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Abstract Declines in eelgrass, an important and widespread coastal habitat, are associated with wasting
disease in recent outbreaks on the Pacific coast of North America. This study presents a novel method for
mapping and predicting wasting disease using Unoccupied Aerial Vehicle (UAV) with low-altitude autonomous
imaging of visible bands. We conducted UAV mapping and sampling in intertidal eelgrass beds across multiple
sites in Alaska, British Columbia, and California. We designed and implemented a UAV low-altitude mapping
protocol to detect disease prevalence and validated against in situ results. Our analysis revealed that green leaf
area index derived from UAV imagery was a strong and significant (inverse) predictor of spatial distribution
and severity of wasting disease measured on the ground, especially for regions with extensive disease infection.
This study highlights a novel, efficient, and portable method to investigate seagrass disease at landscape scales
across geographic regions and conditions.

Plain Language Summary Diseases of marine organisms are increasing in many regions
worldwide, therefore, efficient time-series monitoring is critical for understanding the dynamics of disease
and examining its progression in time to implement management interventions. In the first study of its kind,
we use high-resolution Unoccupied Aerial Vehicle (UAV) imagery collected to detect disease at 12 sites
across the North-East Pacific coast of North America spanning 18 degrees of latitude. The low altitude UAV
visible-bands imagery achieved 1.5 cm spatial resolution, and analysis was performed at the seagrass leaf
scale based on object-oriented image analysis. Our findings suggest that drone mapping of coastal plants may
substantially increase the scale of disease risk assessments in nearshore habitats and further our understanding
of seagrass meadow spatial-temporal dynamics. These can be scaled up by searching for environmental signals
of the pathogen, for example, with surveillance of wastewater for signs of Covid in human populations. This
application could easily apply to other areas to construct a high-resolution monitoring network for seagrass
conservation.

1. Introduction

Pathogens play an important role in the ecology of natural and human-dominated ecosystems worldwide
(Lopez-Calderon et al., 2016). Iconic species from plants and corals to amphibians and mammals are increas-
ingly suffering declines due to pathogenic organisms (Harvell et al., 2002). Disease outbreaks are increasing in
frequency due to climate change, changes in species distributions, and interactions among these factors (Burge
et al., 2014). However, a major challenge in understanding the ecology and impact of disease in all populations
from plants to humans is developing a robust system for quantifying the prevalence and severity of infections and
their impact (Glidden et al., 2022). Outbreaks are often not recognized until they are well underway, hampering
mitigation measures. Yet the intensity with which surveillance must occur to detect outbreaks and the scale of
spread often exceed available resources (Burge et al., 2016). Thus, the ability to characterize the spatial extent
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and quantify intensity of disease outbreaks remain major limitations for managing and mitigating the impact of
diseases on populations.

Zostera marina, commonly referred to as eelgrass, is a flowering marine plant widespread in coastal areas of
the northern hemisphere. Like many other seagrasses, eelgrass lives in intertidal and subtidal inshore waters and
forms dense meadows in estuaries and protected coastal seas (Duffy et al., 2013; Moore & Short, 2007). Eelgrass
is highly productive and provides habitat for abundant marine invertebrates and fishes (Lefcheck et al., 2019),
supports important fisheries (Unsworth et al., 2019), and provides other ecosystem services such as carbon
sequestration and water filtration (Costanza et al., 1997). Seagrasses are declining in many regions worldwide due
to a variety of stressors, including human impacts and diseases (Dunic et al., 2021; Waycott et al., 2009). Eelgrass
is susceptible to eelgrass wasting disease, which is caused by a marine protist, Labyrinthula zosterae. The protist
invades and kills plant tissue resulting in formation of dark, necrotic lesions (Muehlstein et al., 1991; Ralph &
Short, 2002) and has strongly influenced eelgrass dynamics worldwide over the last century (Short et al., 1987,
Sullivan et al., 2013). This disease reached epidemic proportions in the 1930s along the North American East
Coast and in Europe, killing up to 90% of eelgrass (Addy & Aylward, 1944), and continues to threaten eelgrass
recovery worldwide (Short et al., 1987). Rapid loss of eelgrass in New England in the 1980s (Short et al., 1987)
and in the northeastern Pacific more recently have also been associated with wasting disease (Groner et al., 2021).

However, eelgrass wasting disease outbreaks are rarely quantified. Common methods of sampling individual
eelgrass leaves and scoring the extent of wasting disease lesions are too labor-intensive for widespread assess-
ment of disease outbreaks, especially at the landscape scale (km) and in remote field locations. Furthermore,
although the pathogen L. zosterae occurs globally (Martin et al., 2016), there is little understanding of regional or
geographic patterns in disease dynamics. Efficient assessment of wasting disease is needed to identify baseline
infection and outbreak conditions across the geographic range for eelgrass. While molecular approaches such as
gPCR assays, culturing, or histology are needed to directly confirm the presence of a pathogen, the expense and
infrastructure needed to test a large number of samples may be prohibitively expensive (Burge et al., 2016). There-
fore, determining the impact of eelgrass wasting disease at the landscape scale, and predicting future impacts of
this disease in association with climate change effects (Aoki et al., 2022), requires multidisciplinary efforts.

With the recent development of microelectronics and image processing algorithms, Unoccupied Aerial Vehicles
(UAVs, or drones) are poised to revolutionize regional imaging approaches. Compared to traditional satellite and
aerial imaging methods, UAV sensors can achieve high-resolution mapping (<0.05 m) for visible light bands
(RGB), which enables unprecedented fine-scale image analysis at the level of individual seagrass leaves over
much larger areas than is possible with traditional sampling in situ (Beatty et al., 2021). Using programmed
autonomous mapping, UAVs can conduct surveys during a short low tide window (about 1 hr) when the upper
intertidal area of the bed is exposed (Nahirnick et al., 2019; Yang, Hawthorne, et al., 2019), and with repeatable
on-demand imaging capabilities at a lower cost and reduced human effort (Jensen & Mathews, 2016). UAVs can
fly stably in windy coastal areas, for example, 25 km/hr (Hardin et al., 2019), and capture imagery during cloudy
days, which may impede aerial or satellite remote sensing.

Here, we present a novel interdisciplinary method to greatly expand assessment of the local and regional health of
seagrass meadows by integrating on-the-ground ecological approaches with UAV remote sensing and geospatial
analysis. We test the ability of UAV low-altitude mapping to reliably detect eelgrass wasting disease across a
broad range of sites. UAV fieldwork was conducted simultaneously with in situ sampling for 12 sites in Alaska
(AK), British Columbia (BC), and California (CA). Previous studies used remotely sensed leaf index to estimate
agriculture production and biomass (Gitelson et al., 2003). We further developed object-oriented image analysis
to generate a map of Green Leaf Area Index (G-LAI) over an entire seagrass meadow from high resolution UAV
imagery. G-LAI represents the density of the area classified as seagrass that is green in color, indicating healthy
tissue. We measured in situ wasting disease severity by collecting and scanning georeferenced plants and using
an artificial intelligence program EeLISA (Eelgrass Lesion Image Segmentation Application (Aoki et al., 2022;
Rappazzo et al., 2021)) to classify disease severity (percent of individual leaf area i.e., lesioned) for each leaf.
We tested the hypothesis that the fine-scale G-LAI from high-resolution imagery would reflect the severity of
disease due to an increased fraction of darkened leaf tissue and tested this relationship spanning 18 degrees of
latitude along the Pacific coast of North America. Developing leaf index proxies for the physical manifestations
of the disease in organisms can be useful, if well-validated, to increase throughput. If proxies can be assessed
remotely, then spatial coverage can be greatly increased.
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Figure 1. Workflow of the Unoccupied Aerial Vehicle (UAV) and sampling fieldwork, estimating seagrass health map and validation. UAV surveys were conducted

at 12 sites in Alaska, British Columbia, and California to derive image-based indices to estimate the spatial extent of eelgrass wasting disease. Images collected from
UAV surveys were stitched to create high-resolution orthomosaic images and Digital Surface Model (DSM) using Structure from Motion-Multiview Stereo (StM-MVS)
photogrammetric techniques (Zhang, 2003). Then, mapping products were geo-referenced against GCPs measured from high-performance GNSS system. Meanwhile,
the transect tapes (Figure 2) were used to rigorously mark locations on UAV high-resolution imagery. Color balancing was carried out to address the sunlight conditions
changing during mapping (Whitehead & Hugenholtz, 2014). The black and white tarps (Figure 2) were used for atmospheric correction through linear transformation
(Xu et al.). We used object-oriented image analysis and calculated a Green Leaf Area Index (G-LAI) value that represents the fraction of the total area identified as
green seagrass that indicates lack of disease signs.

2. Data and Method

The low-altitude UAV mapping and sampling fieldwork were carried out in 2019 around Prince of Wales Island
in Alaska (July 14th to 19th), Central Coast in British Columbia (July 29th to August 3rd), and Bodega and
Tomales Bays in California (July 2nd to 6th) following US Federal Aviation Administration (FAA) Part 107
flight guidelines. UAV mapping with temporal flexibility can catch the best low tide to maximize the imaging
quality. In this region of the northeast Pacific, coastlines experience mixed semi-diurnal tides; in summer months,
lower low water occurs in the morning, exposing the intertidal seagrass beds during spring tides. Data collection
targeted spring tides and occurred around 6:30 a.m. (GMT-9) at low tide —32 cm for AK, 7:30 a.m. (GMT-8)
at low tide —49 cm for BC, and 7:30 a.m. (GMT-8) at low tide —37.5 cm for CA, with low tide heights relative
to mean lower low water. The mapping and image acquisition takes about 1-2 hr. Mapping during the morning
with lower sun angles (38°-57° elevation angle) was optimal for minimizing sun glint in UAV imagery (Green
et al., 2000) (Figure 1).

The major UAV used is DJI Phantom IV Pro v2 quadcopter equipped with a RGB camera sensor with 12.4 m
effective pixels (Stroppiana et al., 2015; Yang, Mansaray, et al., 2019). For each of the eelgrass beds, low-altitude
UAYV mapping at 60 m/200 ft was conducted under the same fly settings. One challenge for low-altitude marine
UAV mapping is that the water surface is often a more homogenous area than land, and the image stitching is
challenging or could fail for regions that lack variation (Laliberte & Rango, 2009). To overcome this challenge,
we deployed several anchored buoys with taut anchor lines on the near-shore water surface to be used as Ground
Control Points (GCPs) during the fieldwork (Figure 2). These contrasting-colored buoys can add matching points
to homogeneous water areas to facilitate the image stitching process. Also, a higher overlap ratio, for example,
75% for both front and side overlap ratios, was used in mapping to obtain a larger overlapping area for image
stitching and registration. Although the higher overlap ratio leads to a longer mapping time for the same area, we
adjusted the mapping route to be parallel with the longer side of the mapping area to minimize the UAV turning
points and achieve the best balance between mapping time and coverage. UAV mapping for each eelgrass bed
could be completed within 2-3 batteries, with each battery having about 20-25 min of flight time.

In situ eelgrass samples were collected from the third youngest leaf from each plant every four m along a 20 m
transect (n = 5 per transect, Figure 2) to measure lesion severity. The sampling locations were marked on the
image using six 20 m transect tapes (Figure 2). The eelgrass sampling was part of a long-term study of wast-
ing disease and eelgrass community dynamics, with full details of the sampling methods available elsewhere
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Figure 2. UAV mapping orthomosaic, GCP points on land and water, and tarps for atmosphere correction. Buoys with red/white colors were anchored on the water
surface for easier identification on the UAV image. On land, we deployed several orange buckets to be identified as GCPs on the image, and use waterproof Trimble

R1 high-performance GNSS to collect coordinates. Two 10 X 8 feet white and black tarps were deployed in all of the UAV mapping sites to be captured by the UAV
camera for atmosphere correction. Six 20 m transects at each site, parallel to the shoreline, with three transects at the shoreward edge of the intertidal eelgrass (upper
transects) and three transects in the lower portion of the eelgrass bed, closer to the ocean (lower transects). Upper and lower transects were set to be parallel and 5-10 m
apart from each other. This sampling design ensured an even spatial distribution of the in situ sampling points. The eelgrass samples were scanned in lab and measure

lesion area using EeLISA.

(Aoki et al., 2022). As wasting disease infection progresses, the eelgrass leaves further lose the green leaf area
by turning from green to black and brown color (Figure 2) (Duffy et al., 2018). To precisely measure wast-
ing disease severity for different sites among the different seagrass conditions, we used the Eelgrass Lesion
Image Segmentation Application (EeLISA), an artificial intelligence program developed by Cornell University
(Rappazzo et al., 2021). For each scanned leaf image, EeLISA measured the total lesion area and the total leaf
area (including healthy and diseased tissue). The lesion area was divided by the total leaf area to calculate disease
severity of each sampling point.

Image analysis includes object-oriented image segmentation, classification for eelgrass patches, and G-LAI esti-
mation. Low altitude UAV mapping provides a high-resolution orthomosaic image and Digital Surface Model
(DSM) at 1.5 cm spatial resolution, which enables the object-oriented image analysis at an unprecedented fine
scale. For the image segmentation, we considered spectral bands of visible light and used the leaf length to cali-
brate the scale parameter (object size). The maximum likelihood fitting method was used to determine the object
scale against in situ sampling data of leaf length (Yang, Mansaray, et al., 2019). The object scale parameter was
iterated from 10 to 180 and compared the object size to the longest leaf length from sampling (Yang, Mansaray,
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et al., 2019). The method calculated mean scale parameter 95 for AK, 85 for BC, and 65 for CA. The shape and
compactness were fit to 0.5 and 0.2 using same maximum likelihood approach. The scale parameter is weighted
with shape parameters (with separation of shape and compactness parameters) to minimize the fractal borders
of the objects. In the results, each segmented object is treated as one plant, or a cluster of plants of eelgrass with
similar characteristics.

After segmentation, the supervised classification was performed on the segmentation results to extract the eelgrass
objects from unvegetated objects within each scene. Based on fieldwork photos and in situ sampling locations, a
set of objects that have been ground-truthed as eelgrass were selected as training data, and all eelgrass belonging
to this class was extracted. Other classes were also selected on the image based on the fieldwork records, includ-
ing water area, sand/bare soil, shore, and other non-seagrass features. Haralick texture analysis tool was used to
distinguish the seagrass meadows from sand and algae due to the different textures (Laliberte & Rango, 2009).

The G-LAI was calculated based on the object-oriented segmentation and classification results, defined as the
green leaf area per object total area classified as seagrass (Watson, 1947). Roth et al. (2018) proposed a method
to estimate LAI based on RGB images and viewing geometry from high-resolution UAV mapping, and their
validation results suggest this method achieved strong results (R?> > 0.9) compared with in situ ground truth
measurements (Roth et al., 2018). We follow the methods for the segmentation of green vegetation like seagrass,
including Normalized Green Red Difference Index (NGRDI) (Bassine et al., 2019), Excess Green (ExG) (Meyer
& Neto, 2008), and Green Leaf Index (GLI) (Louhaichi et al., 2001). As wasting disease infection leads to the
loss of greenness, GLI was used to extract the green seagrass portion and calculate G-LAI (Liu & Wang, 2018).

The G-LAI method aims to estimate a whole canopy rather than the leaf area of a single leaf. The image shows a
canopy from a specific viewpoint and area; therefore, it is related to a certain viewing geometry based on zenith
and azimuth angle. In our case study, UAV mapping was controlled by an autonomous mapping application
with recorded in nadir view pixels. The small scale variation of zenith angle can be calculated by the DSM from
UAYV mapping products. The fraction of eelgrass pixels in each object was calculated as the ratio between the
extracted seagrass green leaf area and total number of pixels. Figure 3 shows the UAV mapping orthomosaic for
12 eelgrass beds and one example (Nossuk) of object-oriented image processing. We utilized Esri Drone2Map
for image pre-processing and stitching, Esri ArcGIS and Trimble eCognition for image processing, and R Studio
for statistical analysis.

3. Results

Three statistical models were adapted to test the regional and global relationship between G-LAI and wasting
disease severity. For the per site linear regression model, UAV-derived G-LAI was strongly predicted by eelgrass
disease severity (Table 1, Figure 4) for all 12 sites in AK, BC, and CA, demonstrating a negative relationship
between G-LAI and in situ wasting disease severity. The G-LAI estimated from the object-oriented analysis
explains 47%-58% of the total variation in wasting disease for Alaska, and about 30% for British Columbia and
California (Table 1).

Two global models (all sites from three regions) were conducted to predict severity and presence of disease signs
using G-LAI (Table 1). The first is a logistic regression model that test disease presence (yes/no) with G-LAI
values, we found that this model is also statistically significant, with coefficient —4.07 + 0.61; Z = —6.648,
p < 0.001 (Table 1). Based on the model we calculate threshold value of G-LAI is 0.6144 for 50% disease prev-
alence, hence such areas with a G-LAI below this threshold can be rapidly detected more likely than not to have
disease present.

Also, a global linear model was constructed to predict disease severity from G-LAI (Table 1). The model achieved
statistical significance, but the overall R? decreased to 0.231, considerably lower than the site by site models,
suggesting differences among regions in the severity—G-LAI relationship. Indeed, when we added region as a
fixed effect (Allison, 2002), explanatory power improved somewhat to R? of 0.289 (Table 1). Bodega Bay and
Tomales Bay were modeled separately because they have different topography and environmental conditions
(DuBois et al., 2022) (see locations in Figure 4).

Visually, orthomosaic imagery of the eelgrass beds generally showed reduced G-LAI around in situ sampling
sites where disease was detected (Figure 5). In Nossuk (Figure 5c) the lower transect (close to the water) displays
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Figure 3. UAV mapping processing products for Alaska: (a) Fish Egg on July 14th; (b) Guktu on July 15th; (c) Nossuk on July 16th; (d) Natzuhini on July 17th; British
Columbia: (e) Pruth on July 29th; (f) Triquet on August Ist; (g) Goose on August 2nd; (h) Superstition on August 3rd; and California: (i) Westside on July 2nd; (j)
Mason Marina on July 3rd; (k) Nicks Cove on July 5th; (1) Millerton on July 4th. (m-o0),Processing example for Nossuk (m), original UAV orthomosaic imagery, (n),
extracted green leaf area, o), choropleth map showing G-LAI calculated for each object; higher G-LAI areas are shown in dark green color while lower G-LAI areas in
light green color.
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Table 1
Statistical Models Between UAV Mapping G-LAI and in Situ Sampling Disease Severity
Per site regression Lat(°) Long(°) R R? Coefficient SE p-value
AK Fish Egg 55.496 —133.168 0.691 0.478 —1.05 0.207 0.0001
Guktu 55.739 —133.312 0.758 0.575 —7.00 1.137 0.0001
Nossuk 55.707 —133.343 0.722 0.521 —3.44 0.623 0.0001
Natzuhini 55.249 —132.881 0.708 0.501 -3.30 0.623 0.0001
BC Duck 51.924 —128.470 0.562 0.316 -2.70 0.752 0.0012
Superstition 51.894 —128.235 0.582 0.339 -1.50 0.395 0.0007
Triquet 51.808 —128.237 0.609 0.371 —0.69 0.169 0.0003
Pruth Bay 51.645 —128.119 0.401 0.161 —0.31 0.134 0.0282
CA Nicks Cove 38.205 —122.927 0.587 0.345 —1.85 0.483 0.0006
Millerton 38.105 —122.846 0.589 0.347 -2.29 0.596 0.0006
Mason Marina 38.333 —123.059 0.560 0.314 —1.13 0.317 0.0013
Westside 38.319 —123.054 0.596 0.356 -1.30 0.33 0.0005
Global regression R R? Coefficient SE p-value
G-LAI without fixed effect 0.481 0.231 —0.209 0.02 <0.000
G-LAI with fixed effect —0.258 0.02 <0.000
Dummy BC (fixed effect) 0.537 0.289 0.0545 0.01 <0.000
Dummy Bodega (fixed effect) 0.0350 0.01 0.011
Dummy Tomales (fixed effect) —0.0084 0.01 0.533
Logistic regression z value Coefficient SE p-value
G-LAI —6.648 —4.0708 0.6123 <0.000
Intercept 5.968 3.0011 0.5028 <0.000
a better leaf condition, visible in the image as greener color, than the upper transect. Note in the middle part of
the upper transect (close to the land) in Nossuk (Figure 5c), there is a large increase in disease severity detected
in the in situ samples as indicated by the largest circles in the middle part. Meanwhile, the UAV image shows the
same large loss of the green leaf area at the same area. This leaf area pattern reflected in the UAV imagery has
a close correlation with the in situ sampling results. In the maps of Fish Egg (Figure 5a) and Guktu (Figure 5b)
similar patterns are observed. Sampling points with higher disease severity correspond to non-green sections of
the image, explaining the negative relationship of severity to the green leaf area.
4. Conclusions and Discussion
We highlight a novel low-altitude UAV mapping and image analysis method that can detect variation in eelgrass
wasting disease severity and presence, validated by in situ sampling, over 12 sites spanning much of the North
American west coast across 18 degrees of latitude. The ability of UAV mapping to predict eelgrass disease
severity was statistically significant for 12 sites, and explained an average 38.5% of variation in disease severity.
This suggests that it is feasible to use UAV high-resolution images and geospatial image analysis to extend the
spatial scale of mapping eelgrass wasting disease. The performance of G-LAI as an indicator for the presence
and severity of wasting disease was robust across a wide range of eelgrass and disease conditions, including
differences in plant morphology and epiphyte load, which have been associated with wasting disease severity in
prior studies (Groner et al., 2016). The in situ sampling indicates lower epiphyte/fouling loads and higher water
clarity in Alaska sites, which might be one explanation for the variation in predictive ability across those sites.
The method is especially applicable for areas with higher infection by disease and lower epiphyte cover, such as
AK sites, since both disease and epiphyte load reduce G-LAI. Our findings suggest that drone mapping of coastal
plants could facilitate the feasibility of large-scale spatially-explicit disease risk assessments in nearshore habitats
and further our understanding of seagrass meadow spatial-temporal dynamics.
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Figure 4. Regression results and scatter plot between UAV eelgrass G-LAI and in situ disease severity for 12 sites spanning 18 degrees of latitude. Sampling eelgrass
beds including 4 sites in Prince of Wales Island in Alaska (USA), 4 sites in Central Coast in British Columbia (Canada), and 4 sites in Bodega and Tomales Bays in

California (USA).

Diseases of marine organisms are increasing in many regions worldwide, with important consequences for ecosys-
tems and humanity (Burge et al., 2014; Harvell et al., 2002). Despite increasing interest in seagrass meadow
conservation, only one-tenth of the estimated global extent of seagrass meadows has been fully mapped (Dunic
et al., 2021; McKenzie et al., 2020) and the influence of wasting disease on contemporary regional and global
seagrass declines is not well understood. Recent evidence further suggests that wasting disease outbreaks are
likely to increase with warming temperatures from climate change (Aoki et al., 2022; Bull et al., 2012; Groner
et al., 2021), magnifying the need for rapid disease assessment at the landscape scale. Our method provides new
opportunities to investigate environmental drivers and ecological impacts of eelgrass wasting disease at the land-
scape scale and across the geographic range of eelgrass. By implementing UAV mapping, scientists and managers
may be able to identify wasting disease outbreaks and target limited monitoring resources. Although interven-
tions to treat seagrass wasting disease are in their infancy, worsening disease outbreaks may indicate impending
eelgrass decline (Aoki et al., 2022; Groner et al., 2021). Rapid and large-scale assessment of seagrass health by
UAVs can enable managers to include disease as a key factor driving seagrass dynamics and aid in pinpointing
resilient, healthy meadows to conserve. As climate change accelerates, potentially increasing the frequency and
severity of disease outbreaks (Aoki et al., 2022; Burge et al., 2014), new approaches such as those tested here will
improve our ability to understand, forecast and manage ecological change.

Most of our sites were mapped simultaneously with in situ fieldwork, and this manifested the spatial correla-
tion between in situ and UAV estimates. Meanwhile, we found temporal correlations when G-LAI and in situ
sampling measurements were separated by some time, given the orientation of seagrass leaves may change with
currents, tides, and water depth, the canopy location remains stable. For example, one California site (Millerton
Point) was mapped by UAV on July 4, while the in situ samplings were performed on July 31, and the correlation
between G-LAI and disease severity was as strong as at other sites. Asynchronous mapping would allow for
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Figure 5. The sampling disease severity overlay with eelgrass objects (in red) for Alaska sites: (a) Fish Egg; (b) Guktu; (c) Nossuk. The sampling disease severity
values are coded in different-sized symbols (in black) with larger circles corresponding to more severe lesions along both upper and lower transects. Lesion severity is
calculated as the leaf area covered by lesion divided by total leaf area.

even greater flexibility in implementing UAV methods to monitor disease, since poor flying conditions would
not constrain sampling dates. The success of this method demonstrates how UAV mapping can upscale disease
surveillance efforts by augmenting conventional fieldwork and providing predictions at spatial and temporal
scales that previously were not achievable due to limitations of conventional satellite imagery methods (Yang,
Hawthorne, et al., 2019).

The primary drone used in this study is DJI Phantom IV Pro, which is a reliable and cost-effective solution for
coastal mapping (Duffy et al., 2018; Yang et al., 2020). Its main advantage is the visible light bands with high
resolution and water penetration ability for intertidal mapping (Lee et al., 2013). We also used a Parrot Bluegrass
UAV with Sequoia multi-spectral sensor (Yang, Hawthorne, et al., 2019). Its near-infrared (NIR) band can detect
biomass but with coarser resolution and weaker water penetration ability. Moreover, we note that although the
direction and fit of the association is consistent across regions, the slope of the relationship varies somewhat
both among and within regions (Figure 2). Currently, this limits the precise application of the G-LAI as a general
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indicator of disease severity across sites. However, future studies could assess correlates of this variation in slope
such as epiphyte load, water clarity, length of plants. Number of leaves per shoot, and temperature to develop a
relationship that could predict disease severity from remotely sensed data alone. Moreover, our G-LAI metric
may be a better estimate of meadow condition than in situ sampling of individual blades because it accounts for
green leaf area across the entire surveyed area, while sampled in situ lesion severity occurred only on the third
youngest leaf of each plant and sampled a much smaller number of plants. Regardless, we note that the combina-
tion of in situ leaf measurements and UAV sampling allows expanding the spatial scope of sampling to broader
areas within a site, extending our understanding of disease patterns far beyond that obtainable with leaf sampling
alone. This application could easily be extended to monitoring other plant diseases that noticeably discolor leaf
surfaces (Gitelson et al., 2003).
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