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We develop a new nonparametric approach for discrete choice and use it to analyze
the demand for health insurance in the California Affordable Care Act marketplace.
The model allows for endogenous prices and instrumental variables, while avoiding
parametric functional form assumptions about the unobserved components of utility.
We use the approach to estimate bounds on the effects of changing premiums or sub-
sidies on coverage choices, consumer surplus, and government spending on subsidies.
We find that a $10 decrease in monthly premium subsidies would cause a decline of
between 1.8% and 6.7% in the proportion of subsidized adults with coverage. The re-
duction in total annual consumer surplus would be between $62 and $74 million, while
the savings in yearly subsidy outlays would be between $207 and $602 million. We es-
timate the demand impacts of linking subsidies to age, finding that shifting subsidies
from older to younger buyers would increase average consumer surplus, with poten-
tially large impacts on enrollment. We also estimate the consumer surplus impact of
removing the highly-subsidized plans in the Silver metal tier, where we find that a non-
parametric model is consistent with a wide range of possibilities. We find that compa-
rable mixed logit models tend to yield price sensitivity estimates toward the lower end
of the nonparametric bounds, while producing consumer surplus impacts that can be
both higher and lower than the nonparametric bounds depending on the specification
of random coefficients.

KEYWORDS: Nonparametric estimation, demand estimation, discrete choice models,
partial identification, linear programming, ACA, health insurance.

1. INTRODUCTION

1.1. Motivation

THE DESIGN OF THE PATIENT PROTECTION AND AFFORDABLE CARE ACT of 2010
(“ACA”)—and, more generally, of publicly-sponsored, private-provided health insu-
rance—remains an object of debate among policy makers (e.g., Einav and Levin (2015),
Handel and Kolstad (2022), Handel and Ho (2021)). Addressing key design issues, such
as the structure of premium subsidies or the types of plans to offer, requires estimating
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demand. Recent research has filled this need using parametric discrete choice models,
such as conditional logit (Chan and Gruber (2010), Ericson and Starc (2015)), nested
logit (Saltzman (2019)), and mixed (random coefficient) logit (Tebaldi (2022), Polyakova
and Ryan (2019)), following approaches that are common to analyses of market regula-
tion, consumer welfare, and antitrust in a variety of contexts (see Berry and Haile (2016),
for a review).

These alternative logit models differ in how they deal with the independence of irrel-
evant alternatives (e.g., Goldberg (1995), McFadden and Train (2000)), and in how they
deal with the potential endogeneity of prices (e.g., Berry (1994), Berry, Levinsohn, and
Pakes (1995)). However, they are all fully parametric, with the type I extreme value dis-
tribution playing a key role. This raises the concerning possibility that the counterfactual
predictions and policy implications generated by such models are substantially driven by
specific parametric functional forms.

1.2. Methodological Contribution

We develop a new nonparametric approach for the discrete choice model

Yi = arg max
j∈J

Vij − Pij� (1)

where Yi is individual i’s choice from the discrete set of options j ∈J ={0�1� � � � � J} with
prices Pij and continuously distributed latent valuations Vij . We do not require valuations
to follow a specific distribution, such as normal (probit) or type I extreme value (logit),
and we allow them to be arbitrarily dependent across options for each individual. We
allow for prices and valuations to be correlated, and use instrumental variables to address
this endogeneity.

We analyze identification by developing a strategy that builds on Manski (2007), who
considered discrete choice under only the basic assumptions of rationality, without the
aid of choice model (1). Manski’s insight was that individuals facing a discrete choice
can be characterized by a discrete set of latent types based on what their choices would
be under any of a finite number of potential choice scenarios, such as different prices.
The data provides some information on the relative frequency of the latent types, while
assumptions such as rationality eliminate other types altogether. Manski showed how to
use linear programming to combine these sources of information and produce bounds on
choice probabilities.

The number of types in Manski’s framework grows extremely quickly with the number
of choice sets. This is because rationality is a weak assumption: the number of rational
preference configurations compatible with even a small number of price vectors is astro-
nomically large even when the number of choices (J) is small. We eliminate many of these
types by assuming not only that individuals are rational, but also that preferences are con-
sistent with choice model (1), which can be viewed as requiring quasilinearity. Under this
choice model, each type can be interpreted as a subset of valuations, a point recognized
by Koning and Ridder (2003, Figure 2). These subsets divide the space of valuations into
a finite partition of valuation space that we call the minimal relevant partition (MRP).

We use the MRP to develop a practical approach for computing sharp bounds on vari-
ous target parameters, such as choice probabilities, elasticities, and changes in consumer
surplus. By definition, the sharp bounds cover the range of values for the target param-
eter that could be generated by a joint distribution of latent valuations (Vij) that satisfies
the researcher’s a priori assumptions, and which could have also produced the observed
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distribution of choices. But directly considering all possible distributions of valuations is
difficult, because the distribution of a continuous random vector is an infinite-dimensional
object.

Instead, we prove that one can find the sharp bounds by considering the overall masses
placed on the finite number of sets in the MRP. We use a constructive argument to show
that this strategy preserves sharpness even under additional assumptions that incorpo-
rate instrumental variables and known vertical orderings on the choice options. We show
how to compute the sharp bounds by solving finite-dimensional linear programs. Then we
apply our approach at scale, making use of recent advances in estimation and inference
under partial identification.

1.3. Empirical Results

We use our approach to estimate demand counterfactuals in the California ACA mar-
ketplace (Covered California) using administrative records from 2014. We focus on the
choice of coverage level (metal tier) for low-income individuals who are not covered un-
der employer-sponsored insurance or public programs. In addition to estimates from our
nonparametric approach, we also report estimates from comparable parametric logit, pro-
bit, and mixed logit models.

Our main empirical strategy leverages institutionally-induced variation in post-subsidy
premiums across age and income, similar to Polyakova and Ryan (2019). We cast this as an
instrumental variable strategy by dividing individuals into relatively homogenous groups
by age and income, then using residual variation in age and income within that group to
instrument for prices (post-subsidy premiums) while assuming that latent variations re-
main stable. For all of our results, we also conduct a sensitivity analysis that relaxes or
drops either invariance to age or invariance to income (or both). The sensitivity anal-
ysis provides a transparent connection between the price variation in the data and the
estimated results.

We estimate target parameters related to choice shares and welfare for several different
counterfactuals. The main counterfactual we consider—which is simple but particularly
policy-relevant—is a uniform increase in all post-subsidy premiums, which from the con-
sumer’s perspective is the same as a decrease in premium subsidies. We also estimate
substitution patterns by considering counterfactuals in which premiums are increased for
different metal tiers separately. The other counterfactuals we consider concern regulatory
design. In one, we consider the impacts of shifting premium subsidies toward younger or
older consumers. In another, we evaluate the consumer surplus impact of removing Silver
plans.

One theme that emerges throughout our results is that parametric models tend to
produce price sensitivity estimates that are attenuated compared to the nonparametric
bounds. For example, we estimate that a uniform $120 increase in yearly premiums for
all plans would cause between a 1.8% and 6.7% decline in the proportion of low-income
adults who purchase insurance, off of a base of 28%. The parametric models, by contrast,
produce point estimates that are all between 2.5% and 3.5%, suggesting that they could
be substantially understating price sensitivity. Other logit-based estimates for Covered
California have been similar, such as Tebaldi (2022) who estimates between a 1% and
2% decline in the proportion enrolled in response to a $120 increase in yearly premiums,
Saltzman (2019), who estimates a 3.3% decline, and Saltzman (2021), who estimates a
1.2% decline. The findings are consistent with the idea that the logit model has a “flat”
functional form that attenuates the role of price at large or small utilities. Ho and Pakes
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(2014) and Compiani (2022) reached similar conclusions, albeit using different methods
in different empirical settings.

The differences between the nonparametric estimates and the comparable parametric
models become more nuanced when considering consumer surplus. The nonparametric
estimate of the consumer surplus impact of decreasing subsidies by $120 annually is be-
tween $62 and $74 million annually when aggregated, with poorer individuals incurring
the bulk of the loss. Total annual savings on premium subsidies would be between $207
and $602 million per year. The various mixed logit models—differing only by which coef-
ficients are random—produce consumer surplus estimates between $63 and $84 million,
with estimates of subsidy savings toward the lower end of our bounds. For a shift in subsi-
dies toward younger buyers, the parametric models predict an average consumer surplus
impact of less than $1 per person, per month, while the nonparametric bounds include
impacts that could be almost three times as large. The parametric models predict that
removing Silver plans would create an aggregate consumer surplus impact of anywhere
between $149 to $292 million per year, whereas the nonparametric model produces a
lower bound of $12 million, while recognizing that there is no logical upper bound. The
results are consistent with long-standing concerns about the use of logit models for wel-
fare analysis, especially when the counterfactual involves adding or removing a product
(e.g., Hausman (1996), Petrin (2002), Ackerberg and Rysman (2005), Berry and Pakes
(2007)).

1.4. Relationship to the Literature

This paper contributes to both the methodological literature on discrete choice models
and an empirical literature on the demand for subsidized health insurance.

The methodological contribution is most closely related to the previously-cited work
by Manski (2007), who developed a linear programming procedure for bounding choice
probabilities with exogenous prices under rationality. The most important difference is
the quasilinear structure of choice model (1), which facilitates computation at scale and
provides substantial identifying content. We also show how to use instruments when prices
are endogenous, as well as how to further restrict the number of types to reflect known
vertical orderings. In addition to bounding choice probabilities, we show how to bound
elasticities, as well as changes in consumer surplus resulting from price changes or the
removal of a choice option.

This paper is also related to Chesher, Rosen, and Smolinski (2013). Those authors
demonstrate that endogenous prices can lead to partial identification in a class of discrete
choice models that includes equation (1), even if one maintains the usual logit paramet-
ric distribution (Chesher, Rosen, and Smolinski (2013, Section 4.2)). Using random set
theory, Chesher, Rosen, and Smolinski (2013) show that whether a candidate value of the
model parameters belongs to the sharp identified set can be determined by checking a sys-
tem of moment inequalities. The system has a finite number of moment inequalities when
the number of prices is finite, as in our setting. Each moment inequality corresponds to
a “core-determining set” of valuations, which we show can be a much larger collection of
sets than the MRP (see Section 2.7.1).

Chesher, Rosen, and Smolinski (2013) implement their identification analysis by check-
ing whether the moment inequalities hold for every candidate value of the model parame-
ters. If the model is nonparametric, as in our setting, then one component of the model
parameters is the distribution of valuations. Following the Chesher, Rosen, and Smolin-
ski (2013) strategy would require checking whether every distribution of valuations satis-
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fies a set of moment inequalities. This is computationally intractable: iterating over ev-
ery distribution—even approximately, using a grid—is simply not possible because the
space of distributions for continuous random variables is infinite-dimensional. Chesher,
Rosen, and Smolinski (2013, p. 160) also derive other nonparametric outer (nonsharp)
bounds that are straightforward to implement, but these do not exploit the assumption
that choices were generated according to choice model (1). In Appendix S3 in the Online
Supplementary Material (Tebaldi, Torgovitsky, and Yang (2023)), we replicate a simula-
tion in Chesher, Rosen, and Smolinski (2013), demonstrating that our sharp nonpara-
metric bounds lie strictly between their nonsharp nonparametric bounds and their sharp
parametric bounds.

Our approach is computationally tractable because it focuses on specific scalar target
parameters, such as choice probabilities, elasticities, and changes in consumer surplus.
Instead of trying to iterate over the space of distributions, we check whether there exists a
distribution that is consistent with the data and reproduces a candidate value of the target
parameter. We prove that one can determine whether such a distribution exists by solving
a finite system of linear equations, thereby providing the basis of our linear program-
ming procedure. The strategy makes our nonparametric approach feasible to implement
at scale, as showcased by our application.

Like both Manski (2007) and Chesher, Rosen, and Smolinski (2013), we embrace a
partial identification view (Tamer (2010), Ho and Rosen (2017), Molinari (2020)). Non-
parametric point identification arguments for discrete choice models often require a large
amount of variation in prices (e.g., Manski (1975), Thompson (1989), Matzkin (1993), Fox
and Gandhi (2016)). Yet variation in prices is limited in many applications, including ours.
Nonparametric point identification arguments with endogenous prices and instrumental
variables also typically use an additional “completeness” condition (Chiappori and Ko-
munjer (2009), Berry and Haile (2014, 2022), Compiani (2022)), which in some cases is
also necessary for point identification (Newey and Powell (2003), Santos (2012)).1 Com-
pleteness can be difficult to interpret, and has been shown to be untestable (Canay, San-
tos, and Shaikh (2013)). Not assuming either large variation or completeness raises the
possibility of partial identification, which we allow for as the leading case, although our
approach does not rule out point identification.

There are a number of papers on semi and nonparametric discrete choice that param-
eterize the valuations in choice model (1) using a linear index of choice and/or individual
characteristics, and then focus on identifying and estimating these index parameters, while
treating the distribution of unobservables as a nuisance parameter. Examples include
Manski (1975), Matzkin (1993), Lewbel (2000), Fox (2007), Pakes (2010), Ho and Pakes
(2014), Pakes, Porter, Ho, and Ishii (2015), Pakes and Porter (2021), Shi, Shum, and Song
(2018), and Khan, Ouyang, and Tamer (2021). In contrast, we do not treat the distribu-
tion of unobservables as a nuisance parameter because it determines the counterfactuals
we want to infer. Other semi and nonparametric papers that focus on counterfactuals but
do not allow for endogeneity and instruments include Thompson (1989), Manski (2007),
Briesch, Chintagunta, and Matzkin (2010), Chiong, Hsieh, and Shum (2017), Allen and
Rehbeck (2019), and Fosgerau and Kristensen (2021). Manski (2014), Kline and Tartari
(2016), and Kamat (2021) use approaches similar to Manski (2007) for models different
than equation (1).

1Berry and Haile (2014, Section 5) also provide nonparametric identification results that do not require
completeness and instead leverage both demand and supply under a shape restriction on the distribution of
unobservables; see also Berry and Haile (2018).
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Our empirical analysis contributes to a large literature on the demand for subsidized
health insurance, including Chan and Gruber (2010), Krueger and Kuziemko (2013),
Ericson and Starc (2015), Hackmann, Kolstad, and Kowalski (2015), Shepard (2022),
DeLeire, Chappel, Finegold, and Gee (2017), Finkelstein, Hendren, and Shepard (2019),
Saltzman (2019), Drake (2019), Polyakova and Ryan (2019), Jaffe and Shepard (2020),
and Tebaldi (2022). The estimates on alternative subsidy schemes is related to the design
of premium subsidies, as studied by Decarolis (2015), Einav, Finkelstein, and Tebaldi
(2019), Polyakova and Ryan (2019), and Decarolis, Polyakova, and Ryan (2020). The
effects of removing certain coverage options has been studied in different contexts by
Dafny, Ho, and Varela (2013) and Marone and Sabety (2022). We contribute to the lit-
erature by providing nonparametric estimates that do not depend on functional form
choices: our estimates depend only on the structure of the choice model together with in-
strumental variable assumptions and limited vertical orderings. These assumptions have
straightforward economic interpretations.

The primary drawback of our empirical analysis is that we do not model supply, so all
of our estimates must be interpreted as holding insurers’ decisions fixed. This is a clear
limitation, since one might expect potentially strong supply-side responses in the coun-
terfactuals we consider. Integrating our nonparametric approach for estimating demand
with a model of supply is an interesting avenue for further research.

2. METHODOLOGY

2.1. Nonparametric Discrete Choice Model

Individual i chooses option Yi from a set J ≡{0�1� � � � � J} of J+1 choices. Each choice
j has a potentially endogenous characteristic called price, Pij , which we model as discretely
distributed, and collect into the vector Pi ≡ (Pi0�Pi1� � � � �PiJ). Choice j = 0 represents the
outside option of not choosing any of the inside choices j ≥ 1, and has its price normalized
to Pi0 = 0. When we apply the model to Covered California, we will have five choices
(J = 4) with options 1, 2, 3, and 4 representing Bronze, Silver, Gold, and Platinum plans.

Individual i has a vector Vi ≡ (Vi0� Vi1� � � � � ViJ) of valuations, one for each choice, with
the standard normalization that Vi0 = 0. The valuations are known to the individual, but
latent from the perspective of the researcher. We assume that individual i’s indirect utility
from choosing j is given by Vij − Pij , so that their choice is given by

Yi = arg max
j∈J

Vij − Pij� (1)

We do not assume that the distribution of Vi follows a specific functional form such as
type I extreme value (logit) or multivariate normal (probit). We also allow Vij and Vik to
be dependent for j �= k.

The main economic restriction in equation (1) is the additive separability between val-
uations and prices, which imposes restrictions on substitution patterns consistent with
quasilinear utility. If all prices were to increase by the same amount, then an individual
who chooses j ≥ 1 before the increase will either continue to choose j after the increase,
or will switch to the outside option (j = 0), but they will not switch to a different in-
side choice k ≥ 1, k �= j. This limits the role of income effects to the extensive margin of
choosing any inside choice versus taking the outside option. In Appendix S1, we derive
equation (1) from an insurance choice model similar to the ones in Handel (2013) and
Handel, Hendel, and Whinston (2015), in which individuals have quasilinear utility and
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constant absolute risk aversion. Variation in Vi across individuals arises from heterogene-
ity in unobserved preferences, risk factors, and risk aversion.

The limited role of income effects in equation (1) pertain to conjectured variations for a
single individual i. When we take the model to the data we combine observations on many
individuals, so in practice we can allow for income effects by allowing for dependence
between an individual’s income and their valuations. We formalize this by treating an
individual’s income and other observed characteristics as part of a vector, Xi, and then
restricting the dependence between Vi and the various components of Xi. Throughout the
paper, we model Xi as discretely distributed with finite support.

One observable characteristic that is particularly important is the individual’s market.
When we estimate demand we will do so conditional on a market, so that market-level
characteristics—both observable and unobservables—are held fixed in the counterfactual
(see, e.g., Berry and Haile (2022), p. 8). To emphasize this, we let Mi denote individual i’s
market, and we treat Mi as separate from Xi in the notation.

Our empirical setting is different than many discrete choice applications in which prices
only vary at the market level, such as Berry, Levinsohn, and Pakes (1995) or Nevo (2001).
These settings would have Pi constant conditional on Mi. The approach we develop in the
main text is not immediately useful for this case. In Appendix S2, we propose two ways in
which our approach could be extended to handle more aggregated price variation.

2.2. Comparison With a Common Parametric Model

A common parametric specification for discrete choice demand models is

Yim = arg max
j∈J

X ′
ijmβim − αimPijm + ξjm + εijm� (2)

where i, j, and m index individuals, products, and markets, Pijm is price, Xijm are ob-
served characteristics, ξjm are unobserved product-market characteristics, βim and αim

are individual-level random coefficients, and εijm are idiosyncratic unobservables. See,
for example, equation (6) of Nevo (2011), or equation (1) of Berry and Haile (2016). In
the influential model of Berry, Levinsohn, and Pakes (1995), εijm are assumed to be i.i.d.
logit (type I extreme value), and (βim�αim) are assumed to be normally (or log-normally)
distributed. Our motivation for considering choice equation (1) is to preserve the utility
maximization structure in equation (2), while avoiding these types of parametric assump-
tions.

The three indices in equation (2) reflect different possible levels of data aggregation. If
only market-level data is available, as in Berry, Levinsohn, and Pakes (1995) or Nevo
(2001), then equation (2) is aggregated to the (j�m) level, and the data is viewed as
drawn from a population of markets and/or products (Berry, Linton, and Pakes (2004),
Armstrong (2016)). Our analysis presumes richer individual-level choice data as in Berry,
Levinsohn, and Pakes (2004) or Berry and Haile (2022), but the number of markets we
study is small and fixed. To emphasize this, we index equation (1) only over i and j, and we
record individual i’s market using the random variable Mi. After subsuming m subscripts
into i subscripts, equation (1) can be seen to nest equation (2) by dividing through by αi

and taking Vij ≡ α−1
i (X ′

ijβi + ξij + εij).2

2This requires the mild assumption that αi > 0. As suggested by a referee, an advantage of normalizing in
this way is that Vij can be directly interpreted as willingness-to-pay relative to the outside option (see, e.g.,
Lewbel (2019), Section 6.3).
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2.3. The Density of Valuations

The primitive object in choice model (1) is the distribution of valuations, Vi, conditional
on prices, Pi, market, Mi, and other covariates, Xi. We assume throughout the paper that
this distribution is continuous so that ties between choices occur with zero probability.
More formally, we assume that the distribution of Vi is absolutely continuously distributed
with respect to Lebesgue measure on R

J , conditional on (Pi�Mi�Xi) = (p�m�x) for every
(p�m�x) in the support of (Pi�Mi�Xi). Absolute continuity means we can associate the
conditional distribution of valuations with a conditional density function f (·|p�m�x) for
each realization Pi = p, Mi =m, and Xi = x. Let F denote the set of all such conditional
density functions.

2.4. Target Parameters

Common counterfactual quantities of interest can be written as integrals or sums of
integrals of f ; see, for example, Section 4.2 of Berry and Haile (2014) or Section 3.4.1 of
Berry and Haile (2016). For example, a natural counterfactual quantity is the proportion
of individuals who would choose j at a new price vector, p�. The proportion can be written
in terms of f as

∫
1
[
vj −p�

j ≥ vk −p�
k for all k

]
︸ ︷︷ ︸

choose j if prices were p�

f (v|m�x) dv�

where f (v|m�x) ≡ E
[
f (v|Pi�m�x)|Mi =m�Xi = x

]
(3)

is the density of valuations conditional on market, m and other characteristics x, averaged
over the remaining variation in observed prices (if any). Another natural counterfactual
quantity is the impact on average consumer surplus caused by changing prices from p to
p�. The impact can be written as

∫ {
max
j∈J

vj −p�
j

}
f (v|m�x) dv

︸ ︷︷ ︸
consumer surplus under p�

−

∫ {
max
j∈J

vj −pj

}
f (v|m�x) dv

︸ ︷︷ ︸
consumer surplus under p

� (4)

where again the market, m, is being held fixed in the counterfactual.
We view equations (3) and (4) as examples of target parameters; that is, functions θ :

F → R
dθ that map the collection F of all conditional density functions on R

J into real
vectors. The goal is to infer the values of θ(f ) that are consistent with both the observed
data and the assumptions.

2.5. Assumptions

We augment the choice model (1) with two types of assumptions.

2.5.1. Instrumental Variables

Let Wi and Zi be two subvectors (or more general functions) of prices, market and
covariates, (Pi�Mi�Xi). Define the density of valuations conditional on Wi and Zi as

f (v|w�z) ≡ E
[
f (v|Pi�Mi�Xi)|Wi =w�Zi = z

]
� (5)
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ASSUMPTION IV: f (v|w�z) = f (v|w�z′) for all z, z′, w, and v.

Assumption IV says that the distribution of valuations is invariant to Zi, conditional
on Wi. That is, Zi are exogenous instruments and Wi are control variables. Assumption
IV nests exogenous prices as a special case by taking Zi = Pi and Wi to be deterministic
(e.g., Wi = 1). It also nests the unconditional instrumental variable assumption used by
Chesher, Rosen, and Smolinski (2013, Restriction A.6) by taking Wi to be deterministic.

For Assumption IV to be useful, prices should shift with the instruments Zi while con-
ditioning on the controls Wi. This follows the usual intuition: if Zi is exogenous, then
changes in observed choice shares as Zi varies reflect changes in prices, rather than
changes in valuations. The more that prices vary with Zi, the more information we have
to pin down different parts of the density of valuations, f , and, therefore, the target pa-
rameter, θ. Our approach does not require the instruments to have any particular amount
of variation, but greater variation produces more informative bounds.

In the application, we also use the following generalization of Assumption IV, which
allows the instruments to be “imperfect” in the terminology of Nevo and Rosen (2012).

ASSUMPTION IV—Generalized: For every z, z′, w, and v,
(
1 − κ

(
z� z′�w

))
f
(
v|w�z′

)
≤ f (v|w�z) ≤

(
1 + κ

(
z� z′�w

))
f
(
v|w�z′

)
�

where κ(z� z′�w) ≥ 0 is chosen by the researcher.

The generalization allows for a pointwise difference in the density of valuations be-
tween z and z′ of up to (100 ×κ(z� z′�w))%. Similar approaches to relaxing assumptions
involving exact equalities have also been used in different contexts by Conley, Hansen,
and Rossi (2010), Manski and Pepper (2017), Torgovitsky (2019), and Rambachan and
Roth (2022). Taking κ(z� z′�w) = 0 returns the generalized assumption back to the base-
line case of an exogenous instrument.

2.5.2. Support

The second assumption is that the support of f is contained in a known subset of RJ .

ASSUMPTION SP:
∫
V•(w) f (v|w�z) dv = 1 for each w and z, where V•(w) is a known sub-

set of RJ .

In the application, we use Assumption SP to exploit the fact that certain plans in the
ACA are unambiguously more attractive at equal prices than certain other plans. As-
sumption SP can be made nonrestrictive by taking V•(w) =R

J for all w.

2.6. The Identified Set

Suppose that we know the observed choice shares

sj(p�m�x) ≡ P[Yi = j|Pi = p�Mi = m�Xi = x]� (6)

Each density of valuations f ∈F also implies a set of choice shares

sj(p�m�x; f ) ≡

∫

Vj (p)
f (v|p�m�x) dv� (7)

where Vj(p) ≡
{

(v1� � � � � vJ) ∈R
J : vj −pj ≥ vk −pk for all k

}
� (8)
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A density f is consistent with the observed choice shares (“matches the data”) if

sj(p�m�x; f ) = sj(p�m�x) for all j�p�m�and x� (MD)

The sharp identified set of valuation densities is defined as the subset of f ∈ F that both
match the data and satisfy Assumptions IV and SP. We call this subset F �:

F � ≡
{
f ∈F : f satisfies Assumptions IV, SP, and equation (MD)

}
� (9)

The object of interest is the sharp identified set for the target parameter, which is defined
as the image of F � under θ, and denoted as

�� ≡
{
θ(f ) : f ∈F �

}
≡ θ

(
F �

)
�

2.7. Identification Analysis

In this section, we show how to compute ��. If F were a parametric class of densities,
then the results of Chesher, Rosen, and Smolinski (2013) could be used to approximately
compute �� by iterating over a grid of f ∈F that satisfy Assumptions IV and SP, checking
whether each such f satisfies a finite set of moment inequalities, and adding f to F � and
θ(f ) to �� if and only if they are satisfied. In our model, f is nonparametric, so F is an
infinite-dimensional set. Iterating over even a grid of f ∈F is not feasible in this case.

We develop a different strategy. Instead of trying to check a set of conditions for every
f ∈ F , we check whether there exists some f ∈ F � that would generate a given candidate
value t = θ(f ) for the target parameter. As we prove ahead in Proposition 1, the existence
of such an f is equivalent to the existence of a solution to a carefully-constructed finite-
dimensional system of linear equations. The finite-dimensional system is constructed by
first partitioning the space of valuations into the smallest number of sets needed to de-
scribe choice behavior under all relevant prices. We call this partition the minimal relevant
partition (MRP).

2.7.1. The Minimal Relevant Partition

Let P denote a finite set of prices that contains the observed prices, as well as any ad-
ditional prices relevant for evaluating the target parameter, θ. The MRP is the smallest
(coarsest) partition of valuation space (RJ) with the following property: any two valua-
tions in the same subset produce the same choice behavior for all p ∈ P , while any two
valuations in different subsets produce different choice behavior for at least one p ∈ P .
The formal definition is as follows.

DEFINITION MRP: Let Y (v�p) ≡ arg maxj∈J vj−pj for any (v1� � � � � vJ)� (p1� � � � �pJ) ∈

R
J , where v ≡ (v0� v1� � � � � vJ) and p≡ (p0�p1� � � � �pJ) with v0 = p0 = 0. The minimal rel-

evant partition of valuations (MRP) is a collection V of sets V ⊆R
J for which the following

property holds for almost every v� v′ ∈R
J (with respect to Lebesgue measure):

v� v′ ∈ V for some V ∈ V ⇔ Y (v�p) = Y
(
v′�p

)
for all p ∈P � (10)

Suppose that the data consists of a single observed price vector, pa, and that we are
concerned with behavior under a counterfactual price vector, p�. Take P = {pa�p�}. We
illustrate the MRP with J = 2 in Figure 1. Panel (a) shows that considering choice behav-
ior under price pa divides R

2 into three sets depending on whether an individual would
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FIGURE 1.—Partitioning the space of valuations. Notes: Panels (a) and (b) show the partition of valuation
space created by prices pa and p�, respectively, for the case with J = 2. Panel (c) shows how intersecting these
two partitions yields a partition of six sets (the MRP). Panel (d) shows a richer MRP based on the prices
P ={pa�pb�pc�pd�pe�pf �p�}.

choose options 0, 1, or 2 when faced with pa. Panel (b) shows the analogous division under
price p�. See, for example, Thompson (1989, Figure 1), Chesher, Rosen, and Smolinski
(2013, Figure 1), or Berry and Haile (2014, Figure 1) for similar diagrams. Intersecting
these two three-set collections creates the collection of six sets shown in panel (c). The
collection of six sets is the MRP generated by P = {pa�p�}. In Figure 1d, we show the
MRP constructed from a set P with seven prices. We describe an algorithm for construct-
ing the MRP in Appendix S4.

The MRP is the coarsest division of R
J that captures all choice behavior under the

prices in P . The six sets in Figure 1c correspond to the six types of individuals that could
exist under choice model (1), where a type is defined as a pair of choices under (pa�p�).
The characterization by types follows Manski (2007), but here we adapt it to the quasilin-
ear choice model (1), as in Koning and Ridder (2003).

The MRP is related to the class of core-determining sets (CDS) derived by Chesher,
Rosen, and Smolinski (2013) and Chesher and Rosen (2014), but there are fewer sets in
the MRP than the CDS. With two prices and J = 2, the CDS consists of 12 sets (Chesher,
Rosen, and Smolinski (2013, Figures 2–3)) compared to 6 sets in the MRP. With seven
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prices and J = 2, the CDS can consist of as many as 842 sets (Chesher, Rosen, and Smolin-
ski (2011, Table 1, p. 28)) compared to 35 sets in the MRP in Figure 1d. The MRPs in our
application have between 195,000 and 900,000 sets, depending on the region and target
parameter.

2.7.2. Equivalent Finite-Dimensional Problem

The MRP is formed by organizing the continuum of valuations in R
J into sets that yield

identical choice behavior at all prices in P . If our concern is behavior that occurs (or
would occur) under these prices, then we can shift our attention from densities in R

J to
mass functions over the sets in the MRP. For example, in Figure 1c the share of individuals
who would choose 1 if prices were pa can be written as

s1

(
pa�m�x; f

)
=

∫

V5

f
(
v|pa�m�x

)
dv+

∫

V6

f
(
v|pa�m�x

)
dv�

which depends not on f per se, but only on the mass that f places on V5 and V6. Focusing
on these masses replaces the intractable infinite-dimensional problem of searching over
all f ∈F into a tractable finite-dimensional problem of searching over a finite set of non-
negative numbers that sum to unity. As we now show, the replacement can be done while
preserving all of the information provided by the choice model, the data, and Assump-
tions IV and SP.

We denote the set of conditional mass functions supported on V as

� ≡

{
φ ∈R

dφ
+ :

∑

V∈V

φ(V |p�m�x) = 1 for all (p�m�x) ∈ supp(Pi�Mi�Xi)
}
� (11)

where dφ is the cardinality of V × supp(Pi�Mi�Xi). Let Vj(p) ≡ {V ∈ V : Y (v�p) =
j for almost every v ∈ V} denote the sets in the MRP associated with choosing j under
price p ∈P . Then φ ∈� is consistent with an f that satisfies equation (MD) only if

∑

V∈Vj (p)

φ(V |p�m�x) = sj(p�m�x) for all j ∈J and (p�m�x)� (MD’)

Each φ generates the conditional-on-(Wi�Zi) probability mass function

φ(V |w�z) ≡ E
[
φ(V |Pi�Mi�Xi)|Wi =w�Zi = z

]
�

To be consistent with an f that satisfies Assumption IV, φ should satisfy
(
1 − κ

(
z� z′�w

))
φ

(
V |w�z′

)
≤φ(V |w�z) ≤

(
1 + κ

(
z� z′�w

))
φ

(
V |w�z′

)

for all z� z′�w�and V � ( IV’)

To be consistent with an f that satisfies Assumption SP, φ should satisfy
∑

V∈V•(w)

φ(V |w�z) = 1 for all w and z� (SP’)

where V
•(w) is the subset of V that intersects V•(w), that is, V•(w) ≡ {V ∈ V : λ(V ∩

V•(w)) > 0}, with λ denoting Lebesgue measure on R
J .

Since our focus is not on f but on the target parameter, θ, we assume that it is possible
to represent θ in terms of φ.
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CONDITION TP: For any f ∈F , define φ(f ) ∈ � as

φ(f )(V |p�m�x) ≡

∫

V

f (v|p�m�x) dv for all V ∈ V� (12)

Then there exists a known function θ :�→ R
dθ such that

θ(f ) = θ
(
φ(f )

)
for every f ∈F �

Since � depends on the MRP, and the MRP depends on P , Condition TP can always
be satisfied by choosing P to include all prices relevant for evaluating the target param-
eter, θ. For example, if the target parameter is demand at the new premium vector p� in
Figure 1c, then Condition TP simply requires choosing P to include p�.

Under Condition TP, �� can be characterized in terms of the mass function φ without
having to consider the full density f . If t ∈ ��, then (by definition) there exists an f ∈ F �

with θ(f ) = t. Since f ∈F � satisfies equation (MD), Assumption IV, and Assumption SP
(again all by definition), taking the mass that any such f places on the MRP yields a φ ∈ �

that satisfies equations (MD’), ( IV’), (SP’), and θ(φ) = t; for example, take φ(f ) defined
in equation (12). The opposite direction is more delicate: if θ(φ) = t for some φ ∈ � that
satisfies equations (MD’), ( IV’), and (SP’), then is t ∈ ��? The following proposition
shows that the answer is yes. The idea is to use such a φ to construct an f ∈F � that yields
θ(f ) = t. The proof is in the Appendix.

PROPOSITION 1: Suppose that Condition TP is satisfied. Let

�� ≡{φ ∈ � :φ satisfies equations (MD’), ( IV’), and (SP’)}� (13)

and for any t ∈ R
dθ , let ��(t) ≡ �� ∩{φ ∈ � : θ(φ) = t}. Then t ∈ �� if and only if ��(t) is

nonempty.

Proposition 1 shows that �� is characterized by finite-dimensional systems of equations.
If the target parameter is scalar, then �� can be computed more directly by solving two
optimization problems.

PROPOSITION 2: If θ is continuous on �, then �� is a compact, connected set. In particu-
lar, if dθ = 1, then �� = [t�lb� t

�
ub], where

t�lb ≡ min
φ∈��

θ(φ) and t�ub ≡ max
φ∈��

θ(φ)� (14)

Each condition that defines ��—equations (MD’), ( IV’), and (SP’)—is linear in φ. If
θ is also linear in φ, then problem (14) is a linear program. A change in choice shares,
like equation (3), yields a θ function that is linear in φ. A change in consumer surplus,
like equation (4), also does, although constructing θ is less obvious (see Appendix S5).
A discrete approximation to an elasticity produces a θ function that is nonlinear, but
the resulting optimization problem is linear-fractional, so can be reformulated as a linear
program using the Charnes and Cooper (1962) transformation; see Appendix S6 for more
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detail, and Kamat (2021) for a similar observation. Linearity ensures that both the min-
imization and maximization problems can be solved reliably and relatively quickly, even
when the dimension of � is quite large.3

2.8. Estimation and Statistical Inference

The choice shares sj(p�m�x) are in practice replaced by estimates ŝj(p�m�x). Using
the estimated choice shares in equation (MD’) can lead to empty feasible sets in problem
(14), even when the model is correctly specified so that the feasible sets are nonempty
with the true choice shares. We solve this problem by applying an estimator of [t�lb� t

�
ub]

developed by Mogstad, Santos, and Torgovitsky (2018). The estimator has two steps.
In the first step, we find the best fit to the estimated choice shares by solving

Q̂� ≡ min
φ∈�

Q̂(φ) subject to equations ( IV’) and (SP’), where (15)

Q̂(φ) ≡
∑

j�p�m�x

P̂[Pi = p�Mi =m�Xi = x]
∣∣∣∣̂sj(p�m�x) −

∑

V∈Vj (p)

φ(V |p�m�x)
∣∣∣∣�

and where P̂[Pi = p�Mi = m�Xi = x] are estimated probabilities. Defining Q̂ with ab-
solute deviations means that problem (15) can be reformulated as a linear program by
replacing terms in absolute values by the sum of their positive and negative parts (e.g.,
Bertsimas and Tsitsiklis (1997), pp. 19–20). The absolute deviations are weighted so that
Q̂(φ) is an estimate of the average absolute deviation in choice shares under φ.

In the second step, we collect values of θ(φ) for φ that come close to minimizing prob-
lem (15). That is, we construct the set

�̂� ≡
{
θ(φ) :φ ∈��φ satisfies equations ( IV’), (SP’), and Q̂(φ) ≤ (1 +η)Q̂�

}
�

which is never empty due to the definition of Q̂�. The qualifier “close” here reflects the
tuning parameter η, which is a small positive constant that must converge to zero at an
appropriate rate with the sample size to smooth out potential discontinuities that could
conceivably arise in the convergence of a set estimator. In our empirical estimates, we set
η = 10−4 and found little sensitivity to values of η that were bigger or smaller by an order
of magnitude. However, there are currently no theoretical results to guide the choice of
this parameter.

We compute �̂� by solving

t̂�lb ≡ min
φ∈�

θ(φ) subject to equations ( IV’), (SP’), and Q̂(φ) ≤ Q̂�(1 +η)� (16)

and an analogous maximization problem for t̂�ub. The set estimator for �� is �̂� ≡ [̂t�lb� t̂
�
ub],

which Mogstad, Santos, and Torgovitsky (2018, Section S3, Theorem 1) show is consistent
for [t�lb� t

�
ub] under fairly weak conditions. When θ is linear, problem (16) can be reformu-

lated as a linear program, again by appropriately reformulating the absolute value terms
in Q̂(φ). The overall estimation procedure requires solving three linear programs: prob-
lem (15), problem (16), and the maximization problem analogous to (16).

3All of the linear (and quadratic) programs ahead were computed using Gurobi (Gurobi Optimization
(2015)), and we checked a subset of the results using CPLEX (IBM (2010)).
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We conduct statistical inference using the test developed by Deb, Kitamura, Quah, and
Stoye (2021); see also Kitamura and Stoye (2018). The specifics of the test are notationally
involved, so here we provide a high-level overview of what it entails. Appendix S7 contains
a detailed discussion of how we implement the test in our application.

The null hypothesis of the test is H0 : t ∈ ��, where t is a candidate value of the target
parameter. The test statistic is the minimum weighted sum of squares between the esti-
mated choice shares and the shares predicted by a φ ∈ � that satisfies equations ( IV’),
(SP’), and θ(φ) = t, where θ is required to be linear in φ. The test statistic is thus the
optimal value of a quadratic program. A critical value is found by bootstrapping the
choice shares and, for each bootstrap replication, solving a tightened version of the same
quadratic program. The tightening effectively provides the type of generalized moment
selection used in the moment inequality literature (e.g., Andrews and Soares (2010)). The
null hypothesis is rejected at the 5% level if the test statistic exceeds the 0.95 bootstrapped
quantile of the tightened problem.

We construct a 95% confidence interval by inverting 5% tests. That is, the confidence
interval contains all target parameter candidate values t for which the null hypothesis
H0 : t ∈ �� is not rejected. The confidence interval can be constructed relatively efficiently
by bisecting its endpoints. In our application, the overall procedure of building confidence
intervals is still computationally demanding, since it requires solving an extremely large
quadratic program for each bootstrap replication and each trial value of t. For this reason,
and because our sample size is quite large, we report confidence intervals for only a few
parameters.

3. COVERED CALIFORNIA

3.1. Institutional Details

Covered California is one of the largest state-level ACA marketplaces, accounting for
more than 10% of national enrollment. The marketplace offers health insurance plans di-
rected at individuals not covered by an employer or by a public program such as Medicaid
or Medicare.

The basic structure of Covered California is determined by federal regulation common
to ACA marketplaces in all states. The regulation splits states into geographic rating re-
gions comprised of groups of contiguous counties or zip codes. In California, there are
19 rating regions. Insurers are allowed to vary premiums across (but not within) rating
regions, and consumers face the premiums set for their resident region. Each year in the
spring, insurers announce their intention to enter a region in the subsequent calendar
year, then undergo state certification. Consumers purchase insurance for the subsequent
year during an open enrollment period at the end of the year.

Covered California differs from other ACA marketplaces in important ways. An insurer
who intends to participate in a rating region is required to offer a menu of four plans clas-
sified into metal tiers of increasing actuarial value: Bronze, Silver, Gold, and Platinum.4

Unlike other marketplaces, where insurers do not need to offer Bronze or Platinum plans,
in California an insurer must provide the entire menu of four plans in any region it en-
ters. Moreover, the actuarial features of the plans are required to have the standardized
characteristics shown in Table I (among others not shown).

4There is a fifth coverage tier called minimum (or catastrophic) coverage. This tier is not available to the
subsidized buyers we focus on (with a few, rare exceptions), so we omit it from the analysis.
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TABLE I

STANDARDIZED PLAN CHARACTERISTICS IN COVERED CALIFORNIA FOR 2014.

Panel (a): Characteristics by metal tier before cost-sharing reductions (CSRs)

Tier Annual
deductible

Annual max
out-of-pocket

Primary
visit

E.R.
visit

Specialist
visit

Preferred
drugs

Advertised
AV(∗)

Bronze $5000 $6250 $60 $300 $70 $50 60%
Silver $2250 $6250 $45 $250 $65 $50 70%
Gold $0 $6250 $30 $250 $50 $50 79%
Platinum $0 $4000 $20 $150 $40 $15 90%

Panel (b): Silver plan characteristics after cost-sharing reductions (CSRs)

Income (%FPL) Annual
deductible

Annual max
out-of-pocket

Primary
visit

E.R.
visit

Specialist
visit

Preferred
drugs

Advertised
AV(∗)

200–250% FPL $1850 $5200 $40 $250 $50 $35 74%
150–200% FPL $550 $2250 $15 $75 $20 $15 88%
100–150% FPL $0 $2250 $3 $25 $5 $5 95%

Note: Source: http://www.coveredca.com/PDFs/2015-Health-Benefits-Table.pdf.

Insurers are also regulated on how they can set premiums. Each insurer chooses a base
premium for each metal tier in each rating region. The base premium is multiplied by
a federally-determined adjustment factor that increases with a consumer’s age from 1 at
age 21 to 3 at age 64 (see Orsini and Tebaldi (2017), for further detail). The insurer is not
permitted to adjust premiums based on any nonage characteristics of the consumer. In-
surer premiums are thus a deterministic function of a consumer’s age and resident rating
region.

Individuals with household income below 400% of the Federal Poverty Level (FPL)
receive premium subsidies. The size of the premium subsidy is set so that the subsidized
premium of the second-cheapest Silver plan is lower than a so-called “maximum afford-
able amount” that varies with income. Post-subsidy premiums are thus a deterministic
function of a consumer’s age, resident rating region, and household income.

In Figure 2, we illustrate how post-subsidy premiums vary as a function of both age and
income. Holding age fixed, post-subsidy premiums increase with income equally across all
plans due to lower subsidies. Holding income fixed, post-subsidy premiums increase with
age differently across plans due to the adjustment factor.

FIGURE 2.—Post-subsidy premium variation by age and income. Notes: Post-subsidy premiums shown are
the median across insurers for rating region 16 (part of Los Angeles).
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In addition to premium subsidies, the ACA also provided cost-sharing reductions
(CSRs) for individuals with household income lower than 250% of the FPL. In Covered
California, CSRs were implemented by changing the actuarial terms of Silver plans by
income, with discrete changes at 150%, 200%, and 250% of the FPL; see Table I.

The ACA had a universal coverage mandate that specified an income tax penalty for
remaining uninsured. We treat the tax penalty as affecting the value of the outside op-
tion of not purchasing any Covered California plan. The universal mandate was generally
unenforced between 2014–2017 (Miller (2017)).

3.2. Data

Our primary data are administrative records on all individuals who purchased a plan
through Covered California in 2014. The records contain unique individual and house-
hold identifiers, as well as age, income measured in percentage of the FPL, gender, zip-
code of residence, choice of plan, and premium paid. Since post-subsidy premiums are a
deterministic function of demographics, we can also calculate premiums for plans a con-
sumer did not choose. We focus on adults aged 27–64 with household income between
140% and 400% of the FPL, which is 73% of the roughly 1.3 million enrollees. The re-
maining 27% of enrollees are either ineligible for subsidies (11%), or are younger than
26, so considered dependents under the ACA (16%).

We characterize each individual i by their resident rating region (market), Mi, and a
vector Xi consisting of their age and household income. We discretize age into 38 single-
year bins running from 27 to 64, and household income into 52 FPL bins that are 5%
wide, running from 140% to 400%. When crossed with the 19 rating regions in Covered
California, we obtain 37,544 unique rating region × age × income bins of the observable
characteristics, (Mi�Xi).

As in most demand analyses, we do not directly observe individuals who chose the out-
side option of not purchasing a plan through Covered California. To transform quantities
purchased into shares, we estimate the number of potential buyers using data from the
2011–2013 American Community Survey public use file (via IPUMS, Ruggles, Genadek,
Goeken, Grover, and Sobek, 2015). Our potential buyer estimates use a flexible linear re-
gression, similar to Finkelstein, Hendren, and Shepard (2019) and Tebaldi (2022). More
detail is provided in Appendix S8.

We combine potential buyer estimates with the administrative data to construct choice
shares for each of the region × age × income bins. To avoid excessive extrapolation, we
drop bins that are empty in the ACS sample. We also drop a few small bins for which we
estimate fewer potential buyers than there are enrollees in the administrative data. We
are left with 30,007 bins that we use as the main estimation sample. Since the number of
individuals per bin varies greatly, we will report parameters that average over (Mi�Xi)
and, therefore, put greater weight on larger bins.

We focus on an individual’s choice of coverage level (metal tier), so that J = 4, with
j = 1�2�3�4 denoting Bronze, Silver, Gold, and Platinum, respectively, and j = 0 denot-
ing the outside option, as usual. The implicit assumption is that the choice of coverage
level is separable from the choice of insurer. We view this assumption as reasonable for
Covered California because the regulations ensure that the metal tiers offered—as well
as the financial characteristics of the tiers—do not vary by insurer. We define premiums
for each tier in each bin as the median post-subsidy premium across insurers. Because
of ACA regulations, Pi = π(Mi�Xi) is a deterministic function of a consumer’s region,
Mi, and demographic characteristics, Xi. We reflect this in notation ahead by writing
f (v|p�m�x) = f (v|m�x).
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TABLE II

SUMMARY STATISTICS.

Panel (a): Distribution of bin characteristics

Mean St. Dev. P-10 Median P-90

Number of buyers 85�32 91�07 14 55 195
Age 43�415 10�694 29 43 59
Income (FPL%) 243�991 72�037 155 230 355
Takeup rate 0�280 0�209 0.053 0.234 0.576
Average premium paid 174�495 89�324 68 162 298
Share choosing Bronze 0�065 0�073 0 0 0
Share choosing Silver 0�188 0�173 0 0 0
Share choosing Gold 0�015 0�021 0 0 0
Share choosing Platinum 0�012 0�018 0 0 0

Panel (b): Premiums and choice shares by age and income

Bronze Silver Gold Platinum

Premium Share Premium Share Premium Share Premium Share

By age:
27-34 120 0.050 174 0.122 229 0.010 272 0.010
35-49 117 0.058 181 0.175 248 0.013 299 0.011
50-64 104 0.086 207 0.259 321 0.022 409 0.016

By income (FPL%):
140-150 5 0.011 57 0.336 133 0.005 191 0.006
150-200 28 0.046 94 0.318 170 0.008 229 0.009
200-250 86 0.084 162 0.193 241 0.018 302 0.015
250-400 196 0.074 276 0.084 357 0.019 419 0.014

Note: Panel (a) reports statistic taken across the 30,007 bins in our main estimation sample. All statistics are weighted by number
of potential buyers. For income, standard deviation means the standard deviation of the within-bin medians of income and average
premium paid. In panel (b), premium is the average premium paid for buyers of a given age/income group.

In Table II, we provide some summary statistics. Each (Mi�Xi) bin contains 85 potential
buyers on average. The average participation rate in Covered California is 28%, but par-
ticipation varies widely across demographics and rating regions. Older and poorer buyers
in particular are more likely to purchase coverage. The impact of the CSRs is evident in
panel (b): buyers with income below 200% face monthly premiums under $100 for a Sil-
ver plan with actuarial value of 88% or more (see Table I). Over 30% of such consumers
purchase a Silver plan, whereas among consumers with income over 250% of the FPL,
fewer than 9% purchase a more expensive and less generous non-CSR Silver plan.

3.3. Identifying Assumptions

Insurers in Covered California choose the base premium for each rating region and cov-
erage level. This choice likely depends on differences in demand and costs specific to each
rating region, for example due to the underlying socioeconomic or health characteristics
of the residents in a region, or due to differences in provider networks. Using variation
across regions risks confounding premiums with these other unobservable differences.
For this reason, our primary empirical strategy uses only within-region variation, and we
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do not impose any restriction on how preferences (the density of valuations f ) vary across
regions, Mi.5

Instead, we assume—in a limited way—that valuations are locally invariant to age and
income. Within a region, post-subsidy premiums vary with age and income due to ACA
regulations. The variation is outside of the control of insurers, who only choose base
premiums for each region. The main concern with this strategy is that valuations also
change with age or income due to changes in latent risk factors. We defend against this
concern by only using local variation in age and income and then conducting a sensitivity
analysis using the imperfect instrument generalization of Assumption IV.

In the notation of Section 2, we let Wi denote a coarse aggregate of (Mi�Xi). The ag-
gregates are constructed by grouping Xi into age bins given by {27–30�31–35�36–40� � � � �
56–60�61–64} and income bins given in percentage of the FPL by {140–150�150–200�
200–250�250–300�300–350�350–400}. A value of Wi is then taken to be the region indi-
cator Mi crossed with all possibilities of these coarser age-income bins. Conditional on
Wi, we still observe variation in premiums due to variation in age and income within the
Wi bin. The assumption is that the distribution of latent valuations does not change as
Xi varies within this bin. In terms of Assumption IV, this means taking Zi = Xi as the
instrument, while conditioning on Wi.6

For example, one value of Wi = w corresponds to individuals in the North Coast rating
region who are aged between 36 and 40 with incomes between 150% and 200% of the
FPL. Within this bin there are 50 values of Xi comprised of the ages 36, 37, 38, 39, and
40 crossed with the 10 income bins between 150% and 200% in steps of 5%. We observe
a different premium vector for each of these 50 values, and we assume that observed
choices are generated by the same distribution of valuations.

We evaluate sensitivity to this assumption by using the imperfect instrument general-
ization of Assumption IV. We specify κ as

κ
(
z� z′�w

)
=

⎧
⎪⎨
⎪⎩

κage� if z and z′ differ only in age, and only by a single bin�
κinc� if z and z′ differ only in income, and only by a single bin�
+∞� otherwise�

where κage�κinc ≥ 0 are parameters that control how much the density of valuations is
allowed to vary. For example, taking κage = 0�2 and κinc = 0 allows for a 20% difference in
valuations for any two adjacent 1-year age bins with the same income, while still requiring
adjacent income bins with the same age to have identical valuations.

In Appendix S9, we also implement an alternative empirical strategy that allows for val-
uations to change arbitrarily across age and instead uses limited cross-region variation in
premiums, while still maintaining invariance across income. The demand estimates from
that strategy are broadly similar to the main results that use only within-region variation
in age and income.

5As a consequence, we can estimate bounds region-by-region, which helps with computation. For statistical
inference, we need to consider all regions simultaneously, which is the main reason that inference is so much
more computationally intensive; see Appendix S7 for more detail.

6Since Pi = π(Mi�Xi) does not have any unobserved stochastic components, this setting is an atypical exam-
ple of an instrumental variable. The simulations in Appendix S3 illustrate our method when the endogenous
variable depends on an additional unobservable component.
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Throughout all of the analysis, we use Assumption SP to exploit unambiguous vertical
orderings between plans. We specify the support sets V•(w) as:

V•(w) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

{
v ∈ R

4 : v2 ≥ v4 ≥ v3 ≥ v1

}
if w has income below 150% FPL�{

v ∈ R
4 : v2 ≥ v1� v4 ≥ v3 ≥ v1

}
if w has income in 150–200% FPL�{

v ∈ R
4 : v4 ≥ v2 ≥ v1� v4 ≥ v3 ≥ v1

}
if w has income in 200–250% FPL�{

v ∈ R
4 : v4 ≥ v3 ≥ v2 ≥ v1

}
if w has income above 250% FPL�

This specification requires consumers to always have higher valuations for plans that dom-
inate on all actuarial characteristics. The different cases account for the CSRs, which
change at 150%, 200%, and 250% of the FPL (see Table I). We do not restrict the order-
ing of Silver relative to Gold and Platinum for the 150–200% FPL bracket, or relative to
Gold for the 200–250% FPL bracket, because the CSRs make these plans differ in ways
that may be more or less attractive for different consumers. We also do not assume that
any of the plans are valued more than the outside option, that is, we allow valuations for
Covered California plans to be negative.

3.4. Parametric Models

For comparison, we also consider some fully parametric models, all of which follow a
specification similar to equation (2):

Yi = arg max
j∈J

1[j �= 0](γi − αiPij +βiAVij) + εij� (17)

where γi is an individual-specific intercept, AVij is the actuarial value of tier j for individual
i (see Table I), and αi and βi are individual slope coefficients. The indicator normalizes
the contribution of these terms to 0 for the outside option (j = 0). We consider logit mod-
els in which εij is assumed to follow a type I extreme value distribution, independently
across j, as well as a probit model in which εij follows a normal distribution. We always
estimate model (17) region-by-region, so that all parameters vary by region in an unre-
stricted way.

The first model we estimate is a logit in which the price parameter, αi, is constant within
regions, but both γi and βi vary with age and income in coarse bins. In particular, the
specification allows βi to vary freely by region with a different value in each of the age
bins used to define Wi: {27–30�31–35�36–40� � � � �56–60�61–64}. It allows γi to vary freely
by region, and within each region restricts γi = γinc

i +γ
age
i , where γinc

i varies in income bins
{140–150�150–200� � � � �350–400}, and γ

age
i varies in the same age bins as βi. The second

model is a probit with the same specification.7

We then consider three mixed logit models. In each of these models, γi and βi vary with
observables in the same way as in the first logit model. The three models differ in whether
γi (“mixed logit I”), αi (“mixed logit II”), or both (“mixed logit III”) have an additional
unobservable component that is normally distributed with unknown variance. In the latter
case, we also assume that the two unobservable components are uncorrelated.

We use these five parametric models to contextualize the nonparametric results and
demonstrate some of the benefits—and limitations—of the nonparametric approach. The

7The probit still has εij independent across j. We had difficulty allowing for correlation across j because the
likelihood is quite flat.
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comparison should be qualified by pointing out that the parametric approaches also dif-
fer in other ways from the nonparametric approach. The limited verticality we impose
on the nonparametric model through Assumption SP cannot be imposed in the paramet-
ric models because the distribution of εij has full support. Using actuarial value (AVij) in
equation (17) adds a notion of verticality that should make the comparison closer.8 We
impose some additive separability between income and age because including more pa-
rameters created convergence problems in some regions. Perhaps most substantively, the
parametric models are estimated through maximum likelihood, while our nonparametric
bounds are estimated using the absolute deviations approach in Section 2.8. As a conse-
quence of these differences, the parametric estimates need not lie inside the estimated
nonparametric bounds.

3.5. Demand Only

We do not model supply, so all of the results should be interpreted as holding supply
fixed. This is an important caveat to all of our counterfactual estimates, both parametric
and nonparametric.

4. DEMAND

We begin by estimating demand responses to uniform changes in monthly, per-person
premiums. The premium vectors in these counterfactuals take the form π(Mi�Xi) + δ
for various choices of δ. The first class of target parameters we consider are changes in
choice shares. For good j, region (market) m, and consumer characteristics x, these can
be written as

�Shareδ

j (m�x; f ) ≡

∫

Vj (π(m�x)+δ)
f (v|m�x) dv −

∫

Vj (π(m�x))
f (v|m�x) dv� (18)

where Vj(p) was defined in equation (8). We aggregate these changes in choice shares
into a single measure by averaging over regions and characteristics:

�Shareδ

j (f ) ≡
∑

m�x

�Shareδ

j (m�x; f )P[Mi = m�Xi = x]� (19)

In Table III, we report estimated bounds for �Shareδ

j across the four metal tiers to-
gether with bounds on overall participation,

∑
j≥1 �Shareδ

j = 1 − �Shareδ

0 . In the first
row of each panel of Table III, δ is set to a $10 increase for all plans together. From the
consumer’s perspective, this is the same as a $10 decrease in premium subsidies, or alter-
natively, the same as a $10 increase in the ACA’s “maximum affordable amount.” In the
next four rows of each panel of Table III, δ is set to a $10 increase in per-person monthly
premiums in each of the four metal tiers alone.

4.1. Participation and Substitution

Estimated impacts on overall participation are shown in the first column of Table III.
A $10 increase in all premiums reduces the proportion of individuals who purchase cover-
age by between 1.8% and 6.7%. Panel (b) shows that the bounds are larger in magnitude

8We also estimated specifications where AVij was replaced by product-specific intercepts. These specifica-
tions produced less price sensitivity.
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TABLE III

NONPARAMETRIC BOUNDS ON CHANGES IN CHOICE SHARES.

Change in probability of choosing

$10/month premium
increase for

Any plan Bronze Silver Gold Platinum

LB UB LB UB LB UB LB UB LB UB

Panel (a): Full sample (140–400% FPL)
All plans −0�067 −0�018 −0�012 −0�004 −0�051 −0�011 −0�004 −0�001 −0�003 −0�001
Bronze −0�011 −0�002 −0�047 −0�009 +0�004 +0�044 +0�000 +0�028 +0�000 +0�023
Silver −0�050 −0�003 +0�001 +0�124 −0�165 −0�017 +0�001 +0�121 +0�000 +0�097
Gold −0�003 −0�000 +0�000 +0�005 +0�000 +0�010 −0�013 −0�003 +0�000 +0�011
Platinum −0�002 −0�000 +0�000 +0�003 +0�000 +0�006 +0�001 +0�009 −0�010 −0�002

Panel (b): Lower income (140–250% FPL)
All plans −0�091 −0�020 −0�011 −0�003 −0�077 −0�015 −0�003 −0�001 −0�003 −0�001
Bronze −0�009 −0�001 −0�046 −0�008 +0�004 +0�044 +0�000 +0�027 +0�000 +0�023
Silver −0�076 −0�005 +0�001 +0�178 −0�237 −0�021 +0�001 +0�173 +0�000 +0�141
Gold −0�002 −0�000 +0�000 +0�004 +0�000 +0�009 −0�011 −0�002 +0�000 +0�010
Platinum −0�002 −0�000 +0�000 +0�004 +0�000 +0�006 +0�001 +0�010 −0�010 −0�002

Panel (c): Higher income (250–400% FPL)
All plans −0�037 −0�016 −0�015 −0�006 −0�018 −0�007 −0�004 −0�001 −0�003 −0�001
Bronze −0�013 −0�003 −0�049 −0�009 +0�003 +0�045 +0�000 +0�029 +0�000 +0�023
Silver −0�016 −0�001 +0�001 +0�053 −0�072 −0�012 +0�001 +0�054 +0�000 +0�040
Gold −0�003 −0�000 +0�000 +0�006 +0�000 +0�012 −0�016 −0�004 +0�000 +0�013
Platinum −0�002 −0�000 +0�000 +0�003 +0�000 +0�005 +0�001 +0�009 −0�010 −0�003

Note: Each pair of columns contains the estimated lower and upper bound for the change in choice probability of the choice indicated in columns in response to a $10/month premium increase
for the plan(s) indicated in the rows. The column “Any plan” means any choice j �= 0, and the row “All plans” means all choices j �= 0.
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for lower income individuals, at between 2.0% and 9.1%, and panel (c) shows that they
are smaller in magnitude for higher income individuals, at between 1.6% and 3.7%. Com-
paring panels (b) and (c) more generally, we find a pattern consistent with higher price
sensitivity for lower income enrollees, which is consistent with the literature (e.g., Abra-
ham, Drake, Sacks, and Simon (2017), Finkelstein, Hendren, and Shepard (2019)).

Premium increases for Gold or Platinum plans would have little impact on overall en-
rollment, which makes sense since there are relatively few buyers for these plans to be-
gin with, and $10 is a proportionally smaller increase in premiums for these plans. For
higher-income consumers, we estimate similar bounds on participation from increasing
premiums for either Bronze or Silver. For low-income consumers, increasing Silver pre-
miums could decrease participation by as much as 7.6%, while an increase in the Bronze
premium would cause a decrease of at most 0.9%.

The estimated bounds on substitution patterns within and between coverage tiers are
also informative in many cases. For example, panel (a) shows that an increase in Bronze
premiums by $10 would lead to a decrease of between 0.9% and 4.7% in the share of
consumers choosing Bronze coverage, and an increase in the share choosing Silver of
between 0.4% and 4.4%.9 The upper bound on the increase in the share choosing Gold
or Platinum is significantly smaller, reflecting the closer substitutability of the Bronze and
Silver plans. The change in participation from a Bronze premium increase is between
0.2% and 1.1%, which is naturally both smaller and tighter than the change when all
premiums are increased together. In contrast, increasing Platinum premiums by the same
amount would lead to a much smaller decline in the proportion of buyers not purchasing
coverage, which we measure to be at most 0.2%.

4.2. Sensitivity

In Table IV, we report sensitivity to Assumption IV. The reported bounds are for the
change in participation due to a $10 decrease in subsidies (increase in all premiums). The
three pairs of columns correspond to allowing for variation across age but not income

TABLE IV

SENSITIVITY TO ASSUMPTION IV.

Change in probability of purchasing coverage if all per-person premiums increase by $10/month

κage = κ, κinc = 0 κage = 0, κinc = κ κage = κinc = κ

κ LB UB LB UB LB UB

0 −0�0674 −0�0183 −0�0674 −0�0183 −0�0674 −0�0183
0�2 −0�0691 −0�0192 −0�1076 −0�0344 −0�1017 −0�0223
0�3 −0�0699 −0�0196 −0�1227 −0�0395 −0�1083 −0�0258
0�4 −0�0705 −0�0198 −0�1355 −0�0436 −0�1191 −0�0314
0�6 −0�0718 −0�0204 −0�1556 −0�0485 −0�1415 −0�0311
+∞ −0�0865 −0�0158 −0�2602 −0�0293 −0�2798 −0�0000

Note: Each pair of columns shows estimated lower and upper bounds on the change in choosing any inside choice (j �= 0). The
first pair adjusts κage , while keeping κinc = 0. The second pair adjusts κinc , while keeping κage = 0. The third pair adjusts both κinc
and κage simultaneously.

9In Appendix Figure S2, we show that the joint identified set for the two choice shares is far from rectangu-
lar. For example, if the effect on Bronze is a decrease of 4.7%, then the effect on Silver must be an increase of
between roughly 2% and 4.4%, narrower than the marginal bounds of 0.4% to 4.4%.
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bins (κage > 0, κinc = 0), allowing for variation across income but not age bins (κage = 0,
κinc > 0), and allowing for variation across both income and age bins (κage = κinc > 0).
The top row with κage = 0 and κinc = 0 is the same for each of the three pairs of columns,
and the same as reported in Table III. At the opposite extremes, the bottom row in the
first pair of columns uses only premium variation in income, the bottom row in the second
pair uses only premium variation in age, and the bottom row in the third pair uses neither.
Intermediate values of κage and κinc limit the amount by which adjacent bins can differ,
with larger values representing weaker identifying assumptions.10

The bottom row of the first pair of columns (κage = +∞ and κinc = 0) shows that if we
completely drop age invariance, the estimated bounds are 1.6% to 8.7%, which is only
modestly wider than the baseline estimates of 1.8% to 6.7%. The bottom row of the sec-
ond pair (κage = 0 and κinc = +∞) has much wider bounds, implying that the estimates
depend more on the income invariance assumption. When both income and age invari-
ance are completely removed, the bounds become completely uninformative and we can-
not rule out that a $10 decrease in subsidies causes all 28% of the population currently
enrolled to stop participating. Setting κage = κinc = 0�6 allows for the density of valuations
in adjacent age and/or income bins to increase or decrease by 60%. The bounds do widen
considerably, but remain informative. For a more modest relaxation, like κage = κinc = 0�2,
the bounds are still close to the baseline estimates.

Overall, the results in Table IV show that the participation estimates primarily rely
on the assumption that consumers in narrow income bins have similar preferences. This
makes sense given Figure 2, since post-subsidy premiums vary more with income than with
age. Assuming valuations are invariant to income is natural, since it gives the additive sep-
arability in choice model (1) the interpretation of quasilinearity (within coarse bins). The
assumption could fail if either quasilinearity fails, or if higher income individuals have sys-
tematically different valuations, for example, due to lower health risk. However, Table IV
shows that our results are largely robust to modest violations of income invariance. While
we view local invariance of valuations to age as reasonable for the relatively homogenous
groups of individuals within each 5 year bin, the assumption is unlikely to hold exactly
since risk factors change with age (see, e.g., Ericson and Starc (2015), Geruso (2017),
Orsini and Tebaldi (2017), Tebaldi (2022)). However, as demonstrated in Table IV, age
invariance plays a secondary role in our estimates.

4.3. Comparison to Parametric Models

In Figure 3a, we plot the baseline bounds on the change in participation due to a $10
decrease in subsidies (1.8% to 6.7%) together with 95% confidence intervals. For com-
parison, we also plot point estimates and confidence intervals for the parametric models
discussed in Section 3.4. All of the point estimates lie within the nonparametric bounds,
toward the upper bound, where price sensitivity is lowest.

By definition, any value within the nonparametric bounds can be produced by a distri-
bution of valuations that matches the observed choice shares equally well. The parametric
models produce a single point estimate by further requiring the distribution of valuations

10The bounds tend to be monotonic in κage and κinc, but this is not always the case. The population bounds
would necessarily be monotonic, since larger values of κage and κinc correspond to weaker assumptions. How-
ever, this does not need to be the case when estimating the bounds using the procedure discussed in Section 2.8.
The reason is that as κage or κinc increases, the value of Q̂� always mechanically decreases, and thus the set �̂�

over which the bounds are taken in the second step also changes, potentially excluding densities that fit the
observed choice shares sufficiently well for smaller values of κage or κinc.
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FIGURE 3.—Comparison to parametric models. Notes: Top panel: Bound and point estimates are shown in
solid black, and 95% confidence intervals are indicated with grey shading. The confidence interval for the logit
and probit models are too narrow to be visible. Bottom panel: Nonparametric upper and lower bounds on the
overall probability of purchasing coverage (choosing j �= 0) for each price change are shown with light grey
circles. Corresponding point estimates from mixed logit III are shown in black triangles.

to also have a particular shape. The conclusion we take from Figure 3a is therefore not
that the parameterizations used in the parametric models do not matter. Instead, it is that
the five parametric models we consider provide similar conclusions, and that there are
other distributions of valuations that match the data equally well while leading to much
different conclusions.

In Figure 3b, we explore this comparison for subsidy changes of different sizes. Larger
changes reflect more ambitious counterfactuals that are more dissimilar from what was
observed in the data. The nonparametric bounds widen to reflect this increasing dissimi-
larity. They are also wider for premium decreases than for increases, intuitively because
we have less information on price sensitivity for the 72% of potential buyers who did not
participate under the observed premiums. In contrast, the richest mixed logit model pro-
duces a point prediction for both increases and decreases, regardless of how dissimilar the
counterfactual is to the observed data.11 The point prediction hugs the lower bound for
premium decreases and the upper bound for premium increases, suggesting that it could
be underestimating the degree of price sensitivity, potentially by a considerable amount.

11Confidence intervals for the mixed logit predictions in Figure 3b are not much different than those in
Figure 3a, even for the most distant counterfactuals.
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4.4. Elasticities

In Table V, we report estimated bounds on discrete approximations to average region-
level elasticities. To avoid dividing by zero choice shares, we compute these elasticities at
an aggregated level by grouping Silver, Gold, and Platinum into a single low deductible
category, with the other option being high deductible Bronze plan. Appendix S6 contains
more details, showing how we use our method to estimate bounds on discrete approxima-
tions of semielasticities, which we then turn into elasticities.

The Lerner index computed at the endpoints of the bounds implies a markup for
marginal buyers of between 10% and 59% for the Bronze plan, and between 6% and
51% for the low deductible plans.12

Own-price elasticity estimates from the parametric models tend to be toward the non-
parametric upper bounds, although there is considerable variation for the Bronze plan.
The same is true for cross-price elasticities with the exception of the elasticity of the out-
side option to the price of Bronze, which the parametric models estimate to be at or above
the nonparametric upper bound.

The sensitivity analysis in Table V aligns with the price variation in the data (Figure 2).
The elasticities of choosing the outside option rely more on income variation than age
variation, with the bounds widening only somewhat with κage > 0, but considerably more
with κinc > 0. On the other hand, cross-price elasticities rely more on age variation, which
“rotates” the tier prices in a way that income variation does not. Own-price elasticities
seem to use both sources of variation in equal measure.

5. WELFARE AND MARKET DESIGN

5.1. Consumer Surplus and Government Spending

The change in consumer surplus from a change in premiums to π(Mi�Xi) + δ is

�CSδ(m�x; f ) ≡

∫ [
max
j∈J

{
vj −πj(m�x) − δj

}
− max

j∈J

{
vj −πj(m�x)

}]
f (v|m�x) dv�

The associated change in government spending is

�GSδ(m�x; f ) ≡
∑

j≥1

(
Subj(m�x) − δj

)
×

[∫

Vj (π(m�x)+δ)
f (v|m�x) dv

]

−
∑

j≥1

Subj(m�x) ×

[∫

Vj (π(m�x))
f (v|m�x) dv

]
�

where Subj(m�x) denotes the baseline premium subsidy for purchasing plan j. We aggre-
gate both �CSδ(m�x; f ) and �GSδ(m�x; f ) into single measures �CSδ(f ) and �GSδ(f )
by averaging over regions and demographics, the same as in equation (19).

In Figure 4, we show the estimated joint identified set for �CSδ and �GSδ when δ cor-
responds to a $10 decrease in subsidies. The subsidy decrease would lead to a reduction
in average monthly consumer surplus of between $2.03 and $2.40 per person, or between

12Markups for inframarginal buyers can be much smaller (possibly negative) if there is adverse selection and
higher risk buyers are less price sensitive (e.g., Einav, Finkelstein, and Cullen (2010), Tebaldi (2022), Einav,
Finkelstein, and Tebaldi (2019), Polyakova and Ryan (2019)).
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TABLE V

ELASTICITIES.

% change in probability of choosing

Outside High deductible Low deductible

1% premium increase for Bounds/Point estimate Bounds/Point estimate Bounds/Point estimate

High deductible Nonparametric +0�025 +0�169 −9�797 −1�707 +0�256 +2�710
κage = 0�4 κinc = 0 +0�023 +0�190 −10�438 −1�787 +0�273 +3�002
κage = ∞ κinc = 0 +0�000 +0�282 −11�369 −1�051 +0�074 +3�452
κage = 0 κinc = 0�4 +0�073 +0�387 −10�046 −2�632 +0�152 +2�707
κage = 0 κinc = ∞ +0�112 +0�898 −10�646 −2�292 +0�077 +2�727

Logit +0�154 −1�997 +0�154
Probit +0�152 −1�902 +0�200
Mixed Logit I +0�152 −1�966 +0�203
Mixed Logit II +0�206 −4�411 +0�997
Mixed Logit III +0�176 −4�039 +1�282

Low deductible Nonparametric +0�207 +1�530 +1�364 +54�251 −15�491 −1�956
κage = 0�4 κinc = 0 +0�197 +1�583 +1�922 +59�219 −16�178 −2�183
κage = ∞ κinc = 0 +0�052 +1�909 +0�235 +67�867 −18�444 −1�358
κage = 0 κinc = 0�4 +0�472 +3�064 +0�955 +52�746 −17�351 −3�638
κage = 0 κinc = ∞ +0�449 +5�851 +0�195 +63�914 −20�367 −2�288

Logit +0�641 +0�641 −3�549
Probit +0�544 +1�200 −2�455
Mixed Logit I +0�619 +0�799 −3�426
Mixed Logit II +0�281 +2�876 −3�135
Mixed Logit III +0�182 +3�263 −3�187

Note: High deductible is Bronze and low deductible is a bundle consisting of Silver, Gold, and Platinum. See Appendix S6 for further details on implementation and computation.
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FIGURE 4.—Changes in consumer surplus and government spending from a $10 decrease in subsidies. Notes:
Bound and point estimates are shown in solid black. One-dimensional 95% confidence intervals are shown in
grey vertical and horizontal bars.

$62 and $74 million yearly when aggregated, and a reduction in government spending of
between $6.74 and $19.59 per person, for a total of between $207 and $602 million per
year. The joint identified set is not rectangular: larger consumer surplus declines would
be accompanied by smaller declines in government spending. The large spending declines
are due to the marginal buyers who exit the market and relinquish their entire premium
subsidy, which in most cases is considerably greater than $10.

In Figure 4, we also plot the five-point predictions from the parametric models intro-
duced in Section 3.4. The models yield similar predictions for the decline in government
spending, all of which are toward the nonparametric upper bound. This is not surpris-
ing in light of Figure 3. Lower price sensitivity means fewer consumers leave the market
when subsidies decrease, and all of the parametric models produced similarly insensitive
participation responses.

More surprising is that the parametric models produce consumer surplus predictions
that are both larger and smaller than the nonparametric bounds. Only the richest model
(mixed logit III) makes a consumer surplus prediction within the nonparametric bounds.
The usual intuition is that lower price sensitivity would lead to larger consumer surplus
declines. However, the results in Figures 3a and 4 show that consumer surplus predictions
in the parametric models are also driven by the functional form of unobserved hetero-
geneity, even among models that yield similar price sensitivity.

In Table VI, we report nonparametric consumer surplus changes by income. Changes
for the lower-income sample ($2.6–$3.1 per person monthly) are estimated to be roughly
twice as large as for the higher-income sample ($1.3–$1.5 per person monthly). This is
likely due to the higher participation rate among the lower-income sample. In Table VI,
we also report sensitivity analysis for the consumer surplus and government spending es-
timates. As with the participation estimates in the previous section, the results are quite
robust to relaxing the age invariance assumption and depend more on the income invari-
ance assumption.

The results indicate large differences between consumer surplus and government
spending changes, consistent with a growing number of empirical analyses showing that
consumers value individual health insurance significantly less than it costs in subsidies
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TABLE VI

AGGREGATE IMPACTS FROM REDUCING PREMIUM SUBSIDIES BY $10 PER MONTH.

140–400% FPL 140–400% FPL 140–250% FPL 250–400% FPL
Change in government

spending ($ million/year)
Bounds/Point estimate

Change in consumer
surplus ($ million/year)
Bounds/Point estimate

Change in consumer
surplus ($/person-month)

Bounds/Point estimate

Change in consumer
surplus ($/person-month)

Bounds/Point estimate

Nonparametric −601�73 −207�05 −73�67 −62�49 −3�10 −2�59 −1�50 −1�32
κage = 0�4 κinc = 0 −622�58 −217�51 −74�00 −62�17 −3�11 −2�58 −1�51 −1�31
κage = ∞ κinc = 0 −750�84 −188�13 −75�78 −56�74 −3�17 −2�39 −1�57 −1�15
κage = 0 κinc = 0�4 −1136�26 −393�73 −72�10 −50�82 −3�02 −2�04 −1�49 −1�17
κage = 0 κinc = ∞ −2092�82 −281�28 −74�55 −11�83 −3�08 −0�34 −1�60 −0�44

Logit −295�13 −81�08 −3�44 −1�78
Probit −268�52 −82�38 −3�39 −1�78
Mixed Logit I −286�42 −83�64 −3�51 −1�88
Mixed Logit II −339�43 −57�27 −2�32 −1�40
Mixed Logit III −266�55 −63�27 −2�60 −1�49

Note: Each pair of columns corresponds to a different target parameter. Lower and upper bounds are shown for the nonparametric model with different sensitivity to age and income, while single
point estimates are shown for the parametric models.
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to induce them to purchase a plan (e.g., Finkelstein, Hendren, and Shepard (2019)). An
important caveat when interpreting welfare estimates in this context is that they do not
account for the existence of potentially large healthcare externalities such as the cost of
uncompensated care, debt delinquency, or bankruptcy (Finkelstein et al. (2012), Mahoney
(2015), Garthwaite, Gross, and Notowidigdo (2018)).

5.2. Linking Subsidies to Age

Regulated health insurance exchanges like Covered California rely on the participation
of healthy consumers. A growing body of research considers linking subsidies to demo-
graphics as a tool for encouraging healthy consumers to participate (e.g., Polyakova and
Ryan (2019), Decarolis, Polyakova, and Ryan (2020), Tebaldi (2022)). In Figure 5a, we di-
agram two counterfactual regulatory changes that directly link premium subsidies to age.
In one counterfactual, subsidies are shifted from older buyers to younger buyers, while in
the other the shift goes the opposite way.

We report the estimated effects of the two counterfactuals in Figures 5b and 5c. Shifting
subsidies toward younger buyers could have a potentially large positive impact on both
their participation and on aggregate participation, while decreasing the participation of
older buyers comparatively less, even in the worst case. While the change in consumer
surplus would naturally be positive for younger buyers and negative for older buyers,
we find that average consumer surplus would unambiguously increase by between $0.46
and $2.68 per person, per month. The impacts on government spending could be either
positive or negative, depending on exactly which sets of buyers change their purchase
decisions. In contrast, shifting subsidies toward older buyers would increase government
spending without necessarily increasing participation or average consumer surplus.

Figures 5b and 5c also include estimated effects for the five parametric models. As ex-
pected, they indicate price sensitivity toward the lower end of the nonparametric bounds.
The parametric models all predict positive aggregate consumer surplus impacts from
shifting subsidies toward younger buyers—like the nonparametric model—but potentially
understate the magnitude of these impacts by a large amount. The parametric models
predict no government spending impact from shifting subsidies toward younger buyers,
whereas the nonparametric model says the data is consistent with either moderate de-
creases or large increases. Similarly, the parametric models unambiguously predict that
the average consumer surplus impact of shifting subsidies toward older buyers would be
negative, whereas the nonparametric model implies it could be either positive or negative.

5.3. Removing Silver Plans

The CSRs in Covered California make Silver plans especially attractive for low-income
consumers (Tables I and II). Without Silver plans, subsidized consumers would face a
more standard trade-off between premiums and actuarial value. If Silver plans (j = 2)
were removed, the consumer surplus impact would be

�RS(m�x; f ) ≡

∫ [
max

j∈(J \{2})

{
vj −πj(m�x)

}
− max

j∈J

{
vj −πj(m�x)

}]
f (v|m�x) dv�

As with the other parameters, we aggregate �RS(m�x; f ) into �RS(f ) by averaging over
regions and demographics.

An interesting property of the nonparametric model is that the sharp lower bound on
�RS is infinite (−∞), at least unless we observe a choke price for Silver plans in the data
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FIGURE 5.—Linking subsidies to age. Notes: Panel (a) illustrates the change in subsidized premiums by
age under the two counterfactuals considered. Each x-axis group in panels (b) and (c) contains estimated
nonparametric bounds and parametric point estimates on the indicated counterfactual, as well as the baseline
value at the observed premiums.

(which we do not). The explanation is intuitive: without a parametric form for f , there
is nothing to restrict the tails of the valuation for Silver, allowing for the possibility that
some consumers have an unbounded preference for Silver plans. We view this property as
a transparent benefit of the nonparametric model. It implies that parametric models rely
on functional form to pick out a single consumer surplus impact from an unbounded set
of possibilities. While an arbitrarily large consumer surplus impact is implausible, the fact
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FIGURE 6.—Upper bounds on the change in consumer surplus from removing Silver plans. Notes: Each line
indicates the estimated nonparametric upper bound on the change in consumer surplus for a different income
group. The nonparametric lower bound is infinite.

that neither nonparametric assumptions nor the data rule it out highlights the role played
by the specific choice of parameterization.

We focus instead on estimating the sharp upper bound on the decrease in consumer
surplus from removing Silver plans. In Figure 6, we show that younger consumers would
experience less surplus loss in the best-case scenario. The finding makes sense because
these consumers also face a smaller premium differences between Bronze, Silver, and
Gold plans. In Figure 6, we also show that low income consumers would bear the brunt
of the surplus loss, which also makes sense because it is these consumers who receive the
CSRs incorporated into the terms of Silver plans (Table I). In Table VII, we show that
nearly $11 million of the aggregate best-case surplus change of $12.4 million would be
borne by consumers with income less than 250% of the FPL.

TABLE VII

AGGREGATE IMPACTS FROM REMOVING SILVER PLANS.

140–400% FPL 140–250% FPL 250–400% FPL
Change in consumer

surplus ($ million/year)
Bounds/Point estimate

Change in consumer
surplus ($ million/year)
Bounds/Point estimate

Change in consumer
surplus ($ million/year)
Bounds/Point estimate

Nonparametric −∞ −12�43 −∞ −10�78 −∞ −1�66
κage = 0�4 κinc = 0 −∞ −11�63 −∞ −10�25 −∞ −1�38
κage = ∞ κinc = 0 −∞ −0�68 −∞ −0�68 −∞ −0�00
κage = 0 κinc = 0�4 −∞ −9�77 −∞ −8�36 −∞ −1�41
κage = 0 κinc = ∞ −∞ −1�71 −∞ −1�39 −∞ −0�32

Logit −281�67 −248�97 −36�24
Probit −290�40 −260�62 −29�79
Mixed Logit I −292�09 −257�40 −38�29
Mixed Logit II −148�95 −135�53 −14�48
Mixed Logit III −173�74 −162�85 −11�65

Note: See notes for Table VI.
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Estimates from the parametric models are also reported in Table VII. The parametric
estimates all indicate consumer surplus impacts to be 7–10 times as large for lower income
consumers, similar to the ratio of the nonparametric upper bounds. The magnitude of the
estimates range from a decline of $149 to a decline of $292 million, which is between 2.5–
3.5 times as large as the estimated impact from increasing all premiums by $10 per month.
The sensitivity of the estimates to the precise type of logit model used is reminiscent of
findings by Petrin (2002). According to the nonparametric model, any figure between
$12.4 million and infinity is equally well supported by the observed choice shares.

The sensitivity estimates in Table VII show that these conclusions rely on both invari-
ance to age and invariance to income. Fully removing either assumption renders the
bounds essentially uninformative. The intuition can again be seen from Figure 6. Fix-
ing income, post-subsidy premiums for Silver do not vary in age, making it difficult to pin
down substitution between Silver and nonparticipation. Fixing age, post-subsidy premi-
ums for Silver increase in lock-step with income, making it difficult to pin down substitu-
tion between Silver and other tiers. Information on both types of substitution are needed
to infer the welfare impacts of removing Silver plans from the choice set.

6. CONCLUSION

We estimated the demand for health insurance in California’s ACA marketplace using
a new nonparametric approach. The central idea of the method is to divide consumer
valuations into a minimal relevant partition (MRP) of sets for which behavior remains
constant under all considered prices. Using the MRP, we developed a scalable linear pro-
gramming procedure for consistently estimating sharp identified sets for policy-relevant
target parameters. We believe the method should be useful for other discrete choice prob-
lems as well. For example, it could be used to remove the large support assumption in the
ideological voting model analyzed by Merlo and de Paula (2017).

The nonparametric estimates point to the possibility of substantially greater price sen-
sitivity than would be recognized using comparable parametric models. This finding is
consistent with the folklore that logits are “flat” models. The greater price sensitivity es-
timates in turn have important welfare implications for counterfactual policy changes to
subsidies or plan offerings. However, we also found direct evidence that specific paramet-
ric functional forms have first-order impacts on consumer surplus estimates that operate
through channels other than price sensitivity. The results provide a clear example in which
functional form assumptions about the distribution of unobserved heterogeneity are not
innocuous, and actually play a leading role in driving empirical conclusions.

APPENDIX: PROOFS FOR PROPOSITIONS 1 AND 2

A.1. Proposition 1

Suppose that t ∈ ��. By definition, there exists an f ∈ F � such that θ(f ) = t. We will
show that

φ̃(V |p�m�x) ≡

∫

V

f (v|p�m�x) dv (20)

is an element of ��(t).
First, note that φ̃ ∈ �, because the MRP V is (almost surely) a partition of RJ , and f is

a conditional probability density function on R
J . To see that φ̃ satisfies equation (MD’),
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observe that
∑

V∈Vj (p)

φ̃(V |p�m�x) ≡
∑

V∈Vj (p)

∫

V

f (v|p�m�x) dv = sj(p�m�x; f ) = sj(p�m�x)�

where the second equality follows from equation (7) using the definition of Vj(p), and
the third holds for all f ∈ F �. Similarly, φ̃ satisfies the upper bound in equation ( IV’)
because

φ̃(V |w�z) ≡ E
[
φ̃(V |Pi�Mi�Xi)|Wi =w�Zi = z

]

= E

[∫

V

f (v|Pi�Mi�Xi) dv|Wi = w�Zi = z

]

=

∫

V

f (v|w�z) dv

≤
(
1 + κ

(
z� z′�w

))∫

V

f
(
v|w�z′

)
dv

=
(
1 + κ

(
z� z′�w

))
φ̃

(
V |w�z′

)
�

where the third equality follows by Tonelli’s Theorem (e.g., Shorack (2000, p. 82)), the
inequality uses Assumption IV, which is satisfied by any f ∈ F �, and the final equality
reverses the steps of the first three. An analogous argument shows that φ̃ also satisfies
the lower bound of equation ( IV’). That φ̃ satisfies equation (SP’) follows because f ∈F �

satisfies Assumption SP, so

∑

V∈V•(w)

φ̃(V |w�z) =
∑

V∈V•(w)

∫

V

E
[
f (v|Pi�Mi�Xi)|Wi =w�Zi = z

]
dv

=

∫

∪{V:V∈V•(w)}

f (v|w�z) dv ≥

∫

V•(w)
f (v|w�z) dv = 1� (21)

The inequality in equation (21) uses the definition of V•(w), which together with the fact
that V is an a.s. partition of RJ , implies that V•(w) is contained in the union of sets in
V

•(w). Inequality (21) implies that φ̃ satisfies equation (SP’), because

∑

V∈V•(w)

φ̃(V |w�z) ≤
∑

V∈V

φ̃(V |w�z) = E

[∑

V∈V

φ̃(V |Pi�Mi�Xi)|Wi =w�Zi = z

]
= 1�

as a result of φ̃ being an element of �. Finally, since φ̃ ≡ θ(f ) as defined in equation (12),
we immediately have that θ(φ̃) = θ(f ) = t due to Condition TP. We have now established
that if there is an f ∈F � with θ(f ) = t, then φ̃ ∈ ��(t).

Conversely, suppose that there exists a φ ∈ ��(t). Recall that Wi was assumed to be a
subvector (or more generally, a function) of (Pi�Mi�Xi), and denote this function by ω,
so that Wi =ω(Pi�Mi�Xi). We will show that

f̃ (v|p�m�x) ≡
∑

V∈V•(ω(p�m�x))

1
[
v ∈ V ∩ V•

(
ω(p�m�x)

)]

λ
(
V ∩ V•

(
ω(p�m�x)

)) φ(V |p�m�x)�
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is an element of F � that satisfies θ(f̃ ) = t, where λ denotes Lebesgue measure on R
J .

(Note that the definition of V
•(w) ensures that the denominator of each summand is

nonzero.) Intuitively, the function f̃ (·|p�m�x) distributes total mass of φ(V |p�m�x) uni-
formly over each set V ∈V

•(ω(p�m�x)).
For all V ∈V,

∫

V

f̃ (v|p�m�x) dv ≡
∑

V ′∈V•(ω(p�m�x))

∫

V

1
[
v ∈ V ′ ∩ V•

(
ω(p�m�x)

)]

λ
(
V ′ ∩ V•

(
ω(p�m�x)

)) φ
(
V ′|p�m�x

)
dv

= 1
[
V ∈ V

•
(
ω(p�m�x)

)]
φ(V |p�m�x)� (22)

since the sets in V, and thus V•(ω(p�m�x)) are disjoint (almost surely). Using equation
(22), we have that

∫

RJ

f̃ (v|p�m�x) dv =
∑

V∈V

∫

V

f̃ (v|p�m�x) dv

=
∑

V∈V•(ω(p�m�x))

φ(V |p�m�x) = 1� (23)

where the first equality uses the fact that V is an (a.s.) partition of RJ , and the final equality
is implied by the hypothesis that φ satisfies equation (SP’), since

1 =
∑

V∈V•(w)

φ(V |w�z) = E

[ ∑

V∈V•(ω(Pi�Mi�Xi))

φ(V |Pi�Mi�Xi)|Wi = w�Zi = z

]
�

and every φ ∈ � satisfies
∑

V∈V•(ω(p�m�x))

φ(V |p�m�x) ≤
∑

V∈V

φ(V |p�m�x) = 1�

Since f̃ inherits nonnegativity from φ ∈�� ⊆�, we conclude from equation (23) that f̃ is
a conditional density, that is, f̃ ∈F .

To see that f̃ satisfies the upper bound of Assumption IV, notice that

f̃ (v|w�z) ≡ E
[
f̃ (v|Pi�Mi�Xi)|Wi =w�Zi = z

]

≡ E

[ ∑

V∈V•(w)

1

[
v ∈ V ∩ V•(w)

]

λ
(
V ∩ V•(w)

) φ(V |Pi�Mi�Xi)|Wi =w�Zi = z

]

=
∑

V∈V•(w)

1

[
v ∈ V ∩ V•(w)

]

λ
(
V ∩ V•(w)

) φ(V |w�z)

≤
(
1 + κ

(
z� z′�w

)) ∑

V∈V•(w)

1
[
v ∈ V ∩ V•(w)

]

λ
(
V ∩ V•(w)

) φ
(
V |w�z′

)

=
(
1 + κ

(
z� z′�w

))
f̃
(
v|w�z′

)
�
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where the inequality uses condition ( IV’), and the final equality reverses the steps of the
first three. An analogous argument can be used to show that f̃ also satisfies the lower
bound of Assumption IV. Assumption SP is satisfied because

∫

V•(w)
f̃ (v|w�z) dv ≡

∫

V•(w)
E

[
f̃ (v|Pi�Mi�Xi)|Wi =w�Zi = z

]
dv

= E

[ ∑

V∈V•(w)

φ(V |Pi�Mi�Xi)|Wi =w�Zi = z

]

=
∑

V∈V•(w)

φ(V |w�z) = 1�

where the second equality uses Tonelli’s theorem with equation (22). That f̃ satisfies equa-
tion (MD) follows from the definition of Vj(p), equation (22), and equation (MD’) via

sj(p�m�x; f̃ ) ≡
∑

V∈Vj (p)

∫

V

f̃ (v|p�m�x) dv

=
∑

V∈Vj (p)

1

[
V ∈ V

•
(
ω(p�m�x)

)]
φ(V |p�m�x)

=
∑

V∈Vj (p)

φ(V |p�m�x) = sj(p�m�x)�

for all j ∈ J and (p�m�x) ∈ supp(Pi�Mi�Xi). The second-to-last equality here used the
implication of equation (23) that φ(V |p�m�x) = 0 for any V /∈ V

•(ω(p�m�x)). Finally,
note that in the notation of equation (12), equation (22) says

φ(f̃ )(V |p�m�x) =

∫

V

f̃ (v|p�m�x) dv = 1
[
V ∈ V

•
(
ω(p�m�x)

)]
φ(V |p�m�x)�

This equality implies that φ(f̃ )(V |p�m�x) = φ(V |p�m�x) for all V , since equation (23)
implies that φ(V |p�m�x) = 0 for V /∈V

•(ω(p�m�x)). As a consequence,

θ(f̃ ) = θ ◦φ(f̃ ) = θ(φ) = t�

and therefore t ∈��.

A.2. Proof of Proposition 2

Observe that � is a compact and connected subset of R
dφ . Since equations (MD’),

( IV’), and (SP’) are linear (in)equalities, the subset of � that satisfies them is also com-
pact and connected. If θ is continuous on this subset, then its image over it—which Propo-
sition 1 established to be ��—is compact and connected as well. If dθ = 1, then �� is a
compact interval, so by definition its endpoints are t�lb and t�ub.
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