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New species form when they become reproductively isolated. A classic
model of speciation posits that derived mutations appear in isolated
populations and reduce fitness when combined in hybrids. While these Bate-
son—-Dobzhansky—Muller incompatibilities are known to accumulate as
populations diverge over time, they may also reflect the amount of standing
genetic variation within populations. We analysed the fitness of F, hybrids
in crosses between 24 populations of a plant species (Campanula americana)
with broad variation in standing genetic variation and genetic differentiation
driven by post-glacial range expansions. Hybrid breakdown varied substan-
tially and was strongest between populations near the historical cores of the
species range where within-population genetic diversity was high. Nearly
half of the variation in hybrid breakdown was predicted by the combined
effects of standing genetic variation within populations, their pairwise
genetic differentiation and differences in the climates they inhabit. Hybrid
breakdown was enhanced between populations inhabiting distinct climates,
likely reflecting local adaptation. Results support that the mutations causing
hybrid breakdown, the raw material for speciation, are more common in
long-inhabited areas of the species range. Genetic diversity harboured in
refugial areas is thus an important source of incompatibilities critical to the
speciation process.

1. Badground

Speciation occurs when populations evolve reproductive isolation [1]. A diver-
sity of intrinsic and extrinsic factors can cause populations to become
reproductively isolated. Pre-zygotic reproductive barriers reduce the likelihood
that hybrids are formed, while post-zygotic factors reduce the fitness of hybrids
after they are formed, a phenomenon known as hybrid breakdown [2]. In the
allopatric model of speciation, derived mutations are thought to accumulate
over time in isolated populations and these interact to reduce the fitness of
hybrids [3-5]. In this model, reproductive isolation evolves as a by-product
when mutations at distinct loci, or Bateson—-Dobzhansky-Muller incompatibil-
ities (BDMIs), reach appreciable frequencies in a pair of populations due to
neutral processes, adaptive differentiation of local populations, or histories of
genomic conflict [6-9]. An impressive body of work in animals and plants
shows that hybrid breakdown increases predictably as populations diverge
over time [10-14]. However, all incompatibilities must first exist as polymorph-
isms, a fact implying that standing variation within populations may also
contribute to hybrid breakdown [13-15].

BDMIs are expected to be polymorphic in theory and have been found to
segregate within natural populations [14-16]. Because BDMIs reduce fitness
through negative epistasis, they will be most common when selection against
them is weak [14]. Given that any mutation has the potential to negatively inter-
act with others, hybrid breakdown may reflect genetic differentiation between
parental populations, but also their amounts of standing variation [10,16,17].
This perspective posits that much of hybrid breakdown reflects intrinsic factors
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Figure 1. Spatial pattems of genetic variation in Campanula americana. (a) Two regions (red cirdes) were previously identified as sources for range expansion.
Populations first expanded from a micHatitude Pleistocene Appaachian refugium (dosed red cirde, right). A staging ground near the Mississippi River (open red
cirde, left) later served as a secondary origin of range expansion. Dashed black armows depict the straight-ine linear distance of each popuiation from expansion
origins. Population coours reflect ancestry from the moast likely STRUCTURE model (K = 2). (b) Standing genetic variation in populations is predicted by their
colonization distance (the total length of armows) from the Appalachian refugium (R? = 0473; p< 0.001). (c) MicHatitude populations are the least genetically
differentiated on average, given their proximity to micHatitude refugia (R* = 0272; p= 0.036). Shaded areas depict standard error.

(i.e. genetic aspects of a population’s history [8,9]). Yet, the
fitness of hybrids and their parents are also heavily depen-
dent on the extrinsic environments in which mutations
potentially influence fitness. Indeed, hybrid incompatibilities
have been shown to accumulate as populations adapt to
their unique ecological circumstances [18,19]. Therefore, to
interpret the impacts of intrinsic genetic diversity and differ-
entiation between populations on hybrid fitness, it is crucial
to also consider the magnitude of environmental differen-
ces between parental populations as a proxy for local
adaptation [20].

Historical range expansion frequently establishes geo-
graphic patterns in the distribution of genetic diversity within
and between-populations. In the Northern Hemisphere in
particular, lower latitude regions have repeatedly served as
refugia during glaciation and thus the source of post-glacial
range expansion [21]. These historical cores tend to harbour
high levels of within-population genetic diversity, with serial
founder events during range expansion causing declines
in genetic diversity towards leading range edges [22,23]. Popu-
lations inhabiting refugial regions also typically exhibit
substantial between-population genetic differentiation [24-26].
Large amounts of genetic diversity both within and between
populations may set the stage for elevated hybrid breakdown

near refugia, with less potential for breakdown far from these
long-inhabited portions of the species range.

To study the factors that explain hybrid breakdown,
ideal study systems should exhibit broad variation in their genetic
diversity, differentiation and the selective regimes they experience
[20,27,28]. Campanula americana is a flowering plant inhabiting a
diverse spectrum of abiotic conditions in eastern North America.
Across its range, there is a latitudinal cline in temperature and a
longitudinal cline in aridity, generating a mosaic of environ-
mental conditions across the landscape [29,30]. In C. americana,
a recent range expansion has geographically structured patterns
of genetic diversity and differentiation [31] (figure 1). Populations
farther from a mid-latitude glacial refugium maintain fewer
nucleotide polymorphisms (figure 1b; [32]), and contemporary
populations at extreme latitudes are the most genetically differen-
tiated (figure Ic). Phylogenomic studies and habitat suitability
models also implicate the southern Gulf Coast as an important
refugial region for C. americana [32,33]. We address the following
questions: (i) does variability in F» hybrid breakdown covary
with distance from regions of glacial refugia? (i) What is the
importance of standing genetic variation and genetic differen-
tiation in determining the magnitude of hybrid breakdown?
(iii) Does hybrid breakdown also reflect dissimilarity among
the environments inhabited by populations?
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2. Materia and methods
(a) System and focal populations

American bellflower, Campanula americana L. (=Campanulastrum
americanum Small, Campanulaceae), is a monocarpic herb found
throughout the eastern United States. It is insect pollinated [34]
and highly outcrossing, though fully self-compatible [35,36]. Plants
are typically found in partially shaded, disturbed habitats including
forest light gaps and margins as well as along riparian areas.

Campanula americana contains two main clades that are largely
reproductively isolated. One occurs throughout the Appalachian
Mountains (hereafter, ‘Appalachian Clade’). The other occurs
west of the Appalachians to the eastern portion of the Great
Plains, with southern limits near the Gulf Coast and northern
limits in the upper Midwest (hereafter, ‘Western Clade’; [33]).
The two clades are reproductively isolated due to cytonuclear
incompatibilities that cause reductions in hybrid survival of up
to 90% and arise in the F; generation [37-39]. There are no cytonuc-
lear incompatibilities in hybrids between populations within the
western clade [38].

Focal populations in the current study are in the Western clade.
Genetic structure among populations in the Western clade and
standing levels of within-population genetic diversity reflect a
complex evolutionary history involving Pleistocene range expan-
sion. Spatial signatures of genetic drift including declines in
genetic diversity and the loss of rare alleles support westward
colonization from a mid-latitude refugium near the southern
Appalachian Mountains [31,32]. Within this westward expansion,
a staging ground in the Mississippi River Valley was the source of
subsequent colonization west of the Mississippi River, resulting in
a genetic discontinuity among populations that largely coincides
with the Mississippi River (figure 1; [32,33]). These historical
cores of C. americana were identified using a time-difference of
arrival analysis that used the frequency of derived alleles to
identify origins of range expansion (see [22] for details). Another
signature of genetic structure in the Western clade indicates ancient
genetic subdivision between most populations and those at the
southern range margin, where suitable Pleistocene habitats for
C. americana were concentrated near the Gulf Coast [33]. Indeed,
populations nearest the Gulf Coast are the earliest diverging
lineages relative to all other populations in the Western clade
[32,33] suggesting this genetic subdivision was preserved as
the leading edge of the species’ range expansion advanced in a
primarily western direction.

(b) Population sampling

We collected seed of at least 25 maternal families from each of
24 C. americana populations in the Western clade during late
Summer 2015. Populations were sampled across the latitudinal
and longitudinal extent of the Western clade with an even
division east and west of the Mississippi River to capture the
relevant genetic structure (electronic supplementary material,
table S1).

(c) Generation of experimenta seed and fitness metrics

To evaluate hybrid breakdown, we created F; and F, hybrids
between pairs of populations. Populations were roughly divided
by latitude into the eight furthest south, eight at mid-latitudes
and the eight furthest north (electronic supplementary material,
figure S1). Each population was crossed with two other popu-
lations within its latitudinal cluster, once as a sire and once as a
dam, for 24 independent hybrid crosses. Specific crosses are pro-
vided in electronic supplementary material, table S1 and figure
S1. Eastern and western populations defined by geography also
tended to form distinct genetic clusters based on STRUCTURE
analysis, though admixture was common (figure 1; electronic sup-
plementary material, figure S1). Our crossing design generated a

range in pairwise genetic differentiation between the parental
populations of hybrids (Fsr: 0.20-0.39). Crosses that involved
populations with more ancestry in common had lower Fst than
those with more divergent ancestry (correlation between pairwise
ancestry difference and pairwise Fsp, r=0.48, p=0.01). Our cross-
ing design also generated hybrids between populations that
displayed wide variation in standing genetic diversity, with popu-
lations closer to historical cores of the range having elevated
within-population genetic diversity (figure Ic). Finally, our
crossing design generated a wide degree of variation in pairwise
geographic distance (electronic supplementary material, figure
S1) and pairwise environmental distance between parental
populations (electronic supplementary material, table S1).

Seeds from the 24 populations were grown to flowering in the
greenhouse. Two replicates of three field-collected seeds from each
of approximately 25 maternal plants in each population were
planted (1200 replicates =24 pops *x 25 mat fam/pop x 2 reps/
fam) in plug trays filled with a 4:1 ratio of soilless potting
medium and fritted clay. Trays were placed in growth chambers
for 12 h (21°C day, 14°C) and kept moist. After 30 days, seedlings
were thinned to one random plant per cell and moved to a 5°C cold
room for 12 h. Following 45 days of vernalization, 25 seedlings
from each population, distributed over as many maternal families
as possible, were transplanted into tubular pots and placed in a
greenhouse with 16 h day lengths. There they were watered as
needed and fertilized alternate weeks until bolting and then
weekly. Upon flowering, 20 plants per population, each from a
different maternal line, were selected for crossing.

Within- and between-population crosses were conducted.
Two flowers on each plant were tagged and emasculated. The
following day, when in female phase, one flower was pollinated
with pollen from another randomly selected individual from the
same population to create parental-type seed. The second flower
was pollinated with a randomly selected individual from the
assigned paternal population (electronic supplementary material,
table S1) to create between-population hybrid F; seed. In total,
960 crosses were done (24 pops x 20 plants/pop x 2 cross-types),
with crosses representing a different field-collected maternal
seed family. Fruits were collected when mature. F; seeds were
then planted and grown to flowering using the procedures
described above. One individual was grown for each parental
and F; cross-type for each family and population for a total of
960 plants descended from different field-collected maternal seed
families. Upon flowering, each plant was crossed to another
plant of the same cross-type, creating a second generation of
parental plants and an F;, generation of hybrid crosses.

(d) Evaluation of parental, F; and F, performance
Fitness components were evaluated for parental populations and
two generations of between-population crosses. Performance was
evaluated over 2 years, with parental and F; plants grown the
first year, and parental and F» plants the second year. Two repli-
cates of five seeds from each parental and hybrid F, cross were
planted, with their positions randomized across plug trays (1920
cells, two for each of the 960 crosses). The following year parental
and F, seeds were planted, with two replicates of five seeds
planted for 15-21 (mean 18.2) families per parental population
or F, hybrid cross, for a total of 1728 cells (two for each of 864
crosses). Seeds were planted and germinated as described above.
Data were collected for three life-history traits. Germination
was scored approximately four weeks after planting at which
time there were few new germinants. Proportion germination
was calculated for each cross as the number of seedlings
(summed over the two cells planted) divided by the 10 seeds
planted. A single seedling of each family was transplanted and
grown in the greenhouse (954 Parental and F,; 873 Parental
and F»). Survival to flowering was recorded. Day of first flower
was assessed on alternate days, and the number of open flowers
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was counted weekly for four weeks on each plant (flowering
typically lasts a month [40]). The average flower number across
the four weeks was calculated as an index of flower production.
Cumulative fitness was estimated as the multiplicative combi-
nation of proportion germination, proportion survival and
flower production for each cross-type and population.

() Population genomics

Nucleotide variation was studied in the 24 populations using a
restriction-site associated DNA sequencing approach (RADseq).
Details of DNA extraction, haplotyping and genotyping are
described elsewhere [32]. Briefly, 6-7 plants were barcoded
and 100 bp reads were generated after digestion with Sbfl and
size selection. Sequences were processed in iPyrad [41], with
custom haplotyping of the sequencing reads to remove errors.
After genotyping, loci missing data for more than 33% of popu-
lations were pruned. Only biallelic SNPs were considered, and
SNPs with a frequency below 5% at the species level were also
removed. The resulting dataset contained 2605 RAD loci with an
average of 2.5 SNPs per RAD locus. Genotypic data were then
used to count the number of nucleotide differences within popu-
lations using Watterson’s and Tajima’s estimators of 6 [32].
Pairwise Fst among populations was estimated using analysis of
variance implemented in the StAMPP R package [42,43].

(f) dimate data and envionmental distance

Climate data were acquired from the Prism Climate Group (Oregon
State University, https:/prism.oregonstate.edu). Annual averages
for climate variables over the period of 1981-2010 were attained
for the 800 m grid cell containing each of the 24 populations.
We gathered elevation, rainfall (inches), mean temperature, mini-
mum water vapour deficit (hPa) and maximum water vapour
deficit (hPa). Other temperature variables were not considered
because of their strong positive correlations with average tempera-
ture. Using these variables, we calculated two measures of
the multivariate climate distance between populations. First, the
Euclidean distance between points was calculated, though this
could be biased by an underlying covariance between the vari-
ables. We then calculated the pairwise Mahalanobis distance
between populations, which includes the underlying variance-
covariance structure among populations when attaining distances.
While the former distance can will be biased with a covariance
between environmental variables, the latter distance factors out
this covariance.

(g) Statistical analysis

Hybrid breakdown was inferred based on cumulative fitness for
each between-population cross. Initially, means were calculated
for cumulative fitness for each generation (Parental in 2 years,
Fi, F2) for each cross. Hybrid breakdown was estimated by A
(equation (2.1); [44]), which is the difference between the F»
and the average of the parental populations (P, P») and the F;.
Here the mid-parent value (MP) is the average of both parental
population means for both years.

b % o(Fy) “MP)b 1)

02:1p
2

A was standardized by dividing by the F, mean (hereafter, A/F»).

We assessed whether latitude and colonization distance from
the mid-latitude refugium predicted variation in A/F, using separ-
ate linear models for each predictor (R, ‘lm’). Colonization distance
for each population was calculated as the straight-line distance
from the Appalachian Refugium, or the combined distance from
the Southern Appalachian Refugium and the Mississippi River
Staging Ground (figure la). We used mid-parent averages of
each hybrid population (maternal value+ paternal value/2) for

colonization distance and latitude. To evaluate the joint influences
of within-population genetic diversity, population genetic differen-
tiation, and geographic and environmental distances between
parental populations on A/F», we used a multiple linear regression
(R, ‘lm’). We used mid-parent average Watterson’s 6 as a metric of
within-population genetic variation and pairwise Fst as a metric of
between-population genetic differentiation. The linear distance
(km) between parental populations was used as geographic
distance. For environmental distance, we used Mahalanobis D.
Linear distance and environmental distance were uncorrelated
(r=0.30, p=0.143) allowing for an evaluation of their independent
effects on hybrid breakdown. Variance inflation factors for
variables in the model were low (range: 1.24-3.01) indicating mini-
mal impacts of multi-collinearity on the parameter estimates for
each predictor variable. We then generated standardized effects
of each parameter on A/F, by scaling all parameters in the
model (Z-score).

A breakdown of fitness in the F, hybrid generation is posited to
be caused by novel combinations of parental alleles formed only in
the F». The sorting of such novel multi-locus genotypes should not
be uniform across F» individuals. Thus, the expression of hybrid
breakdown at the population level should be positively associated
with variation in the magnitude of hybrid breakdown among indi-
viduals. We assessed the relationship between A/F, and its
standard deviation by resampling individual fitness. Sample
sizes varied among crosses, so the number of jackknifed individ-
uals was modified to minimize the range of plants deleted
(range: 7.1-13.0%). The standard deviation in A/F, was calculated
over the 1000 replicate datasets and its Pearson product-moment
correlation with mean population fitness was calculated (R, ‘cor.t-
est’). One standard deviation value was 117% higher than the
average and was an outlier base on Grubb’s Test (G=3.64, p<
0.0001). This value was removed prior to the analysis.

3. Results
(a) Geographic variation in hybrid breakdoan

On average, crosses displayed modest hybrid breakdown for
cumulative fitness (A/F, =-0.096), though the magnitude of
hybrid breakdown varied considerably across populations

(figure 2a), ranging from a 38% reduction in F» fitness (A/

F,=-0.38) to a 17% increase in F, fitness over expectations
(A/F,=0.17). The strength of hybrid breakdown tended to
increase with each successive life stage (mean germination
A/F, =-0.0058 +£0.0088 s.e.; mean survival A/F,=-0.01=+

0.078 s.e.; mean flower number A/F, =-0.085=+0.027 s.e.),
with flower production contributing most strongly to cumu-

lative fitness breakdown. Hybrid breakdown declined with
the average colonization distance of parental populations

from the mid-latitude glacial refugium (R*=0.30; p=0.006;

figure 2b). Hybrid breakdown also declined with the average

latitude of parental populations, a proxy for proximity to

highly suitable environments throughout the Pleistocene
and the Holocene (R?=0.41; p<0.001; figure 2c).

(b) Genetic and environmental predictors of hybrid
breakdown

Hybrid breakdown was significantly associated with the
standing genetic variation within populations (Watterson’s 6;
p=0.008), the genetic differentiation between populations
(Fst; p=0.002) and the geographic distance between them
(p=0.005). When considering the marginal effects of these
variables, populations with the most standing variation (i.e.
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higher Watterson’s 6, a measure of nucleotide differences
between sequences) produced hybrids with stronger hybrid
breakdown (figure 3a). Moreover, populations that were
more genetically differentiated, having higher pairwise Fgsr
produced hybrids with more severe reductions in fitness
(figure 3b). After accounting for genetic variation within and
between populations, populations that were geographically
close to one another exhibited more hybrid breakdown
(figure 3c). This pattern likely arises because paired popu-
lations nearest the historical core distribution had shorter
inter-population distances (figure 3; electronic supplementary
material, figure S1). Finally, hybrid breakdown was positively
associated with the Mahalanobis climate distance between
populations (p=0.028; figure 3d). In total, these predictors
account for nearly half of the total variation in hybrid break-
down measured in the F» generation (R?=0.498; p=0.008;
figure 3). The standardized effect of Fgt on F, breakdown
was 50% stronger than that of geographic distance and 137%
stronger than that of environmental distance. Likewise, the
standardized effect of Watterson’s 8 on F, breakdown was
47% stronger than that of geographic distance and 134%
stronger than that of environmental distance.

To corroborate the finding that more genetically diverged

populations exhibited stronger hybrid breakdown, we

5
L ]
L]
L]
0
0.2
R?=0.30
. o p=10.006
04 *
600 800 1000 1200
midparent colonization distance
(©)
0.2 ¢

— L]

AJF,

A R2=0.41
. »=0.0008
~0.4 ° ‘ ‘ ‘
35.037.5 400 425

midparent latitude

Figure 2. Variation and geographic pattems of F, hybrid breakdown for 24 hybrid aosses of Campanula americana. (a) Histogram depicting variation in hybrid
breakdown (A/F,) among population pairs. (b) Hybrid breakdown plotted against mickparent colonization distance, which equals the distance between populations
and a midHatitude Pleistocene refugium in the Appalachians (figure 1). (c) Hybrid breakdown plotted against latitude, where southem latitudes were proximate to
highly suitable habitats during the Pleistocene. Shaded areas represent standard enror. (Online version in colour.)

explored the relationship between dxy [45] and hybrid break-
down. dy, measures absolute genetic divergence between
populations and is therefore less affected by the level of genetic
diversity within populations being compared than Fsr [46].
Substituting d, for Fgr in the full model described above,
hybrid breakdown was stronger in populations with higher
dyy (b=-382.2, p=0.053), and the influence of within-
population diversity (mid-parent Watterson’s 6) remained
strong (b=-68.4, p=0.026) (electronic supplementary
material, figure S2 and table S2).

The lack of reciprocal hybrids in the crossing design pre-
cluded a definitive test for asymmetry in hybrid breakdown, a
hallmark of the contribution of cytonuclear interactions to
incompatibilities [38]. However, breakdown was similar
regardless of whether maternal populations were predomi-
nately from the eastern or western genetic cluster (figure 1la;
majority eastern ancestry versus majority western ancestry,
F2,=0.86, p=0.36).

(c) Withinjopulation variation in hybrid breakdown

If hybrid breakdown is caused by mutations that segregate in
the F, generation, then populations with the most fitness
breakdown should also exhibit the most fitness variation
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(Online version in colour.)

among individuals. This prediction follows from the fact that
hybrid breakdown is caused by some but not all hybrid gen-
otypes having low fitness in the F, generation. There was a
strong negative association between the observed hybrid
breakdown (A/F») and the standard deviation of breakdown
in each cross (r=-0.66; p <0.001; figure 4). This relation-
ship remained significant with the inclusion of one outlier
(r=-0.53, p=0.007).

4. Discussion

Geographic patterns of hybrid breakdown in Campanula
americana were strongly structured by distance from glacial
refugia. Colonization distance represents the distance tra-
velled during a geographic range expansion, while latitude
reflects a population’s proximity to highly suitable environ-
ments throughout the Pleistocene and the Holocene [32,33].
Hybrid breakdown is therefore geographically structured
and significantly enhanced between parental populations

near the species’ historical refugia. Conversely, hybrid incom-
patibilities were less often expressed at expanding range
edges. While BDMIs are known to accumulate as populations
diverge, they may also reflect the amount of standing vari-
ation within populations. In C. americana, post-glacial range
expansion established clear geographic patterns in the
amount of standing genetic variation and differentiation
between populations, which in turn have structured spatial
patterns in hybrid incompatibilities.

In this study, we find support for positive effects of
both genetic differentiation (pairwise Fst) and standing vari-
ation (average Watterson’s 6) on hybrid breakdown. While
these measures are negatively correlated with each other
(r=-0.67, p=0.002), our general linear model implicates
their independent influence on the magnitude of hybrid
breakdown revealed in crosses. Moreover, the use of dy,
instead of Fsr as a metric of population differentiation pro-
vided similar support for the effects of both within- and
between-population diversity on hybrid breakdown. While
consistent with the allopatric model of speciation, it is
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Figure 4. The relationship between variation in F, hybrid breakdown (SD)
and the magnitude of F, hybrid breakdown (A/F,). Crasses exhibiting greater
breakdown (negative A/F,) also exhibit greater fitness variation among indi-
viduals in the F, (r = -0.66; p< 0.001). The SD in breakdown was estimated
with jaddknife resampling.

important to note that this hypothesis concerns mutations
that are uniquely derived in each population. Watterson’s 6
reflects nucleotide polymorphisms regardless of whether
they are in fact unique to a population or have more ancient
origins, yet those in the latter category may also contribute to
hybrid breakdown [19].

In animals and plants, there is compelling support for the
idea that hybrid breakdown accumulates over time as popu-
lations diverge [10,12-14]. This accumulation is typically
thought to be caused by derived mutations that arise in iso-
lated populations. This model of speciation is consistent
with cases where large-effect mutations cause substantial
declines in hybrid fitness, since polymorphic BDMIs would
be eliminated by natural selection within a population. Selec-
tion would, however, be less effective in cases where BDMIs
were subject to weak selection (e.g. hybrid breakdown caused
by many small-effect mutations) [14]. In this study, the mag-
nitude of hybrid breakdown was lowest during germination,
moderate during vegetative growth and highest during
the production of flowers near the end of life. Such a pattern
is consistent with expectations based on evolutionary
theories of ageing, since mutations expressed later in life
have less influence on the reproductive contribution of indi-
viduals [47]. This argument has been previously applied to
flowering plants, including C. americana, to explain the pat-
tern of highest inbreeding depression for traits expressed
late in life [48,49].

When BDMIs interact to reduce fitness, hybrid break-
down arises in the F, generation because some but not all
genotypes express combinations of alleles that depress indi-
vidual fitness [6,50]. This signature of BDMIs implies that
crosses exhibiting more hybrid breakdown will also exhibit
more variation in fitness among F» individuals. Our analyses
support this prediction, demonstrating that the phenomenon
of hybrid breakdown is consistent with the fitness effects of
mutations segregating in F, hybrids. Such a pattern would
not arise simply from a statistical scaling of the standard
deviation in breakdown with its mean absolute value since

crosses with the highest mean F, fitness express the least

variation in fitness among individuals (figure 4). Hybrid
breakdown is therefore strongly associated with individual
fitness variation in the F, generation, in the specific direction
predicted by when there is negative epistasis for fitness
caused by BDMIs [6]. We note that our design was unlikely
to detect the effects of all potential BDMIs in some of the
hybrid populations. Because the number of replicates per
hybrid population planted in the F, ranged from 15 to 21,
the power to detect hybrid breakdown may have been lim-
ited. Given the expression of breakdown in C. americana, it is
most likely that many loci of small effect underlie hybrid
breakdown, though rare large-effect mutations would likely
escape detection without larger samples.

Working models for the accumulation of hybrid incom-
patibilities have been greatly informed by dissecting the
molecular basis of these interactions. Studies in both animal
and plant model systems have revealed much about the
nature of these interactions [18,50-54]. A complementary
approach involves studying the spatial distribution of these
incompatibilities to test hypotheses regarding their evolution
[55-57]. While hybrid breakdown reported here is not
directly connected to the underlying mutations, its variability
among populations is valuable for testing hypotheses regard-
ing the accumulation of reproductive isolation [58]. The work
presented here provides a window into the early stages of the
speciation process in natural populations of C. americana,
where both genetic polymorphism and differentiation
contribute to the expression of hybrid breakdown.

In tests of post-zygotic isolation, experiments frequently
raise parents and hybrids in natural environments [2,59]. The
motivation for this experimental design is to differentiate
between intrinsic genetic incompatibilities and those that
depend on the ecological context [60]. In cases of ecological
speciation, there is an expectation that hybrid breakdown
occurs when intermediate phenotypes reduce fitness in par-
ental environments [61]. Such a pattern implies that natural
selection contributes to divergence when hybrids are produced
naturally [62,63]. In the current study, measurements of hybrid
breakdown were made in acommon greenhouse, so the degree
to which hybrid fitness is contingent upon the environment is
unknown. The fact that hybrid breakdown was exacerbated for
populations inhabiting distinct climatic conditions (tempera-
ture, precipitation, aridity) implies, however, that there is at
least intrinsic coadaptation that is associated with the climates
experienced by populations across the species’ geographic
range [17]. We note that other factors not captured by our
metric could also contribute to local adaptation. Regardless
of whether post-zygotic reproductive isolation is caused by
divergent selection among natural populations, its magnitude
is associated with differences in the climatic conditions under
which evolution has progressed in recent time.

5. Condusion

Both polymorphism and differentiation contribute to the pro-
cess of speciation, yet, their contributions are rarely studied
together. Our study underscores the importance of standing
genetic variation as a predictor of hybrid breakdown. That
incompatibilities were most pronounced in refugial regions
but were not expressed between populations at expanding
range edges has important implications for speciation in the
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face of climate change. Rear-edge populations frequently
inhabiting lower latitudes in the northern hemisphere are
particularly susceptible to extirpation as the climate warms
[64,65].
more genetic diversity than other parts of species’ ranges
and thus represent a hotspot for the accumulation of hybrid
incompatibilities crucial for the process of species diversifica-

These rear-edge populations generally harbour

tion. Leading-edge populations may be expected to persist in
the wake of climate change, though their limited genetic
diversity translates into lower speciation potential. Our
study joins others in the call for strengthening conservation
efforts of rear-edge populations [64-66].
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