densities match the ones perfectly com-
puted in Fig. 2 for the abrupt turn-on of — gext = — 10
a.u. [The numerical parameters are: numerical box size L =
0.367 a.u. (= 50/¢) with Ny = 8192 spatial grid points and
spacing Az = 4.4 x 107° a.u., temporal grid spacing At =
3.55 x 107 a.u]

appear to accumulate around the (originally given) neg-
ative charge are also negative. While an infinite growth
does not necessarily violate any energy conservation
[8], the accumulation of like charges around the central
charge seems unphysical to us. We also direct the reader
to the detailed structure of the tips of each triangle,
which appear to be rounded. This is a very important
detail as these tips contain the actual physical polar-
ization density p(z, t) as we show below.

The second set of data (continuous lines) was
obtained by the (energy cut off) charge density associ-
ated with the corresponding Foldy-Wouthuysen (FW)
theory [32] characterized by the Hamiltonian

hpw = os(m?ct + p?)/2 + eV (x) (2)
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As this Hamiltonian hgw is diagonal in spinor space
it cannot predict any transitions between the posi-
tive and negative energy levels and fails to reproduce
those processes that involve the electron—positron pairs
such as the polarization. This means that states of the
positive (negative) energy manifold have only a non-
vanishing upper (lower) spinor component and the cor-
responding FW charge density, i.e., ppw(z, t) = (€/2)
Yoo IW(d, p, z, t)|>|W(u, p, z, t)|*]/2 is identical to
zero at any time, where W(d, p, z, t = 0) and W(u, p,
z, t = 0) are the eigenstates of o3 (m?c* + ¢2p?)'/2.
This can be seen most easily as the space spanned by all
positive energy states, is already complete with regard
to the first spinor component, i.e., >,y [pu> < pu|=1.
We therefore have >, |W (u, p, z, t)]* = >, W(u, p,
z,t) W(u, p,z, )7 =35 (2| U(t)|us p) (u; p|U()"]z)
= (z|z). And similarly, we have >, |W(d, p, z, t)|?
— S (2| U(R)|d; p)(d; plU(1)T|2) = (z]a) and there-
fore ppw(z, t) = (z|z)—(z|z) = 0 vanishes identically
if all states are taken into account. But, nevertheless,
this density becomes quite useful when it is calculated
for the same energy cut-off as used in the Dirac data.
In this case, prweut(, t) seems to be identical to the
spurious contributions pspu(z,t).

The data in Fig. 3 suggest this remarkable similar-
ity [9] between prweut(z, t) and peut(z, t). In fact, at
each time, the only difference can be found at the tip
of each triangle, close to x = 0, as the Dirac density
does contain the physical vacuum polarization density
in addition to pspu(z, t). In contrast to the rounded tips
observed for the Dirac theory, the tips obtained from
the Foldy-Wouthuysen theory seem more like a real
cusp. In the inset of the Figure, we have subtracted the
densities from each other, pcut(z, t) — prweut(z, t) at
each of the three times. For all three moments in time,
this difference agrees with the actual physical vacuum
polarization density p(z, t) obtained in Figs. 2 with-
out cut-off. This numerical observation suggests that it
is indeed possible to restrict the Hilbert space of pos-
sible states and still being able to recover the desired
physical charge density via this subtraction scheme.

In order to better understand the dependence of these
spurious triangular solutions, we have shown in Fig. 4
the density peu (7, t) at time ¢t = 8 x 10 *a.u., but
for eight different cut-off energies E../c? = 3, 4, 5, 6,
7, 20, 31 and 32. The nice numerical convergence with
increasing cut-off energy up to E.. = 31 c? seems to
(falsely) suggest that we have obtained numerically con-
vergent and reliable physical data. However, this con-
clusion is dangerous and wrong. In fact, the spurious
solution seems to be reduced for the even larger cut-
off Ecut = 32 ¢? and also seems to violate causality as
the density extends here beyond the light cone. In fact,
for a slightly larger energy 32.19 c¢?, the entire spuri-
ous contributions have entirely disappeared, reflecting
the fact that now the complete Hilbert space has been
taken into account. This shows that those states that
are close to the largest energy in the finite Hilbert space
play an absolute crucially important role with regard to
the density peut(z, t).
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This unexpected finding might not necessarily be in
contradiction to prior observations of divergent solu-
tions. In fact, the very highest energetic states in our
finite Hilbert space might possibly represent the accu-
mulative effect of all those other states that are ener-
getically outside of our complete set of Hilbert states.

3.2.2 Periodic self-cancellation of the spurious
contributions

There is also a second (and independent) method that
permits us to remove the spurious contributions to the
charge density without relying on the computation of
the solutions to the Foldy-Wouthuysen theory. As we
have mentioned above (in Sect. 3.1.1), our solutions to
the Dirac equations require periodic boundaries, lead-
ing to the well-known wrap-around effect that particles
entering the right boundary at z = L/2 will re-appear
at £ = — L/2. Furthermore, the corresponding extra
positive charges gext/2 at © = + L/2, lead also to the
formation of triangularly shaped solutions, but with an
opposite sign. We note that the effect of these peri-
odic boundaries on the evolution of the growing trian-
gles for longer times than L/(2¢) can be best visualized
by extending the box size to infinity and summing up
triangles that grow around the locations x = 4+ n L
together with inverted triangles that are centered at x
= + (2n + 1) L/2, with n = 0,1,2,3 ... If we add
up all of these triangularly shaped densities, it turns
out that there at specific moments in time, when they
will perfectly interfere distractively as they propagate
through each other. These means that there are peri-
odically re-occurring moments in time, when we have
a perfect overlap and distractive interference around
x = 0. As a result of these perfect distractive cancel-
lations of all these unphysical contributions, only the
physical contributions to the polarization density sur-
vive and therefore can be recovered. In other words,
at re-occurring times t, = n L/c, with n = 1,2, ...,
the system autocorrects itself and we can obtain the
exact charge polarization density, without the need of
any other subtraction scheme.

3.2.3 Points of critique and open questions

While these spurious contributions do not occur if the
complete set of Hilbert states is included in the deter-
mination of p(z, t), one would naturally (but appar-
ently incorrectly) expect that including states with suf-
ficiently large energy (but not all) should -in principle-
be sufficient for their removal. However, while the data
in Fig. 4 confirm that there is indeed a huge region of
states (between energies £ = 3 mc? and 31 mc?) that
is dynamically irrelevant (as one would expect), sud-
denly important contributions show up for states close
to the largest energy of the system. This observation is
even more puzzling, as we can increase the amount of
the upper energy limit of these important edge states
by arbitrarily choosing a larger and larger number of
spatial grid points Ny. It seems obvious that the time
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20 -10 0 10

Fig. 4 The vacuum polarization density peut(z, ¢) at time
t =6.6 x 10°* a.u. (= 12.57), but where the summation has
been limited to different amounts for the energy cut-off: 2,
4 < Eeu/(mc?) < 32. The top most graph is without any
cut-off, associated with the E/(mc?) = 32.19, which is the
largest energy in the Hilbert space for Nx = 1024 and L =
0.730 a.u. (= 100))

p spu (x ,t)

position x/L.

Fig. 5 Sketch of the space-time evolution of the unphysi-
cal triangular contributions pspu(z, t) to the charge density
under periodic boundaries at = + L/2. The density starts
with pspu(z, t = 0) = 0 after a perfect cancellation at times
L/cand 2 L/c it returns back to zero everywhere; i.e. pspu(z,
T)=0

evolution of these edge states has to be qualitatively
different than the one for lower energetic states. Cer-
tainly, more systematic studies are required here. The
similarity to the states obtained by the FW theory is
also interesting, however, as we suggested above, here
the edge states do not play any role (Fig. 5).

As any energy cut-off might be required to handle
truly infinite Hilbert spaces, associated with the con-
tinuum limit Ny — oo and A, — 0, it would be ben-
eficial to better understand how the FW theory can
provide the correct corrections to remove the spuri-
ous solutions. Most importantly, in three-dimensional
calculations, these energy-cutoffs can not only signifi-
cantly reduce the CPU time, but they can make these
quantum field theoretical studies possible in the first

@ Springer
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place. In 1D, the mathematical structure of the spu-
rious solutions can be modeled very well by a simple
wave equation [8], where a term that is proportional to
dext(2) acts as a source term (Oct2—0x2) pspu(, t) =
8T X ¢ext(x), with the (numerically determined) pro-
portionality factor y = 1.15 x 1073 a.u. If we assume
the two initial conditions pspy(z, t = 0) = Oy pspu(Z, ¢
= 0) = 0, the inhomogeneous solution reads pspy(z, t)
=x [2 V(z) - V(z-ct) — V(2 + ct)], which matches
the spurious solutions found numerically. It shows that
these solutions are linear in ey, and with regard to
more general applications for non-point like distribu-
tions in 3D, possibly a wave-like equation (9.2 —V?)
Pspu(l, 1) = 8 T X gext(r), could be examined. How-
ever, presently any three-dimensional generalizations of
the required subtraction-based techniques for the Dirac
and FW theories have not been performed neither ana-
lytically nor numerically.

3.3 Traditional asymptotic methods

While all of the approaches described above have been
developed just within the last decade, for completeness,
we review here also very briefly the two more traditional
methods, which were historically the first ones that per-
mitted us access to the physics of the vacuum polariza-
tion by static charge configurations, such as provide by
highly charged nuclei. In the first method (Sect. 3.3.1),
the calculation of the density is based on perturba-
tive Feynman diagrams and therefore captures only the
lowest order contributions. The second method (Sect.
3.3.2) requires a diagonalization of the Dirac Hamilto-
nian.

3.3.1 First-order Feynman diagram-based approach

As this approach is detailed in many text books [33],
for a direct comparison with our results obtained above,
we briefly present here only the final result of its
application to our one-dimensional model system [34].
In the perturbative Feynman diagram-based approach,
one can compute how the generation of virtual elec-
tron—positron pairs give rise to a modification of the
Coulomb potential. Using the one-loop vacuum polar-
ization tensor in 1 + 1 space—time dimensions, the
charge density can be found (up to first order of the
fine structure constant «) analytically as

pFeyn (LU)

= qext()g)fl/dTT*?’(T2 - 1)71/2 exp (—27|x|/\)
1

(3)

For small distance |z|, this complicated (unitless)
integral can very well be approximated by =~ w/4
exp(—2.36 |z|/A). For more details and an interesting
discussion about the non-trivial role of the fine struc-
ture constant in one and three-dimensional systems, see
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Fig. 6 The lowest-order prediction of the (scaled) charge
density based on a Feynman diagram together with the sim-
ple functional form an/(4A) exp(— 2.36 |z|/\)

[35]. While the integral in Eq. (3) cannot be further sim-
plified, it turns out that induced charge density is very
well matched by the simpler numerically fitted density
PFeyn(T) & gext @ X1 (7/4) exp(—2.36 |z|/X). In Fig. 6,
we illustrate the quality of this approximation.

3.3.2 Diagonalization approach

The derivation for this approach is based again on the
interpretation of the process in the Schrédinger picture
of this quantum field theoretical process for the case
where the external charge qeyt is adiabatically slowly
turned on. Here, we expect that the system, which is
initially in its lowest energetic energy eigenstate, stays
in the instantaneous eigenstate of the changing quan-
tum field theoretical Hamiltonian, i.e. the bare vacuum
state |$(t = 0)) =|vac) evolves adiabatically into the
final dressed vacuum state | (t — o0)) =|VAC). Like-
wise, each of the energy eigenstates for Vo = 0 evolve
into the eigenstates of the fully coupled Hamiltonian.
It is therefore computationally advantageous, to expand
the electron—positron field operator in Eq. (A.2) from
the very beginning in terms of the dressed energy eigen-
states, defined as h Pp(u;z) = Ep(u) Pp(u;z) and h
Pp(d;z) = Ep(d) Pp(d;z), where (due to the lack of
momentum conservation) the index P is no longer the
momentum but a label to characterize the energy of
each state. The resulting expansion of the field opera-
tor is given by ¥(z,t = 0) = Y p Bp Pp(u;z) + > p
Dp' &p(d;r), with the dressed annihilation operators
Bp |[VAC) = 0 and Dp |[VAC) = 0. With regard to
the asymptotic density, we obtain p(z, t — c0) = (D(t
— o) Q(z, t = 0)] &(t — 0)) = (VAC| Q(z, t =
0)|]VAC) which leads to

(VAC| Q(z,t = 0)|VAC)

=e|Y |ep(da)P=) |®p(wa)|/2  (4)

In Fig. 7, we compare this prediction with the densi-
ties obtained from all the prior four methods discussed
above and it is clear that they agree perfectly within
the numerical accuracy of each method. We should
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Fig. 7 A comparison of the five steady state vacuum polar-
ization densities p(z, ¢ — oco) obtained by the five methods
detailed above for gext = 10.a.u.. The continuous line is from
Eq. (3), the crosses are from method 3.2.1 with abrupt turn-
on and at time ¢t = 15 7 and Ecuy = 257.361 mcz, the squares
are from method 3.2.2 at (periodic) time T'= L/c and Ecut
= 257.361 mc?, the open circles are from method 3.1.2 at
time ¢ = 157, and the small closed dots are from Eq. (4)
according to method 3.3.2 without energy cut-off

note that the electric charge gext was chosen sufficiently
small such that the corrections to the third-order cor-
rection to the Feynman density is not so large.

3.3.3 Points of critique and open questions

The diagonalization method requires analytical or com-
putational access to all energy continuum and bound
eigenstates. It is known from early pioneering works
of Wichmann and Kroll [35], Gyulassy [36], Rinker
and Wilets [37] for hydrogenic systems in three spa-
tial dimensions that there are divergent contributions
that are linear in the nuclear charge Ze that need
to be isolated and removed. The mathematical ori-
gin of them is -in our opinion- not really fully under-
stood. The instantaneous elimination technique dis-
cussed in Sect. 3.2.1 could also be implemented for the
diagonalization-based approach. This has the advan-
tage that one could also include an energy cut-off and
therefore not all energy eigenstates need to be calcu-
lated. Unfortunately, both the diagonalization, as well
as the Feynman method, are steady state approaches,
which means that they can predict only final asymp-
totic charge densities and fail to be applicable for rele-
vant polarization studies of time-varying external elec-
tromagnetic fields, that can be now established in the
laboratory. Another major drawback of the Feynman
based approach is certainly its intrinsic perturbative
character as well as the required renormalization pro-
cedures to remove unphysical divergencies. It also seems
challenging to generalize this approach to external non-
point-like charge distributions.
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4 Nonlinear corrections to the charge
density

In this last section, we illustrate the power of the non-
perturbative methods detailed above to examine the
higher-order corrections (gext)™ to the vacuum polar-
ization charge density. The motivation to better under-
stand these corrections is three-fold. First of all, we need
to comprehend when and how these contributions cor-
rect the predictions based on the lowest order, second,
they might be relevant to be included in view of exper-
imental available high power laser systems, and third,
they also allow for a nice illustration how the linear
superposition principle, which is generic to the linear
Maxwell equations, becomes invalid.

Let us assume that the asymptotic charge density
can be expanded in odd orders of gext as p(z) = e
Sn=1 (gext/€)™ pn(z). The functional form of the
(lowest-order) linear spatial distribution p;(z) has been
discussed in Sect. 3.2.1 and is well approximated by
the form pi(z) ~ exp(— 2.36 |z|/\) as we showed
in Fig. 6. In order to extract numerically the spa-
tial form of the third-order correction ps(z) from the
non-perturbative p(z), which -in principle- contains
all odd orders in ¢ex™, we have first computed two
densities p(z) and p’(z) associated with two different
point charges g@exy and ¢’cxt. We have used here the
diagonalization method without energy cut-off (Sect.
3.2.2), which seems to be the most efficient approach
for this purpose. In order to eliminate the linear term
p1(x) from p(z) and to isolate p3(z), we have calcu-
lated the difference [(qext/€)?—(qext’/€)%] L [p(7)/ Gext —
0’ (2)/q ext] which should be equal to p3(z), if we can
neglect even higher order terms. For consistency and
as a check of the numerical convergence, this proce-
dure was then repeated for several pairs {qext, gext }-
We found identical distributions p3(x) in the range 2
x 10% < gexs < 4 x 10%* Obviously, if gexy Was too
large, then higher than cubic corrections play a role
while for choices of too small geyt numerical inaccura-
cies occurred.

In Fig. 8 shows the spatial dependence of the result-
ing cubic term ps(x) together with the rescaled shape of
p1(x) for comparison. We see that the cubic correction
ps3(z) takes an entirely different shape than p;(z). In
fact, ps(z) is comparatively much wider. At the present
stage of our understanding, we do not have any intuitive
physical picture why this observed spatial widening of
p(z) due to the higher order contribution ps(z) can be
expected.

Finally, having numerical access to ps(z) permits
us to illustrate how the traditional linear superpo-
sition principle becomes invalid. While according to
this principle- the resulting (linear) polarization density
induced by two spatially separate charges located at x
= 0 and =z = a is identical to the sum of the individual
densities associated with each charge separately, this is
no longer true if the cubic contributions are taken into
account. We have illustrated this in Fig. 8b and ¢, where
we compared the correct ps(z) that was induced by the
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Fig. 8 a Comparison of the (scaled) linear and (scaled) cubic contribution to the vacuum polarization charge density
induced by a point charge at location x = 0. For a better comparison, we have graphed p1(z)/(2.7 x 107%) and p3(z)/(4.1
x 107'?) such that they have identical areas equal to one. The four matching graphs labeled as ps(z) were obtained for
gext = 4000, 10,000, 20,000, 40,000 a.u. b Illustration of the violation of the linear superposition principle for the vacuum
polarization density induced by an external dipole. We compare the cubic portion of the density p3(z) induced by a negative
external point charge located at x = 0 and a positive charge at x = a = 0.015 a.u. with the prediction based on linear
superposition principle given by p3’(z) —ps’(z — a), where p’s(z) is computed from a single charge at z = 0. ¢ Same as in
Figure b, but the two charges were chosen with equal signs, such that the comparative curve based on the superposition

principle is p3(z) + ps(z — a)

two external point charges [with density — gext 0(z) +
dext 0(z — a)], with the sum p3’(z) + p3’(z — a), where
p3’(z) denotes the density induced by a single charge
— gext 0(z). The disagreement between the true den-
sity ps(x) and p3’(z) — p3’(xz — a) is obvious. In fact, in
the region around = = 0 between both charges, the true
induced charge density is actually much larger than pre-
dicted by the linear superposition principle. The same
under-estimation of the correct density (when assum-
ing the superposition principle) is also present if the
two inducing charges have the same sign as shown in
Fig. 8c. At the present stage of development of experi-
mental laser systems, these predicted non-linear correc-
tions to the vacuum polarization density might be only
of academic interest. However, in our view, it never-
theless remains a worthwhile challenge to explore even
those predictions of QED that are outside our present
technology for their direct detection.

5 Summary and conclusions

In this roadmap to future theoretical studies on QED,
we have introduced two new time-dependent computa-
tional approaches to study the formation of polarization
charges induced by strong external fields from the Dirac
vacuum. We also critically examined five different com-
putational approaches to study the vacuum polariza-
tion process and argued that in view of the space—time
conditions provided by ultra-short intense laser pulses
that the traditional static approaches might no longer
be sufficient to provide reliable insights into the pro-
cesses. While this roadmap has focused its attention
to the vacuum polarization induced by external fields
with subcritical strength, the time-dependent meth-
ods are also applicable to more general situations of
supercritical fields, which permit the irreversible gener-
ation of real electron—positron pairs. Here the occur-
rence of polarization charges is accompanied by the

@ Springer

production of real charges, which makes a space—time
resolved analysis significantly more difficult. In this con-
text, we refer the reader to recent proposal [13, 38],
where machine learning techniques were employed to
examine the particle dynamics inside a supercritical
pair creation regime.
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Appendix 1

In one spatial dimension, the Dirac Hamiltonian is given
by

h = coip + mcloz+ eV(x,t), (5)

where p is the momentum operator and we assume the
coupling to a negative charge — e. We use from now on
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the atomic unit = A = m = e = 1 system for our numer-
ical examples. Here the speed of light is ¢ = 137.036
a.u. The two 2 x 2 Pauli-matrices are denoted by o
and o3 and V(x,t) is the scalar potential. The general-
ization of this approach to three spatial dimensions is
conceptually straight forward, but requires more exten-
sive resources such as CPU time and memory for its
numerical implementation.

As characteristic of any realistic external field, we
assume here that V(z, t) vanishes for all negative times.
We focus here on the case where the initial quantum
state is void of any matter, i.e., |[¥(¢ = 0)) = |vac). The
vacuum state permits us to introduce the correspond-
ing set of fermion creation and annihilation operators,
denoted by b(p) f, d(p) T, b(p) and d(p). They ful-
fill the usual fermionic anticommutator relationships,
[b(p), b(p")T]4+ = d(p—p') and [b(p), b(p")]4 = 0. For
times ¢ < 0, they have an unambiguous interpretation.
If they act on the bare vacuum state |vac), they excite
the modes given by the corresponding single-particle
states, i.e., b, |[vac) = |u;p) and d,' [vac) = |d;p) with
momentum p, where the notation u and d denotes states
up and down the energy gap between & mc?.

The electron—positron field operator ¥(z, ¢) fulfills
simultaneously [23] the time-dependent Dirac equation
ihO¥/0t = h ¥ or equivalently as well as the Heisen-
berg equation of motion i h 0¥ /0t = [H, V], where H
is the corresponding quantum field theoretical Hamil-
tonian given by H = [dz ¥(z, t)' h ¥(z, t). Without
any loss of generality, one can choose an arbitrary set
of basis states for the expansion of this operator ¥(z,
t) as

P(x,t) = Spby(t)dp(us ) + Epd () (ds )  (6)

Y(,t) = Spbyp(us a,t) + Tpdhdy(dsz.t)  (7)

Traditionally, one often chooses the positive and
negative energy eigenstates in this “mode-expansion”,
where p labels their momentum. These energy eigen-
states fulfill ho|u; p) = eplu; p) and ho|d; p) = — ep|d;
p) with e, = [m?c* + ¢2p?]'/2 and have the spatial
representation (z|u; p) = ¢p(u; ). The force-free Dirac
Hamiltonian is given by hg = ¢ o1 p + o3 mc?. The
lower (label d) and upper (label u) energy eigenstates
|p; d) and |p; u) are known analytically and take the
spatial representation by the two-component spinors,
op(u, z, t) = (z|p; u) = N {[ep, + mc?]/2, [e,~mc?]}/?
p/Ipl} explipx/h] and ép(d, x, t) = (z[p; d) = N {-
[ep — mc?]Y2 p/|pl, [ep + mc?]'/2} exp[ipx/h], where N
is the corresponding normalization factors.

If we equate Eqgs. (6) and (7) and use the orthogonal-
ity between the basis states, we can express the time-
evolved creation and annihilation operators in terms of
the initial ones (at ¢ = 0) as

bp(t) = Sprby (us p [u(t); p') + Spedl, (us p |d(t);p')
(8)
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dl(t) = Sprby (d plu(t); p) + Spdl, (ds pld(t); p')
9)

The set of four transition matrix elements (u;p
[u(t);p”), (wsp [d(t);p), {dsp [u(t);p’) and (dsp |d(t);p’)
are the fundamental building blocks of computational
quantum field theory. The time-evolution of the cre-
ation and annihilation operators given by Eqs. (A.3)
is valid for any sub- or supercritical dynamics. Once
this set is known, any other desired observable, such as
spatial, momentum or energy densities and the created
pair numbers with the time evolution, can be calculated
from it. In order to determine these matrix elements,
every single state of the Hilbert space |u;p) and |d;p)
has to be evolved in time, and then the corresponding
projections can be calculated.

The fully coupled electron—positron field operator
W(z,t) itself can be uniquely defined and calculated
independently of the basis representation even for the
interesting supercritical field regime where the number
of particles can change in time. As a result, also the
total charge density can always be obtained from the
corresponding expectation values of the charge density
operator, given by Q = — e (#TW — w¥T) /2. If we insert
the above expansions for ¥ into ) and compute the
expectation value with regard to |vac), we obtain

p(l‘,t) = (6/2)Zp[|¢p(d7xvt)|2_ |¢p(uvma t)|2}
(10)

where the summation for ¢,(d, z, t) and ¢p(u, z, t)
extends over all states with an initially negative and
positive energy, respectively.
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