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ABSTRACT

Limited resources in embedded devices often hinder the execution
of computation-heavy machine learning processes. Running deep
neural network (DNN) workloads while preserving the integrity
of the model parameters and without compromising temporal
constraints of real-time applications, is a challenging problem.
Although secure enclaves such as ARM TrustZone can ensure
the integrity of applications, off-the-shelf implementations are
often infeasible for DNN workloads — especially those with
real-time requirements — due to additional resource and temporal
constraints. This paper presents a real-time scheduling framework
that enables the execution of resource-intensive DNN workloads
inside TrustZone-enabled secure enclaves. Our approach reduces
the resource overhead by fusing multiple layers of multiple tasks
and running them all together inside the enclaves while retaining
real-time grantees. We derive mathematical conditions that will
allow the designer to test the feasibility of deploying DNN workload
in a TrustZone-enabled system. Our comparisons with a standard
fixed-priority real-time scheduler show that we can schedule up to
21.33% more tasksets in higher utilization (e.g., > 80%) scenarios.
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1 INTRODUCTION

Many cyber-physical applications (e.g., autonomous cars, un-
manned aerial vehicles, smart robotics) often have “real-time” (i.e.,
stringent temporal) requirements for their correct operations. While
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traditionally, application tasks in real-time systems carry out more
straightforward functionalities such as computations related to
control loop updates, the advent of modern Internet-of-things
(IoT)-specific applications and the emergence of edge computing
require the end nodes to process large-scale data. For instance,
modern real-time applications often require deep neural network
(DNN)-based inferences for achieving intelligent features such
as object recognition, image and video processing, and natural
language processing [35]. Any late inference in the real-time
decision-making process leads to detrimental behavior, which may
damage the system, the environment, or the human users around it.
The output of DNN algorithms is typically determined by input data,
weight values, and intermediate results. Any manipulation of some
(or all) of these parameters may lead to misclassification, as shown
in recent attacks [28, 29, 31]. One way to protect safety-critical
DNN tasks against such attacks is to protect the internals (i.e., DNN
layers) from malicious data modifications. For instance, running
the DNN inference tasks using secure enclaves (such as ARM
TrustZone [25]) can ensure the integrity and confidentiality of
the data and binary, even if the underlying OS is compromised.

Retrofitting TrustZone technology for securing real-time DNN
workload is difficult since vanilla TrustZone and inference
algorithms are not designed with the temporal and resource
constraints of embedded cyber-physical devices. By design, secure
enclaves keep the trusted computing base (TCB) and corresponding
memory regions as small as possible to minimize the attack surface.
In contrast, a typical DNN inference process contains millions of
parameters and requires significant resources. For example, VGG-16
(an image classification task) [31] contains 138 million parameters
that require 528 MB of memory for runtime computations. To
put this into context, OP-TEE [25], an open-source TrustZone
development stack, has only 8 MB of memory [2, 13], which makes
it infeasible to execute a DNN inference task inside the enclave.
Hence, there is a need to develop mechanisms that can execute
resource-hungry inference tasks inside trusted enclaves without
violating the temporal constraints of the system.

This paper introduces a technique to enable real-time aware DNN
computations for TrustZone-enabled enclaves. The key idea of our
approach is to split the DNN tasks into multiple chunks that can fit
within the limited enclave capacity. However, splitting the inference
tasks into chunks also increases overheads since the processor
contexts need to switch back and forth from regular to trusted
execution mode, and this may cause the tasks to miss their deadlines.
Hence, we propose to fuse multiple layers of DNN tasks and feed
inside the enclave together. This way, we can fit a larger, resource-
intensive model inside a resource-constrained enclave and reduce
the context switch overheads — thus making it suitable for real-time
applications. This paper makes the following contributions:
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e A novel task fusion approach to execute resource-intensive
DNN computations on TrustZone-enabled systems while
retaining real-time guarantees; and

o A new scheduling framework and analytical model to derive
the feasibility of deploying a given real-time DNN workload
on TrustZone enclaves.

We compare our approach with the widely-used rate monotonic
(RM) real-time scheduler [20] and find that fusing multiple layers
of DNN inference tasks allows scheduling up to 21.33% more
tasksets when compared to the vanilla system. We now start with
background materials before we present the model and related
assumptions.

2 OVERVIEW AND MOTIVATION
2.1 Background

2.1.1 Real-Time Systems. A system with real-time properties
requires the application tasks to complete their executions before a
predetermined deadline. This timing guarantee is crucial to avoid
system failure. The system generally consists of a set of periodic
tasks and follows a priority-driven scheduling policy. Schedulability
analysis [26] formally verifies whether all tasks in the system meet
their timing constraints (i.e., deadlines), and, if that is the case, the
system is considered safe. Real-time systems are static, i.e., number
of tasks, runtime, and activation patterns are predetermined at the
design time and do not dynamically vary during system operation.

2.1.2  Trusted Execution and ARM TrustZone. Trusted execution
environments (TEEs) allow a safe, isolated, and tamper-resistant
runtime environment (TEE). ARM TrustZone [25] and Intel SGX [5]
are the two most widely used TEE technologies. SGX is usually used
for general-purpose computers and servers. In contrast, TrustZone
architecture is more suitable for embedded applications and hence
is the focus of our work.

TrustZone is a hardware-based security feature for ARM devices.
TrustZone is based on ARMv6, which includes a processor, memory,
and peripheral security extensions. ARM TrustZone divides runtime
operations into “normal” and “secure” worlds (see Fig. 1). In
the normal world, a commodity OS (such as Linux) provides a
traditional execution environment, while the secure world uses
a small, trusted kernel (e.g., OP-TEE [13]). TrustZone-enabled
systems with Cortex-A family processors can execute on four
exception levels (ELO-EL3) and two modes (i.e., non-secure mode
and secure mode). EL3 (monitor mode) runs a trusted firmware to
switch between normal and secure modes. EL2 runs the hypervisor.
EL1 hosts the kernel, and ELO is used to execute the application
code. The current execution state of the processor is determined
by the non-secure (NS) bit. Two worlds can communicate using
a shared memory region. A secure monitor call (SMC) is used to
bridge the two worlds. When an SMC instruction is invoked from
the normal world, the processor switches context from the normal
world to the secure world (via monitor mode) and freezes normal
world operation. TrustZone has dedicated memory sections for
both worlds. The normal world cannot access secure memory, but
the secure world can access normal memory.

2.1.3  Neural Network Inference. Neural network algorithms build
a model based on training data in order to generate predictions
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Figure 1: TrustZone Architecture for Cortex-A processors.

No EL2 in secure mode

Input
Layer

. Neuron

Neurons between two layers are connected through edges
Each edge has weight, w

Output Layer

Hidden Layer

—
Figure 2: A Simplified Neural Network Structure.

without needing to be explicitly programmed. Figure 2 presents
a simplified architecture of a neural network algorithm. During
the inference process, the data from the inputs are sent through
the layers where each layer performs matrix multiplications on the
data. Final layer outputs might be either a number or a classification
output, depending on the application. The most widely used
neural network algorithms used in embedded and edge devices
are artificial neural networks (ANN), deep neural networks (DNN),
and convolutional neural networks (CNN).

ANN consists of an input layer, one or more hidden layers, and
an output layer. Each node is connected to the others through
an edge. Each edge has a weight and threshold linked with it. If
a node’s output exceeds a specific threshold value, the node is
activated, and data is sent to the next layer of the network. A DNN
is composed of numerous layers between the input and output that
provides high accuracy [11, 12]. DNNss are typically feed-forward
networks, where data flows from the input layer to the output layer
without looping back. There are four types of layers that make up
a DNN: (i) convolutional layers, (ii) activation layers, (iii) pooling
layers, and (iv) fully-connected layers. Due to the computational
complexity of convolution processes, convolutional layers are the
most computationally intensive of the four types of layers. Using
matrix multiplications in conjunction with convolutional filter
operations is a particular case of DNNs, which are referred to as
convolutional neural networks (CNNs). CNNs are used for image
and video analysis when there are a large number of input variables
to be processed. In this work, we focus on DNNs as this is the most
general and widely used neural network algorithm.
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2.2 Requirements for a Resource-aware DNN
Inference Mechanism

Let us consider a pre-trained machine learning model used for
performing inference for a given input (e.g., image). When enough
resources (e.g., computational power and memory) are available
and model security is not an issue, we can preload the weights
and biases of each neuron into the memory to calculate neuron
activations. However, such vanilla execution does not ensure
the integrity of the model parameters. To provide data integrity,
an alternative approach could be to allow the execution of the
model layers inside the TrustZone enclave. However, preloading
all these values (e.g., weights) requires a substantial amount of
memory and may not be suitable for TrustZone-enabled systems.
For instance, in OP-TEE [13] (an open-source software stack for
TrustZone), the physical memory dedicated to the secure world is
statically configured at build time. In the current version of OP-TEE,
trusted applications are limited to 8 MB of secure world memory,
thus preventing the execution of larger machine learning models.
To further investigate this issue, we conducted experiments on
OP-TEE and DarkneTZ [6] which is a TrustZone-based extension
of Darknet [21] DNN models. When we ran the whole inference
algorithm that includes 10 layers on the enclave, the process was
terminated due to resource unavailability (see Listing 1, Line 5,
marked red). In contrast, our scheme, which splits the whole
inference process into layer-wise chunks was able to successfully
perform the inference as shown in Listing 2 (Line 9, marked green).

1 Prepare session with the TA
> Begin darknet

3
| PPN
# darknetp:TEEC Invoke_Command(forward) failed oxffff@e@c origin 0x4

Listing 1: OP-TEE Log: Failed Invocation.

1 Prepare session with the TA
2 Begin darknet

5 user CPU start: 4.663724; end: 22.591004
s kernel CPU start:10.816184; end: 10.816184
Max: 16524 kilobytes
s vmsize:971588; vmrss:16524; vmdata:53704; vmstk:132;
vmexe :412; vmlib:2236
Loaded: ©.003270 seconds

Listing 2: OP-TEE Log: Successful Inference.

3 MODEL AND ASSUMPTIONS
3.1 System Model

We consider a uniprocessor real-time system running on a
TrustZone-enabled platform. The system is consists of n real-time
tasks T = {r,...7y}. Each task 7; is characterized by 7; =
{C{, Ti, Li, W;} where C{ is the worst case execution time of the task
inside TEE, T; is the inter-arrival time (period), L; is the number of
layers of the DNN model, and W; is the size of the model. We assume
the tasks follow the implicit deadline model, i.e., the tasks must
complete before their next periodic arrival. We further assume
that I is “schedulable” by a fixed-priority, preemptive real-time
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Table 1: API Calls Required for Invoking a TEE Call.

API Function

TEEC_InitializeContext() | Initialize connection
TEEC_OpenSession()
TEEC_InvokeCommand()
TEEC_CloseSession()
TEEC_FinalizeContext()

Open a new TEE session

Invokes a Command

Close the session

Close connection

scheduler, i.e., the response time of each task (the time between
arrival to completion) is less than its deadline.

We assume that the trusted enclave has a finite capacity J, i.e.,
it can execute M > 1 layers together as long as the total resource
requirements of those layers are less than 8. We express the worst-
case execution time of 7; as C; = C}'* + C}, where C** is the non-
secure computation time and Cj is the worst case execution time
inside TEE. Invoking a TEE session involves a series of API calls. For
instance, OP-TEE requires 5 API calls (see Table 1) for instantiating
and terminating a TEE session. Hence we represent C} as C} =
cst+ce +C%, where C5 is SMC set up time, C{ is actual (inference)
computation of the task inside TEE and C¢ is the SMC destroyed
time. The tasks are scheduled by using the rate monotonic (RM)
scheduling policy [20].

3.2 Threat Model

We assume that an adversary can access the non-secure components
of the system. Our focus here is on protecting the inference
operations of the DNN model. The attacker may have access to the
input data, but they will not get any information about the model
architecture or the final inference (since they are running inside the
TEE). We further assume that the attacker may know all the task
periods and their execution times. We do not consider any physical
or hardware attack and assume that the adversary cannot bypass
the TEE protection mechanisms.

4 MULTI-LAYER TASK MODEL

If a DNN model is too large to run entirely within the secure
world, then the model may fail to execute, as shown in Listing 1.
This limits each layer’s size to the available memory capacity.
This may require a complete redesign to reduce the number of
neurons in each layer, potentially impacting model accuracy. In
such cases, a better alternative could be to split the DNN model
into smaller parts. This partitioning method is beneficial as the only
values needed at a given time are the activation of the previous
layer and the weights and biases for the current layer. Each layer
contains its weight logs containing all the weights and biases for
the neurons associated with that partition. For example, for two
fully connected layers of m neurons, m activations, m X m weights,
and m biases would be needed at a given time. This effectively limits
the instantaneous memory footprint to that of a single layer, with
the largest layer in the model determining the minimum amount of
secure world memory needed. However, this approach necessitates
context switching from the real world to the secure world, and this
overhead is not negligible. If we perform layer-wise operations,
we need to account for the context switching overheads for each
layer execution. As we shall see, it is feasible to send multiple
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Table 2: Example Taskset 1

’Task‘C"s cgf‘cg c;l‘ C ‘ T ‘
7 4 2 [13] 1 [20] 50
7 4 2 [ 5 | 1 |12 ] 100
75 4 2 |13 1 [20] 40

layers to reduce this context switching overhead. Based on this
idea, we develop a multi-layer task scheduling model for secure
DNN execution inside TrustZone TEEs.

We first start with an example taskset to show how fusing
multiple secure tasks in the TEE can reduce the timing overhead
(and, hence, can increase resource availability). As Table 2 shows,
there are three tasks 71, 72, 73 where Cy, Ca, C3 are respectively 20,
12, and 20 units and Ty, T, T3 are 50, 100, and 40 units of time,
respectively. In this taskset, };C;/T; = 1.02 > 1 and hence the
taskset is not schedulable (since the system utilization is over 100%).
In contrast, if we fuse 71 and 3, we can save 3 unit of time from
CSt + C;i = 3, then ), C;/T; = 0.96 < 1, then we can schedule this
taskset as utilization is less than 100%.

4.1 Schedulability Conditions

We do offline (i.e., design-time) profiling for a given taskset and find
the corresponding task scheduling. Our idea is to send the maximum
number of layers that can be supported by TEE to reduce the SMC
context switching overhead. For a given DNN task 7;, worst-case
1 )
and L; is the number of layers. If there is L layers in task 7;, then

execution time of the model inside TEE is C{', where Cf = 3

size of each layer will be wj1, wjp, ...... , Wim, where Zi.::II wij = W;.
We first check if the following condition holds: (w;; + wi2) < 6.
In this case, we check the following layers. We find the maximum

value of k where X774 wij = 61 < 8, %21 wij > 6. We find that
transition point using this condition. If there is some extra capacity
left (i.e., § — 01), then we check the subsequent task to fit within this

extra space. We find the maximum value of k for the subsequent
task where X8 wiz1); < (5= 81), ZI27 wipry > (8- 61). We
check all invocation of the tasks until we reach the hyperperiod.!
Once we obtain the schedule profile for one hyperperiod, we repeat
that same pattern for all subsequent arrivals.

Let us assume we have two tasks 71, 72 each having 5 layers and
6 = 5. The size of 71 is 10 and the size of 75 is 5 units. WCET of
71 is 40 and WCET of 7, is 21 units. We cannot execute all the
layers of 7; inside the enclave as size of 71 > §. If we execute
layer by layer, we need five SMC switching from the normal world
for five layers for both tasks 7; and 3. If we send multiple layers
of 71 that can be supported by TEE, it still requires three SMC
switching i.e., {(w11, wi2), (W13, wi4), w15} . For task 72, we need
one SMC switching (w21, wa2, w23, wag, was) as the size of 75 < 6.
We need ten SMC switches for layer-by-layer operations to execute
these two tasks. In contrast, it is possible to perform same objective
by using only four SMC switches if we can send it by multiple
layers. Note that if we send multiple layers of 71, we have still some
extra capacity left (§ — 6; = 1). In this case, we check whether

! A hyperperiod is the least common multiple (LCM) of the periods of the tasks, i.e.,
hyperperiod Tp,yp = LCM(Ty, Tz, - - -, Tn), Vi € T.
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if it is feasible to use that space capacity. In this example, w11 +
w12 + w1 = 5 < 8. Hence, we can fuse the first two layers from
71 and the first layer from 77, and then send them together to
the enclave. If we repeat the same operations for the rest of the
layers we get the following pattern: (w11, wiz, wa1), (w13, W14, Wa2),
(w15, W3, wo4, Ws), i.e., we only need three SMC switches. The
above example shows how to find the candidates for our proposed
multi-layer fused task model (see Section 4.2).

4.1.1 Feasibility Analysis. If we can fuse n tasks from the I', then
fused task 7¢°™ is defined as (C¢°™, n€°™). If we can fuse k tasks,
then C°°™ can be measured using the following equation:

i=k
CoOM = Cy +{C* + CT} ™ 4 )" (1)
i=1

where Ty, is the hyperperiod of all the tasks. Here, n“'™ is the
minimum SMC switching required for the fused task. If we can
fuse two tasks 71, 72, we can say that n©™ < (nXorst 4 nZ"OVSt).
If there exists k number of fused tasks within a hyperperiod, we
calculate n®, where n® is the total SMC saved due to fused task in a
hyperperiod where n® = 3 n"o"? — n™ For a given taskset, we
derive the utilization using the following equation:

T,

U Z TG nt(C 40
T= - .
i=1 Thyp Thyp

()

A task must start after the job’s arrival and end before the job’s
period to guarantee schedulability. If candidates of fused tasks are
Tj, Tj, ..., T, then all tasks will meet the individual deadline if they
hold the following condition:

Thigh —ceom — Z CP > 0. 3)

In the above equation, Cp is the summation of the worst-case
execution of all the higher priority tasks than 7; that needs to
be executed, and Ty, is the period of the highest priority task in
the fused group.

4.2 Algorithm

Algorithm 1 formally presents our idea. Let Q is the set of all task
scheduled by using the RM algorithm. For a given taskset we find
the set of layers S for each SMC switching to send to TEE (Line
11). For each task, we find the transition point k and include layers
I to k in set S. Next, we calculate the corresponding candidate
by following the condition in Line 16. We check the schedulability
following equation 3 (Line 25). If the task is schedulable and the size
of the layers is less than § (Line 24), we include those layers in set S
and remove those layers from Q (Line 17). When we finish checking
one task, we check all other remaining tasks to see whether we can
fit more layers of information in the set S. We then move on to find
the next candidate.

4.3 Examples and Illustrations

Example #1 (Meeting temporal constraints). Table 3 and Table 4
presents 3 tasks and their corresponding parameters. Each task
indicates a DNN model. Each task’s size is shown in column W,
and its layer-wise size is shown in Table 4. Specifically, n! is the
number of SMC switching if it executes layer-wise, and n*°" is
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Algorithm 1 Fused Task Scheduling

1: Input: Real-time taskset (I'), TEE-capacity §
: Output: Taskset schedulability

N

3: INITIALIZATION

4 Q = RM_Scheduling(T') > Obtain RM scheduling
s: L={L1,Lp,---} > L is the set of all DNN tasks layer
6 W={W;,W,,---} > Size of each DNN task
7. Wi = {wij1, wig, - -+, wj } > Size of each layer
8: BEGIN > Find layers to send to TEE
9: while TRUE do

10: S=FIND_LAYERs_To_SEND{Q} » See Line 21 for definition
11: Send S to TEE

12 end while

13: END

14: function FIND_TRANSITION_OF_LAYERS(Q)
15: if Z;:I:n wij =1 < § and ZFkH wij > 6 then

Jj=1
16: Remove wijp, - -+, wj from Q
17: end if
18: return wipy, - -+, Wik

19: end function

20: function FIND_LAYERs_To_SEND(Q)
21: while Q # NULL do

22: S=FIND_TRANSITION_OF_LAYERS(Q) > See Line 15
23: if sum(S) < 6 then

24: Check schedulability condition using Eq. (3)
25: if Schedulable then

26 Check next task

27: else

28: break

29: end if

30: else

31: break

32: end if

33: end while

34: return S

35: end function

Table 3: Example Taskset 2

’Task‘ T ‘L‘W‘Cg c;f+c§‘nwom c‘
71 |60 [5]10]31] 3 3[40
T, [120]5|5 18| 3 1 |21
T3 [120]5]5|18| 3 1 |21

Table 4: Layer-wise Parameters for Taskset 2

worst

o [ o o [

i

T1 21212 2]2 3 5
T2 111|1]|1]|1 1 5
73 11111 1 5

the worst case SMC switching if we send the multiple layers of the
same task that can be sustained by TEE.
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1, C=40

10 20 30 40 50 60 70 80 90 100 110 120
T,, C=21

10 21 30 40 50 60 70 80 90 100 110 120
T3, C=21

10 21 30 40 50 60 70 80 90 100 110 120
7, C=40 1, C=21 1, C=40 13, C=21
10 20 30 40 50 61 70 80 90 101 110 120
Vanilla RM scheduling result in missed deadlines
(11,1,) C=58 T3, C=21 T, C=40

t; Missed deadline

| 10 20 30 40 50 58 70 79 90 101 110119
Proposed Scheme: All tasks meet deadlines

Figure 3: Schedule for Taskset 2.

Figure 3 depicts the corresponding task arrival and their offline
profiled scheduling. We can see that the fused task is (71, 72) and
needs 3 SMC switches. If we execute all the tasks within the
hyperperiod, layer-wise, we need 20 SMC switches. If we follow
our multi-layer switching, we need only 7 SMC switches. We send
all the layers of the task-set 3 within its hyperperiod in the follow-
ing manner: (w11, wiz, wa1), (W13, Wia, wa2), (W1s, Wa3, waq, ws),
(w31, w3z, -+, w3s), (w11, wiz2), (w13, wia), (w15). As we can see
from Fig. 3, when we follow vanilla RM scheduling 73 misses its
deadline (pointed by the red arrow). In contrast, tasks scheduled by
using our scheme can meet all deadlines (see Fig. 3).

Example #2 (Reduction of context switch overheads). Table 5
presents 4 tasks in Taskset #3. Each task’s size is listed in column
W and the layer-wise parameters are shown in table 4. In Fig. 4,
we can see the corresponding task arrival and scheduling inside
TEE. If we execute all the tasks within the hyperperiod layer-wise,
we need 70 SMC switches. In contrast, if we follow our multi-layer
switching, we need only 16 SMC switches.

Table 5: Example Taskset 3

’Task‘ T ‘L‘W‘Cﬁ cg%cf‘nwmf c‘
n |60 [5[5[10] 2 1 |12
T, |80 |5(10]23| 2 3 |29
T3 |240]5(10(23| 2 3 (29
7 |120]5)5 10| 2 1 |12

5 EVALUATION
5.1 Simulation Setup

We evaluate the performance of our scheme using synthetically
generated workloads. We used parameters similar to that used in
prior work [18]. We varied the system utilization from 0% to 80%
with an increment of 10 and from 80% to 100% with an increment
of 2. For different system utilization u € [0, 10, - - - , 100] %, we have
generated N;, = 100 tasksets. Each taskset has [2, 10] tasks. The
task periods are randomly selected from [50, 100] ms. We assume
that the enclave capacity § = 6 MB and SMC context switching
overhead c$? +cg is 3 ms. Table 6 lists the key simulation parameters.
Our implementation is publicly available [34].
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T, C=12
of 1220 30 40 50

60 72 80 90 100 110 120 132140 150 160 170 180 192200 210 220 230 240
r,, C=29
0| 10 20 29 40 50 60 70 80 90 100 109 120 130 140 150 160 170 180 189 200 210 220 230 240
T3, C=29
0 10 20 29 40 50 60 70 80 90 103 110 120 130 140 150 160 170 180 190 200 210 220 230 240
T,, C=12
0 10 20 30 40 50 60 70 80 90 100 110 120 132140 150 160 170 180 190 200 210 220 230 240
0 12 24 30 40 5360 70 82 94 100 110 123 135 160 170 180 189 201 210 220 230 240
Vanilla RM scheduling
(12,14),€ =29 13(2), C=12 15(2), C=11 1,(4) C=23 (1,(5),14(5)),C = 10

12 20 30 40 51 6370 86 100 109 119

Proposed Scheme: All task meet deadline

144 150 160 170 183 195

210 220 230 240

Figure 4: Schedule for Taskset 3.

Table 6: Simulation Parameters

Parameters [ Value ‘
Enclave capacity, & 6 MB
Utilization, U 0%-100%
Period T [50, 100] ms
Number of layers, L [2,20]
Weight, W [2,20]
Execution time inside TEE, ¢¢ [10,50] ms
SMC overhead, ¢$¢ + ¢Z 3 ms
Number of tasks, n [2, 10]
Number of taskset for each utilization, Ny, 100

5.2 Results

We compare our scheme with vanilla RM scheduling policy [20].
The x-axis of Fig. 5 shows the percentage of feasible tasks (i.e., ratio
of the number of tasksets that meets timing constraints over the
total generated one), and the y-axis shows the system utilization for
both RM (dotted line) and proposed scheme (solid line). For lower
utilization, this difference in response times is insignificant; hence,
both schemes show identical behavior. However, our proposed
scheme outperforms RM scheduling for higher utilization (> 85%).
This is because when multiple tasks are fused, it reduces context
switch (i.e., SMC) overheads and result in shorter response times.
As a result, more tasksets find schedulable (i.e., tasks completed
before deadlines). From our experiments, we find that, on average,
our scheme finds 21.33% more schedulable tasksets compared to
the vanilla RM scheduling.

6 RELATED WORK & CONCLUSION

Researchers propose various strategies (e.g., HybridTEE [8],
Confidential DL [7], DarkneTZ [6], Occlumency [33]) for executing
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Figure 5: Percentage of task-set for schedulable by RM
scheduling and our proposed scheme. Task fusion (solid line)
results in better schedulability when the system utilization
increases.

ML (i.e., DNN) workloads inside TEEs. However, none of them
consider real-time constraints. DarkneTZ [6] and AegisDNN [32]
propose to execute only a few layers that will be executed inside
TEE, which is not suitable for applications that require executing
all layers within TEE. Perhaps the closest line of work to ours
is SuperTEE [18] which aims to reduce task switching overhead.
However, SuperTEE does not consider scheduling machine learning
workloads inside limited TEE capacity. In this paper, we propose
a resource-aware multi-layer task scheduling model that focused
on optimizing TEE resources. By fusing multiple layers together
our scheme results in shorter response times, and hence, better
schedulability when compared to a traditional RM scheduling
policy. To the best of our knowledge, this is one of the first
attempts to enable real-time scheduling of DNN workloads on
TrustZone-enabled systems.
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