Modern biogeography of benthic foraminifera in an urbanized tropical marine ecosystem

Briony L. Mamo^{1,2,3*}, Jonathan D. Cybukki^{4,5}, Yuanyuan Hong^{1,2,6}, Paul G. Harnik⁷, Anne Chao⁸, Akira Tsujimoto⁹, Chih-Lin Wei^{10*}, David M. Baker^{4*} and Moriaki Yasuhara^{1,2*}

¹School of Biological Sciences, Area of Ecology and Biodiversity, Swire Institute of Marine Science, Institute for Climate and Carbon Neutrality and Musketeers Foundation Institute of Data Science, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong SAR, China

2State Key Laboratory of Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR, China

³School of Natural Sciences, Macquarie University, North Ryde, NSW 2109, Australia

School of Biological Sciences, Area of Ecology and Biodiversity, Swire Institute of Marine Science, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong SAR, China

⁵Smithsonian Tropical Research Institute, Box 0843-03092, Balboa, Republic of Panama

⁶State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China

⁷Department of Earth and Environmental Geosciences, Colgate University, Hamilton, NY, USA

8Institute of Statistics, National Tsing Hua University, Hsin-Chu, Taiwan

Faculty of Education, Shimane University, 1060 Nishikawatsucho, Matsue, Shimane 690-8504, Japan

¹⁰Institute of Oceanography, National Taiwan University, Taipei 106, Taiwan

(D) MY, 0000-0003-0990-1764

*Correspondence: BLM, blmamo@gmail.com; C-LW, clwei@ntu.edu.tw; DMB, dmbaker@hku.hk; MY, moriakiyasuhara@gmail.com

Abstract: We investigated the biogeography of benthic foraminifera in a highly urbanized tropical seascape, i.e. Hong Kong, in order to assess their utility as bioindicators relative to other marine fauna. Hong Kong is one of the largest coastal cities on the planet and studies of other benthic fauna in the region are available for comparison. We found that: (1) turbid, muddy habitats host a unique foraminiferal fauna; (2) areas with intermediate levels of eutrophication have the highest foraminiferal species diversity; (3) semi-enclosed and heavily polluted environments host a distinct foraminiferal fauna, characterized by low taxonomic diversity and/or high dominance, and that is acclimated to stressful marine conditions. Biodiversity patterns of foraminifera in Hong Kong are generally consistent with those of other soft-sediment macro- and meio-fauna (e.g. polychaetes, molluscs and ostracods); however, foraminifera may be more sensitive than these other groups to eutrophication and associated changes in coastal food webs. The tolerance of some, but not other, species to eutrophic and hypoxic conditions means that foraminiferal faunas can serve as bioindicators across a wide array of environmental conditions, in contrast with corals whose sensitivity to eutrophication results in their absence from eutrophied settings. The well-known autoecology of foraminifera taxa can help to characterize environmental conditions of different habitats and regional environmental gradients. Although the use of fauna as bioindicators may be most robust when data are compared for multiple taxonomic groups, when such broad sampling is not available, benthic foraminifera are particularly well suited for environmental assessments due to their ubiquity, interspecific environmental breadth, and the well-understood environmental preference of individual taxa.

Supplementary material: Foraminiferal census data (Appendix 1) are available at https://doi.org/10.6084/ m9.figshare.c.6373203

With one of the highest population densities globally, Hong Kong's coastal waters are a model sys-

urbanization on marine biodiversity. Urbanization has led to a variety of environmental problems, tem for assessing the effects of climate and including pollution and eutrophication (Hua et al.

From: Nawrot, R., Dominici, S., Tomašových, A. and Zuschin, M. (eds) Conservation Palaeobiology of Marine Ecosystems. Geological Society, London, Special Publications, 529, https://doi.org/10.1144/SP529-2022-175 © 2023 The Author(s). Published by The Geological Society of London. All rights reserved.

For permissions: http://www.geolsoc.org.uk/permissions. Publishing disclaimer: www.geolsoc.org.uk/pub_ethics

2008). These coastal ecosystems are also strongly affected by the East Asian summer monsoon, which greatly affects precipitation and resulting freshwater discharge from the Pearl River (Morton and Morton 1983). The Pearl River watershed includes multiple megacities, such as Shenzhen, and the river is a major source of pollutants and organic matter in coastal waters in Hong Kong (Dai et al. 2006; Lee et al. 2006; Archana et al. 2018; Qian et al. 2018; Duprey et al. 2020; Geeraert et al. 2021). Urbanization and resulting environmental and ecological degradation are the future for many tropical locations (Jackson et al. 2001; Knowlton 2001; Hughes et al. 2003; Knowlton and Jackson 2008). Understanding how these processes shape biodiversity in Hong Kong can be used to understand and mitigate current and future anthropogenic and climatic impacts in the tropics more broadly (Ng et al. 2017).

Hong Kong's subtidal marine organisms have been relatively well studied since the pioneering work of Brian Morton in the 1980s (Morton and Morton 1983). In the twenty-first century, extensive regional-scale studies investigated the environmental factors controlling geographical variation in taxonomic diversity and faunal composition in a variety of benthic groups, including polychaetes, molluses, corals, and ostracods (Shin and Thompson 1982; Shin 1985; Shin and Ellingsen 2004; Qiu et al. 2014; Duprey et al. 2016; Wang et al. 2017, 2021; Cybulski et al. 2020; Yeung et al. 2021; Hong et al. 2022). These studies were possible because of the wide range of environmental conditions that occur in a relatively small geographical area, and the availability of spatially wellresolved environmental data from the Environmental Protection Department (Environmental Protection Department 1986-2021). Benthic foraminifera (unicellular eukaryotes) are widely used as bioindicators due to their sensitivity to environmental conditions, including anthropogenic environmental change (Hallock et al. 2003; Alve et al. 2009; Bouchet et al. 2018). While many studies have investigated the factors controlling the geographical distribution, abundance, and taxonomic diversity of foraminifera in the China seas (Wang et al. 1980, 1988; Zhao et al. 1985, 1986), including areas of the South China Sea proximal to Hong Kong (Wu et al. 2013, 2015; Ye et al. 2021), few studies have examined foraminifera in Hong Kong (Yim and He 1991; Hong et al. 2017; Yang et al. 2018) and regional distributional data for Recent benthic foraminifera are unavailable (Ng et al. 2017).

For this study, we collected surface sediment samples spanning the major subtidal areas of Hong Kong and investigated the geographical structure of benthic foraminiferal biodiversity and compared their biogeographical patterns with those for other organisms. We found that patterns for benthic foraminifera were largely consistent with other softsediment macrobenthos and ostracods, and show some similarity with corals, though corals differ markedly in their diversity patterns. Like corals, foraminifera are very sensitive to bottom-up changes in nutrient levels, but in contrast, certain foraminiferal taxa can persist in eutrophic environments whereas most corals cannot. Using benthic foraminifera as a bioindicator of environmental conditions, we were able to characterize spatial gradients in Hong Kong's coastal subtidal habitats. More eutrophic conditions characterize western habitats due to pollution from the Pearl River and other local point sources; in contrast, eastern habitats tend to be characterized by higher water quality. The highest biodiversity of benthic foraminifera was observed in habitats characterized by intermediate levels of eutrophication in the southernmost part of the study area.

Regional setting

The Hong Kong Special Administrative Region (Hong Kong) consists of over 270 islands and is located approximately 130 km south of the Tropic of Cancer. The region is characterized by a subtropical climate. Regional weather and climate are controlled by the Asian monsoon, with the wet season occurring between March and October, with the hottest and wettest months co-occurring between May and September. Geographically, Hong Kong is located at the mouth of the Pearl River, in the southeastern part of the Great Bay Area of China (Fig. 1). The Pearl River stretches for c. 2200 km with a drainage area of 453 700 km2, supporting a population of over 150 million people (Duprey et al. 2020). The river releases 80% of its annual discharge during the wet season, forming a nutrient-rich plume of freshwater that extends eastward as far as the Taiwan Strait. During the dry season, this plume is greatly reduced and isolated to the SW of Hong Kong. This dynamic water regime results in eutrophic conditions in some coastal areas of Hong Kong. Nutrients from the Pearl River create a strong gradient of dissolved inorganic nitrogen (DIN) concentrations ranging from >80 µM in the south and west to >2 μM in the east (Archana et al. 2018). Sources of nutrients in this expanding urban area are diverse, and include industrial effluent, sewage, fish farm waste, DIN derived from atmospheric deposition, and oceanic DIN (Duprey et al. 2016; Yau et al. 2020). In Hong Kong, sewage effluent is the primary local source for nutrients and pollutants. which contributes to eutrophication and pollution (Geeraert et al. 2021).

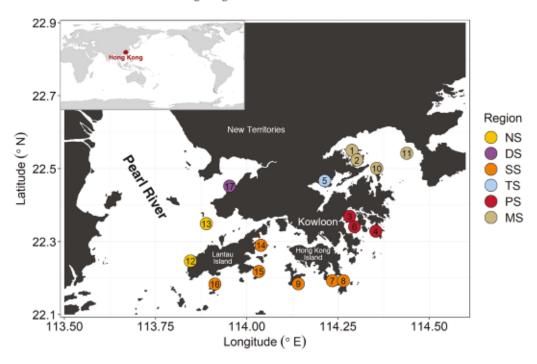


Fig. 1. Locality and index maps. NS (North Western, including Sites 12, 13), DS (Deep Bay, Site 17), SS (Southern, Sites 7–9, 14–16), TS (Tolo Harbour, Site 5), PS (Port Shelter, Sites 3, 4, 6), and MS (Mirs Bay, Sites 1–2, 10–11) are Hong Kong marine regions defined by the Environmental Protection Department (EPD: Environmental Protection Department 2011) to which each sampling site belongs. Sites 7 and 8 are in the same location, but a jitter was added to make them visible.

Materials and methods

Samples

Surface sediment samples (10 cm) were collected from 17 sites in November 2016, covering water depths ranging from 2 to 17 m, and including all major waters of Hong Kong (Fig. 1). All surface sampling sites were near-shore sandy bottom deposits except for sites 5 and 12 (Fig. 1) which were predominantly muddy estuarine deposits. Samples were hand-collected by SCUBA using a trowel and bagged on site. All samples were kept refrigerated until analysis.

Ten-centimetre-thick surface sediment samples were washed and sieved through a 63 µm sieve and oven dried at 60°C. After drying, all samples were split using a microsplitter to avoid possible bias by sorting during picking process. Foraminiferal analysis was completed using standard picking techniques (Murray 2006). Selected specimens were imaged using a Hitachi S-3400N Variable Pressure SEM at the Electron Microscope Unit, The University of Hong Kong. Taxonomic assignments followed the World Foraminifera Database (Hayward et al. 2022), and are listed in Appendix 1. A total of 400

foraminiferal specimens were picked from each sample to ensure sufficient subsampling of diversity for statistical analyses (Patterson and Fishbein 1989; Buzas 1990). Both live and dead specimens were included in this total count, though the majority of specimens were dead at the time of collection and live specimens were not sufficiently abundant for effective analysis.

Ouantitative analyses

We used Hill numbers (i.e. the effective number of species) parameterized by a diversity order q (Hill 1973) to estimate benthic foraminiferal diversity in each sample and Environmental Protection Department (EPD) region (Fig. 1; NS = North Western, DS = Deep Bay, SS = Southern, TS = Tolo Harbour, PS = Port Shelter, and MS = Mirs Bay; Hong Kong coastal water regions divided by EPD). Hill numbers are increasingly used by ecologists to quantify species diversity because they have mathematical properties that directly support biological reasoning about diversity, in contrast with some other biodiversity metrics (Ellison 2010; Chao et al. 2020). To make a fair comparison among

samples and EPD regions, the Hill numbers were rarefied or extrapolated to the same sample completeness (97%), which was the largest sample coverage possible across all samples and EPD regions (Chao et al. 2020). Sample completeness is measured by sample coverage (i.e. the proportion of specimens in the entire assemblage that belong to detected species), a concept developed by Alan Turing (Chao et al. 2020). The order q of the Hill numbers controls the sensitivity of the diversity metric to species relative abundance. When the order q = 0, Hill number (0D) reduces to species richness; when the order q = 1, Hill number (${}^{1}D$) measures the diversity of the abundant species; when the order q = 2, Hill number (2D) measures the diversity of dominant species (Chao et al. 2014b). The Hill numbers ¹D and ²D correspond to Shannon and Simpson diversity, respectively (Chao et al. 2014b). Species evenness, ${}^{q}E_{3}(p) = ({}^{q}D - 1)/(S - 1)$, where S denotes species richness, was quantified using the continuous profiles of Hill numbers as functions of order q, following Chao and Ricotta (2019). A gradual profile suggests that the diversity of rare, abundant, and dominant species are similar, indicating a more even community, whereas a steep profile indicates an uneven community comprised of one or more dominant species. We conducted hierarchical cluster analysis to identify biofacies based on Ward's minimum variance and three Sørensen-type dissimilarity measures, including Sørensen (q = 0), Horn (q = 1), and Morisita-Horn (q = 2). The Ward's algorithm minimizes the error sum of squares within clusters; it tends to generate more balanced clusters and, therefore is preferred for the delineation of biofacies. The number of clusters was determined by average silhouette width, with a higher value indicating greater cohesion and separation of clusters. While classic Sørensen dissimilarity is presence-absence based, the latter two measures consider species relative abundance and quantify the compositional dissimilarities of abundant and dominant species, respectively. A non-Metric Multidimensional Scaling (nMDS; Gower 1966) was also performed to visualize and summarize spatial trends of benthic foraminiferal faunal compositions.

All analyses were implemented in RStudio (RStudio Team 2016). We used 'iNEXT' to estimate diversity (Chao et al. 2014a; Hsieh et al. 2016) and 'vegan' for our multivariate analyses (Oksanen et al. 2020). Figures and maps were constructed using 'ggplot2' (Wickham 2012).

Results

Foraminifera and their diversity

A total of 142 benthic foraminiferal species were found in the 6800 specimens and 17 samples that we examined (Appendix 1; Figs 2 & 3). Ammonia tepida (Cushman, 1926) (Fig. 3.22-23) was the most abundant species, constituting 9.4% of all collected specimens, followed by Triloculina barnardi Rasheed, 1988 (in Haig 1988) (Fig. 2.7) with 7.7%, and Amphistegina lessonii d'Orbigny, 1832 (in Guérin-Méneville 1832) (Fig. 2.14-15) with 5.6%. All other species constituted less than 5% of the total abundance. Ammonia tepida was the most abundant species at three sites (Sites 3, 6 & 12), where it co-occurred with other Ammonia species (Fig. 3.20-25) and agglutinated species like Ammobaculites (Fig. 2.1). Triloculina barnardi was the most abundant species at Sites 1 and 2, where it co-occurred with other agglutinated species such as Textularia spp. and Siphonaperta crassa Vella, 1957 (Fig. 2.3-4), and encrusting species like Acervulina mabahethi (Said, 1949). Amphistegina lessonii was the most dominant species at Site 11 where it co-occurred with another endosymbiotic species, Amphistegina lobifera Larsen, 1976, as well as Triloculina barnardi and Acervulina mabahethi. Endosymbiotic species at Site 11 constituted 81% of sampled foraminiferal specimens (Table 1; Fig. 4g), indicating that there is sufficient sunlight penetration through the water column at this site to support photosynthesizing symbionts. Foraminiferal microhabitat preference (epifaunal v. infaunal) varies greatly across Hong Kong waters (Fig. 4c, d). Eleven sites exhibited approximately equal proportions of epifaunal and infaunal individuals (e.g. between 40 and 60%); however, infaunal species were dominant at Sites 1 and 2 (81 and 70% respectively) and epifaunal species were dominant at Sites 5, 11 and 17 (84–95% of individuals).

The highest diversity was observed in the southern area of Hong Kong (eastern part of the SS EPD region), whereas the lowest diversity occurred in the northwestern area (DS and NS EPD regions) and Tolo Harbour (TS EPD region) (Fig. 5). These spatial diversity patterns were consistent for rare, abundant, and dominant species, as measured by Hill numbers of differing order q [i.e. diversities of rare species (${}^{0}D$ = species richness), abundant species (1D), and dominant species (2D)] (Fig. 5). Intermediate levels of diversity were observed in the southwestern (western part of the SS EPD region) and eastern areas (PS and MS EPD regions) of the study area (Fig. 5). The diversity of rare species was higher in the eastern area than the southwestern area, but diversities of abundant and dominant species were similar between these two (Fig. 5). Gamma diversity (diversity of each EPD region) showed a similar trend (Fig. 6): gamma diversity was highest in the SS EPD region, followed by the PS, MS, and NS EPD regions, and the lowest gamma diversity was observed in the DS and TS EPD regions. The MS and PS EPD regions are

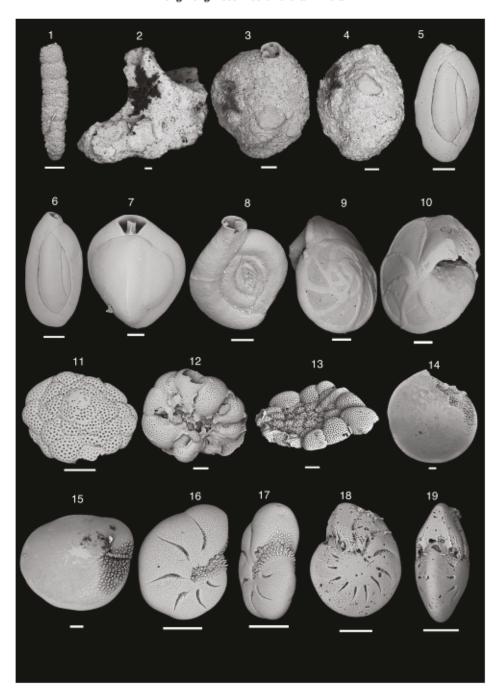


Fig. 2. Scanning electron microscopy images of selected foraminiferal species. 1, Ammobaculites agglutinans, lateral view. 2, Haddonia torresiensis, lateral view. 3, Siphonaperta crassa, apertural view. 4, Siphonaperta crassa, lateral view. 5, Quinqueloculina sp. 3, lateral view. 6, Quinqueloculina sp. 3, apertural view. 7, Triloculina barnadi, apertural view. 8, Sigmoilina subtenuis, apertural view. 9, Eponides repandus, spiral view. 10, Eponides repandus, umbilical view. 11, Cymbaloporetta bradyi, spiral view. 12, Cymbaloporetta bradyi, umbilical view. 13, Acervulina mahabethi, spiral view. 14, Amphistegina lessonii, spiral view. 15, Amphistegina lessonii, umbilical view. 16, Haynesina sp. 1, lateral view. 17, Haynesina sp. 1, peripheral view. 18, Haynesina sp. 2, lateral view. 19, Haynesina sp. 2, peripheral view. Scale bar = 100 µm.

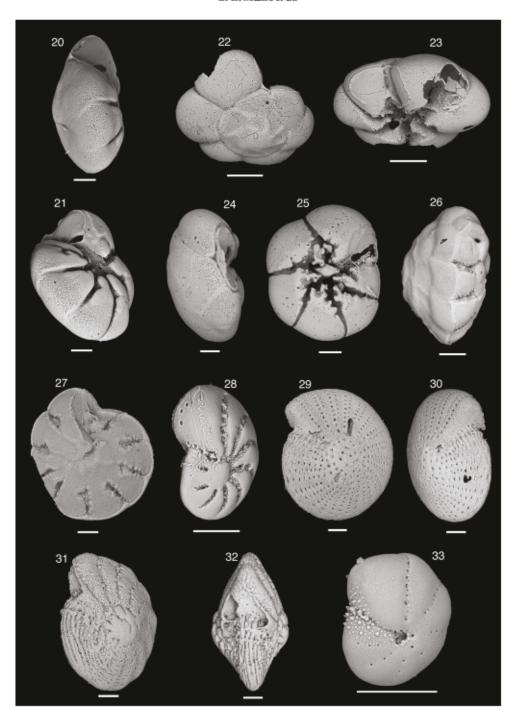


Fig. 3. Scanning electron microscopy images of selected foraminiferal species. 20, Ammonia confertitesta, peripheral view. 21, Ammonia confertitesta, umbilical view. 22, Ammonia tepida, spiral view. 23, Ammonia tepida, umbilical view. 24, Ammonia sp. 1, peripheral view. 25, Ammonia sp. 1, umbilical view. 26, Rotalidium annectens, peripheral view. 27, Rotalidium annectens, umbilical view. 28, Elphidium advenum, lateral view. 29, Elphidium biperforatum, lateral view. 30, Elphidium biperforatum, peripheral view. 31, Elphidium hispidulum, lateral view. 32, Elphidium hispidulum, peripheral view. 33, Elphidium sp. 6, lateral view. Scale bar = 100 µm.

Table 1. List of miliolid (M), agglutinated (A), endosymbiotic (E), and encrusting (Ec) species in this study

Species name	Miliolids	Agglutinated	Endosymbiotic	Encrusting
Acervulina mabahethi				Ec
Adelosina carinatastriata	M			
Ammobaculites agglutinans		A		
Ammobaculites sp. 1		A		
Ammobaculites sp. 2		A		
Ammobaculites sp. 3		A		
Amphistegina lessonii			E	
Amphistegina lobifera			E	
Amphistegina radiata			E	
Amphistegina sp. 1			E	
Haddonia torresiensis		A		Ec
Haplophragmoides canariensis		A		
Hauerina fragilissima	M			
Hauerina sp. 1	M			
Miliolinella sp. 1	M			
Miliolinella sp. 2	M			
Miliolinella sp. 3	M			
Miliolinella sp. 4	M		_	
Operculina sp. 1			E	
Peneroplis pertusus	M		E	
Peneroplis planatus	M		E	
Pyrgo sp. 1	M			
Pyrgo sp. 2	M			
Quinqueloculina bosciana	M			
Quinqueloculina di storqe ata	M			
Quinqueloculina lamarckiana	M			
Quinqueloculina neostriata	M			
Quinqueloculina parkeri	M			
Quinqueloculina phil ippinensis	M			
Quinqueloculina cf. philippinensis	M			
Quinqueloculina pseudoreticulata	M			
Quinqueloculina seminulum	M			
Quinquelocupina subpolygona	M			
Quinqueloculina sp. 1	M			
Quinqueloculina sp. 2	M			
Quinqueloculina sp. 3	M			
Quinqueloculina sp. 4	M			
Quinqueloculina sp. 5	M			
Quinqueloculina sp. 6	M M			
Quinqueloculina sp. 7	M			
Quinqueloculina sp. 8	M			
Quinqueloculina sp. 9 Quinqueloculina sp. 10	M			
Quinqueloculina sp. 10 Quinqueloculina sp. 11	M			
T	M			
Quinqueloculina sp. 12 Quinqueloculina sp. 13	M			
Reophax sp. 1	141	A		
Reophax sp. 1 Reophax sp. 2		A		
Sahulia conica		A		
Sigmoilina subtenuis	M			
Siphonaperta crassa	M	Α		
Siphonaperta crassa Siphonaperta sp. 1	M	A		
Sorites orbicularis	M		E	
Spi roloculina angulata	M		L	
Spiroloculina angulala Spiroloculina corrugata	M			
Spiroloculina sp. 1	M			
Spiroloculina sp. 1 Spiroloculina sp. 2	M			
оригоносинии ор. 2	M			

(Continued)

Table 1. Continued.

Species name	Miliolids	Agglutinated	Endosymbiotic	Encrusting
Spiroloculina sp. 4	M			
Spiroloculina sp. 5	M			
Textularia compacta		A		
Textularia foliacea		A		
Textularia jparkeri		A		
Textularia lateralis		A		
Textularia sp. 1		A		
Textularia sp. 2		A		
Textularia sp. 3		A		
Textularia sp. 4		A		
Textularia sp. 5		A		
Textularia sp. 6		A		
Textularia sp. 7		A		
Textularia sp. 8		A		
Triloculina barnardi	M			
Triloculina sp. 1	M			
Triloculina sp. 2	M			
Trochammina sp. 1		A		

We used the following references for the assignment: Kaminski (2014) (for agglutinated species); Hallock (1999) and Hallock et al. (2003) (for endosymbiotic species); Hayward et al. (2022) (for miliolid and encrusting species).

characterized by high species richness (${}^{0}D$) and comparatively low diversities of abundant (${}^{1}D$) and dominant species (${}^{2}D$). In contrast, evenness was highest in the DS EPD region, followed by the SS EPD region and then the NS EPD region, and lowest in the TS and MS EPD regions (Fig. 6).

Multivariate analysis

The nMDS results showed clear separation of four biofacies, which were also generally recognized by cluster analyses based on Sørensen, Horn, and Morisita-Horn dissimilarities (Fig. 7; Table 2). The three dissimilarity measures consider faunal composition based on different levels of species information from occurrence to relative abundance. Cluster analyses based on Sørensen and Horn dissimilarities indicate that dividing sites into four clusters resulted in the greatest average silhouette width; the analysis based on Morisita-Horn, however, indicates that seven clusters may be a better choice for this dissimilarity measure. For consistency and comparability, four clusters were used to determine the biofacies. The Hong Kong foraminiferal fauna was characterized by a southern-eastern fauna that is broadly distributed from the southern part to the eastern part of Hong Kong in the nMDS and cluster results based on species presence/absence (i.e. Sørensen dissimilarity) (Biofacies 1; Sites 1-2, 4, 6-9, 16; Fig. 7a, b) and on abundant species (Horn dissimilarity) (Biofacies 1; Sites 1-2, 4, 7-11; Fig. 7c, d). In the cluster analysis results based on Morisita-Horn dissimilarity, southern water (Biofacies 4; Sites 79; Fig. 7e, f) and eastern water faunas (Biofacies 1; Sites 1-2, 4, 10-11; Fig. 7e, f) were further separated, but these biofacies are still proximal to each other in the nMDS plot (Fig. 7f). Biofacies 2 was distributed around southwestern Hong Kong around Lantau Island in all nMDS and cluster analysis results (Sørensen: Sites 3, 12-15; Horn and Morisita-Horne: Sites 13-16). Depending on the dissimilarity measure that was used, Biofacies 3 was found in Tolo Harbour (Site 5), Port Shelter (Site 3, 4), Deep Bay (Site 17), and/or southwestern end of Hong Kong (=southeastern Pearl River delta on the west of Lantau Island; Site 12) (Fig. 7). The eastern part of Mirs Bay constituted a distinct biofacies (Biofacies 4; Sites 10-11) only in the Sørensen-based analysis (Fig. 7a). The sites assigned to Biofacies 4 vary strongly depending on the dissimilarity measure used, and thus this biofacies does not have the same ecological meaning among cluster analyses with different dissimilarity measures. However, the sites assigned to other clusters (Biofacies 1-3) are mostly stable regardless of the dissimilarity measure used, suggesting that each of these biofacies has similar ecological meaning among different cluster analyses.

Discussion

The strongest biogeographical patterns for benthic foraminifera in Hong Kong include the widely-distributed southern-eastern water Biofacies 1 in the Sørensen (i.e. rare species-based) and Horn (i.e.

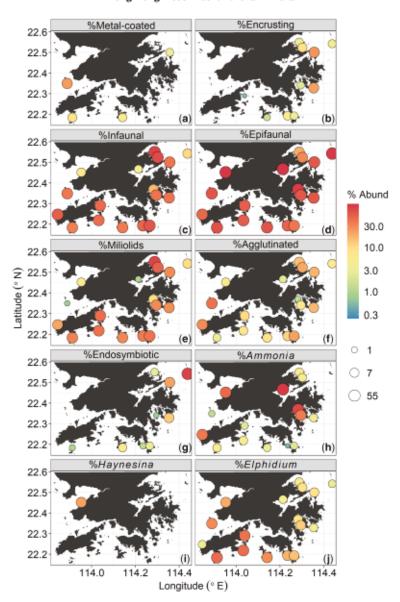


Fig. 4. Distribution and relative abundance (% Abund; represented by colour and dot size, as in the legends) of key foraminiferal groups: (a) metal-coated/infilled specimens; (b) encrusting taxa; (c) infaunal taxa; (d) epifaunal taxa; (e) miliolids; (f) agglutinated taxa; (g) endosymbiotic taxa; (h) genus Ammonia; (i); genus Haynesina; and (j) genus Elphidium. Table 2 shows the list of miliolid, agglutinated, endosymbiotic, and encrusting taxa. Appendix 1 shows the list of infaunal and epifaunal taxa. See Figure 1 for site details.

abundant-species-based) cluster analyses and the two biofacies (1 + 4) in the Morisita-Horn (i.e. dominant species-based) analysis, which distinguish the western part of the SS EPD region and parts of the PS and MS EPD regions (Figs 1 & 7). The dominance of *Triloculina* at two of the sites in Biofacies 1 (Sites 1 & 2), along with the high proportion of infaunal species (Fig. 4), indicates depleted oxygen levels at the sediment-water interface (Burke 1981). However, the dominance of epifaunal, rotaline species such as *Elphidium* spp. (Fig. 3.28–33), *Amphistegina* spp. (Fig. 2.14–15), *Acervulina mabahethi* (Fig. 2.13), and *Eponides repandus* (Fichtel and Moll, 1798) (Fig. 2.9–10) at the remaining

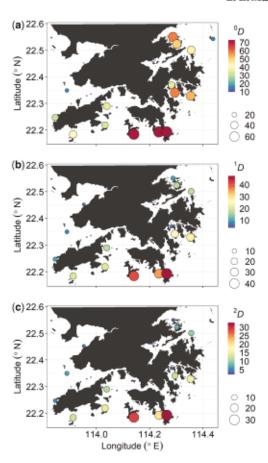


Fig. 5. Alpha diversity (i.e. diversity of individual sites) heat maps of Hong Kong benthic foraminiferans. Distributions of Hill numbers ^{6}D (a: q=0, species richness), ^{1}D (b: q=1, exponential Shannon), and ^{2}D (c: q=2, inversed Simpson). We used 97% sample coverage to standardize the Hill number estimates. Diversities are represented by colour and dot size as in the legends. Sites 7 and 8 are in the same location, but a jitter was added to make them visible.

sites in Biofacies 1 (Fig. 4) indicates environmental conditions that are sufficiently oxygenated to support attached or free-living taxa on the sea floor. This faunal variation presumably reflects varying environmental and ecological conditions within this area. This may account for the dominance of *Ammonia* spp. (Fig. 3.20–25) in this biofacies, that are capable of best resisting this variation, particularly in oxygenation (Hayward et al. 2021). This vast southern–eastern water fauna is generally consistent with previous studies of other benthic organisms, macrobenthos (total soft-sediment macrobenthos in grab samples, which is dominated by polychaetes and then molluscs) and ostracods, which have found a unique suite of species in this area that are tolerant

of muddy and turbid conditions. In these other groups, the southern water fauna has an even wider distribution in the west, covering not only the southern and southeastern waters but also the southwestern waters of Hong Kong (Shin and Ellingsen 2004; Hong et al. 2022) (Fig. 8). For foraminifera, this expansive southern-eastern biofacies is further subdivided when dissimilarity is based on dominant species (i.e. Morisita-Horn dissimilarity, Biofacies 1 and 4; Fig. 7e, f); the southern water fauna as described above and an eastern water fauna characterized by higher abundance of endosymbiotic species (particularly amphistegnids) (Fig. 4). This eastern water foraminiferal biofacies occurs where coral diversity is also greatest (Qiu et al. 2014; Duprey et al. 2016, 2020; Cybulski et al. 2020). This is because endosymbiotic foraminifera, and scleractinian corals, both require less turbid, more oligotrophic water for efficient photosynthesis. Due to inputs from the Pearl River, these conditions are only found in the eastern waters of Hong Kong. Indeed, turbidity is lowest along the eastern side of Hong Kong (Fig. 9). Similar geographical subdivisions of the southern fauna were documented in a recent macrofaunal study (Wang et al. 2021), and these may also be related to water quality.

Interestingly, the highest foraminiferal diversity is found in the highly turbid southern waters (eastern part of the SS EPD region) (Fig. 5). This high diversity in the southern region is generally consistent with previous studies of ostracods and macrobenthos that documented elevated diversity in the central region of Hong Kong, although their diversity maxima were located somewhat further north, on the north side of Hong Kong Island (Wang et al. 2017; Hong et al. 2022). In contrast, corals show a clear west to east increase in diversity with their highest species diversity in eastern waters (Yeung et al. 2021). The greatest abundance of coral that are more susceptible to environmental stressors (Cybulski et al. 2020) is also found in eastern waters. This biogeographical difference between foraminifera and corals is perhaps because endosymbiotic species compose a limited part of the foraminiferal fauna (Fig. 4). Moderate levels of eutrophication (Fig. 9) may be beneficial for some soft-sediment benthos, as discussed in Hong et al. (2022), and our results suggest that this may also be true for benthic foraminifera.

Biofacies 2 (Fig. 7), particularly in the eastern part, is characterized by the dominance of Ammonia spp. and agglutinated taxa (Fig. 4) including Ammobaculites spp. (Fig. 2.1), which are most commonly found in marsh-like environmental settings and able to endure harsh environmental conditions (Alve 1995; Sen Gupta et al. 1996; Murray 2006). Ammonia tepida, in particular, is able to tolerate episodic oxygen-deficient conditions in areas with enriched organic carbon (Li et al. 2013; Hayward et al.

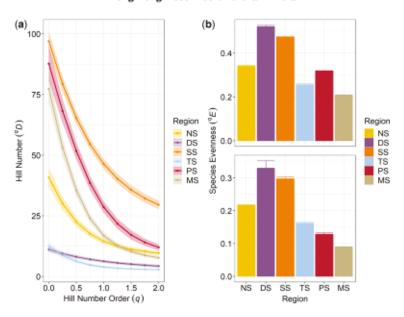


Fig. 6. Gamma diversity results of Hong Kong benthic foraminiferans. (a) Hill number profile of each EPD region. The shaded areas show 95% confidence interval of the profiles. Overall elevation of the profiles indicates the diversity based on Hill numbers across different order q between 0 and 2. Levelness of the lines indicates evenness. (b) Evenness based on normalized slope of Hill number profile for order q = 1 (top) and order q = 2 (bottom). All based on 97% sample coverage. NS, North Western; DS, Deep Bay; SS, Southern; TS, Tolo Harbour, PS, Port Shelter; MS, Mirs Bay.

2021), and also dominates in areas proximal to the discharge of heavy metals, sewage, chemical effluents, and fertilizers (Seiglie 1971, 1975; Setty 1976; Setty and Nigam 1984; Yanko et al. 1992). Other dominant taxa in this biofacies include Elphidium spp. (Fig. 3.28-33) and Rotalidium annectens (Parker and Jones, 1865) (Fig. 3.26-27). Elphidium advenum (Cushman, 1922) (Fig. 3.28) and Elphidium excavatum (Terquem, 1875) are known to be pollution-tolerant and opportunistic species that occur in harbours and estuarine settings polluted with trace metals (Alve 1995; Li et al. 2013), and Rotalidium annectens is a shallow-water species that was found by Li et al. (2013) to commonly occur in the most highly polluted areas of the Pearl River Estuary. Biofacies 2 also contained one site where foraminiferal specimens were found infilled with heavy-minerals (Site 13) and the abundance of these specific species in this site was several times higher than those of the other sites where metal-coated/infilled specimens were collected (Sites 9-10, 16). Specimens of Ammonia spp., Rotalidium spp. and Elphidium spp. were found coated, or had their chambers in-filled with heavy-minerals (Fig. 10). While geochemical analysis of these metals was beyond the scope of the current study, previous studies have found this phenomenon in carbonate facies with reductive conditions at the sediment surface (Maiklem 1967), and have shown that Ammonia tepida is a bioindicator of trace metal pollutants such as Cr, Cu, Ni, Pb and Zn, particularly Cu and Zn as these two metals are more easily absorbed than other elements (Samir and El-Din 2001; Li et al. 2013). Along with the mineral-infused specimens collected in this biofacies, the occurrence of low diversity fauna typically associated with marsh habitats at sites not characterized by these environmental conditions, indicate that stressful environmental conditions affect this region of Hong Kong waters. It is likely that the Pearl River is the source of nutrients and pollutants affecting this fauna, though available environmental data are not sufficiently well resolved to confirm this (Fig. 9).

Heading west, the switch between Biofacies 1 and 2 (in the Sørensen and Horn results) is reflected by the loss of endosymbiotic species and the increased abundance of *Elphidium* spp (Figs 4 & 7; Table 2). Whilst the rarity and lack of endosymbiotic foraminifera in Biofacies 2 reflect turbid water preventing photosynthesis, the higher abundance of *Elphidium* around Sites 14 and 15 indicates that the eutrophic conditions are not too severe. *Elphidium* are comparatively more vulnerable to eutrophication than more low-oxygen-tolerant *Ammonia* (Sen Gupta and Platon 2006; Tsujimoto *et al.* 2008; Yasuhara *et al.* 2012) that are comparatively rare in Biofacies 2

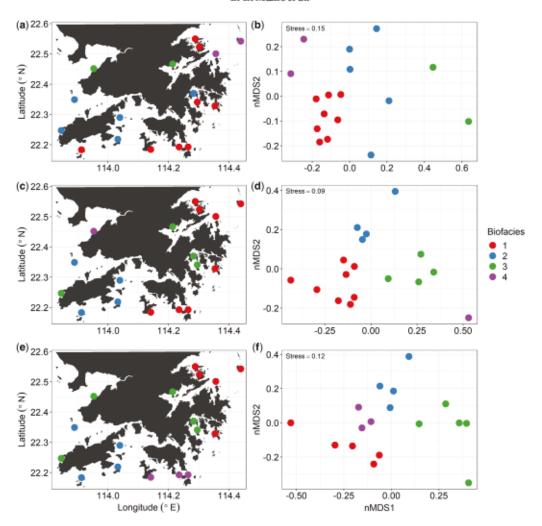


Fig. 7. Hong Kong benthic foraminiferal faunal distributions. Maps (left panels) and nMDS ordinations (right panels) showing biofacies based on (a and b) Sørensen, (c and d) Horn, and (e and f) Morisita-Hom dissimilarities and Ward's minimum variance cluster analysis. Note that the colour schemes are independent among top, middle and bottom panels; thus, the biofacies based on different dissimilarities are not necessarily related. See Figure 1 for site details.

(Fig. 4). Indeed, chlorophyll-a concentration is intermediate in this region (Fig. 9), supporting our interpretation. Distribution data for other benthic groups in southwestern Hong Kong are rather limited (Wang et al. 2017, 2021; Hong et al. 2021, 2022; Yeung et al. 2021) (Fig. 8) and this region should be the focus of future benthic surveys.

Biofacies 3 incorporates the sites at Deep Bay, Tolo Harbour and/or Port Shelter (Sites 3, 5–6, 17) depending on the dissimilarity used. This biofacies consists almost entirely of epifaunal taxa (93–95%), and is dominated by rotaline *Ammonia* spp., *Elphi-dium* spp. and *Haynesina* spp. (Fig. 2.16–19) (Figs 4 & 7; Table 2). Similar to the other dominant taxa of this biofacies, *Haynesina* are known to be pollution-tolerant taxa within estuarine settings with concentrations of heavy metals (Alve 1995; Li *et al.* 2013). Biofacies 3 results are consistent with earlier foraminiferal studies (Yim and He 1988) and also ostracod and macrobenthic results showing the faunal similarity at least between Tolo Harbour and Port Shelter (Wang *et al.* 2021; Hong *et al.* 2022). Hong *et al.* (2022) attributed the faunal characteristic of Tolo Harbour and Port Shelter to Pb pollution. However, while Pb concentration is indeed high in Tolo Harbour, it is not elevated in Port Shelter (Fig. 9).

 $\textbf{Table 2.} \ \textit{List of the top 10 species with the highest \% \textit{mean occurrence (for Sørensen dissimilarity) or \% \textit{mean relative abundance (for Horn and Morisita-Horn dissimilarity) for Biofacies $I-4$ }$

Sørensen		Horn		Morisita-Horn	
Biofacies 1					
Triloculina barnardi	0.1290	Triloculina barnardi	0.1499	Triloculina barnardi	0.2194
Elphidium advenum	0.0591	Amphiste gina les sonii	0.1188	Amphiste gina les sonii	0.1787
Acervulina mabahethi	0.0533	Acervulina mabahethi	0.0776	Acervulina mabahethi	0.1047
Ammonia tepida	0.0441	Elphidium advenum	0.0460	Siphonaperta crassa	0.0547
Elphidium craticulatum	0.0388	Siphonaperta crassa	0.0398	Amphiste gina lobifera	0.0503
Siphonaperta crassa	0.0348	Amphiste gina lobifera	0.0342	Elphidium craticulatum	0.0296
Elphidium hispidulum	0.0338	Elphidium craticulatum	0.0338	Haddonia torresiensis	0.0266
Eponides repandus	0.0307	Eponides repandus	0.0291	Textularia foliacea	0.0241
Cymbaloporetta bradyi	0.0235	Cymbaloporetta bradyi	0.0241	Neoconorbina clara	0.0182
Ammonia confertitesta	0.0216	Textularia foliacea	0.0216	Ammonia tepida	0.0171
Biofacies 2					
Ammonia tepida	0.1705	Elphidium hispidulum	0.1575	Elphidium hispidulum	0.1575
Elphidium hispidulum	0.0890	Rotalidium annectens	0.1125	Rotalidium annectens	0.1125
Rotalidium annectens	0.0710	Elphidium craticulatum	0.0863	Elphidium craticulatum	0.0863
Ammobaculites agglutinans	0.0705	Elphidium biperforatum	0.0850	Elphidium biperforatum	0.0850
Ammonia confertitesta	0.0670	Sigmoilina subtenuis	0.0506	Sigmoilina subtenuis	0.0506
Elphidium craticulatum	0.0550	Siphonaperta crassa	0.0363	Siphonaperta crassa	0.0363
Elphidium biperforatum	0.0440	Ammobaculites sp. 3	0.0356	Ammobaculites sp. 3	0.0356
Quinqueloculina sp. 3	0.0400	Ammonia tepida	0.0350	Ammonia tepida	0.0350
Ammobaculites sp. 3	0.0325	Ammobaculites agglutinans	0.0344	Ammobaculites agglutinans	0.0344
Sigmoilina subtenuis	0.0300	Elphidium advenum	0.0306	Elphidium advenum	0.0306
Biofacies 3					
Ammonia confertitesta	0.2350	Ammonia tepida	0.3388	Ammonia tepida	0.2735
Ammonia sp. 1	0.2188	Ammonia confertitesta	0.2306	Ammonia confertitesta	0.1895
Ammonia tepida	0.1963	Ammobaculites agglutinans	0.0600	Ammonia sp. 1	0.0890
Haynesina sp. 1	0.0675	Quinqueloculina sp. 3	0.0381	Ammobaculites agglutinans	0.0480
Elphidium sp. 6	0.0588	Elphidium advenum	0.0306	Quinqueloculina sp. 3	0.0415
Haynesina sp 2	0.0438	Trochammina sp. 1	0.0194	Elphidium sp. 6	0.0320
Elphidium sp. 7	0.0400	Ammonia convexa	0.0188	Haynesina sp. 1	0.0270
Ammonia convexa	0.0388	Quinqueloculina seminulum	0.0163	Elphidium advenum	0.0245
Quinqueloculina sp. 3	0.0325	Nonionoides sp. 1	0.0156	Elphidium sp. 7	0.0185
Haplophragmoides canariensis	0.0225	Miliolinella sp. 1	0.0144	Trochammina sp. 1	0.0175
Biofacies 4					
Amphistegina lessonii	0.4200	Ammonia sp. 1	0.4175	Elphidium advenum	0.1017
Araphisi egina tessonii Acervulina mabahethi	0.1088	Haynesina sp. 1	0.1350	Eponides repandus	0.1017
Triloculina barnardi	0.1013	Elphidium sp. 6	0.1175	Elphidium craticulatum	0.0408
Amphistegina lobifera	0.0850	Haynesina sp. 2	0.0875	Cymbaloporetta bradyi	0.0367
Haddonia torresiensis	0.0413	Elphidium sp. 7	0.0800	Quinque loculina sp. 3	0.0350
Siphonaperta crassa	0.0288	Quinque loculina sp. 3	0.0550	Triloculina barnardi	0.0342
Elphidium crispum	0.0175	Haplophragmoides canariensis	0.0450	Acervulina mabahethi	0.0325
Elphidium craticulatum	0.0163	Ammonia confertitesta	0.0250	Elphidium crispum	0.0300
Textularia lateralis	0.0150	Ammonia tepida	0.0125	Quinqueloculina sp. 10	0.0267
Elphidium advenum	0.0138	Trochammina sp. 1	0.0100	Quinqueloculina sp. 8	0.0250

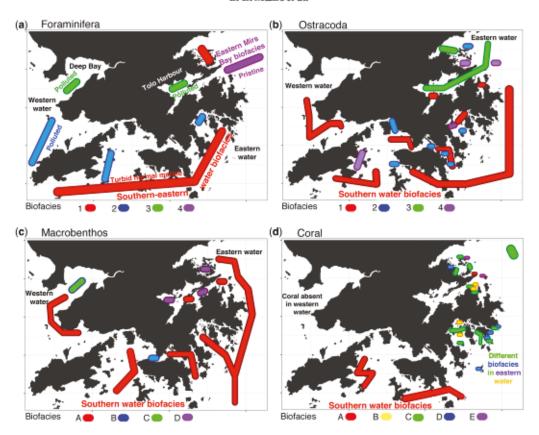


Fig. 8. Comparison of biofacies distributions in (a) benthic foraminifera, (b) ostracods, (c) macrobenthos, and (d) corals. Simplified after this study (benthic foraminifera), Hong et al. (2022) (ostracods), Wang et al. (2017) (macrobenthos), and Yeung et al. (2021) (corals). Names of biofacies, geographical location, and their characteristics discussed in the main text are indicated on the figure. Foraminiferal and ostracod studies are based on surface sediments including both living and dead specimens (this study; Hong et al. 2022). Coral and macrobenthic studies are on living ones (Wang et al. 2017; Yeung et al. 2021). Note that the colour schemes are independent among panels, and clustering methods to recognize biofacies are not consistent among studies.

Generally speaking, Pb pollution in Hong Kong's marine sediments is not high with respect to the United States Environmental Protection Agency sediment guidelines (Hong et al. 2022). As previously discussed in Biofacies 2, Ammonia, particularly Ammonia tepida, is a well-known pollution-, eutrophication-, and hypoxia-tolerant, opportunistic foraminiferal tax on (Tsujimoto et al. 2008; Ye et al. 2021). This pattern is consistent with a recent study showing low diversity and high abundance of stress-tolerant ostracod species Sinocytheridea impressa in Tolo Harbour and Port Shelter, though this study did not include ostracod faunas in Deep Bay and the southeastern region of Hong Kong (Hong et al. 2022) (Fig. 8). Foraminiferal indicator tax a show much clearer distributional trends regarding this human-impact regime, indicating that benthic foraminifera are strong environmental indicators,

particularly for organic matter input and resulting eutrophication and deoxygenation (Sen Gupta and Platon 2006; Rabalais et al. 2007; Tsujimoto et al. 2008; Yasuhara et al. 2019). We interpret these results to suggest that similarly stressful benthic environments and habitats can be distributed across many isolated or separated locations within a region, especially semi-enclosed areas with localized eutrophication and pollution sources (Archana et al. 2016; Cybulski et al. 2020; Duprey et al. 2020; Geeraert et al. 2021). Yet the responsible environmental factor or pollutant is uncertain from available environmental data (Fig. 9), partly because of incomplete spatial coverage of water quality monitoring. Sites 5 and 12 of Biofacies 3 were the only areas in the study that were not sand-dominated substrates, but instead were silt/clay dominated from surrounding mangroves (Site 5) or Pearl River sedimentation (Site 12). It is

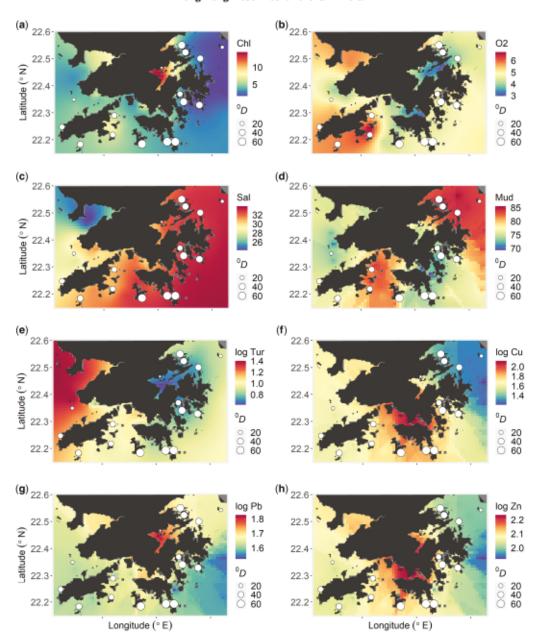


Fig. 9. Distributions (heat maps) of selected environmental factors, including (a) chlorophyll-a (µg l⁻¹), (b) dissolved oxygen (mg l⁻¹), (c) salinity (psu), (d) mud content [%w/w (<63 µm)], (e) turbidity (NTU), (f) copper concentration (mg kg⁻¹), (g) lead concentration (mg kg⁻¹), and (h) zinc concentration (mg kg⁻¹). Distributions of Hill numbers ${}^{0}D$ (q = 0, species richness) overlaid. Source: from Hong *et al.* (2021), based on the EPD monitoring programme data (Environmental Protection Department 2011). Note that these EPD sites do not necessarily correspond to the sites of this study.

possible that this substrate difference caused some of the biodiversity changes that we see. However, it is interesting to note that, regardless of the substrate, Biofacies 3 sites all group together in the nMDS plot, indicating that there are other controlling factors. Thus, we highlight the need for benthic and environmental surveys with higher spatial resolution and more complete coverage of all Hong Kong waters.

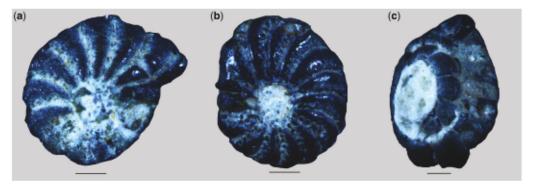


Fig. 10. Examples of heavy mineral-coated/infilled specimens indicated by the black and dark brown discoloration: (a and b) Elphidium spp.; (c) Rotalidium sp. Scale bar = 100 μm.

Biofacies 4 constitutes a distinct fauna in eastern Mirs Bay in the Sørensen result (Fig. 7). Interestingly Biofacies 4 is comprised of taxa frequently found in carbonate reef settings. It is overwhelmingly dominated by endosymbiotic fauna (Site 11, 81%; Fig. 4), particularly Amphistegina lessonii (Fig. 2.14-15), and encrusting species (Site 10) such as Acervulina mabahethi (Fig. 2.13) and Haddonia torresiensis (Chapman, 1898) (Fig. 2.2). Amphistegina lessonii is a tropical species able to tolerate lower temperatures (12-20°C) (Murray 2006), greater water depths (to 150 m), and higher energy levels (more intensive wave action generates thicker test walls) (Mamo 2016) compared to most tropical species. The abundance of encrusting Haddonia torresiensis and Acervulina mabahethi which have all chambers attached to a seafloor substrate, may also be indicative of a higher energy marine setting. Similar abundance of Amphistegina was found previously in this area, just south of Mirs Bay, off High Island, by Yim and He (1991). Biofacies 4 falls within the least eutrophicated area in Hong Kong (according to the chlorophyll-a data; Fig. 9), which merits further investigation, since this region is seldom covered by Hong-Kong-wide benthic surveys (Wang et al. 2017), except for corals (Yeung et al. 2021). In corals, faunal composition is quite variable, and multiple biofacies are observed in Mirs Bay (Qiu et al. 2014), consistent with this biogeographical separation of benthic foraminifera in Mirs Bay (Fig. 8).

Conclusions

In this study we have shown the heightened sensitivity of benthic foraminifera to oligotrophic/eutrophic states, the presence of pollutants and heavy metals, and variation in water quality (e.g. turbidity) in Hong Kong waters. We identified four biofacies

including turbid, normal marine (Biofacies 1), polluted (Biofacies 2 and 3), and 'pristine' (i.e. least impacted) (Biofacies 4 in the Sørensen result) marine ecosystems (Fig. 8). Benthic ostracods may better represent faunal characteristics of soft-sediment benthos in general, since their biofacies distribution is similar to that of soft-sediment macrobenthos (Fig. 8) (Hong et al. 2022), but benthic foraminifera are more sensitive to changes in trophic conditions and also occur across a wider range of environmental condition than corals (Fig. 8). Corals are also sensitive to eutrophication, but cannot tolerate highly eutrophic environments and are often rare or absent where such conditions occur (Fig. 8). Thus, benthic foraminifera can be a good bioindicator that is applicable across the complete oligotrophic/eutrophic spectrum. Benthic foraminifera and ostracods are both shelled microscopic-sized organisms (called microfossils) that are abundant enough for quantitative faunal and diversity analyses using a small amount (e.g. 100 cm3, 50 cm3 or less) of sediment, and their shells are amenable to long-term storage of raw sediment samples without any fixation (especially if dried, refrigerated, or frozen). In addition, both groups have excellent fossil records (Yasuhara et al. 2017, 2020; Yasuhara 2019). Our foraminiferal results and their comparison with previous studies show that combined foraminiferal and ostracod analyses are an efficient way for holistically characterizing marine benthic environments and ecosystems in the past and present.

Acknowledgements We thank Rachel P.P. Wong, Maria Lo, Laura Wong, and Oscar So for their technical support; Inga Conti-Jerpe, Taihun Kim, Nico Duprey, Chloe Webster, Jake Dytnersky, Vriko Yu, and Mac Pierce for their helping with sampling; Rafał Nawrot for editing; and two anonymous reviewers for valuable comments. Briony L. Mamo, Jonathan D. Cybulski and Yuanyuan Hong have contributed equally to this work.

Competing interests The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Author contributions BLM: conceptualization (equal), data curation (equal), formal analysis (equal), investigation (equal), methodology (equal), project administration (equal), validation (equal), visualization (equal), writing - original draft (equal), writing - review & editing (supporting); JDC: conceptualization (supporting), data curation (supporting), formal analysis (supporting), investigation (equal), project administration (supporting), visualization (supporting), writing - original draft (supporting), writing - review & editing (supporting); YH: conceptualization (supporting), formal analysis (supporting), investigation (supporting), methodology (supporting), visualization (equal), writing - original draft (supporting), writing review & editing (equal); PGH: conceptualization (supporting), investigation (supporting), writing - original draft (supporting), writing - review & editing (supporting); AC: conceptualization (supporting), formal analysis (supporting), methodology (equal), software (equal), visualization (supporting), writing - original draft (supporting), writing - review & editing (supporting); AT: data curation (supporting), formal analysis (supporting), investigation (supporting), methodology (supporting), validation (supporting), visualization (supporting), writing - original draft (supporting), writing - review & editing (supporting); C-LW: data curation (equal), formal analysis (lead), methodology (lead), software (equal), validation (supporting), visualization (lead), writing - original draft (supporting), writing-review & editing (supporting); DMB: conceptualization (supporting), funding acquisition (supporting), investigation (supporting), supervision (supporting), writing - original draft (supporting), writing - review & editing (supporting); MY: conceptualization (equal), data curation (supporting), formal analysis (equal), funding acquisition (lead), investigation (supporting), methodology (equal), project administration (equal), resources (equal), supervision (lead), validation (equal), visualization (supporting), writing - original draft (lead), writing - review & editing

Funding The field costs to collect samples used in this paper were funded by the Paleontological Society of America Arthur James Boucot Research Award (to BLM). The work described in this paper was partly supported by grants from the Research Grants Council of the Hong Kong Special Administrative Region, China (project codes: HKU 17300720; HKU 17302518; HKU 17304116, C7013-19G, RFS2223-7S02, G-HKU709/21); the Marine Conservation Enhancement Fund (MCEF20002 L01); the Marine Ecology Enhancement Fund (MEEF2021001; MEEF2022009); the Small Equipment Grant of the University of Hong Kong; the Seed Funding Programme for Basic Research of the University of Hong Kong (project codes: 202111159167, 202011159122, 201811159076); the Faculty of Science RAE Improvement Fund of the University of Hong Kong; the Seed Funding of the HKU-TCL Joint Research Centre for Artificial Intelligence of the University of Hong Kong; and SKLMP Seed Collaborative Research Fund (SKLMP/SCRF/0031) (to MY), the National Science Foundation (NSF EAR-2041667) (to PGH), Ministry of Science and Technology of Taiwan (MOST 110-2611-M-002-017 and 109-2119-M-001-011) (to CW), as well as Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences (grant No. 203108) and the 45th Round of the Post-doctoral Fellow Scheme of the University of Hong Kong (to YH).

Data availability All data generated or analysed during this study are included in this published article (and its supplementary information files).

References

- Alve, E. 1995. Benthic foraminiferal responses to estuarine pollution: a review. *Journal of Foraminiferal Research*, 25, 190–203, https://doi.org/10.2113/gsjfr.25.3.190
- Alve, E., Lepland, A., Magnusson, J. and Backer-Owe, K. 2009. Monitoring strategies for re-establishment of ecological reference conditions: possibilities and limitations. *Marine Pollution Bulletin*, 59, 297–310, https://doi.org/10.1016/j.marpolbul.2009.08.011
- Archana, A., Li, L., Shuh-Ji, K., Thibodeau, B. and Baker, D.M. 2016. Variations in nitrate isotope composition of wastewater effluents by treatment type in Hong Kong. *Marine Pollution Bulletin*, 111, 143–152, https://doi. org/10.1016/j.marpolbul.2016.07.019
- Archana, A., Thibodeau, B., Geeraert, N., Xu, M.N., Kao, S.-J. and Baker, D.M. 2018. Nitrogen sources and cycling revealed by dual isotopes of nitrate in a complex urbanized environment. Water Research, 142, 459–470, https://doi.org/10.1016/j.watres.2018.06.004
- Bouchet, V.M., Telford, R.J., Rygg, B., Oug, E. and Alve, E. 2018. Can benthic foraminifera serve as proxies for changes in benthic macrofaunal community structure? Implications for the definition of reference conditions. *Marine Environmental Research*, 137, 24–36, https:// doi.org/10.1016/j.marenvres.2018.02.023
- Burke, S.C. 1981. Recent benthic foraminifera of the Ontong Java Plateau. *Journal of Foraminiferal Research*, 11, 1–19, https://doi.org/10.2113/gsjfr.11.1.1
- Buzas, M.A. 1990. Another look at confidence limits for species proportions. *Journal of Paleontology*, 64, 842–843, https://doi.org/10.1017/S002233600001903X
- Chao, A. and Ricotta, C. 2019. Quantifying evenness and linking it to diversity, beta diversity, and similarity. *Ecology*, 100, e02852, https://doi.org/10.1002/ecy. 2852
- Chao, A., Chiu, C.-H. and Jost, L. 2014a. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through Hill numbers. Annual Review of Ecology, Evolution, and Systematics, 45, 297–324, https://doi.org/ 10.1146/annurev-ecolsys-120213-091540
- Chao, A., Gotelli, N.J., Hsieh, T., Sander, E.L., Ma, K., Colwell, R.K. and Ellison, A.M. 2014b. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. *Ecological Monographs*, 84, 45–67, https://doi.org/ 10.1890/13-0133.1

- Chao, A., Kubota, Y. et al. 2020. Quantifying sample completeness and comparing diversities among assemblages. Ecological Research, 35, 292–314, https://doi.org/10.1111/1440-1703.12102
- Chapman, F. 1898. On Haddonia, a new genus of the Foraminifera, from Torres Straits. Zoological Journal of the Linnean Society, 26, 452–456, https://doi.org/10. 1111/j.1096-3642.1898.tb00407.x
- Cushman, J.A. 1922. Shallow-Water Foraminifera of the Tortugas Region. Publications of the Camegie Institution of Washington 311, Department of Marine Biology of the Camegie Institution of Washington, https:// www.biodiversitylibrary.org/page/25235633
- Cushman, J.A. 1926. Recent foraminifera from Porto Rico. Carnegie Institution of Washington, 344, 73–84.
- Cybulski, J.D., Husa, S.M. et al. 2020. Coral reef diversity losses in China's Greater Bay Area were driven by regional stressors. Science Advances, 6, eabb1046, https://doi.org/10.1126/sciadv.abb1046
- Dai, M., Guo, X. et al. 2006. Oxygen depletion in the upper reach of the Pearl River estuary during a winter drought. Marine Chemistry, 102, 159–169, https://doi.org/10. 1016/j.marchem.2005.09.020
- Duprey, Ñ.N., Yasuhara, M. and Baker, D.M. 2016. Reefs of tomorrow: eutrophication reduces coral biodiversity in an urbanized seascape. Global Change Biology, 22, 3550–3565, https://doi.org/10.1111/gcb.13432
- Duprey, N.N., Wang, T.X. et al. 2020. Megacity development and the demise of coastal coral communities: evidence from coral skeleton δ^{1.5}N records in the Pearl River estuary. Global Change Biology, 26, 1338–1353, https://doi.org/10.1111/gcb.14923
- Ellison, A.M. 2010. Partitioning diversity. Ecology, 91, 1962–1963, https://doi.org/10.1890/09-1692.1
- Environmental Protection Department, Hong Kong 1986– 2021. Marine Water Quality Darabase in Hong Kong. Environmental Protection Department, Hong Kong, https://www.epd.gov.hk/epd/english/environ mentinhk/water/hkwqrc/waterquality/marine.html
- Fichtel, L. and Moll, J.P.C. 1798. Testacea microscopica aliaque minuta ex generibus Argonauta et Nautilis ad naturam picta et descripta. Camesina, Vienna.
- Geeraert, N., Archana, A., Xu, M.N., Kao, S.-J., Baker, D.M. and Thibodeau, B. 2021. Investigating the link between Pearl River-induced eutrophication and hypoxia in Hong Kong shallow coastal waters. Science of the Total Environment, 772, 145007, https://doi.org/ 10.1016/j.scitotenv.2021.145007
- Gower, J.C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. *Bio*metrika, 53, 325–338, https://doi.org/10.1093/bio met/53.3-4.325
- Guérin-Méneville, F.-É. 1832. Iconographie du règne animal de G. Cuvier, ou Représentation d'après nature de l'une des espèces les plus remarquables, et souvent non encore figurées, de chaque genre d'animaux. Avec un texte descriptif mis au courant de la science: ouvrage pouvant servir d'atlas à tous les traités de zoologie. JB Baillière, Paris, https://www.biodiversitylibrary. org/page/27813845
- Haig, D.W. 1988. Miliolid foraminifera from inner neritic sand and mud facies of the Papuan Lagoon, New Guinea. *Journal of Foraminiferal Research*, 18, 203–236, https://doi.org/10.2113/gsjfr.18.3.203

- Hallock, P. 1999. Symbiont-bearing foraminifera. In: Sen Gupta, B.K. (ed.) Modern Foraminifera. Springer, Dordrecht, 123–139.
- Hallock, P., Lidz, B.H., Cockey-Burkhard, E.M. and Donnelly, K.B. 2003. Foraminifera as bioindicators in coral reef assessment and monitoring: the FORAM Index. *Environmental Monitoring and Assessment*, 81, 221–238, https://doi.org/10.1023/A:1021337310386
- Hayward, B.W., Holzmann, M., Pawlowski, J., Parker, J.H., Kaushik, T., Toyofuku, M.S. and Tsuchiya, M. 2021. Molecular and morphological taxonomy of living Ammonia and related taxa (Foraminifera) and their biogeography. *Micropaleontology*, 67, 109–313, https:// doi.org/10.47894/mpal.67.3.01
- Hayward, B.W., Le Coze, F., Vachard, D. and Gross, O. 2022. World Foraminifera Database, https://www. marinespecies.org/foraminifera [last accessed 20 September 2022), https://doi.org/10.14284/305
- Hill, M.O. 1973. Diversity and evenness: a unifying notation and its consequences. *Ecology*, 54, 427–432, https://doi.org/10.2307/1934352
- Hong, Y., Yasuhara, M., Iwatani, H., Seto, K., Yokoyama, Y., Yoshioka, K. and Mamo, B. 2017. Freshwater reservoir construction by damming a marine inlet in Hong Kong: Paleoecological evidence of local community change. *Marine Micropaleontology*, 132, 53–59, https://doi.org/10.1016/j.marmicro.2017.04.003
- Hong, Y., Yasuhara, M., Iwatani, H., Chao, A., Harnik, P.G. and Wei, C.-L. 2021. Ecosystem turnover in an urbanized subtropical seascape driven by climate and pollution. Anthropocene, 36, 100304, https://doi.org/ 10.1016/j.ancene.2021.100304
- Hong, Y., Yasuhara, M. et al. 2022. Benthic ostracod diversity and biogeography in an urbanized seascape. Marine Micropaleontology, 174, 102067, https://doi. org/10.1016/j.marmicro.2021.102067
- Hsieh, T., Ma, K. and Chao, A. 2016. iNEXT: anR package for rarefaction and extrapolation of species diversity (Hill numbers). Methods in Ecology and Evolution, 7, 1451–1456, https://doi.org/10.1111/2041-210X.12613
- Hua, F.L., Tsang, Y.F. and Chua, H. 2008. Progress of water pollution control in Hong Kong. Aquatic Ecosystem Health & Management, 11, 225–229, https://doi. org/10.1080/14634980802100717
- Hughes, T.P., Baird, A.H. et al. 2003. Climate change, human impacts, and the resilience of coral reefs. Science, 301, 929–933, https://doi.org/10.1126/science.1085046
- Jackson, J.B.C., Kirby, M.X. et al. 2001. Historical overfishing and the recent collapse of coastal ecosystems. Science, 293, 629–637, https://doi.org/10.1126/sci ence.1059199
- Kaminski, M.A. 2014. The year 2010 classification of the agglutinated foraminifera. *Micropaleontology*, 60, 89–108, https://doi.org/10.47894/mpal.60.1.09
- Knowlton, N. 2001. The future of coral reefs. Proceedings of the National Academy of Sciences, 98, 5419–5425, https://doi.org/10.1073/pnas.091092998
- Knowlton, N. and Jackson, J.B.C. 2008. Shifting baselines, local impacts, and global change on coral reefs. PLoS Biology, 6, e54, https://doi.org/10.1371/journal. pbio.0060054
- Larsen, A.R. 1976. Studies of recent Amphistegina, taxonomy and some ecological aspects. *Israel Journal of Earth-Sciences*, 25, 1–26.

- Lee, J.H.W., Harrison, P.J., Kuang, C. and Yin, K. 2006. Eutrophication dynamics in Hong Kong coastal waters: physical and biological interactions. *In*: Wolanski, E. (ed.) *The Environment in Asia Pacific Harbours*. Springer, Dordrecht, 187–206.
- Li, T., Xiang, R. and Li, T. 2013. Benthic foraminiferal assemblages and trace metals reveal the environment outside the Pearl River Estuary. *Marine Pollution Bulletin*, 75, 114–125, https://doi.org/10.1016/j.marpol bul.2013.07.055
- Maiklem, W.R. 1967. Black and brown speckled foraminiferal sand from the southern part of the Great Barrier Reef. Journal of Sedimentary Research, 37, 1023–1030, https://doi.org/10.1306/74D71820-2B21-11D7-86480 00102C1865D
- Mamo, B.L. 2016. Benthic foraminifera from the Capricom Group, Great Barrier Reef, Australia. Zootaxa, 4215, 1–123, https://doi.org/10.11646/zootaxa.4215.1.1
- Morton, B. and Morton, J. 1983. The Sea Shore Ecology of Hong Kong. Hong Kong University Press.
- Murray, J.W. 2006. Ecology and Applications of Benthic Foraminifera. Cambridge University Press, New York.
- Ng, T.P., Cheng, M.C., Ho, K.K., Lui, G.C., Leung, K.M. and Williams, G.A. 2017. Hong Kong's rich marine biodiversity: the unseen wealth of South China's megalopolis. *Biodiversity and Conservation*, 26, 23–36, https://doi.org/10.1007/s10531-016-1224-5
- Oksanen, J., Blanchet, F. et al. 2020. Vegan: Community Ecology Package. R package version 2.5–7, https:// CRAN.R-project.org/package=vegan
- Parker, K.W. and Jones, R.T. 1865. On some foraminifera from the North Atlantic and Arctic Oceans, including Davis Straits and Baffin's Bay. *Philosophical Transac*tions of the Royal Society of London, 155, 325–441, https://doi.org/10.1098/rstl.1865.0006
- Patterson, R.T. and Fishbein, E. 1989. Re-examination of the statistical methods used to determine the number of point counts needed for micropaleontological quantitative research. *Journal of Paleontology*, 63, 245–248, https://doi.org/10.1017/S0022336000019272
- Qian, W., Gan, J. et al. 2018. Current status of emerging hypoxia in a eutrophic estuary: the lower reach of the Pearl River Estuary, China. Estuarine, Coastal and Shelf Science, 205, 58–67, https://doi.org/10.1016/j. ecss.2018.03.004
- Qiu, J.-W., Lau, D.C., Cheang, C.-C. and Chow, W.-K. 2014. Community-level destruction of hard corals by the sea urchin *Diadema setosum. Marine Pollution Bulletin*, 85, 783–788, https://doi.org/10.1016/j.marpol bul.2013.12.012
- Rabalais, N.N., Turner, R.E., Gupta, B.K.S., Platon, E. and Parsons, M.L. 2007. Sediments tell the history of eutrophication and hypoxia in the northern Gulf of Mexico. *Ecological Applications*, 17, S129–S143, https://doi. org/10.1890/06-0644.1
- RStudio Team 2016. RStudio: integrated development for R [Computer software], http://www.rstudio.com/
- Said, R. 1949. Foraminifera of the northern Red Sea. Cushman Laboratory for Foraminiferal Research, 26, 1–44.
- Samir, A.M. and El-Din, A.B. 2001. Benthic foraminiferal assemblages and morphological abnormalities as pollution proxies in two Egyptian bays. *Marine Micropale*ontology, 41, 193–227, https://doi.org/10.1016/ S0377-8398(00)00061-X

- Seiglie, G. 1971. A preliminary note on the relationships between foraminifers and pollution in two Puerto Rican bays. Caribbean Journal of Science, 11, 93–98.
- Seiglie, G.A. 1975. Foraminifers of Guayanilla Bay and their use as environmental indicators. Revista Española de Micropaleontología, 7, 453–487.
- Sen Gupta, B.K. and Platon, E. 2006. Tracking past sedimentary records of oxygen depletion in coastal waters: use of the Ammonia–Elphidium foraminiferal index. Journal of Coastal Research, Special Issue 39, 1351–1355, https://www.jstor.org/stable/25742974
- Sen Gupta, B.K., Eugene Turner, R. and Rabalais, N.N. 1996. Seasonal oxygen depletion in continental-shelf waters of Louisiana: historical record of benthic foraminifers. Geology, 24, 227–230, https://doi.org/10. 1130/0091-7613(1996)024<0227:SODICS>2.3.CO;2
- Setty, M.A.P. 1976. The relative sensitivity of benthonic foraminifera in the polluted marine environment of Cola Bay, Goa. Indian Colloquium of Micropaleontology and Stratigraphy, Proceedings, 6, 225–234.
- Setty, M.A.P. and Nigam, R. 1984. Benthic foraminifera as pollution indices in the marine environment of west coast of India. Rivista Italiana di Paleontologia e Stratigrafia, 89, 421–436.
- Shin, P. 1985. A trawl survey of the subtidal Mollusca of Tolo Harbour and Mirs Bay, Hong Kong. In: Morton, B. and Dudgeon, D. (eds) Second International Workshop on the Malacofauna of Hong Kong and Southern China, Hong Kong: The Malacofauna of Hong Kong and Southern China 1983. Hong Kong University Press, Hong Kong, 439–447.
- Shin, P.K. and Thompson, G. 1982. Spatial distribution of the infaunal benthos of Hong Kong. Marine Ecology Progress Series, 10, 37-47, https://doi.org/10.3354/ meps010037
- Shin, P.K. and Ellingsen, K.E. 2004. Spatial patterns of soft-sediment benthic diversity in subtropical Hong Kong waters. Marine Ecology Progress Series, 276, 25–35, https://doi.org/10.3354/meps276025
- Terquem, O. 1875. Essai sur le classement des animaux qui vivent sur le plage et dans les environs de Dunkerque (premier fascicule), Paris, https://gallica.bnf.fr/ark:/ 12148/bpt6k5614755b/f461
- Tsujimoto, A., Yasuhara, M., Nomura, R., Yamazaki, H., Sampei, Y., Hirose, K. and Yoshikawa, S. 2008. Development of modern benthic ecosystems in eutrophic coastal oceans: the foraminiferal record over the last 200 years, Osaka Bay, Japan. Marine Micropaleontology, 69, 225–239, https://doi.org/10.1016/j.mamicro.2008.08.001
- Vella, P. 1957. Studies in New Zealand Foraminifera; Part I-Foraminifera from Cook Strait. Part II- Upper Miocene to Recent Species of the genus Notorotalia. New Zealand Geological Survey Paleontological Bulletin, 28, 1–64.
- Wang, P., Min, Q. and Bian, Y. 1980. Distribution of foraminifera and ostracoda in bottom sediments of the northwestem part of the Southern Yellow Sea and its geological significance. In: Wang, P. et al. (eds) Papers on Marine Micropaleontology. China Ocean Press, Beijing, 61–83.
- Wang, P., Zhang, J. et al. 1988. Foraminifera and Ostracoda in Bottom Sediments of the East China Sea. Ocean Press, Beijing.
- Wang, Z., Leung, K.M., Li, X., Zhang, T. and Qiu, J.-W. 2017. Macrobenthic communities in Hong Kong

- waters: comparison between 2001 and 2012 and potential link to pollution control. *Marine Pollution Bulletin*, 124, 694–700, https://doi.org/10.1016/j.marpolbul. 2017.04.026
- Wang, Z., Leung, K.M., Sung, Y.-H., Dudgeon, D. and Qiu, J.-W. 2021. Recovery of tropical marine benthos after a trawl ban demonstrates linkage between abiotic and biotic changes. *Communications Biology*, 4, https://doi.org/10.1038/s42003-021-01732-y
- Wickham, H. 2012. Reshape2: flexibly reshape data: a reboot of the reshape package. R package version, 1.
- Wu, J., Liu, C., Jia, L., Yang, T., Zhang, S. and Yin, J. 2013. Foraminiferal and ostracod distribution in surface sediments from Huangmao Bay of Pearl River Estuary and its influencing factors. *Journal of Palaeogeogra*phy, 15, 413–422.
- Wu, J., Liu, C., Fürsich, F.T., Yang, T. and Yin, J. 2015. Foraminifera as environmental indicators and quantitative salinity reconstructions in the Pearl River estuary, Southern China. *Journal of Foraminif*eral Research, 45, 205–219, https://doi.org/10.2113/ gsjfr.45.3.205
- Yang, Y., Chui, T.F.M., Shen, P.P., Yang, Y. and Gu, J.D. 2018. Modeling the temporal dynamics of intertidal benthic infauna biomass with environmental factors: Impact assessment of land reclamation. Science of the Total Environment, 618, 439–450, https://doi.org/10. 1016/j.scitotenv.2017.10.325
- Yanko, V., Flexer, A., Kress, N., Hornug, H. and Kronfeld, J. 1992. Benthic foraminifera as indicators of heavy metal pollution along Israel's eastern Mediterranean margin. French-Israeli Symposium on the Continental Margin of the Mediterranea Sea, Haifa. 73-79.
- Yasuhara, M. 2019. Marine biodiversity in space and time. Métode, 9, https://doi.org/10.7203/metode.9.11404
- Yasuhara, M., Hunt, G., Breitburg, D., Tsujimoto, A. and Katsuki, K. 2012. Human-induced marine ecological degradation: micropaleontological perspectives. *Ecology and Evolution*, 2, 3242–3268, https://doi.org/10. 1002/ece3.425
- Yasuhara, M., Tittensor, D.P., Hillebrand, H. and Worm, B. 2017. Combining marine macroecology and palaeoecology in understanding biodiversity: microfossils as a model. *Biological Reviews*, 92, 199–215, https:// doi.org/10.1111/brv.12223

- Yasuhara, M., Rabalais, N., Conley, D. and Gutierrez, D. 2019. Palaeo-records of histories of deoxygenation and its ecosystem impact. In: Laffoley, D. and Baxter, J.M. (eds) Ocean Deoxygenation: Everyone's Problem – Causes, Impacts, Consequences and Solutions. IUCN, Gland, 213–224.
- Yasuhara, M., Huang, H.-H.M. et al. 2020. Time machine biology: Cross-timescale integration of ecology, evolution, and oceanography. Oceanography, 33, 16–28, https://doi.org/10.5670/oceanog.2020.225
- Yau, Y.Y., Baker, D.M. and Thibodeau, B. 2020. Quantifying the impact of anthropogenic atmospheric nitrogen deposition on the generation of hypoxia under future emission scenarios in Chinese coastal waters. *Environ*mental Science & Technology, 54, 3920–3928, https:// doi.org/10.1021/acs.est.0c00706
- Ye, F., Huang, X., Shi, Z. and Chen, B. 2021. The spatial distribution of benthic foraminifera in the Pearl River Estuary, South China and its environmental significance. Marine Pollution Bulletin, 173, 113055, https://doi.org/10.1016/j.marpolbul.2021.113055
- Yeung, Y.H., Xie, J.Y. et al. 2021. Hong Kong's subtropical scleractinian coral communities: baseline, environmental drivers and management implications. Marine Pollution Bulletin, 167, 112289, https://doi.org/10.1016/j.marpolbul.2021.112289
- Yim, W.-S. and He, X.-X. 1988. Holocene foraminifera in Hong Kong and their palaeoenvironmental significance. Proceedings of the 2nd Conference on the Palaeoenvironment of East Asia from the Mid-Tertiary, Vol. II Oceanography, Palaeozoology and Palaeoanthropology. Centre of Asian Studies, The University of Hong Kong, 787–809.
- Yim, W.-S. and He, X.-X. 1991. Distribution of foraminifera in late quaternary sediments off High Island, Hong Kong. Journal of Southeast Asian Earth Sciences, 6, 1–11, https://doi.org/10.1016/0743-9547(91)90090-K
- Zhao, Q., Wang, P. and Zhang, Q. 1985. Ostracoda in bottom sediments of the South China Sea off Guangdong Province, China: their taxonomy and distribution. In: Wang, P. (ed.) Marine Micropaleontology of China. China Ocean Press, Beijing, 196–217.
- Zhao, Q., Wang, P. and Zhang, Q. 1986. Ostracoda distribution in northern South China Sea continental Shelf. Acta Oceanologica Sinica [Chinese Version], 8, 590–602.