
Real-Time Scheduling of TrustZone-enabled DNNWorkloads
Mohammad Fakhruddin Babar

School of Computing, Wichita State University, USA

mxbabar@shockers.wichita.edu

Monowar Hasan

School of Computing, Wichita State University, USA

monowar.hasan@wichita.edu

ABSTRACT
Limited resources in embedded devices often hinder the execution

of computation-heavy machine learning processes. Running deep

neural network (DNN) workloads while preserving the integrity

of the model parameters and without compromising temporal

constraints of real-time applications, is a challenging problem.

Although secure enclaves such as ARM TrustZone can ensure

the integrity of applications, off-the-shelf implementations are

often infeasible for DNN workloads — especially those with

real-time requirements — due to additional resource and temporal

constraints. This paper presents a real-time scheduling framework

that enables the execution of resource-intensive DNN workloads

inside TrustZone-enabled secure enclaves. Our approach reduces

the resource overhead by fusing multiple layers of multiple tasks

and running them all together inside the enclaves while retaining

real-time grantees. We derive mathematical conditions that will

allow the designer to test the feasibility of deploying DNNworkload

in a TrustZone-enabled system. Our comparisons with a standard

fixed-priority real-time scheduler show that we can schedule up to

21.33% more tasksets in higher utilization (e.g., > 80%) scenarios.

CCS CONCEPTS
• Security and privacy → Embedded systems security.

KEYWORDS
DNN, TrustZone, Real-Time Systems

ACM Reference Format:
Mohammad Fakhruddin Babar and Monowar Hasan. 2022. Real-Time

Scheduling of TrustZone-enabled DNN Workloads. In Proceedings of
Proceedings of the 4th Workshop on CPS & IoT Security and Privacy (CPSIoTSec
’22). ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3560826.

3563386

1 INTRODUCTION
Many cyber-physical applications (e.g., autonomous cars, un-

manned aerial vehicles, smart robotics) often have “real-time” (i.e.,

stringent temporal) requirements for their correct operations.While

The material in this paper is based upon work supported in part by the U.S. National Science

Foundation (NSF) under grant NSF CNS 2152768. Any findings, opinions, recommendations, or

conclusions expressed in the paper are those of the authors and do not necessarily reflect the views

of sponsors.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CPSIoTSec ’22, November 7, 2022, Los Angeles, CA, USA
© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9876-3/22/11. . . $15.00

https://doi.org/10.1145/3560826.3563386

traditionally, application tasks in real-time systems carry out more

straightforward functionalities such as computations related to

control loop updates, the advent of modern Internet-of-things

(IoT)-specific applications and the emergence of edge computing

require the end nodes to process large-scale data. For instance,

modern real-time applications often require deep neural network

(DNN)-based inferences for achieving intelligent features such

as object recognition, image and video processing, and natural

language processing [35]. Any late inference in the real-time

decision-making process leads to detrimental behavior, which may

damage the system, the environment, or the human users around it.

The output of DNN algorithms is typically determined by input data,

weight values, and intermediate results. Any manipulation of some

(or all) of these parameters may lead to misclassification, as shown

in recent attacks [28, 29, 31]. One way to protect safety-critical

DNN tasks against such attacks is to protect the internals (i.e., DNN

layers) from malicious data modifications. For instance, running

the DNN inference tasks using secure enclaves (such as ARM

TrustZone [25]) can ensure the integrity and confidentiality of

the data and binary, even if the underlying OS is compromised.

Retrofitting TrustZone technology for securing real-time DNN

workload is difficult since vanilla TrustZone and inference

algorithms are not designed with the temporal and resource

constraints of embedded cyber-physical devices. By design, secure

enclaves keep the trusted computing base (TCB) and corresponding

memory regions as small as possible to minimize the attack surface.

In contrast, a typical DNN inference process contains millions of

parameters and requires significant resources. For example, VGG-16

(an image classification task) [31] contains 138 million parameters

that require 528 MB of memory for runtime computations. To

put this into context, OP-TEE [25], an open-source TrustZone

development stack, has only 8 MB of memory [2, 13], which makes

it infeasible to execute a DNN inference task inside the enclave.

Hence, there is a need to develop mechanisms that can execute

resource-hungry inference tasks inside trusted enclaves without

violating the temporal constraints of the system.

This paper introduces a technique to enable real-time aware DNN

computations for TrustZone-enabled enclaves. The key idea of our

approach is to split the DNN tasks into multiple chunks that can fit

within the limited enclave capacity. However, splitting the inference

tasks into chunks also increases overheads since the processor

contexts need to switch back and forth from regular to trusted

executionmode, and this may cause the tasks tomiss their deadlines.

Hence, we propose to fuse multiple layers of DNN tasks and feed
inside the enclave together. This way, we can fit a larger, resource-

intensive model inside a resource-constrained enclave and reduce

the context switch overheads — thus making it suitable for real-time

applications. This paper makes the following contributions:

https://doi.org/10.1145/3560826.3563386
https://doi.org/10.1145/3560826.3563386
https://doi.org/10.1145/3560826.3563386

CPSIoTSec ’22, November 7, 2022, Los Angeles, CA, USA Mohammad Fakhruddin Babar & Monowar Hasan

• A novel task fusion approach to execute resource-intensive

DNN computations on TrustZone-enabled systems while

retaining real-time guarantees; and

• A new scheduling framework and analytical model to derive

the feasibility of deploying a given real-time DNN workload

on TrustZone enclaves.

We compare our approach with the widely-used rate monotonic

(RM) real-time scheduler [20] and find that fusing multiple layers

of DNN inference tasks allows scheduling up to 21.33% more

tasksets when compared to the vanilla system. We now start with

background materials before we present the model and related

assumptions.

2 OVERVIEW AND MOTIVATION
2.1 Background
2.1.1 Real-Time Systems. A system with real-time properties

requires the application tasks to complete their executions before a

predetermined deadline. This timing guarantee is crucial to avoid

system failure. The system generally consists of a set of periodic

tasks and follows a priority-driven scheduling policy. Schedulability
analysis [26] formally verifies whether all tasks in the system meet

their timing constraints (i.e., deadlines), and, if that is the case, the

system is considered safe. Real-time systems are static, i.e., number

of tasks, runtime, and activation patterns are predetermined at the

design time and do not dynamically vary during system operation.

2.1.2 Trusted Execution and ARM TrustZone. Trusted execution

environments (TEEs) allow a safe, isolated, and tamper-resistant

runtime environment (TEE). ARM TrustZone [25] and Intel SGX [5]

are the twomost widely used TEE technologies. SGX is usually used

for general-purpose computers and servers. In contrast, TrustZone

architecture is more suitable for embedded applications and hence

is the focus of our work.

TrustZone is a hardware-based security feature for ARM devices.

TrustZone is based on ARMv6, which includes a processor, memory,

and peripheral security extensions. ARMTrustZone divides runtime

operations into “normal” and “secure” worlds (see Fig. 1). In

the normal world, a commodity OS (such as Linux) provides a

traditional execution environment, while the secure world uses

a small, trusted kernel (e.g., OP-TEE [13]). TrustZone-enabled

systems with Cortex-A family processors can execute on four

exception levels (EL0-EL3) and two modes (i.e., non-secure mode

and secure mode). EL3 (monitor mode) runs a trusted firmware to

switch between normal and secure modes. EL2 runs the hypervisor.

EL1 hosts the kernel, and EL0 is used to execute the application

code. The current execution state of the processor is determined

by the non-secure (NS) bit. Two worlds can communicate using

a shared memory region. A secure monitor call (SMC) is used to

bridge the two worlds. When an SMC instruction is invoked from

the normal world, the processor switches context from the normal

world to the secure world (via monitor mode) and freezes normal

world operation. TrustZone has dedicated memory sections for

both worlds. The normal world cannot access secure memory, but

the secure world can access normal memory.

2.1.3 Neural Network Inference. Neural network algorithms build

a model based on training data in order to generate predictions

App

Guest OS

Hypervisor

Secure Firmware

Secure Monitor

EL0

EL1

EL2

EL3

Normal World Secure World

App App

Trusted OS

No EL2 in secure mode

Guest OS

Figure 1: TrustZone Architecture for Cortex-A processors.

x1

x2

x3

h11

h12

h13

h14

h21

h22

h23

h24

y1

y2

Input
Layer

Hidden Layer Output Layer

Neuron

Neurons between two layers are connected through edges
Each edge has weight, 𝑤

Figure 2: A Simplified Neural Network Structure.

without needing to be explicitly programmed. Figure 2 presents

a simplified architecture of a neural network algorithm. During

the inference process, the data from the inputs are sent through

the layers where each layer performs matrix multiplications on the

data. Final layer outputs might be either a number or a classification

output, depending on the application. The most widely used

neural network algorithms used in embedded and edge devices

are artificial neural networks (ANN), deep neural networks (DNN),

and convolutional neural networks (CNN).

ANN consists of an input layer, one or more hidden layers, and

an output layer. Each node is connected to the others through

an edge. Each edge has a weight and threshold linked with it. If

a node’s output exceeds a specific threshold value, the node is

activated, and data is sent to the next layer of the network. A DNN

is composed of numerous layers between the input and output that

provides high accuracy [11, 12]. DNNs are typically feed-forward

networks, where data flows from the input layer to the output layer

without looping back. There are four types of layers that make up

a DNN: (i) convolutional layers, (ii) activation layers, (iii) pooling
layers, and (iv) fully-connected layers. Due to the computational

complexity of convolution processes, convolutional layers are the

most computationally intensive of the four types of layers. Using

matrix multiplications in conjunction with convolutional filter

operations is a particular case of DNNs, which are referred to as

convolutional neural networks (CNNs). CNNs are used for image

and video analysis when there are a large number of input variables

to be processed. In this work, we focus on DNNs as this is the most

general and widely used neural network algorithm.

Real-Time Scheduling of TrustZone-enabled DNN Workloads CPSIoTSec ’22, November 7, 2022, Los Angeles, CA, USA

2.2 Requirements for a Resource-aware DNN
Inference Mechanism

Let us consider a pre-trained machine learning model used for

performing inference for a given input (e.g., image). When enough

resources (e.g., computational power and memory) are available

and model security is not an issue, we can preload the weights

and biases of each neuron into the memory to calculate neuron

activations. However, such vanilla execution does not ensure

the integrity of the model parameters. To provide data integrity,

an alternative approach could be to allow the execution of the

model layers inside the TrustZone enclave. However, preloading

all these values (e.g., weights) requires a substantial amount of

memory and may not be suitable for TrustZone-enabled systems.

For instance, in OP-TEE [13] (an open-source software stack for

TrustZone), the physical memory dedicated to the secure world is

statically configured at build time. In the current version of OP-TEE,

trusted applications are limited to 8 MB of secure world memory,

thus preventing the execution of larger machine learning models.

To further investigate this issue, we conducted experiments on

OP-TEE and DarkneTZ [6] which is a TrustZone-based extension

of Darknet [21] DNN models. When we ran the whole inference

algorithm that includes 10 layers on the enclave, the process was

terminated due to resource unavailability (see Listing 1, Line 5,

marked red). In contrast, our scheme, which splits the whole

inference process into layer-wise chunks was able to successfully

perform the inference as shown in Listing 2 (Line 9, marked green).

1 Prepare session with the TA
2 Begin darknet
3 ...
4 ...
5 # darknetp:TEEC Invoke_Command(forward) failed 0xffff000c origin 0x4

Listing 1: OP-TEE Log: Failed Invocation.

1 Prepare session with the TA
2 Begin darknet
3 ...
4 ...
5 user CPU start: 4.663724; end: 22.591004
6 kernel CPU start :10.816184; end: 10.816184
7 Max: 16524 kilobytes
8 vmsize :971588; vmrss :16524; vmdata :53704; vmstk :132;

vmexe :412; vmlib :2236
9 Loaded: 0.003270 seconds

Listing 2: OP-TEE Log: Successful Inference.

3 MODEL AND ASSUMPTIONS
3.1 System Model
We consider a uniprocessor real-time system running on a

TrustZone-enabled platform. The system is consists of 𝑛 real-time

tasks Γ = {𝜏1, ...𝜏𝑛}. Each task 𝜏𝑖 is characterized by 𝜏𝑖 =

{𝐶𝑎
𝑖
,𝑇𝑖 , 𝐿𝑖 ,𝑊𝑖 }where𝐶𝑎

𝑖
is the worst case execution time of the task

inside TEE, 𝑇𝑖 is the inter-arrival time (period), 𝐿𝑖 is the number of

layers of the DNNmodel, and𝑊𝑖 is the size of the model. We assume

the tasks follow the implicit deadline model, i.e., the tasks must

complete before their next periodic arrival. We further assume

that Γ is “schedulable” by a fixed-priority, preemptive real-time

Table 1: API Calls Required for Invoking a TEE Call.

API Function

TEEC_InitializeContext() Initialize connection

TEEC_OpenSession() Open a new TEE session

TEEC_InvokeCommand() Invokes a Command

TEEC_CloseSession() Close the session

TEEC_FinalizeContext() Close connection

scheduler, i.e., the response time of each task (the time between

arrival to completion) is less than its deadline.

We assume that the trusted enclave has a finite capacity 𝛿 , i.e.,

it can execute𝑀 ≥ 1 layers together as long as the total resource

requirements of those layers are less than 𝛿 . We express the worst-

case execution time of 𝜏𝑖 as 𝐶𝑖 = 𝐶𝑛𝑠
𝑖

+𝐶𝑠
𝑖
, where 𝐶𝑛𝑠

𝑖
is the non-

secure computation time and 𝐶𝑠
𝑖
is the worst case execution time

inside TEE. Invoking a TEE session involves a series of API calls. For

instance, OP-TEE requires 5 API calls (see Table 1) for instantiating

and terminating a TEE session. Hence we represent 𝐶𝑠
𝑖
as 𝐶𝑠

𝑖
=

𝐶𝑠𝑡
𝑠 +𝐶𝑎

𝑖
+𝐶𝑑

𝑠 , where𝐶
𝑠𝑡
𝑠 is SMC set up time,𝐶𝑎

𝑖
is actual (inference)

computation of the task inside TEE and 𝐶𝑑
𝑠 is the SMC destroyed

time. The tasks are scheduled by using the rate monotonic (RM)

scheduling policy [20].

3.2 Threat Model
We assume that an adversary can access the non-secure components

of the system. Our focus here is on protecting the inference

operations of the DNN model. The attacker may have access to the

input data, but they will not get any information about the model

architecture or the final inference (since they are running inside the

TEE). We further assume that the attacker may know all the task

periods and their execution times. We do not consider any physical

or hardware attack and assume that the adversary cannot bypass

the TEE protection mechanisms.

4 MULTI-LAYER TASK MODEL
If a DNN model is too large to run entirely within the secure

world, then the model may fail to execute, as shown in Listing 1.

This limits each layer’s size to the available memory capacity.

This may require a complete redesign to reduce the number of

neurons in each layer, potentially impacting model accuracy. In

such cases, a better alternative could be to split the DNN model

into smaller parts. This partitioning method is beneficial as the only

values needed at a given time are the activation of the previous

layer and the weights and biases for the current layer. Each layer

contains its weight logs containing all the weights and biases for

the neurons associated with that partition. For example, for two

fully connected layers of𝑚 neurons,𝑚 activations,𝑚 ×𝑚 weights,

and𝑚 biases would be needed at a given time. This effectively limits

the instantaneous memory footprint to that of a single layer, with

the largest layer in the model determining the minimum amount of

secure world memory needed. However, this approach necessitates

context switching from the real world to the secure world, and this

overhead is not negligible. If we perform layer-wise operations,

we need to account for the context switching overheads for each

layer execution. As we shall see, it is feasible to send multiple

CPSIoTSec ’22, November 7, 2022, Los Angeles, CA, USA Mohammad Fakhruddin Babar & Monowar Hasan

Table 2: Example Taskset 1

Task 𝐶𝑛𝑠 𝐶𝑠𝑡
𝑠 𝐶𝑎

𝑖
𝐶𝑑
𝑠 𝐶 𝑇

𝜏1 4 2 13 1 20 50

𝜏2 4 2 5 1 12 100

𝜏3 4 2 13 1 20 40

layers to reduce this context switching overhead. Based on this

idea, we develop a multi-layer task scheduling model for secure
DNN execution inside TrustZone TEEs.

We first start with an example taskset to show how fusing

multiple secure tasks in the TEE can reduce the timing overhead

(and, hence, can increase resource availability). As Table 2 shows,

there are three tasks 𝜏1, 𝜏2, 𝜏3 where 𝐶1,𝐶2,𝐶3 are respectively 20,

12, and 20 units and 𝑇1,𝑇2,𝑇3 are 50, 100, and 40 units of time,

respectively. In this taskset,

∑
𝐶𝑖/𝑇𝑖 = 1.02 > 1 and hence the

taskset is not schedulable (since the system utilization is over 100%).

In contrast, if we fuse 𝜏1 and 𝜏3, we can save 3 unit of time from

𝐶𝑠𝑡
𝑠 +𝐶𝑑

𝑠 = 3, then

∑
𝐶𝑖/𝑇𝑖 = 0.96 < 1, then we can schedule this

taskset as utilization is less than 100%.

4.1 Schedulability Conditions
We do offline (i.e., design-time) profiling for a given taskset and find

the corresponding task scheduling. Our idea is to send themaximum

number of layers that can be supported by TEE to reduce the SMC

context switching overhead. For a given DNN task 𝜏𝑖 , worst-case

execution time of the model inside TEE is𝐶𝑎
𝑖
, where𝐶𝑎

𝑖
=
∑𝑗=𝐿

𝑗=1
𝐶𝑎
𝑖 𝑗

and 𝐿𝑖 is the number of layers. If there is 𝐿 layers in task 𝜏𝑖 , then

size of each layer will be𝑤𝑖1,𝑤𝑖2,,𝑤𝑖𝑚 , where

∑𝑖=𝐿
𝑗=1𝑤𝑖 𝑗 =𝑊𝑖 .

We first check if the following condition holds: (𝑤𝑖1 + 𝑤𝑖2) < 𝛿 .

In this case, we check the following layers. We find the maximum

value of 𝑘 where

∑𝑗=𝑘

𝑗=1
𝑤𝑖 𝑗 = 𝛿1 < 𝛿 ,

∑𝑗=𝑘+1
𝑗=1

𝑤𝑖 𝑗 > 𝛿 . We find that

transition point using this condition. If there is some extra capacity

left (i.e., 𝛿 −𝛿1), then we check the subsequent task to fit within this

extra space. We find the maximum value of 𝑘 for the subsequent

task where

∑𝑗=𝑘

𝑗=1
𝑤 (𝑖+1) 𝑗 < (𝛿 − 𝛿1),

∑𝑗=𝑘+1
𝑗=1

𝑤 (𝑖+1𝑗 > (𝛿 − 𝛿1). We

check all invocation of the tasks until we reach the hyperperiod.
1

Once we obtain the schedule profile for one hyperperiod, we repeat

that same pattern for all subsequent arrivals.

Let us assume we have two tasks 𝜏1, 𝜏2 each having 5 layers and

𝛿 = 5. The size of 𝜏1 is 10 and the size of 𝜏2 is 5 units. WCET of

𝜏1 is 40 and WCET of 𝜏2 is 21 units. We cannot execute all the

layers of 𝜏1 inside the enclave as size of 𝜏1 > 𝛿 . If we execute

layer by layer, we need five SMC switching from the normal world

for five layers for both tasks 𝜏1 and 𝜏2. If we send multiple layers

of 𝜏1 that can be supported by TEE, it still requires three SMC

switching i.e., {(𝑤11,𝑤12), (𝑤13,𝑤14),𝑤15} . For task 𝜏2, we need

one SMC switching (𝑤21,𝑤22,𝑤23,𝑤24,𝑤25) as the size of 𝜏2 ≤ 𝛿 .

We need ten SMC switches for layer-by-layer operations to execute

these two tasks. In contrast, it is possible to perform same objective

by using only four SMC switches if we can send it by multiple

layers. Note that if we send multiple layers of 𝜏1, we have still some

extra capacity left (𝛿 − 𝛿1 = 1). In this case, we check whether

1
A hyperperiod is the least common multiple (LCM) of the periods of the tasks, i.e.,

hyperperiod𝑇ℎ𝑦𝑝 = 𝐿𝐶𝑀 (𝑇1,𝑇2, · · · ,𝑇𝑛), ∀𝜏𝑖 ∈ Γ.

if it is feasible to use that space capacity. In this example, 𝑤11 +
𝑤12 +𝑤21 = 5 ≤ 𝛿 . Hence, we can fuse the first two layers from

𝜏1 and the first layer from 𝜏2, and then send them together to

the enclave. If we repeat the same operations for the rest of the

layers we get the following pattern: (𝑤11,𝑤12,𝑤21), (𝑤13,𝑤14,𝑤22),
(𝑤15,𝑤23,𝑤24,𝑤25), i.e., we only need three SMC switches. The

above example shows how to find the candidates for our proposed

multi-layer fused task model (see Section 4.2).

4.1.1 Feasibility Analysis. If we can fuse 𝑛 tasks from the Γ, then
fused task 𝜏𝑐𝑜𝑚 is defined as (𝐶𝑐𝑜𝑚, 𝑛𝑐𝑜𝑚). If we can fuse 𝑘 tasks,

then 𝐶𝑐𝑜𝑚
can be measured using the following equation:

𝐶𝑐𝑜𝑚 = 𝐶1 + {𝐶𝑠 +𝐶𝑑 } ∗ 𝑛𝑐𝑜𝑚 +
𝑖=𝑘∑︁
𝑖=1

𝐶𝑡
𝑖 , (1)

where 𝑇ℎ𝑦𝑝 is the hyperperiod of all the tasks. Here, 𝑛𝑐𝑜𝑚 is the

minimum SMC switching required for the fused task. If we can

fuse two tasks 𝜏1, 𝜏2, we can say that 𝑛𝑐𝑜𝑚 ≤ (𝑛𝑤𝑜𝑟𝑠𝑡𝑎 + 𝑛𝑤𝑜𝑟𝑠𝑡
𝑏

).
If there exists 𝑘 number of fused tasks within a hyperperiod, we

calculate 𝑛𝑠 , where 𝑛𝑠 is the total SMC saved due to fused task in a

hyperperiod where 𝑛𝑠 =
∑
𝑛𝑤𝑜𝑟𝑠𝑡 − 𝑛𝑐𝑜𝑚 . For a given taskset, we

derive the utilization using the following equation:

𝑈𝑇 =

𝑖=𝑛∑︁
𝑖=1

𝑇ℎ𝑦𝑝
𝑇𝑖

∗𝐶𝑖
𝑇ℎ𝑦𝑝

− 𝑛𝑠 ∗ (𝐶𝑠 +𝐶𝑑)
𝑇ℎ𝑦𝑝

. (2)

A task must start after the job’s arrival and end before the job’s

period to guarantee schedulability. If candidates of fused tasks are

𝜏𝑖 , 𝜏 𝑗 ,, 𝜏𝑘 , then all tasks will meet the individual deadline if they

hold the following condition:

𝑇ℎ𝑖𝑔ℎ −𝐶𝑐𝑜𝑚 −
∑︁

𝐶𝑝 > 0. (3)

In the above equation, 𝐶𝑝 is the summation of the worst-case

execution of all the higher priority tasks than 𝜏𝑖 that needs to

be executed, and 𝑇ℎ𝑖𝑔ℎ is the period of the highest priority task in

the fused group.

4.2 Algorithm
Algorithm 1 formally presents our idea. Let Ω is the set of all task

scheduled by using the RM algorithm. For a given taskset we find

the set of layers 𝑆 for each SMC switching to send to TEE (Line

11). For each task, we find the transition point 𝑘 and include layers

𝑙 to 𝑘 in set 𝑆 . Next, we calculate the corresponding candidate

by following the condition in Line 16. We check the schedulability

following equation 3 (Line 25). If the task is schedulable and the size

of the layers is less than 𝛿 (Line 24), we include those layers in set 𝑆

and remove those layers from Ω (Line 17). When we finish checking

one task, we check all other remaining tasks to see whether we can

fit more layers of information in the set 𝑆 . We then move on to find

the next candidate.

4.3 Examples and Illustrations
Example #1 (Meeting temporal constraints). Table 3 and Table 4

presents 3 tasks and their corresponding parameters. Each task

indicates a DNN model. Each task’s size is shown in column𝑊 ,

and its layer-wise size is shown in Table 4. Specifically, 𝑛𝑙 is the

number of SMC switching if it executes layer-wise, and 𝑛𝑤𝑜𝑟𝑠𝑡 is

Real-Time Scheduling of TrustZone-enabled DNN Workloads CPSIoTSec ’22, November 7, 2022, Los Angeles, CA, USA

Algorithm 1 Fused Task Scheduling

1: Input: Real-time taskset (Γ), TEE-capacity 𝛿
2: Output: Taskset schedulability

3: INITIALIZATION
4: Ω = 𝑅𝑀_𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑖𝑛𝑔(Γ) ⊲ Obtain RM scheduling
5: 𝐿 = {𝐿1, 𝐿2, · · · } ⊲ 𝐿 is the set of all DNN tasks layer
6: 𝑊 = {𝑊1,𝑊2, · · · } ⊲ Size of each DNN task
7: 𝑊𝑖 = {𝑤𝑖1,𝑤𝑖2, · · · ,𝑤𝑖𝑙 } ⊲ Size of each layer
8: BEGIN ⊲ Find layers to send to TEE
9: while TRUE do
10: 𝑆=Find_Layers_To_Send{Ω} ⊲ See Line 21 for definition
11: Send 𝑆 to TEE

12: end while
13: END

14: function Find_Transition_of_Layers(Ω)

15: if
∑𝑗=𝑘

𝑗=𝑚
𝑤𝑖 𝑗 = 𝛿1 < 𝛿 and

∑𝑗=𝑘+1
𝑗=1

𝑤𝑖 𝑗 > 𝛿 then
16: Remove𝑤𝑖𝑚, · · · ,𝑤𝑖𝑘 from Ω
17: end if
18: return𝑤𝑖𝑚, · · · ,𝑤𝑖𝑘

19: end function

20: function Find_Layers_To_send(Ω)
21: while Ω ≠ 𝑁𝑈𝐿𝐿 do
22: 𝑆=Find_Transition_Of_Layers(Ω) ⊲ See Line 15
23: if 𝑠𝑢𝑚(𝑆) ≤ 𝛿 then
24: Check schedulability condition using Eq. (3)

25: if Schedulable then
26: Check next task

27: else
28: break
29: end if
30: else
31: break
32: end if
33: end while
34: return 𝑆

35: end function

Table 3: Example Taskset 2

Task 𝑇 𝐿 𝑊 𝐶𝑎
𝑠 𝐶𝑠𝑡

𝑠 +𝐶𝑑
𝑠 𝑛𝑤𝑜𝑟𝑠𝑡 𝐶

𝜏1 60 5 10 31 3 3 40

𝜏2 120 5 5 18 3 1 21

𝜏3 120 5 5 18 3 1 21

Table 4: Layer-wise Parameters for Taskset 2

Task 𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑛𝑤𝑜𝑟𝑠𝑡 𝑛𝑙

𝜏1 2 2 2 2 2 3 5

𝜏2 1 1 1 1 1 1 5

𝜏3 1 1 1 1 1 1 5

the worst case SMC switching if we send the multiple layers of the

same task that can be sustained by TEE.

10 20 30 40 50 60 70 80 90 100 110 120

10 21 30 40 50 60 70 80 90 100 110 120

10 21 30 40 50 60 70 80 90 100 110 120

10 20 30 40 50 61 70 80 90 101 110 120

𝞽1 , C=40
𝞽2 , C=21
𝞽3 , C=21

Vanilla RM scheduling result in missed deadlines

Proposed Scheme: All tasks meet deadlines

(𝞽1 ,𝞽2) C=58 𝞽3 , C=21 𝞽1 , C=40
𝞽1 , C=40 𝞽2 , C=21 𝞽3 , C=21𝞽1 , C=40

10 20 30 40 50 58 70 79 90 101 110 119

𝞽3 Missed deadline

Figure 3: Schedule for Taskset 2.

Figure 3 depicts the corresponding task arrival and their offline

profiled scheduling. We can see that the fused task is (𝜏1, 𝜏2) and
needs 3 SMC switches. If we execute all the tasks within the

hyperperiod, layer-wise, we need 20 SMC switches. If we follow

our multi-layer switching, we need only 7 SMC switches. We send

all the layers of the task-set 3 within its hyperperiod in the follow-

ing manner: (𝑤11,𝑤12,𝑤21), (𝑤13,𝑤14,𝑤22), (𝑤15,𝑤23,𝑤24,𝑤25),
(𝑤31,𝑤32, · · · ,𝑤35), (𝑤11,𝑤12), (𝑤13,𝑤14), (𝑤15). As we can see

from Fig. 3, when we follow vanilla RM scheduling 𝜏3 misses its

deadline (pointed by the red arrow). In contrast, tasks scheduled by

using our scheme can meet all deadlines (see Fig. 3).

Example #2 (Reduction of context switch overheads). Table 5

presents 4 tasks in Taskset #3. Each task’s size is listed in column

𝑊 and the layer-wise parameters are shown in table 4. In Fig. 4,

we can see the corresponding task arrival and scheduling inside

TEE. If we execute all the tasks within the hyperperiod layer-wise,

we need 70 SMC switches. In contrast, if we follow our multi-layer

switching, we need only 16 SMC switches.

Table 5: Example Taskset 3

Task 𝑇 𝐿 𝑊 𝐶𝑎
𝑠 𝐶𝑠𝑡

𝑠 +𝐶𝑑
𝑠 𝑛𝑤𝑜𝑟𝑠𝑡 𝐶

𝜏1 60 5 5 10 2 1 12

𝜏2 80 5 10 23 2 3 29

𝜏3 240 5 10 23 2 3 29

𝜏4 120 5 5 10 2 1 12

5 EVALUATION
5.1 Simulation Setup
We evaluate the performance of our scheme using synthetically

generated workloads. We used parameters similar to that used in

prior work [18]. We varied the system utilization from 0% to 80%

with an increment of 10 and from 80% to 100% with an increment

of 2. For different system utilization 𝑢 ∈ [0, 10, · · · , 100]%, we have
generated 𝑁𝑢 = 100 tasksets. Each taskset has [2, 10] tasks. The
task periods are randomly selected from [50, 100] ms. We assume

that the enclave capacity 𝛿 = 6 MB and SMC context switching

overhead 𝑐𝑠𝑡𝑠 +𝑐𝑑𝑠 is 3ms. Table 6 lists the key simulation parameters.

Our implementation is publicly available [34].

CPSIoTSec ’22, November 7, 2022, Los Angeles, CA, USA Mohammad Fakhruddin Babar & Monowar Hasan

0 12 20 30 40 50 60 72 80 90 100 110 120 132 140 150 160 170 180 192 200 210 220 230 240

0 10 20 30 40 50 60 70 80 90 100 110 120 132 140 150 160 170 180 190 200 210 220 230 240

0 10 20 29 40 50 60 70 80 90 103 110 120 130 140 150 160 170 180 190 200 210 220 230 240

0 12 24 30 40 53 60 70 82 94 100 110 123 135 160 170 180 189 201 210 220 230 240

0 10 20 29 40 50 60 70 80 90 100 109 120 130 140 150 160 170 180 189 200 210 220 230 240

𝞽1 , C=12
𝞽2 , C=29
𝞽3 , C=29
𝞽4 , C=12

(𝞽2 ,𝞽4), 𝐶 = 29 𝞽3(2), C=12 𝞽2 (4) C=23𝞽3(2), C=11
0 12 20 30 40 51 63 70 86 100 109 119 132 144 150 160 170 183 195 210 220 230 240

(𝞽2 (5),𝞽4 (5)), 𝐶 = 10Vanilla RM scheduling

Proposed Scheme: All task meet deadline

Figure 4: Schedule for Taskset 3.

Table 6: Simulation Parameters

Parameters Value

Enclave capacity, 𝛿 6 MB

Utilization,𝑈 0%-100%

Period 𝑇 [50, 100] ms

Number of layers, 𝐿 [2, 20]
Weight,𝑊 [2, 20]

Execution time inside TEE, 𝑐𝑎𝑠 [10, 50] ms

SMC overhead, 𝑐𝑠𝑡𝑠 + 𝑐𝑑𝑠 3 ms

Number of tasks, 𝑛 [2, 10]

Number of taskset for each utilization, 𝑁𝑢 100

5.2 Results
We compare our scheme with vanilla RM scheduling policy [20].

The x-axis of Fig. 5 shows the percentage of feasible tasks (i.e., ratio

of the number of tasksets that meets timing constraints over the

total generated one), and the y-axis shows the system utilization for

both RM (dotted line) and proposed scheme (solid line). For lower

utilization, this difference in response times is insignificant; hence,

both schemes show identical behavior. However, our proposed

scheme outperforms RM scheduling for higher utilization (> 85%).

This is because when multiple tasks are fused, it reduces context

switch (i.e., SMC) overheads and result in shorter response times.

As a result, more tasksets find schedulable (i.e., tasks completed

before deadlines). From our experiments, we find that, on average,

our scheme finds 21.33% more schedulable tasksets compared to

the vanilla RM scheduling.

6 RELATEDWORK & CONCLUSION
Researchers propose various strategies (e.g., HybridTEE [8],

Confidential DL [7], DarkneTZ [6], Occlumency [33]) for executing

0 20 40 60 80 100
Utilization (%)

0

20

40

60

80

100
Pe

rc
en

ta
ge

 o
f F

ea
sib

le
 Ta

sk
se

t

Vanilla RM Scheduling
Proposed Work

80 90 100
0

100

Figure 5: Percentage of task-set for schedulable by RM
scheduling and our proposed scheme. Task fusion (solid line)
results in better schedulability when the system utilization
increases.

ML (i.e., DNN) workloads inside TEEs. However, none of them

consider real-time constraints. DarkneTZ [6] and AegisDNN [32]

propose to execute only a few layers that will be executed inside

TEE, which is not suitable for applications that require executing

all layers within TEE. Perhaps the closest line of work to ours

is SuperTEE [18] which aims to reduce task switching overhead.

However, SuperTEE does not consider scheduling machine learning

workloads inside limited TEE capacity. In this paper, we propose

a resource-aware multi-layer task scheduling model that focused

on optimizing TEE resources. By fusing multiple layers together

our scheme results in shorter response times, and hence, better

schedulability when compared to a traditional RM scheduling

policy. To the best of our knowledge, this is one of the first

attempts to enable real-time scheduling of DNN workloads on

TrustZone-enabled systems.

Real-Time Scheduling of TrustZone-enabled DNN Workloads CPSIoTSec ’22, November 7, 2022, Los Angeles, CA, USA

REFERENCES
[1] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet

classification with deep convolutional neural networks. Advances in neural

information processing systems 25 (2012), 1097–1105.

[2] Linaro. Accessed on 2021. Open portable trusted execution environment. https:

//www.op-tee.org

[3] Howard AG, Zhu M, Chen B, Kalenichenko D, Wang W, Weyand T, Andreetto M,

Adam H (2017) MobiLeNets: efficient convolutional neural networks for mobile

vision applications. arXiv preprint arXiv:170404861

[4] "GlobalPlatform", TEE system architecture, 2011, [online] Available:

http://www.globalplatform.org/specificationsdevice.asp.

[5] Intel Software Guard Extensions (Intel SGX) SDK for Linux OS. http://intel.com.

Accessed: 2020-06-30.

[6] F. Mo, A. S. Shamsabadi, K. Katevas, S. Demetriou, I. Leontiadis, A. Cavallaro,

and H. Haddadi, “DarkneTZ: Towards model privacy at the edge using trusted

execution environments,” in International Conference on Mobile Systems,

Applications, and Services (MobiSys), 2020, p. 161–174.

[7] P. M. VanNostrand, I. Kyriazis, M. Cheng, T. Guo, and R. J. Walls, “Confidential

deep learning: Executing proprietary models on untrusted devices,” in

arXiv:1908.10730, 2019.

[8] A. Gangal, M. Ye and S. Wei, "HybridTEE: Secure Mobile DNN Execution

Using Hybrid Trusted Execution Environment," 2020 Asian Hardware

Oriented Security and Trust Symposium (AsianHOST), 2020, pp. 1-6, doi:

10.1109/AsianHOST51057.2020.9358260.

[9] M. Sabt, M. Achemlal and A. Bouabdallah, "Trusted Execution Environment:

What It is, and What It is Not," 2015 IEEE Trustcom/BigDataSE/ISPA, 2015, pp.

57-64, doi: 10.1109/Trustcom.2015.357.

[10] Intel Software Guard Extensions (Intel SGX) SDK for Linux OS. http://intel.com.

Accessed: 2020-06-30.

[11] Najafabadi MM, Villanustre F, Khoshgoftaar TM, Seliya N, Wald R, Muharemagic

E (2015) Deep learning applications and challenges in big data analytics. J Big

Data 2(1):1

[12] Goodfellow I, Bengio Y, Courville A, Bengio Y (2016) Deep learning, vol 1. MIT

Press, Cambridge

[13] “OP-TEE (Open Portable Trusted Execution Environment).” https://www.op-tee.

org/. Accessed: 2018-05-27.

[14] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified,

real-time object detection,” in Conference on Computer Vision and Pattern

Recognition (CVPR), 2016, pp. 779–788

[15] Krizhevsky A, Sutskever I, Hinton GE (2012) Imagenet classification with deep

convolutional neural networks. In: Advances in neural information processing

systems, pp 1097–1105.

[16] Simone Bianco, Remi Cadene, Luigi Celona, and Paolo Napoletano. 2018.

Benchmark Analysis of Representative Deep Neural Network Architectures.

IEEE Access 6 (2018), 64270–64277.

[17] Joseph Redmon. 2013–2016. Darknet: Open Source Neural Networks in C.

http://pjreddie.com/darknet/.

[18] Anway Mukherjee, Tanmaya Mishra, Thidapat Chantem, Nathan Fisher, and

Ryan Gerdes. 2019. Optimized trusted execution for hard real-time applications

on COTS processors. In Proceedings of the 27th International Conference on Real-

Time Networks and Systems (RTNS ’19). Association for Computing Machinery,

New York, NY, USA, 50–60. https://doi.org/10.1145/3356401.3356419

[19] R. Liu and M. Srivastava, “Protc: Protecting drone’s peripherals through arm

trustzone,” in Proceedings of the 3rdWorkshop onMicro Aerial Vehicle Networks,

Systems, and Applications, pp. 1–6, ACM, 2017.

[20] Lehoczky, John, Lui Sha, and Yuqin Ding. "The rate monotonic scheduling

algorithm: Exact characterization and average case behavior." RTSS. Vol. 89.

1989.

[21] Joseph Redmon. 2013–2016. Darknet: Open Source Neural Networks in C.

http://pjreddie.com/darknet/.

[22] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich.

2015.Going deeper with convolutions. In Proceedings of the IEEE conference on

Computer Vision and Pattern Recognition. 1–9.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE conference on

Computer Vision and Pattern Recognition. 770–778.

[24] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian QWeinberger.2017.

Densely connected convolutional networks. In Proceedings of the IEEE

conference on Computer Vision and Pattern Recognition. 4700–4708.

[25] T. Alves and D. Felton. 2004. TrustZone: Integrated hardware and software

security. Tech. In-Depth 3, 4 (2004), 18–24.

[26] Sorin Manolache, Petru Eles, and Zebo Peng. 2004. Schedulability analysis of

applications with stochastic task execution times. ACM Trans. Embed. Comput.

Syst. 3, 4 (November 2004), 706–735. https://doi.org/10.1145/1027794.1027797

[27] C. L. Liu and J. W. Layland, “Scheduling algorithms for multiprogramming in

a hard-real-time environment,” Journal of the ACM (JACM), vol. 20, no. 1, pp.

46–61, 1973.

[28] Z. Chen, G. Li, K. Pattabiraman, and N. DeBardeleben. BinFI: an efficient fault

injector for safety-critical machine learning systems. In International Conference

for High Performance Computing, Networking, Storage and Analysis (SC), 2019.

[29] G. Li, K. Pattabiraman, and N. DeBardeleben. Tensorfi: A configurable fault

injector for tensorflow applications. In IEEE International Symposium on

Software Reliability Engineering Workshops (ISSREW), 2018.

[30] A. S. Rakin, Z. He, and D. Fan. Bit-flip attack: Crushing neural network with

progressive bit search. In IEEE/CVF International Conference on Computer

Vision, 2019.

[31] Benali Amjoud, Ayoub, andMustaphaAmrouch. “Convolutional Neural Networks

Backbones for Object Detection.” Image and Signal Processing: 9th International

Conference, ICISP 2020, Marrakesh, Morocco, June 4–6, 2020, Proceedings vol.

12119 282–289. 5 Jun. 2020,

[32] Y. Xiang, Y. Wang, H. Choi, M. Karimi and H. Kim, "AegisDNN: Dependable

and Timely Execution of DNN Tasks with SGX," 2021 IEEE Real-Time Systems

Symposium (RTSS), 2021, pp. 68-81, doi: 10.1109/RTSS52674.2021.00018.

[33] Taegyeong Lee, Zhiqi Lin, Saumay Pushp, Caihua Li, Yunxin Liu, Youngki

Lee, Fengyuan Xu, Chenren Xu, Lintao Zhang, and Junehwa Song. 2019.

Occlumency: Privacy-preserving Remote Deep-learning Inference Using SGX. In

The 25th Annual International Conference onMobile Computing and Networking

(MobiCom ’19). Association for Computing Machinery, New York, NY, USA,

Article 46, 1–17. https://doi.org/10.1145/3300061.3345447

[34] Multi-layer task fusion model implementation,

https://github.com/CPS2RL/Scheduling-of-TrustZone-enabled-DNN-

Workloads

[35] S. Lee and S. Nirjon, "SubFlow: A Dynamic Induced-Subgraph Strategy

Toward Real-Time DNN Inference and Training," 2020 IEEE Real-Time and

Embedded Technology and Applications Symposium (RTAS), 2020, pp. 15-29, doi:

10.1109/RTAS48715.2020.00-20.

	Abstract
	1 Introduction
	2 Overview and Motivation
	2.1 Background
	2.2 Requirements for a Resource-aware DNN Inference Mechanism

	3 Model and Assumptions
	3.1 System Model
	3.2 Threat Model

	4 Multi-Layer Task Model
	4.1 Schedulability Conditions
	4.2 Algorithm
	4.3 Examples and Illustrations

	5 Evaluation
	5.1 Simulation Setup
	5.2 Results

	6 Related Work & Conclusion
	References

