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ABSTRACT Heavy metals (HMs) are known to modify bacterial communities both in the
laboratory and in situ. Consequently, soils in HM-contaminated sites such as the U.S.
Environmental Protection Agency (EPA) Superfund sites are predicted to have altered eco-
system functioning, with potential ramifications for the health of organisms, including
humans, that live nearby. Further, several studies have shown that heavy metal-resistant
(HMR) bacteria often also display antimicrobial resistance (AMR), and therefore HM-conta-
minated soils could potentially act as reservoirs that could disseminate AMR genes into
human-associated pathogenic bacteria. To explore this possibility, topsoil samples were
collected from six public locations in the zip code 35207 (the home of the North
Birmingham 35th Avenue Superfund Site) and in six public areas in the neighboring zip
code, 35214. 35027 soils had significantly elevated levels of the HMs As, Mn, Pb, and Zn,
and sequencing of the V4 region of the bacterial 16S rRNA gene revealed that elevated
HM concentrations correlated with reduced microbial diversity and altered community
structure. While there was no difference between zip codes in the proportion of total cul-
turable HMR bacteria, bacterial isolates with HMR almost always also exhibited AMR.
Metagenomes inferred using PICRUSt2 also predicted significantly higher mean relative fre-
quencies in 35207 for several AMR genes related to both specific and broad-spectrum
AMR phenotypes. Together, these results support the hypothesis that chronic HM pollu-
tion alters the soil bacterial community structure in ecologically meaningful ways and may
also select for bacteria with increased potential to contribute to AMR in human disease.

IMPORTANCE Heavy metals cross-select for antimicrobial resistance in laboratory experi-
ments, but few studies have documented this effect in polluted soils. Moreover, despite
decades of awareness of heavy metal contamination at the EPA Superfund site in North
Birmingham, Alabama, this is the first analysis of the impact of this pollution on the soil
microbiome. Specifically, this work advances the understanding of the relationship between
heavy metals, microbial diversity, and patterns of antibiotic resistance in North Birmingham
soils. Our results suggest that polluted soils carry a risk of increased exposure to antibiotic-
resistant infections in addition to the direct health consequences of heavy metals. Our work
provides important information relevant to both political and scientific efforts to advance
environmental justice for the communities that call Superfund neighborhoods home.

KEYWORDS antimicrobial resistance, topsoil, heavy metal pollution, superfund site

Heavy metals (HMs) are necessary for biological processes across all domains of life
(e.g., by acting as catalytic cofactors in proteins), but they can also be toxic in high

concentrations. HMs in soil environments are documented human health risks (1–3), a
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fact all too familiar to people in the community of North Birmingham, Alabama. For
decades, environmental injustice in the form of industrial pollution from coke furnaces
and steel plants has plagued residents living in this Central Alabama area, over 90% of
whom are African-American and 40% of whom live under the federal poverty line (4).
These facilities emit particulate matter containing HMs such as Fe, Zn, Pb, Cu, Cr, Cd,
As, and Mn into the air and soil (5, 6). In recognition of the potential health impacts
caused by this large-scale pollution, the Environmental Protection Agency (EPA) desig-
nated North Birmingham as the 35th Avenue Superfund Site in 2012 (henceforth
referred to by its zip code, 35207), committing the U.S. federal government to fund
pollution cleanup (4). However, continued pollution and local politics have stalled the
EPA’s progress, and 35207 residents have yet to see substantial progress toward con-
fronting and overcoming the legacy of environmental mismanagement. Grassroots
organizations such as People Against Neighborhood Industrial Contamination (PANIC)
have asked for remediation and financial restitution for 35207 residents but also more
scientific studies to understand and quantify the environmental and health impacts ex-
plicitly related to HM contamination in their community (7).

Chronic HM exposure is known to have several effects on microbial communities. HM
pollution can select for specific bacterial taxa and physiological properties (8), which can in
turn impact the diversity of the microbial populations (8–10). For instance, HMs can affect
soil properties, such as spatial structure, in ways that in turn increase bacterial community
diversity (11, 12). HMs are also known to cross-select for both heavy metal resistance
(HMR) and broad antibiotic/antimicrobial resistance (AMR) in bacteria (13–16), even at low
levels (17), because many of the mechanisms conferring resistance to one set of toxins are
also effective at resisting the other as well. Laboratory experiments with bacterial cultures
showed, for example, that Cd exposure induced transmembrane efflux pump resistance
not only to HMs such as Zn and Cd, but also to carbapenem antibiotics (18).

Thus, it is possible that 35207 soils contain microbial communities not only with different
microbial taxa than surrounding soils, but perhaps also with high levels of AMR genes. The
development of bacterial cross-resistance via HMR and/or AMR genes can occur through hor-
izontal gene transfer (19–22), and therefore it is possible that these bacteria could function as
a reservoir from which AMR could spread to the human-associated bacteria of 35207 resi-
dents, creating an additional health risk beyond the direct impacts of HM exposure.
Alarmingly, many AMR genes confer broad resistance across antibiotic classes (23). According
to the World Health Organization (24), the spread of AMR is one of the most pressing con-
cerns for the 21st century. Given that 35207 residents are already more vulnerable to infec-
tious diseases (25) and that AMR infections continue to rise globally (26), investigating the
potential for industrial HM pollution to cause AMR emergence at Superfund sites such as
35207 is a social justice imperative. To investigate this possibility, we collected topsoil samples
from 35207 as well as from a nearby Birmingham neighborhood with similar demographics
but farther from the EPA-designated Superfund site (henceforth also referred to by its zip
code, 35214) and used them to address the following questions:

1. Do the soil bacterial communities at the North Birmingham Superfund site
differ from those in an adjacent neighborhood with less pollution?

2. Do HM-polluted regions show greater physiological or predictive genetic
evidence of AMR?

RESULTS
Impact of HM pollution on soil bacterial community structure. Soils from sam-

pling sites in 35207, which contains the Superfund site, had significantly higher levels of
Pb, Mn, and Zn than those in 35214, a comparable neighborhood farther away from pollu-
tion sources (Fig. 1; Mann-Whitney U tests, P, 0.05). As and Cd were below detection lim-
its for all samples except for 35207 site F, having 37 ppm As. Average silhouette width
kmer clustering based on metal concentrations supported clustering the samples into two
groups that corresponded exactly to the two neighborhood zip codes, supporting our hy-
pothesis that 35207 soils were significantly more exposed to HM than 35214 soils (Fig. 1B).
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Despite the clear evidence of elevated metals in 35207, only Mn (in all 12 samples) and As
(in one 35207 sample) concentrations exceeded EPA Residential Soil Regional Screening
Level (RSL) guidelines for human health concerns (As, 0.68; Cd, 7.1; Pb, 400; Mn, 180; and
Zn, 2,300 ppm) (27, 28).

Both nonmetric multidimensional scaling (NMDS) and canonical correspondence
analysis (CCA) ordination techniques revealed significant correlations of Mn concentra-
tion and pH on soil community structure (Fig. 2A; see S1A in the supplemental mate-
rial; NMDS ordination also showed a significant effect of Zn). NMDS ordination did not
show a significant clustering of samples by zip code (Fig. S1A; analysis of molecular
variance [AMOVA] P . 0.05), but when ordination was constrained using soil metadata
(HM concentrations, soil pH, and organic carbon content) using CCA, the zip codes
were clearly differentiated (Fig. 2A). While pH was a significant structuring force, only

FIG 2 (a) Multivariate canonical correspondence analysis (CCA) showing the first two ordination axes constrained by
HM and organic carbon concentrations as well as pH. Ellipses represent 95% confidence intervals of the centroid of
the groups, and the vectors indicate the impact of metal concentrations and other environmental variables on the
position of points in the plot. Black squares, 35207 samples; gray circles, 35214 samples. (b) Alpha diversity of the
bacterial community at the genus level measured by the Simpson Index; the P value is from a Mann-Whitney test
comparing the two zip codes. (c) Spearman correlation between metal concentrations and the indicated alpha
diversity metrics; asterisks indicate that the P value of the correlation coefficient is ,0.05.

FIG 1 (a) Map of sampling sites A to F from 32507 (in red) and G to K from 35214 (in gray) (map generated by GoogleMaps Map Customizer with
longitude and latitude points is accessible at https://www.mapcustomizer.com/map/Nbham%20paper). (b) Relative HM concentrations are depicted in the
bubble chart, where larger bubble size corresponds to larger heavy metal concentrations (range 26 to 822ppm). Metal analytes with no bubble indicate a
concentration below the detection limit as described in Materials and Methods. The dendrogram on the right of the chart shows the kmer clustering of
sampling sites based on HM concentrations.
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metal concentrations were important for separating the zip codes, with all four metal
biplot vectors indicating movement toward the upper-right corner of the plot (Fig. 2A).

There was also evidence of a negative impact of metals on soil bacterial diversity. The
Simpson alpha diversity index, calculated based on OTUs clustered phylogenetically at the
genus level, was significantly different between zip codes (Fig. 2B). However, the Shannon
index calculated the same way did not show a significant difference, nor did either metric
calculated at the OTU level without phylogenetic clustering. Interestingly, both metrics
were correlated with metadata; the Shannon index indicated that diversity decreased with
increasing pH, and the Simpson index was negatively correlated with Zn concentration
(Fig. 2C).

Impact of metals on bacterial taxonomic groups. Across all samples, the most
abundant bacterial phyla were Actinobacteriota, Acidobacteriota, Proteobacteria, and
Chloroflexi, representing 73% to 83% of total bacteria (Fig. 3A). Of the 48 OTUs that
reached a relative abundance of at least 1% in at least 1 sample, 9 were significantly
different between sites (Fig. 3B). Of these 9, 6 were more abundant in 35207, including
the most abundant of the 9, a representative of the Gram-positive Solirubrobacterales
67-14 clade. Of higher-level taxa composing at least 1% of one sample, two phyla, four
classes, five orders, five families, six genera, and one species were significantly different
between sites (Fig. 3C). Notably, the highly abundant phylum Proteobacteria was signif-
icantly less abundant in 35207, whereas Methylomirabilota, a poorly studied group con-
taining the as-yet uncultivated Rokubacteriales, was more abundant in 35207. While
the phyla Acidobacteriota and Actinobacteriota were not overall different between zip
codes, specific subgroups (e.g., the Blastocatellia and Solirubrobacterales, both more
abundant in 35207) were.

FIG 3 (a) Relative abundance of bacterial phyla in soil bacterial communities based on 16s rRNA sequencing. Sample codes correspond to the map in
Fig. 1. (b and c) Mann-Whitney statistical tests were used to estimate significant differences in relative abundances of OTUs (b) or higher-level taxa (c)
between 35207 (dark gray bars) and 35214 (light gray bars). For all three plots, only taxa that were at least 1% of at least one community are shown. In
panel c, n is the number of total OTUs represented by the indicated higher-level taxon.
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Several taxa were significantly correlated with environmental parameters measured
at the sampling sites, including metals (Fig. S2 to S4). Higher organic carbon content
was correlated with higher ratios of archaea to eubacteria, driven by the abundance of
operational taxonomic units (OTUs) similar to the ammonia-oxidizing archaeal genus
Nitrososphaera. Lower pH was correlated with greater representation of bacteria from
the phylum Planctomycetota. Two classes within the phylum Chloroflexi were also cor-
related with pH, with the Chloroflexia favoring low pH and the KD4-96 clade favoring
higher pH. Unsurprisingly, the Acidobacteriota family Vicinamibacteraceae was corre-
lated with lower pH.

At the phylum level, only the Verrucomicrobiota were correlated with metal concentra-
tions, being rarer in higher-Mn samples (Fig. S2). The class Polyangia (Myxococcota) as well
as the orders Thermoanaerobaculales (Acidobacteriota) and Streptosporangiales (Actinobac-
teriota) were negatively correlated with Zn, and Tepidisphaerales (Planctomycetota) was neg-
atively correlated with both Zn and Pb (Fig. S3). Other taxa were positively correlated with
metals: the Myxococcota bacteriap25 class (recently reclassified as members of candidate
phylum Binatota [29]) was more abundant in higher-Zn samples, the Solirubrobacterales 67-
14 clade was positively associated with both Pb and Zn, and the RokubacteralesWX65 genus
was positively correlated with both Mn and Zn. No significant correlations were observed
between any taxon and As (Fig. S3).

Interestingly, of the 48 OTUs that composed at least 1% of at least 1 sample, no sig-
nificantly negative correlations with metal concentrations were observed, whereas 11,
or 23%, were positively correlated with at least one metal (Fig. S4). Of these, five were
positively associated with two metals, and three with all three metals, Mn, Pb, and Zn.
Six of these OTUs were identified as significantly different between zip codes by both
Metastats and linear discriminant analysis effect size (LEfSe) analyses; of these, five
were positively correlated with at least two metals. Of the 48, 16 (33%) were also signif-
icantly correlated with at least 1 of the first 2 NMDS axes (Fig. S1B), with 3 biplot vec-
tors (Pyrinomonadaceae RB41, Rubrobacteria spp., and Gemmatimonadaceae spp., all
also positively correlated with metals), pointing to the same quadrant as the metal
biplot vectors.

Influence of metals on predicted soil metagenomes. We used PICRUSt2 to infer
the metagenomes of our 12 soil samples based on 16S profiles, predicting 7,637 unique
KEGG Orthology (KO) IDs which allowed us to predict the functional potential of the micro-
bial communities. The functional profiles of the two zip codes were structured significantly
differently (NMDS on Bray-Curtis distance, nonoverlapping 95% confidence intervals of
centroids, Fig. S5A), with much greater dispersion in the ordination coordinates of the
35214 samples than of those from 35207 (areas of the 95% confidence interval ellipsoids,
0.011 and 0.003, respectively). The same general conclusions held when we constrained
the ordination to just the AMR and HMR genes in our predictions (Fig. S5B, ellipsoid areas
of 35214 and 35207 are 0.013 and 0.006, respectively). We found that genes from two-
component sensory systems, carbon fixation and catabolism pathways, and vancomycin
resistance were most likely to differ between the zip codes (Fig. 4a).

We assessed the difference between predicted gene abundances in the two zip
codes using Welch’s unequal variance t test in STAMP (30). The 2-group tests estimated
a significant difference in the mean proportion effect size of 377 genes out of 7,637
between the 2 zip codes (adjusted P value , 5%, Table S6). Of these genes, 24 (6.4%)
were associated with AMR pathways, and 9 were associated with HMR (Fig. 4B, Table
S9). Overall, 46.2% of the significantly differently abundant genes were more abundant
in 35207 samples, compared to 75% of differently abundant AMR genes; AMR genes
were thus significantly more likely to be different between the sites based on Fisher’s
exact test (P = 0.005). All seven identified genes related to vancomycin resistance, as
well as six of nine genes identified as being involved in multidrug resistance, had
higher relative abundance in 35207. Interestingly, only five of nine genes related to
HMR were significantly more abundant in 35207, and HMR genes were not more likely
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to be significantly different between zip codes than other types of genes (Fisher’s exact
test, P = 0.41).

We also observed direct correlations between metal concentrations and the abundan-
ces of predicted AMR and HMR genes. Altogether, Pb, Mn, and/or Zn were significant pre-
dictors of 21 AMR/HMR gene abundances (linear model, P , 0.05 for the slope of metal
concentration versus abundance being not equal to 0; Table S10). Of the genes signifi-
cantly impacted by Pb, 100% were more abundant at higher Pb concentrations, and only 1
of the 12 genes impacted by Mn was less abundant at higher Mn concentrations (Table 1).
Zn, on the other hand, was negatively related to AMR/HMR gene abundance in 5 of 6 sig-
nificant interactions, and in all 5 cases, genes that were negatively related to Zn concentra-
tion were positively related to Pb concentration.

Cross-resistance to antimicrobials in HMR bacterial isolates. We tested the abil-
ity of bacteria from each sample to grow on media containing metals or antibiotics.
There were no significant differences in AMR or HMR between samples in 35214 and
35207 when intact soil communities were diluted onto PYT80 agar plates (Wilcoxon
tests, P . 0.05; Fig. 5A), nor were samples from sites with higher metal concentrations
significantly more AMR or HMR (linear models, P . 0.05). Except for Pb (in both zip
codes) and ampicillin (in 35207), all additions significantly reduced bacterial growth rel-
ative to the unamended control plates (Wilcoxon signed rank tests, P, 0.05).

To assess the resistance phenotypes of individual strains from each zip code, we iso-
lated 46 strains across zip codes that were able to grow on PYT80 plates spiked with Mn
(17 isolates) or Pb (29 isolates); no isolates were obtained from Zn-spiked plates. Based on
16S rRNA sequences, 24 taxonomically distinct isolates were identified based on their clos-
est match in the BLAST nonredundant (nr) database (Fig. S6). The bacterial isolates were
mostly Actinobacteriota and Proteobacteria and were not broadly representative of the tax-
onomic diversity revealed by our 16S tag sequencing efforts (Fig. S6). Of the isolated taxa,

FIG 4 (a) Overrepresentation analysis of differences between gene presence/absence in 35207 versus 35214 based on PICRUSt metagenome inference. Bars
indicate the number of genes found to significantly differ between the zip codes that fall into the indicated pathway; P values indicate the probability of
finding that many differentially represented genes by chance. (b) Antimicrobial genes that differ significantly between zip codes based on PICRUSt
metagenome inference. Positive values indicate enrichment in 35207; negative values indicate enrichment in 35214. Error bars represent the 95%
confidence interval of the estimate.
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12 were unique to 35207, 8 were unique to 35214, and 4 were common across both zip
codes. The cross-tolerance of the 46 strains was tested by inoculating axenic cultures onto
PYT80 plates supplemented with either ampicillin, kanamycin, or erythromycin. In contrast
to the broad inhibition of the bulk communities by antibiotics, 94% of HMR isolates were
resistant to at least one antibiotic, and 30% were resistant to all three antibiotics used
(Fig. 5B). There was no significant difference between zip codes or the metal spike used
during strain isolation in the number of antibiotics a strain was resistant to (linear mixed-
effects model with phylogenetic identification as the random effect, P . 0.05 for each
fixed-effect predictor) or in the likelihood that a strain was specifically resistant to ampicillin
or kanamycin (binomial mixed-effects regression, P . 0.05 for each predictor). Strains iso-
lated from 35214 were, however, significantly more likely to be resistant to erythromycin
(binomial mixed-effects regression, P = 0.02). For taxa that were isolated multiple times,
there was substantial variation between strains in the antibiotic resistance profile (Table
S8). For instance, out of nine Rhodococcus degradans isolates, six were resistant to all antibi-
otics, two were susceptible to erythromycin, and one was susceptible to all three antibiot-
ics tested.

DISCUSSION

The 35th Avenue Superfund Site in North Birmingham, Alabama, houses coke and
coal industries that have left a legacy of HM pollution behind, increasing the risk of
lung and other diseases for residents (4, 7). Ongoing efforts to understand and mitigate
the human impacts of this environmental injustice have generally looked to the direct
effects of HMs on human biology, but to our knowledge, there is little work exploring
the possible relationship between HM contamination and AMR prevalence at any U.S.
Superfund site. However, several recent studies have found that HM pollution can
select for environmental AMR (6, 14, 19, 31–33), so understanding how HM contamina-
tion affects microbial diversity is an important step toward achieving environmental
justice for residents impacted by the 35th Avenue Superfund Site (4).

First, this study showed a difference between soil bacterial communities from the 35th
Avenue Superfund site (zip code 35207) and those in a less polluted nearby neighborhood
(zip code 35214). Concentrations of HMs As, Pb, Mn, and Zn were elevated in 35207 com-
pared to 35214, and kmer clustering confirmed that the zip codes could be distinguished

TABLE 1 AMR and HMR genes predicted by metal concentrationsa

Class KO Gene Annotation Pb Mn Zn
AMR K00561 ermC, ermA 23S rRNA (adenine-N6)-dimethyltransferase (EC 2.1.1.184) 1 2
AMR K08217 mef MFS transporter, DHA3 family, macrolide efflux protein 1 2
AMR K18220 tetM, tetO Ribosomal protection tetracycline resistance protein 1 2
AMR K08167 smvA, qacA, lfrA MFS transporter, DHA2 family, multidrug resistance protein 1
AMR K19062 arr Rifampin ADP-ribosylating transferase 1
AMR K18909 mepR MarR family transcriptional regulator, repressor formepA 1 1
AMR K18131 mexR MarR family transcriptional regulator, repressor of themexAB-oprMmultidrug resistance

operon
1

AMR K18589 dfrA1, dhfr Dihydrofolate reductase (trimethoprim resistance protein) (EC 1.5.1.3) 1
AMR K18780 blaNDM Metallo-beta-lactamase class B NDM (EC 3.5.2.6) 1
AMR K18792 blaOXA-10 beta-Lactamase class D OXA-10 (EC 3.5.2.6) 1
AMR K18824 sul2 Dihydropteroate synthase type 2 (EC 2.5.1.15) 1
AMR K19096 blaCMY-2 beta-Lactamase class C CMY-2 (EC 3.5.2.6) 1
AMR K19274 aph3-VI Aminoglycoside 39-phosphotransferase VI (EC 2.7.1.95) 1
AMR K19278 aac6-Ib Aminoglycoside 69-N-acetyltransferase Ib (EC 2.3.1.82) 1
AMR K19276 aac3-IV Aminoglycoside 3-N-acetyltransferase IV (EC 2.3.1.81) 2
Metal K07156 copC, pcoC Copper resistance protein C 1 2
Metal K07241 nixA High-affinity nickel-transport protein 1 2
Metal K07665 cusR, copR, silR Two-component system, OmpR family, copper resistance phosphate regulon response

regulator CusR
1

Metal K07230 p19, ftrA Periplasmic iron binding protein 1
Metal K07311 ynfG Tat-targeted selenate reductase subunit YnfG 1
Metal K07490 feoC Ferrous iron transport protein C 1
a1, positive slope of gene abundance versus metal concentration;2, negative slope.
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by their metal profiles (Fig. 1B). While only Mn and As surpassed EPA guidelines determin-
ing unacceptable levels of residential soil pollution, HMs nevertheless had a significant
effect on microbial community composition (Fig. 2A, Fig. S1A), mirroring previous work
(34). Metal contamination significantly reduced microbial diversity, with Zn exerting an
especially strong impact, possibly indicating overdominance of metal-tolerant species in
Superfund site soils (Fig. 2B and C).

The abundances of several bacterial taxa were significantly affected by chronically
metal-polluted soils (Fig. 3). Some taxa were significantly different between the zip
codes, including highly abundant groups such as the Proteobacteria (lower in 35207)
and the Solirubrobacterales (higher in 35207). Consistent with their overrepresentation
in Superfund-affected soils in our study, Solirubrobacterales have been previously iden-
tified as an indicator taxon in metal-contaminated mining and agricultural areas (35,
36) and to significantly contribute to AMR in soils (34). Organisms from this group have
also been found to associate with metal-accumulating plants (37) and to become
enriched during experimental metal additions to agricultural soils (38).

Absolute metal concentrations were also significant predictors of taxon abundance,
and approximately one in four of the most abundant OTUs in our data set were posi-
tively correlated with at least one of the metals Mn, Pb, and/or Zn (Fig. S4). Interestingly,
this included several representatives of uncultured candidate taxa (e.g., Rokubacteriales,
Binatota) thought to be important in lithotrophic and methylotrophic nutrient cycling
processes as well as alkane degradation (29, 39, 40), which may reflect selection by

FIG 5 (a) Recovery of colonies on antibiotic- and heavy metal-treated PYT80 plates from soil samples taken
from zip codes 35207 and 35214, shown in green or yellow boxes, respectively. Values indicate the base 2
logarithm of the ratio of growth on metal- or antibiotic-treated plates to growth on unamended plates.
Bars represent the interquartile range, with the central bar representing the median value and the whiskers
extending to the most extreme points equal to or less than 1.5 times the interquartile range from the
median, with circles representing outliers beyond this range. (b) Bars indicate the proportion of bacterial
isolates taken from plates containing the indicated metal that were also resistant to the indicated number
of the 3 tested antibiotics (ampicillin, erythromycin, and kanamycin).
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organic contaminants that tend to be deposited along with heavy metals by coal-burn-
ing industries. These uncultured taxa have only recently been named, but at least one
study has shown enrichment of Rokubacteriales at a heavy metal mining site (41). Overall,
the magnitude of the impact of metals on community structure was roughly equivalent to
that of pH, which has been shown previously to be the dominant structuring factor for soil
microbiomes across many diverse ecosystems (42, 43). These results support the assertion
that HMs are an important selective force determining microbial community structure.

This study found evidence supporting our hypothesis that AMR was more common in
metal-contaminated soils. Functional gene abundances inferred from 16S tag sequences
included AMR genes related to a wide variety of antibiotic targets such as protein synthesis
(tetracycline resistance), peptidoglycan synthesis (beta-lactam and vancomycin resistance),
and folate synthesis (trimethoprim resistance), nearly all of which were significantly higher
in samples from 35207 (Fig. 4B) and/or positively correlated with heavy metal concentra-
tion. Both vancomycin and trimethoprim resistance have been previously shown to cooc-
cur with resistance against various HMs (33, 44). Multidrug resistance genes such as efflux
pumps were enriched in 35207 samples. Importantly, these genes include many of the
most clinically concerning AMR pathways and reinforce the importance of considering the
impact of environmental pollution as an additional vector for AMR evolution, along with
clinical and agricultural antibiotic use, and may indicate a further way that HM contamina-
tion threatens the health of humans living in impacted areas.

The bacterial isolates from soil samples that were selected using HM-spiked agar were
also highly likely to be resistant to multiple antibiotics (Fig. 5B). However, we were unable to
detect a significant difference in community-scale phenotypic AMR or HMR in soil bacterial
communities (Fig. 5A). It is possible that this discrepancy reflects biases in our metagenome
inference software (45), as the Nearest Sequence Taxon ID (NSTI) values for our samples indi-
cated relatively low representation of many of our taxa in published databases, although
our pipeline removed highly divergent OTUs from the metagenome inference to minimize
this problem. A more likely cause is that culture-based assays of soil communities are poten-
tially misleading due to the strong cultivation bias in these systems (46). The great majority
of our isolates fell into a few clades that were not closely related to the most abundant taxa
from our tag sequencing analysis (Fig. S6), and it is noteworthy that only 3 of the 48 OTUs
making up more than 1% of any sample (Bacillus, Rhizobium, and Streptomyces) had a close
relative among the isolates.

Our results fall short of demonstrating a stronger connection between HMR and AMR
at the 35th Avenue Superfund Site due to methodological limitations. For example,
PICRUSt2 accuracy is higher for human microbiome samples than for soils (45), so our pre-
diction results should be cautiously interpreted, but also, even under ideal circumstances,
it is likely difficult to infer the presence of highly mobile genes like those involved in AMR
merely from the taxonomic information provided by 16S tag sequencing. Future work
should target specific HMR or AMR genes of interest using quantitative PCR (20) or plasmi-
domics (47) or mobilomics (48) to improve detection of resistance genes on mobile genetic
elements that may be exchanged between soil species and possibly between those organ-
isms and counterparts in the human microbiome (20, 21). Culture-based assays could also
be improved, for instance, by performing 16S tag sequencing of enrichment cultures fol-
lowing exposure of intact communities to selective concentrations of HMs or antibiotics,
especially in conjunction with metagenomic sequencing.

Conclusion. In conclusion, soil microbial communities at an HM-polluted Superfund
site (zip code 35207), compared with those from a neighboring zip code (35214) with
less HM exposure, were differentially structured according to their HM concentrations.
Moreover, 35207 samples showed differences at the genus level in ecologically impor-
tant taxa, and a significantly greater abundance of predicted AMR genetic markers was
detected in 35207. This work compliments other studies showing a connection between
HM contamination and AMR and further shows this connection in a heavily populated
urban setting with potential ramifications for the health of the humans who live near
the 35th Avenue Superfund site. Future work should incorporate more detailed data
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sets, especially relating to residential knowledge of land use and edaphic parameters
such as soil pH, soil type, plant cover (34, 49, 50), and fungal diversity (11), and ideally
should also investigate the microbiomes of the human residents of the zip codes to
determine the degree to which HMs impact AMR diagnoses such as recalcitrant infec-
tions. Taken together, these results support the continued scientific and legislative
advancement of environmental and health justice for residents of the 35th Avenue
Superfund Site and highlights the necessity of AMR stewardship programs for health
care policy at Superfund sites.

MATERIALS ANDMETHODS
Site description and soil sampling. This project began as a set of course-based undergraduate

research experiences using methods as previously described (51). On 14 September 2019, three soil sam-
ples each were collected at six different public access parks in the North Birmingham, Alabama, 35207
zip code, for a total of 18 soil samples. Each sample (5 g) was collected from the topsoil layer with an
ethanol-sanitized trowel and a sterile plastic bag. The three sampling points at each site were chosen
based on ease of access instead of using a randomized grid design; however, they were well separated
and at leas 1 m from any large vegetation such as trees or shrubs. Sampling was repeated on 15
September in the 35214 zip code for 18 additional soil samples. A small amount of precipitation fell on
14 September (,0.5 inches in the morning prior to sampling), and no precipitation occurred on 15
September. According to the National Weather Service (weather.gov), the last significant precipitation
prior to sampling was 27 August. All three samples per park were then homogenized by vigorous shak-
ing, such that each park’s final sample contained three mixed replicates with a final yield of ;15 g.
Overall, we collected a total of 12 homogenized soil samples, six from 35207, and six from 35214
(Fig. 1A). These 12 park sites were chosen due to their public accessibility to the community residents. In
September 2020, soil sampling was repeated from five of the original six parks per zip code to provide
fresh soil samples for culture assays. One public park per zip code was not resampled due to access limi-
tations during the COVID-19 pandemic. All soil samples to be used for nucleic acid purification and
sequencing were immediately stored at 280°C until further processing.

Heavy metal, organic mass, and pH testing. Soil (5 to 6 g from each 2019 sample) was tested for
heavy metal concentrations by Sutherland Environmental Testing using EPA Method 6010B (EPA labora-
tory ID AL01084) with inductively coupled plasma-atomic emission spectroscopy. The analytes reported
were As, Cd, Pb, Mn, and Zn. The reported limit of detection was 1 ppm for each analyte. Estimated con-
centrations below this detection limit were assumed to be 0 for the purposes of our analyses. Kmer cluster-
ing of collection sites based on their HM profiles was done using the kmer package (52) in R v1.4.1717
(53). The remaining soil samples (from the 2019 samples) not used for nucleic acid purification and
sequencing were stored in the dark at room temperature until pH and organic mass testing. We deter-
mined organic mass as the percent weight loss-on-ignition (LOI); portions of soil samples were oven-dried
at 100°C for 1 h, weighed, heated in a muffle furnace at 400°C for 3 h, and reweighed. Lastly, pH (from the
2019 samples) was measured via electrode after suspending 1 g of soil in 2.5 mL distilled water.

Nucleic acid purification and sequencing. DNA was purified and sequenced from each of the 12 ho-
mogenized samples (six from 35207 and six from 35214) from the 2019 collection. Bacterial genomic DNA
was extracted from 0.20 g of soil using the Qiagen DNeasy PowerSoil Pro kit (Germantown, MD, USA, catalog
[cat.] no./ID 47016) according to the manufacturer’s instructions, including an initial step of beat-beating at
4 m/s for 20 s with a FastPrep-24 instrument (MP Biomedicals). The quality of DNA was confirmed by spectro-
photometry using Gen5 software with a Take3 microvolume plate in a BioTek Synergy H1 microplate reader
(A260/280, ;1.8; each sample contained at least 65 ng/mL of DNA). At the University of Alabama at
Birmingham Heflin Center for Genomics (Birmingham, Alabama), an amplicon library was created via PCR
amplification of the hypervariable region 4 (V4) of the 16S rRNA gene using barcoded oligonucleotide pri-
mers F515 (CACGGTCGKCGGCGCCATT) and R806 (GGACTACHVGGGTWTCTAAT) (54). Genomic DNA was
then gel-purified and sequenced using the Illumina MiSeq platform. The demultiplexed paired-end 16S rRNA
sequence reads were submitted to the NCBI SRA database and can be accessed through BioProject accession
no. PRJNA828526.

Microbiome sequence processing and statistical analysis. DNA sequences were processed with the
Quantitative Insights into Microbial Ecology package (QIIME2-2020.11) (55, 56) (Table S1). The demultiplexed
paired-end reads obtained from Illumina sequencing were processed with the denoising algorithm DADA2
(57). The minimum and maximum demultiplexed read counts were 163,408 and 359,799 respectively. The
sequences were truncated to a length of 250 bp. The representative sequences obtained after denoising
were clustered using q2-vsearch (QIIME2 plugin) de novo clustering at a 97% similarity threshold to remove
singletons and obtain 4,185 unique operational taxonomic units (OTUs). The OTUs were classified using a pre-
trained naive Bayes classifier on silva-138-99-515-806-nb-classifier, trained earlier on 515F/806R region of
sequences from the Silva-138 99% OTU database (QIIME2 Data resources-MD5, e05afad0fe87542704be96ff
483824d4 (58, 59); https://docs.qiime2.org/2021.2/data-resources) (Table S2). The q2-feature-classifier plugin
was used to taxonomically identify the OTUs and remove nonbacterial OTUs (58). All codes necessary to repli-
cate these and other analyses, along with necessary raw data, can be found at https://doi.org/10.5061/dryad
.kkwh70s86.

Alpha diversity (Shannon and Simpson indices) at the genus level was estimated using Microbiome
Analyst (https://www.microbiomeanalyst.ca) (60, 61) after applying filters for low-count (,4 counts in more
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than 20% of samples) and low-variance (limited to the interquartile range) OTUs and normalizing by total
sum scaling. For beta diversity analyses, the OTU table was first rarefied to the level of the least deeply
sequenced sample using a ranked subsampling algorithm (62). Canonical correspondence analysis (CCA) was
completed using the vegan v2.5 package (63) in R. Principal coordinates and nonmetric multidimensional
scaling (NMDS) ordination were performed in mothur (64) using distance matrices generated with one of sev-
eral different metrics; the ordination technique and distance method that gave the best r-squared value on
three axes (NMDS with the Yue-Clayton theta metric, r-squared = 0.97, stress = 0.065) was used for further
analysis. Statistical significance of the impact of environmental metadata on NMDS ordination was assessed
by calculating the Spearman correlation coefficient between each variable and the first two NMDS axes using
the corr.axes command in mothur (Table S3). The influence of individual OTUs on NMDS ordination was also
determined with corr.axes (Table S2).

Differential abundance of OTUs between zip codes was determined using Metastats (implemented
through mothur) and LEfSe (implemented through MicrobiomeAnalyst) (65, 66) (Table S2). Spearman
correlations between OTUs (Table S2) and higher taxon abundances (Table S4) and environmental meta-
data (metals, pH, organic carbon) were calculated in R. Significance levels of differences in OTU abun-
dances between zip codes was computed using a simple two-tailed t test for each OTU individually
(Table S4). Only OTUs that represented at least 1% of the overall community in at least one sample were
considered further for these OTU-level analyses.

Predictive metagenomic analysis. 16S amplicon data were used to predict microbial population
metagenomes using Phylogenetic Investigation of Communities by Reconstruction of Unobserved
States (PICRUSt v2.3.0) (45) (Table S6). The 16S rRNA FASTA sequence and abundance biom (Biological
Observation Matrix) table was used to predict Kyoto Encyclopedia of Genes and Genomes (KEGG) genes
and pathway abundances. Sequences with Nearest Sequence Taxon ID (NSTI) above a cutoff of 2.0 were
removed along with their sequence counts (Table S5). The OTU abundances were multiplied by the cor-
responding NSTI value of each OTU, and weighted NSTIs of each sample were calculated from the sum
of the column per sample and divided by the total read depth per sample (0.27 6 0.02 from 35207 and
0.25 6 0.035 from 35214). Weighted NSTI values describe the degree to which microbes in samples are
related to known genomes, where a value of 0.10 would represent 90% representational similarity.
While lower numbers are preferred, NSTI values of 0.17 to 0.28 have been previously reported for micro-
bial populations derived from soil samples and yielded useful representations of metagenomes (45, 67–
69). The predicted metagenomes were functionally annotated with PICRUSt2 using the KEGG pathway
database (70). The KO IDs obtained were manually annotated using the KEGG database to estimate AMR
and HMR gene abundance. KEGG genes were compared between the two zip codes using Welch’s t test
in STAMP (Statistical Analysis of Taxonomic and Functional Profiles) v2.1.3 (30). The relationships
between gene abundances and environmental metadata were computed as gene-by-gene linear mod-
els in R, as was Fisher’s exact test to determine if AMR or HMR genes were more likely to be significantly
correlated with metals than other genes. Overrepresentation of KEGG pathways between the zip codes
was estimated using the command enrichKEGG in clusterProfiler (71) (Table S7).

Bacterial cultivation, identification, and antimicrobial sensitivity determination. Bacterial cul-
tures from the 2020 collection were isolated on PYT80 agar containing (per L) 80 mg each of peptone,
yeast extract, and tryptone, 1.95 g 2-(N-morpholino)ethanesulfonic acid (MES), 15 g purified agar (USP
Grade, MP Biomedicals), and 10 mg cycloheximide and adjusted to pH 6.5 (modified by reference 72).
Next, 1 mg of soil from each 2020 sample was suspended in 9 mL 0.085% sterile saline and then serially
diluted onto PYT80 agar with or without additional heavy metals [0.5 M Pb(NO3)2 at a final concentration
of 0.4 mM; 1 M MnCl2 at a final concentration of 25 mM, or 0.5M ZnCl2 at a final concentration of 0.5 mM]
or antibiotics (erythromycin at a final concentration of 50 mg/mL, ampicillin at a final concentration of
100 mg/mL, or kanamycin at a final concentration of 25 mg/mL). After inoculation, plates were incubated
at 20°C for a minimum of 72 h. The overall community sensitivity to the amendments was calculated as
the log fold change of the ratio of CFU/mL of HMR or AMR culturable organisms to total culturable organ-
isms (determined by plate counts on amended versus unamended PYT80 plates, respectively).

We also isolated a total of 46 HMR bacterial strains that could grow on PYT80 supplemented with Mn,
Zn, or Pb, including representatives from all 12 sites, and identified them by PCR amplification of the 16S
rRNA gene using primers UA1406R (59-ACGGGCGGTGWGTRCAA-39) and U341F (59-CCTACGGGRSGCAGCAG-
39) followed by Sanger sequencing at the UAB Heflin Center for Genomics (Birmingham, Alabama).
Sequences were trimmed using MEGA X (v.10.2.4) (73) and identified using the Basic Local Alignment Search
Tool (BLAST) 16S/ITS BLASTn function against the nr database (BLAST v2.11.0) (74, 75) (Table S8). Of 46 iso-
lates, 43 were successfully amplified and sequenced, and the resulting trimmed sequences were deposited at
GenBank under accession numbers ON502989 to ON503031. HMR isolates were subsequently tested for
growth on PYT80 with ampicillin, kanamycin, or erythromycin to determine the prevalence of cross-resistance
(76, 77); strains forming visible colonies in the presence of antibiotics within 7 days were considered tolerant.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 3 MB.
SUPPLEMENTAL FILE 2, CSV file, 1.7 MB.
SUPPLEMENTAL FILE 3, CSV file, 0.2 MB.
SUPPLEMENTAL FILE 4, CSV file, 0.4 MB.
SUPPLEMENTAL FILE 5, CSV file, 5.9 MB.
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SUPPLEMENTAL FILE 8, CSV file, 0.01 MB.
SUPPLEMENTAL FILE 9, CSV file, 1.7 MB.
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