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Abstract

Instrumental variable (IV) strategies are widely used to estimate causal effects in economics,

political science, epidemiology, sociology, psychology, and other fields. When there is
unobserved heterogeneity in causal effects, standard linear IV estimators only represent
effects for complier subpopulations (Imbens and Angrist, 1994). Marginal treatment effect
(MTE) methods (Heckman and Vytlacil, 1999, 2005) allow researchers to use additional
assumptions to extrapolate beyond complier subpopulations. We discuss a flexible framework
for MTE methods based on linear regression and the generalized method of moments. We
show how to implement the framework using the ivmte package for R.

Keywords: instrumental variables, marginal treatment effects, local average treatment
effect, partial identification

1. Introduction

A central task in many empirical fields is to determine the effect (the causal effect) of one
variable on another. The task is often complicated by the fact that the effecting variable
(the treatment) is not only not randomly assigned, it is chosen by an agent with information
unavailable to the researcher. For example, in the application discussed later, the treatment
is the number of children a family decides to have, and the empirical question is the effect
that bearing more children has on the mother’s labor force participation. Since having a
child and working are joint decisions a family makes using their own private information,
strategies such as propensity score matching are unlikely to eliminate systematic unobserved
differences between families with more children and those with fewer children. Different
empirical strategies are needed to credibly identify a causal effect.

Instrumental variables (IVs) are one extremely popular strategy (e.g. Heckman and Robb,
1985; Bollen, 2012; Baiocchi et al., 2014; Imbens, 2014). An IV (or instrument) is an observed

variable that is correlated with the treatment variable, but uncorrelated with confounding

©2023 Joshua Shea and Alexander Torgovitsky.
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unobservable differences. A well-known example of an instrument for fertility is the same-sex
instrument introduced by Angrist and Evans (1998). This instrument is a binary variable
that is equal to 1 if a family’s first two children had the same sex (female-female or male-male)
and is 0 otherwise.! The key assumption of an IV model is that the sex of the second child is
as good as randomly assigned—and therefore independent of any confounding unobservable
differences across families—while still impacting a family’s decision to have a third child due
to a preference for having both a male and female child. The intuition is that by comparing
the labor supply decisions of families whose first two children were the same sex to families
whose children were mixed sex, one picks up only the differences that are caused by the

decision to have additional children.

While IV strategies have been widely studied and applied for many decades (see Stock
and Trebbi, 2003, for a history), it wasn’t until the 1980s that researchers started to focus
on IV models with unobserved heterogeneity in treatment effects.? In an influential paper,
Imbens and Angrist (1994) provided nonparametric conditions under which a simple linear
IV estimator can be interpreted as estimating the average causal effect (the “local average
treatment effect,” or LATE) among a subpopulation described as the compliers. The
compliers are the individuals whose treatment choice would have been different had their
instrument been different. In the fertility application, they are the families who would have
had a third child if and only if their first two children had the same sex.

An important implication is that the interpretation of a linear IV estimator depends on
the instrument used. If there is unobserved treatment effect heterogeneity, then linear IV
estimators cannot in general be interpreted as providing estimates of conventional parameters
such as the average treatment effect (ATE) or the average treatment effect on the treated
(ATT). One response to this finding is to continue to use linear IV estimators and change
the research question to serve the definition of the complier group, a practice espoused by
Angrist and Krueger (2001) and Angrist and Pischke (2009, 2010). A number of authors in
multiple disciplines have criticized this practice (e.g. Robins and Greenland, 1996; Heckman,
1997; Deaton, 2010; Pearl, 2011; Swanson and Herndn, 2014, among many others).® Another
response is to change the estimator and extrapolate from the compliers to the subpopulation
that better answers the researchers’ empirical question (see Mogstad and Torgovitsky, 2018,

for a discussion of different approaches).

1. Using the same-sex instrument requires restricting the analysis to families with two or more children.

2. An early example is Heckman (1976). See also Heckman and Robb (1985), Bjorklund and Moffitt (1987),
and Manski (1990). Taking a more expansive view of unobserved heterogeneity in “treatment effects”
to also encompass random coefficient models, one can trace interest back to the Cowles Foundation
(Hurwicz, 1950; Rubin, 1950) as well as foundational economic analyses like Becker and Chiswick (1966).

3. More recently, Blandhol et al. (2022) have argued that the LATE interpretation typically does not even
apply to the types of linear IV specifications used in practice.



IVMTE

In a series of papers, Heckman and Vytlacil (1999, 2005, 2007a,b) developed the concept
of the marginal treatment effect (MTE) and showed how it can be used to nonparametrically
model this type of extrapolation under the same “monotonicity” condition used by Imbens
and Angrist (1994). Carneiro et al. (2011) and Brinch et al. (2012, 2017) showed how to
apply their idea to identify and estimate semiparametric MTE models. These methods
have now been applied across a wide range of topics in empirical economics including the
returns to schooling (Moffitt, 2008; Carneiro et al., 2011, 2016; Nybom, 2017; Heinesen
and Stenholt Lange, 2022), and its impacts on wage inequality (Carneiro and Lee, 2009),
discrimination (Arnold et al., 2018, 2020), the returns to citizenship (Gathmann et al., 2021),
and to agricultural technology (Mellon Bedi et al., 2021; Sarr et al., 2021), the effects of
foster care (Doyle Jr., 2007), the impacts of welfare (Moffitt, 2019) and disability insurance
(Maestas et al., 2013; French and Song, 2014; Autor et al., 2019) programs on labor supply,
the performance of charter schools (Walters, 2018), health care (Kowalski, 2018; Depalo,
2020), marketing (Daljord et al., 2021), nonresponse bias in social surveys (Dutz et al.,
2021), the effects of early childhood programs (Kline and Walters, 2016; Cornelissen et al.,
2018; Felfe and Lalive, 2018), the efficacy of preventative health products (Mogstad et al.,
2017), the quantity—quality theory of fertility (Brinch et al., 2017), the demand for electricity
(Ito et al., 2022), and the effects of fines (Goncalves and Mello, 2022; Possebom, 2022),
misdemeanor prosecution (Agan et al., 2021), and incarceration (Bhuller et al., 2020; Rose

and Shem-Tov, 2021), among many others.

Mogstad et al. (2018) developed a general moment-based framework for implementing
MTE approaches that allows for partial identification (bounds) in cases when the researcher’s
assumptions are not strong enough (or the data is not rich enough) to pin down a unique
conclusion.? In this paper, we discuss implementation of this framework, as well as a related
regression-based framework, that minimizes a least squares criterion.® Instead of focusing
on fitting specific moments, the regression framework minimizes a least squares criterion. As
we discuss, this has both benefits and drawbacks that depend on the researcher’s empirical
setting and goals. We then describe the R package ivmte, which can be used to implement
both the moment and regression frameworks. The package provides a flexible environment
for using IV strategies to conduct rigorous policy evaluation in the presence of unobserved

heterogeneity.

4. Rose and Shem-Tov (2021) extended and applied the framework in their study of the impact of incarceration
on recidivism.
5. Brinch et al. (2012, 2017) introduced the regression-based framework for point-identified cases.



SHEA AND TORGOVITSKY

2. Model and identification

2.1 Potential outcomes and choices

The model is about the impact of a binary treatment D; € {0,1} on individual i’s observed
outcome variable, ;. Let ¥;(0) and Y;(1) denote the unobserved potential outcomes for Y; if
individual ¢ had received D; = 0 or 1, respectively, so that ¥; = D;Y;(1) + (1 — D;)Y;(0). The
researcher is interested in features of the distribution of the causal effect, Y;(1) — Y;(0). The
researcher has access to some observable covariates, X;, but they are concerned that D; is still
dependent with Y;(0) or Y;(1) even after conditioning on X;, so that the unconfoundedness
(selection on observables) assumption (e.g. Barnow et al. (1980), Rosenbaum and Rubin
(1983), Heckman et al. (1996)) does not hold.

However, the researcher also has access to an instrumental variable, Z;. The instrument
influences individual i’s treatment choice with D;(z) denoting their unobserved potential
treatment choice if Z; were set to z. Their observed treatment choice is related to these
potential choices via D; =3,z 1[Z; = 2] D;(2), where Z is the support of Z;. In contrast
to D;, the instrument is assumed to be as good as randomly assigned, conditional on X, in
the sense that Z; is independent of (Y;(0), Y;(1), {Di(z)}.cz), conditional on X;. Given that
the potential outcomes Y;(d) are indexed by d only, this assumption also implies that the
instrument also has no direct causal effect on Y;, an assumption typically referred to as the

exclusion restriction.

2.2 The selection model

Imbens and Angrist (1994) introduced an additional assumption that they described as
monotonicity. The monotonicity assumption says that for any pair of instrument values z and
2!, either D;(z) > D;(2’) for all individuals i, or else D;(z") > D;(z) for all individuals i. That
is, a shift from z to 2’ either pushes every individual towards treatment, or else pushes every
individual away from treatment. Whichever direction holds, the monotonicity condition
maintains that there are no individuals who deviate from this ordering, a requirement

sometimes described as “no defiers.”®

Vytlacil (2002) showed that the monotonicity condition is equivalent to the latent variable

selection model

D; =1[U; < p(Xi, Z;)], (1)

6. Despite the name "monotonicity," the condition would be more accurately described as "uniformity," since
it restricts heterogeneity in how the instrument impacts treatment choice (Heckman et al., 2006; Mogstad
et al., 2021).
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where Uj; is a continuously distributed unobserved random variable, and p(z, z) = P[D; =
11X; = z,Z; = z] is the propensity score. The latent variable U; is independent of Z;,
conditional on X;, and is customarily normalized to be uniformly distributed on [0, 1].7 It
can be interpreted as the individual i’s rank (quantile) of latent willingness to choose D; = 1,
with smaller values of U; corresponding to more-willing individuals. When D; is a variable
chosen by an agent, such as in the fertility example, we expect that U; will be dependent
with Y;(0) and Y;(1) if these potential outcomes themselves either directly influence the

agent’s choice or are correlated with other factors that do.

2.3 Marginal treatment response and effect functions

The advantage of the latent variable model (1) is that it facilitates modeling unobserved
heterogeneity in the effect of D; on Y;. The key object for this purpose is the marginal

treatment response (MTR) function
m(d|u,x) = E[Y;(d)|U; = u, X; = z] (2)

The MTR function describes how expected treated and untreated outcomes vary conditional
on both observed covariates, X;, and the unobserved latent propensity to take treatment,
U;. The marginal treatment effect (MTE) of Heckman and Vytlacil (1999, 2005, 2007a,b)
is the difference of the MTR function between treatment states: m(1|u,z) — m(0|u, z).
For example, if the MTE is declining in u, then individuals who are less likely to choose
treatment (larger u) would experience smaller treatment effects than those who are more
likely to choose treatment. Thus, the MTE captures the idea of selection on unobservables,

where the unobservable in question is an individual’s latent propensity to take treatment,
U;.

2.4 Target parameters

Many treatment effect parameters can be written as weighted averages of the MTR. function.

For example, the average treatment effect (ATE) can be written as

E[Yi(1) - Yi(0)] = E[E[Y;(1)|U;, X;] — E[Yi(0)|Us, Xi]]
=ATE

= E[m(1|U;, X;) — m(0|U;, X;)] = E [/01 m(1|u, X;) — m(0lu, X;) du| ,
(3)

7. See Heckman and Vytlacil (2005), Matzkin (2007), or Mogstad and Torgovitsky (2018) for a detailed
discussion of the normalization.
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where the final equality used the normalization on the distribution of U; to be uniform and
independent of X;. Similarly, the average treatment effect on the treated (ATT) can be

written as

1 . .
E[Y;(1)_n(0)|pi:1]:1ﬁ[/o (m(1]u, X5) — m(Ofu, X)) x = TEE du}, (@)

=ATT

see e.g. Heckman and Vytlacil (2005). As in Mogstad et al. (2018), we view both (3) and (4)

as examples of target parameters T with the general form

= % 113[/0 (dlu, Xi)wr (d]u, X,,Z)du], (5)

de{0,1}

where w; is a weighting function that is either known to the researcher (as in (3)) or point
identified from the distribution of (D;, X;, Z;) (as in (4)). Heckman and Vytlacil (2005) and
Mogstad et al. (2018) provide extensive discussions and many examples of target parameters,

along with their weighting functions, w,.

2.5 Implied observable quantities

The model implies a relationship between the MTR function and moments of the ob-
served outcome, Y;. In particular, Mogstad et al. (2018, Proposition 1) show that for any
(measurable) function s of (D;, X;, Z;)

1
E[Y;s(Di, X;, Z)) = E [s(O,Xi, Z2) [ m(Ofu, Xl > p(X;, Z0) du]
0
1
+E [3(1,)(1., Z2) [, X < p(Xs, Z0) du] = 1y(m). (6)
0
A similar expression can be derived for the conditional moments of Y;:

ED@U%ZZlWXiZJQZ%ZZ]

=E[Y;(D)|U; < p(z, 2), X; = 7] /m1|ux u<(p(:v)z)]du,

and, symmetrically,

1u > p(z, 2)]

1
]EYZ-Di:(),Xi::L‘,Zi:z:/mOu,J: ,
[Yi] ] ; (0] )(1_p($’z))
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We combine the right-hand side of these two relationships using the notation

1u > p(x, 2)]
(1 —p(z,2))

+m(tu, 2)d L SP@ A g

Yem(m|d, x, 2) = /01 m(0u, z)(1 — d) p(z, z)

2.6 Identification

We use expressions (6) and (7) to define two identified sets for the target parameter, 7. To
do this, we first define identified sets for the MTR function. We assume that m lives in
some set M contained in a vector space, where M encodes any additional assumptions we

might want to place on m, such as parameterizations or shape restrictions.

One identified set matches a collection of unconditional moments (6) formed by a

collection of functions s € S:
Ms ={m e M :~v5(m) = E[Y;s(D;, X;, Z;)] for all s € S}. (8)

The moment approach is based on M%. Another identified set matches the conditional

mean of the observed outcome:

Me,={m e M :yem(mld,z,z) = E[Y;|D; = d, X; = x, Z; = 2] for almost every d,z,z}.
(9)

The regression approach is based on M7 . If m satisfies the set of conditional moment

equalities in M, then it also satisfies the unconditional moment equalities in MY for
any choice of S, and thus M}, C M%. However, there are some practical, statistical, and
conceptual considerations that may nevertheless favor the moment approach (see Section

3.4).

Our object of interest is not an identified set for the MTR function, but rather an
identified set for the target parameter, 7. An identified set for the target parameter can be

formed by taking the image of either M’ or M under 7:
TE={r(m):me M%s} and To, ={r(m):me M, }. (10)

The set T3 gives the values of the target parameter that are consistent with the assumptions
of the model and the unconditional moments (6) for s € S. The set 77, is the subset of T&

that is consistent with the entire conditional mean of the observed outcome.
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2.7 Point identification vs. partial identification

The formulation in the previous section allows the identified sets M¥, M%,, T&, and Ty, to
be either singletons or proper non-singleton sets. In the first case, we say that m or 7 is
point identified, while in the second case we say that they are partially identified. Point
identification of m implies point identification of 7. When 7 is not point identified, its
identified sets TZ and 7.y, will still be closed intervals under weak conditions (see Mogstad
et al., 2018, for a precise statement). One can thus describe the partial identification case as
providing bounds on the target parameter. It is also possible for the identified sets to be
empty, in which case the model is said to be misspecified.

The size and cardinality of the identified sets depend on a few factors. Having a smaller
parameter space M—that is, maintaining more restrictive assumptions—mechanically
shrinks the identified sets. Making S a larger set of functions also mechanically shrinks
the moment-based identified set. The number of distinct functions one can potentially
include in S is determined by the supports of Z; and X;. Richer supports of Z; allow for
smaller identified sets and thus tighter conclusions; richer supports of X; can also be helpful
if M is such that m(d|u,x) depends on z in a restricted way. These richer supports get
automatically incorporated into the conditional mean identified set 77, so that it necessarily

shrinks with additional support points.

2.8 Criterion functions

For implementation, it is useful to have a scalar function that determines if a candidate
MTR function m is in either M§ or MY .

For the moment approach, we let ¢; = E[Y;s(D;, X;, Z;)], and stack both ¢y and ~s(m)

across s € S into vectors ¢s and vs(m). Define
Qs(m) = |lvs(m) — s,
for some choice of norm ||-||. Then m € M if and only if Qs(m) = 0, so that
7§ ={r(m) : Qs(m) = 0}.

The minimum value of Qs(m) over m € M can be used as the basis for a specification test;

if the model is correctly specified, then it should be 0.

For the regression approach, we define the least squares criterion:

Qem(m) = E [(Yi —yem(m| Di, X3, Z0))%] .
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If MY, is not empty—that is, if the model is correctly specified—then m € My, if and

only if m € argmin,, - \g Qem(m’), so that
T, = {T(m) : Qem(m) = min Qcm(m’)}.

m'eM

Unlike 7¢, which can be empty, 7, is necessarily non-empty, reflecting the fact that the

minimum of the least squares criterion cannot be used as the basis for a specification test.

3. Estimation and computation
3.1 Linear basis representation

Implementation requires evaluating the functions 7 and 7, or vem at candidate choices of

the MTR function. Some dimension reduction is needed for computation. Let

K
mo(d|u,x) = Z 0,by(d|u, z) for some 0 € RX, (11)

k=1
where by are known basis functions and 6, are unknown parameters. We assume that the
parameter space is M = {my : 6 € O} for some subset © of R¥. That is, the MTR function
is assumed to be a member of the class of functions formed by taking linear combinations of
the basis functions. This reduces the dimension of the function m to a K-dimensional real

vector 6.

Linear-in-parameters specifications like (11) are commonplace in statistical models. For

example, if x is scalar, one could specify

mg(0]u,x)
mo(dlu,z) = 61(1 —d) +62(1 — d)u+ 03(1 — d)x + 04(1 — d)uzx
+ 05d + Ogdu + O7du® + Ogdx + Ogda? (12)
mg(1|u,z)

which corresponds to K = 9 parameters with basis functions e.g. bs(d|u,z) = (1 — d)x and
br(d|u,z) = du?. The assumption used in the ivmte package is that M contains only MTR
functions such that both mg(0Ju,z) and mg(1|u,z) are either polynomials or polynomial
B-splines in u. This is certainly a special case of (11), but one that is popular both as
a parametric restriction (e.g. a polynomial, like (12)) and as an approximating basis for

nonparametric sieve estimation (e.g. Chen, 2007).
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3.2 Sample analogs

The benefit of using the linear-in-parameters specification (11) is that it preserves the

linearity of 7, s, and e as functions of m. In particular,
7(mg) = 0'T, (13)
where T is a K-dimensional vector with kth element

- Y E [/ by (d|, X )or (d|u, X, Z:) du| . (14)
de{0,1}

Given a sample of data {(Y;, D;, X, Z;)}I_, each component of T' can be estimated by its

sample analog

#(be) —fz 3 / bi (|, X)6or (|, Xy, Zi) (15)

1=1de{0,1}

where @, is an estimate of w;. Requiring mgy(d|u,z) to be a polynomial or B-spline in u
means that the integral in 7(b;) can be computed analytically as long as &, (u,z, z) has a

tractable form, which it does for all conventional target parameters.® By the same reasoning,
fys(m9) = HIFS and 7Cm(m9|d7xaz) = alrcm(dvxaz)a

where I'y and Tey, (d, z, 2) are K-dimensional vectors with kth elements given by 74(bx) and
Yem (bg|d, , z). A sample analog estimator of ~,(by) is

1 n
)= = 30, X4, Z;) /bk Olu, X)W[u > p(X;, Z;)] du

=1

3

1 & 1
F2 3 S X0 Z) [ b, Xl < (X, Z9)] du,
=1 0

3

where § is an estimator of s, and p is an estimator of p. A sample analog estimator of

Yem (b |d, x, 2) is

R 1 T[w
'ycm(bk|d,x,z):/0 (O], 2)(1 — d) =

8. ivmte allows for any target parameter for which &-(u,x, z) can be written as a constant spline in u—see
Section 4.3.

10
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We use these sample analogs to define sample criterion functions. The moment-based

sample criterion is

Qs(mg) = HfSQ —és

where I's is an |S| x K matrix with rows I, = [5(b1), . .., 9s(bx )], and és is a vector with

elements

n
Z 8(Dy, X;, Z;).

:\H

The regression-based sample criterion is

S (¥ - 0 Fen(Ds X0, 20

=1

:\H

where fcm(Di, Xi, Z;) is a K-dimensional vector with kth element 4cp, (bg|Di, Xi, Z;).

3.3 Estimation

Estimation differs for point and partially identified cases.

3.3.1 POINT IDENTIFICATION

In the point identified case, we assume that the parameter space is © = RX. This
simplification allows for closed-form estimators.

For the moment criterion, we use the generalized method of moments (Hansen, 1982,
“GMM”) estimator of 6:

6 = argmingegec (T'sh — és) @ (Fs0 - s), (16)

where () is a positive semi-definite weighting matrix. The minimizer 6 of (16) is the minimizer
of Qs when || - || is taken to be the Euclidean norm weighted by €. In a point identified
case, one would expect that (16) has a unique solution, in which case it can be solved for
analytically.

The regression sample criterion Qcm is simply the ordinary least squares criterion for
a linear regression of Y; onto the vector of generated regressors f‘cm(Di, Xi, Z;). It has a

unique minimizer if and only if the matrix

n
> Tem(Di, Xi, Zi)lemn( Dy, Xi, Zi)' (17)
i=1

11
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is invertible. If the researcher believes that point identification holds, then a simple estimator

0 of 0 is the ordinary least squares estimator from a regression of Y; on f‘cm(Di, Xi, Zi).

For both the moment and regression approaches, we then set

=0T (18)
where T is the K-dimensional vector with kth element 7(bg). Then 7* is our point estimator
of the (assumed singleton) identified set for the target parameter, 7& or 77, depending on

the criterion function used.

3.3.2 PARTIAL IDENTIFICATION

For partially identified cases we use a two-step estimator developed by Mogstad et al. (2018)
for both the moment and regression approaches. In the first step, we minimize the criterion

function to find
)* = min O 1
Q" = min Q(me), (19)

where Q could be either QS or Qcm, and now the parameter space © is allowed to be a proper
subset of RX. In the second step, we then minimize and maximize the target parameter
over the set of # € O that produce sample criteria close to the best possible value, Q*. That

is, we solve for

o/ Top = mir;/gnax 0'T subject to  Q(myg) < (1 + 0)Q*, (20)

€
where ¢ > 0 is a tuning parameter used in the asymptotic theory (see Mogstad et al., 2018,
for more detail). The feasible set in (20) is always non-empty due to the definition of Q*,
so that both 7 and 77, are always well-defined. Mogstad et al. (2018) provide conditions
under which [#, 7% ] is a consistent set estimator of TZ if Q = Qs, and of T2, if Q = Qem.
To facilitate computation, we assume that the constraint set © can be written in terms

of linear inequality constraints:
@Z{QG]RK:’FUDSRQSTU]O}, (21)

for vectors 7y, rub, and a conformable matrix R. In practice, these constraints typically
represent bounds on levels and/or derivatives of m(0|-, z) and m(1|-,z) and/or m(1|-,z) —
m(0]-, z) on a large grid of evaluation points. We discuss shape constraints in more detail in
Sections 4.5 and 5.

12
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For the moment approach, the structure of the first and second step programs depends

on the choice of norm || - ||. In the ivmte module, we take || - || to be the ¢; norm so that

A

Qs(mg) =

seS

0.0 —é. (22)

This choice is attractive given (21) because one can then reformulate the first and second step
problems (19) and (20) as linear programs by replacing absolute values with appropriate slack

variables. Linear programs scale quite well with the number of parameters and constraints.

Given (21), the program defining Q* in the regression approach is a convex quadratic
program. The second step programs in (20) are convex quadratically-constrained quadratic
programs (QCQPs). Mature algorithms exist for solving both types of programs to global
optimality. As one might expect, QCQPs do not tend to scale as well as LPs, and can be

more sensitive to numerical issues.

3.4 Trade-offs between the moment and regression approaches

As already noted, the identified set for the regression approach is always weakly smaller
than in the moment approach: 77, C 7&. Not only that, but the researcher does not need
to specify the set S, as they would in the moment approach. The number of options for
elements of S can be large, especially with covariates, and removing this subjective element
may be attractive. In point identified cases, the regression approach has the additional
benefit of being implementable through ordinary least squares, which is computationally
trivial and can be expected to have good statistical properties. These are certainly strong

points in favor of the regression approach.

There are, however, also some benefits to the moment approach. Being able to choose
the set of moments S that are fit can be attractive since it draws a clear line between
the portions of the observed data that are used in inference and the portions that are not.
For example, Mogstad and Torgovitsky (2018) suggest reporting common linear IV model
estimates such as various two-stage least squares specifications—which do not in general
estimate an interesting target parameter—together with bounds on the target parameter
that incorporate the same information by using the same linear IV estimands as functions
in §. The moment-based criterion can also be easier to interpret; it simply measures the
distance to satisfying the moments, so if the number of moments is small and the MTR
function is flexible, it can be exactly zero, indicating that all the moments can be reproduced.
A related consequence is that the moment-based approach can be used for specification

testing. The other primary benefit of the moment approach is computation in partially

13
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identified cases, where it produces an LP implementation that can usually be expected to

be easier to compute than the QCQPs required in the regression approach.

4. The ivmte package
4.1 Installation and requirements

The ivmte package is available in CRAN, and can be installed and loaded as usual:

install.packages("ivmte")

library("ivmte")

The most up-to-date version can be installed directly from the GitHub repository:

devtools::install_github("jkcshea/ivmte")

The splines2 package, which is available on CRAN, is required for implementing spec-
ifications in which the MTR function contains polynomial splines (see Section 4.4). No
additional packages are required for implementing the point estimators discussed in Section
3.3.1.

For the partially identified cases, ivmte requires a solver package. If using the moment
approach, the options are gurobi, Rmosek, cplexAPI (Roettger et al., 2019), or 1pSolveAPI
(Konis, 2019). The first package requires a Gurobi (Gurobi Optimization, Inc., 2015) license,
the second requires a MOSEK (MOSEK ApS, 2021) license, while the third requires a
CPLEX (IBM, 2010) license. These are available at no cost for academic researchers.
Alternatively, 1pSolveAPI is freely available through CRAN and does not require a license.
For the regression approach with partial identification, ivmte requires either gurobi or
Rmosek, since the other solvers cannot solve QCQPs.”

All of the examples shown ahead in Section 5 were computed using Gurobi.

4.2 Basic syntax

The main command in ivmte is called ivmte. It requires the following arguments

ivmte(data, target, mO, ml, outcome, propensity)
where data is the usual dataframe and

o target specifies the target parameter, 7.

9. CPLEX can solve QCQPs, but its R API does not appear to allow for it.
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e m0 and m1 are formulas indicating the specification for the MTR function m broken
up into treatment arms m(0Ju, z) and m(1|u,x).

e outcome indicates the outcome variable, Y;, and implements the regression criterion.
To use moment criterion, one instead passes ivlike, which contains a list of formula
that determine the set of functions S that define the moment conditions.'”

e propensity is a formula that specifies how the propensity score is estimated.

In the remainder of this section we discuss how to specify these arguments to implement
the methodology previously described. Along the way, we cover some additional options
that provide extra functionality. More detail and discussions of some lesser-used options are

provided in a vignette at the GitHub repository (https://github.com/jkcshea/ivmte).

4.3 Specifying the target parameter

The target option can be set to one of "ate", "att", "atu", "late", or "genlate", which
correspond respectively to the average treatment effect (ATE), the average treatment on the
treated (ATT), the average treatment on the untreated (ATU), the local average treatment
effect (LATE; Imbens and Angrist, 1994), and the generalized LATE (Heckman and Vytlacil,
2005; Mogstad et al., 2018). The choice of this argument specifies the form of the target
parameter 7 via its weighting function w; in (5). Nothing else has to be specified for "ate",
"att", and "atu". It is also possible to specify a custom parameter by specifying the weights

Wr.

4.3.1 LATE

The local average treatment effect (LATE) from shifting the instrument Z; from zg to z; is
defined as

LATE(ZO — Zl) = E[K(l) - E(O”Dl(Z’O) == O,Di(zl) - 1]
In terms of the equivalent selection model (1),

p(Xi,21) 1

E [p(X;, z1) —p(XinO)]> du] 7

LATE(Z() — 21) =E l/p (m(l‘quz) - m(O‘UvXI)) (

(XiVZO)

10. The terminology comes from Mogstad et al. (2018), who described the class of cross-moments c¢; =
E[Y:s(Di, Xs, Z;)] as “IV-like” estimands because they nest standard linear IV estimands via particular
choices of s.
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which takes the form (5) with weighting function

a1 1[p(x, 20) < u < p(z, 21)]
E [p(Xi, 21) — p(Xi, 20)]

wr(d|z,z) = (—1)

This is the form of w; used if target = "late". The user must pass late.fromand late.to,

which should be named lists indicating the identity and value of zg and z7, respectively.

As defined, the LATE parameter averages over all covariates. The ivmte package also
allows for “effect modification,” where the LATE is computed conditional on V; = v, for

some function V; of the covariate vector X; (e.g. Ogburn et al., 2015; Kennedy et al., 2019):

LATE(zg — #1|v)

p(Xi,21) 1
=E / m(1lu, X;) — m(0]u, X; ( )duVZ—v .
g ) Ol XD\ E ey = v =)
To do this, set target = "late" and late.from, late.to as above, but also pass a named

list late.X to indicate the variable V; and value v. Note that no smoothing is done for the

conditional expectation, so V; should be a discrete variable.

4.3.2 GENERALIZED LATE

The selection model (1) allows conceptualizing a generalized LATE where instead of choosing
instrument values zy and z1, we choose values ug and u; for the latent propensity variable
U; (Heckman and Vytlacil, 2005). This can be useful for diagnosing the robustness of a
standard LATE to broadening the complier subpopulation (Mogstad and Torgovitsky, 2018).

The formal definition is

Uul 1
GenLATE (ug, u1) = E [ [, ) =m0k, X)) ———au| . (23)
uo (u1 —uo)
for values ugp,u; € [0,1] with ug < w;. To set the target parameter to (23) in ivmte,
pass target = "genlate", genlate.lb and genlate.ub, where the latter two parameters
correspond to ug and uq. Effect modification can also be incorporated by passing late.X,

in the same way as for the usual LATE discussed in the previous section.

4.3.3 CUSTOM TARGET PARAMETERS

The user can define their own target parameters by directly specifying the weight function

wr in (5). To facilitate computation, these weight functions are required to be constant
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splines in w, i.e.

Jq
wr(d|u, Xi, Z;) = Z]l (kj—1(d| Xi, Zi) < w < ki (d| Xy, Zi)) w7 (d| X5, Z;),

j=1
where ro(d|X;, Z;) =0, and kj,(d|X;, Z;) = 1. The user sets these weights by passing the
Jo — 1 knot functions (k1(0]-,-),...,Kks,—1(0]-,-)) as a list via target.knotsO and the Jy
weight functions (w7 1(0[,-),...,wr 4, (0]-,-)) as a list via target.weight0. The analogous
options target.knotsl and target.weightl for the treated (d = 1) weights also need to
be specified. For any component of these lists, a constant (scalar numeric) can be passed
instead of a function to indicate a function that does not vary with (z, z). Note that the

option target is ignored when any of the custom target.* options are passed.

4.4 Specifying the MTR function

The required m0 and m1 arguments accept specifications for two treatment arms of the
MTR function using the standard R formula syntax familiar from functions like 1m or glm.
However, these formulas involve an unobservable variable whose default name is u.!'* Typical

specifications will involve combinations of u and other covariates. For example,

mO0 <- ~ varl + u + I(varl * u) + I(u~2)

specifies m(0|u, x) to be quadratic in the unobservable u (u) and linear in varl (a subcom-
ponent of z), with a first order interaction between u and varil. Note that the left-hand
side of these formulas is empty. Also note the use of I() to inhibit the interpretation of *
and "~ as formula operators.

Currently, ivmte requires specifications of mO and m1 to either be polynomials or B-splines
in u. B-splines are incorporated using the function uSplines, which is an interpreter that

utilizes the splines2 package (Wang and Yan, 2018). An example of the syntax is

ml <- ~ varl + uSplines( 0, c(0.2, 0.5, 0.8))

which would specify m(1|u, z) to be linear in varl and piecewise constant in u with jumps at
the specified knot points.'? Splines can be interacted with other variables and intermingled

with other polynomials, for example

11. The name can be changed with the uname option.

12. As Wang and Yan (2018) describe in their vignette, the only difference between the bSpline function in
splines2 and the bs function in the core package splines is that bSpline allows for degree O splines,
i.e. piecewise constant functions. This turns out to be particularly useful for our purposes because
piecewise constant functions have a special place in the theory developed by Mogstad et al. (2018); see
their Proposition 4.
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m0 <- ~ u + I(u"2) + varl:uSplines( 2, c(0.3, 0.4, 0.5, 0.7))

would specify a quadratic function of u and a linear function of varl whose slope varies

with u according to a quadratic B-spline with knot points at .3, .4, .5, and .7.

4.5 Imposing shape constraints

For partial identification cases, ivmte also allows the user to require the MTR and/or MTE
functions to be bounded and/or monotone in u. The bounds are imposed through the
arguments m0.1b, m0.ub, m1.1b, m1.ub, mte.1lb, and mte.ub. Note that the default action
of ivmte is to set the upper and lower bounds on m0 and m1 to the largest and smallest
values of the response variable observed in the data, which also implies values for mte.1lb
and mte.ub. Monotonicity in u, in either an increasing or decreasing sense, is set through
the boolean arguments m0.dec, m0.inc, m1.dec, ml.inc, mte.dec, and mte.inc. These
arguments are set to FALSE by default.

These shape constraints (boundedness and monotonicity) are enforced through an
“auditing” procedure. The procedure is designed to circumvent the difficulty of determining
whether a polynomial function is bounded or monotone on its domain. It starts by imposing
the desired shape constraints on the MTR function at all points on a well-spaced, relatively
coarse constraint grid. After producing the bound estimates 7jj and 77, the solution MTR
functions at these bounds are checked (“audited”) for shape restrictions on a much finer
audit grid. If the solutions satisfy the shape restrictions across the entire audit grid, then
the process ends. Otherwise, the estimator is recomputed with an expanded constraint
grid that contains some of the points in the audit grid where the restrictions were violated.
The procedure repeats until the solutions pass the audit, or until a maximum number of
iterations are reached.

The user can adjust the size of the initial constraint grid through the arguments
initgrid.nu and initgrid.nx. These arguments control the initial number of points
at which to impose the constraints for u, via initgrid.nu, and all other variables included
in the specification of m0 and m1, via initgrid.nx. For the latter, the points are drawn
randomly from the empirical distribution in data. The default values of initgrid.nu and
initgrid.nx are both 20, so that the total initial constraint grid size is 400.

The user can also adjust the size of audit grid through the arguments audit.nu and
audit.nx. The default for audit.nu is 25, while the default for audit.nx is set at 2500.
By default then, the solution MTR function must satisfy the shape constraints on an audit
grid with 62,500 points.'> When a solution MTR function fails an audit, the number of

13. Assuming of course that there are at least 2500 unique values of X; in the data. Otherwise, the entire
empirical support of X; is used.
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violating points that are added to the constraint grid from the audit grid (for each shape
constraint) is given by audit.add, which has a default of 100.

The audit is terminated after the solution MTR functions satisfy the constraints on the
entire audit grid, or after audit.max rounds of the audit procedure, which has a default of
25 rounds. If audit.max is hit, the user should investigate the audit.grid$violations
field of the list that ivmte returns. This reports the points of the audit grid at which the
shape restrictions are violated. Small regions of violation can likely be ignored without
seriously affecting the estimated bounds 7j;, and 7. If the violations occur on a large region,

the user can let the audit procedure run for more rounds by increasing audit.max.

4.6 Specifying the criterion function

To use the regression approach, simply leave the ivlike input empty and indicate the
outcome variable Y; as outcome = y.

To use the moment approach, one needs to specify the collection of functions S via
ivlike by passing a vector of formulas, each of which has the same outcome variable (Y;)

on the left-hand side. For example,

ivlike <- c(

y - d,

y~dl z,

y~d+x | z+ I(z°2) + x
)

has three formulas, with the second two specified using the | syntax familiar from the ivreg
command in the AER package (Kleiber and Zeileis, 2018). The first formula is an OLS
regression of y on d and a constant. The second formula uses z as an instrument for 4, as in
just-identified IV regressions. The third formula uses z and z~2 as instruments for d, with x
serving as a covariate that instruments for itself.

The default behavior of ivmte is to include all of the estimated coefficients from each
specification as functions s € §. In the example above, this would mean the coefficients on
the constant and d in the first and second specifications, and the coefficients on the constant,
d and x in the third, for a total of 7 moments to match. The user can change this behavior
with the components argument. This argument expects a list of the same length as ivlike,
with the jth component of the list being a vector that indicates which coefficients should be
included from the jth IV-like specification in ivlike. In the example above, we could have

used
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components <- l(intercept, d, c(d, x))

to indicate that we want only the coefficient on the constant (intercept) from the first
specification, only the coefficient on d in the second, and both the coefficients on d and x in
the third, for a total of 4 moments. Note that intercept is used to refer to the implied
constant term in the formula specifications, and so should be viewed as a reserved word
when it comes to naming data columns.™

Conditioning subsets for the IV—like specification can be set through the optional subset
argument. This option expects a list of the same length as ivlike, with each component of

the list representing a logical statement. For example,
subset <- 1(z == 1, , x %in% c(2, 3))
would estimate the first IV-like specification only on the subset with z == 1, the second for

all observations, and the third only for the subset for which either x == 2 or x == 3. This

provides an easy way to specify conditional moments as components of S, e.g. via

E[Yi|Z; =1 =E lYffféj] (24)
hl,_/

example of s(D;,X;,7Z;)

4.7 Propensity score estimation

Estimating 45 and Acm, as well as 7 for many choices of target parameter requires first
estimating the propensity score, p(z,z) = P[D; = 1|X; = x, Z; = z]. This is communicated
through the propensity argument. Typically, the user will pass a formula for propensity

in which the treatment variable appears on the left-hand side, for example

propensity <- d ~ x + z

By default, this estimates a logit model using glm with the specified right-hand side variables,
but the user can change this to probit or linear by passing link = "probit" or link =
"linear".

Alternatively, the user can estimate the propensity score before running ivmte, save
estimates of p(Xj, Z;) in their dataframe as a new column, say p, and then pass propensity
= p. When this is done, the user must also indicate the name of the treatment variable
through the argument treat. When a formula is passed for propensity, the treatment
variable is inferred to be the response variable of the formula, and the treat argument is

ignored unless it does not match the inferred variable, in which case an error is thrown.

14. The 1 function is a generalization of the 1ist function, and allows the user to list variables and expressions
without having to enclose them by quotation marks.
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4.8 Solving

By default, ivmte attempts to determine whether there is a unique solution to either the
moment-based or regression-based criteria (depending on the user’s specification of ivlike)
by checking the rank of their (unconstrained) first-order equations. If it determines that
there is a unique solution, and point is either not passed, or passed as point = TRUE, then
it proceeds to solve for the unique solution and form a point estimate of the target parameter
as described in Section 3.3.1. For the moment criterion, the default behavior is to use the
optimal two-step weighting for Q, but this can be changed to the identity weighting by
passing point.eyeweight = TRUE.

If ivmte determines there is not a unique solution, or if point = FALSE is passed, then
it proceeds with the two-step bounds estimator described in Section 3.3.2 The solver package
for these problems is set using the option solver, which currently accepts the following

I.15 If no value is passed for solver,

values: gurobi, Rmosek, cplexAPI, and 1pSolveAP
then ivmte searches for a solver in the order given above and uses the first one that is found.
The value of the tuning parameter, o, in (20) is set to 10~% by default, and can be changed

with the criterion.tol argument.

4.9 Confidence intervals

The ivmte command can construct confidence intervals by resampling (bootstrapping or
subsampling). The number of replications is determined by the argument bootstraps,
which is set to 0 by default so that confidence intervals are not computed. The size of the
resampled dataset is determined by bootstraps.m, which is set to the sample size of data
by default. The default behavior is to draw the resampled data with replacement from
data, but this can be toggled with the boolean argument bootstraps.replace. Confidence

intervals are reported for all levels in 1levels, which has the default of c(.99, .95, .90).

For the point-identified case, the reported intervals are formed from the resampled
distribution of (18).16 Conducting statistical inference on bounds in the partially identified
case is more delicate due to their potentially non-standard asymptotic distributions.!”
There does not currently exist a solution for the MTE framework that is both theoretically

satisfactory and computationally tractable. Instead, ivmte implements the forward and

15. The gurobi package is included with Gurobi, while cplexAPI and 1pSolveAPI are available from CRAN.
The version requirements of ivmte as of this writing are: gurobi 8.1-0 or later, Rmosek 9.2.38 or later,
cplexAPI 1.3.3 or later, and 1pSolveAPI 5.5.2 or later.

16. The moment-based criterion uses re-centered moment conditions (Hall and Horowitz, 1996; Brown and
Newey, 2002).

17. See Canay and Shaikh (2017) for a recent survey on inference in partially identified models.
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reverse bootstrap procedures discussed by Andrews and Han (2009).'® While these are
known to not be valid in general, they may still provide a reasonable indication of statistical
uncertainty for the user. In addition to confidence intervals for each level in levels, imvte
also returns a p-value, computed as the smallest level a such that a 1 — a confidence interval

would not contain 0.

4.10 Specification tests

If using the moment-based criterion function, ivmte will also conduct a bootstrap test of
the null hypothesis that the model is correctly specified (i.e. of the null hypothesis that the
minimum value of the population criterion is zero) whenever bootstraps is a positive number.
In the point-identified case, the test used is the well-known Hansen (1982) overidentification
test for GMM using the adjustment for bootstrapping discussed by Hall and Horowitz (1996).
In the partially-identified case, the test used is the “re-sampling” test of Bugni et al. (2015).
In either case, ivmte returns a p-value for the null hypothesis of correct specification. The

user can turn off the specification test by passing specification.test = FALSE.

4.11 Output

The return of ivmte is a named list with a large number of fields.!” The most important
fields are pointestimate and bounds, which return (18) or (20), depending on whether
point is TRUE or FALSE. If confidence intervals are being computed, these are returned in
the fields pointestimate.ci or bounds.ci, with the p-value returned in the field pvalue.
Other fields that may be useful for diagnostics or debugging are s.set, which contains
the results of running the IV-like specifications, propensity, which contains the results of
the propensity score estimation, audit.criterion, which gives the value Q* in (19), and
audit.grid$violations, which reports points at which the audit procedure failed to secure

compliance with the desired shape restrictions.

5. Empirical illustration
5.1 Data and motivation

We illustrate the motivation and usage of ivmte by revisiting Angrist and Evans’s (1998)
analysis of the relationship between fertility on labor supply. The data comes from the 1980
Census Public Use Micro Samples (PUMS); a detailed description can be found in Angrist

18. The default is to compute and report the results from both backward and forward procedures. This
behavior can be changed by passing ci.type = "backward" or ci.type = "forward".

19. In case memory usage is an important issue to the user, we have included an option smallreturnlist
that can be set to TRUE to limit the number of objects that are returned.
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and Evans (1998).2° Our illustration uses three main variables: worked is an indicator for
whether a woman worked for pay in the year prior to the survey, morekids is an indicator
for whether a woman has exactly two children (morekids = 0) or three or more children
(morekids = 1), and samesex is an indicator that is 1 if the first two children had the same
sex. Later, we will also use the woman’s year of birth (yob) and indicators for her race
(hisp, black, other) to demonstrate specifications with covariates. Our interest is in the
effect of having more than two children (morekids) on labor supply (worked).

A simple linear regression of worked on morekids shows that 58% of women with two

children work, compared to only 44% of those with three or more children:

Im( AE, worked ~ morekids)

##

## Call:

## 1m(formula = worked ~ morekids, data = AE)
##

## Coefficients:

## (Intercept) morekids

## 0.5822 -0.1423

The coefficient on morekids of —.14 probably overstates the causal impact of fertility on
labor supply, since women who choose to have more children likely do so in part because
their labor market prospects are weaker. An IV regression using samesex as an instrument

for morekids returns a coefficient on morekids that is substantially smaller in magnitude:

library("AER")

ivreg( AE, worked ~ morekids | samesex)$coeff["morekids"]

## morekids
## -0.08484221

If there is heterogeneity in the effect of fertility on working, then this IV estimate only
reflects the same-sex compliers, that is, those women who would have a third child if and
only if their first two had the same sex. The “first stage” regression of morekids on samesex

shows that this group is rather small, comprising less than 6% of the population.

20. The original data can be downloaded from https://economics.mit.edu/files/1199 or from http:
//sites.bu.edu/ivanf /files/2014/03/m_d_806.dta_ .zip. The data we use is restricted to women who were
at least 20 years old at their first birth. The cleaned subsample data with only the variables relevant to
the current analysis is included as data with ivmte.
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Im( AE, morekids ~ samesex)$coeff["samesex"]

## samesex
## 0.05886826

If our research question requires knowing a quantity involving the entire population, such as
the ATE or the ATT, then this linear IV estimate is not particularly helpful.

5.2 Extrapolation to the ATE under different assumptions

The ivmte package can be used to extrapolate from the small complier group to larger groups
by providing a coherent framework under which additional assumptions can be imposed.
Suppose for example that we assume that the MTR function is quadratic in u for both
treatment states, so that the pair is characterized by six parameters. Since both morekids
and samesex are binary, we only have four moments at our disposal to identify these six
parameters, so the model is not point identified. However, we can use ivmte to estimate
bounds on the ATE:?!

ivmte(
AE,
c(worked ~ morekids + samesex + morekids * samesex),
"ate",
~u+ I(u"2),
~u+ I(u2)),
morekids ~ samesex
)
##

## Bounds on the target parameter: [-0.2862919, 0.1050867]

## Audit terminated successfully after 1 round

As a comparison, Manski’s (1990) nonparametric IV bounds on the ATE are [—.548,.393].
The bounds produced by ivmte are much tighter because they impose a parametric assump-
tion on the model primitives which smooths out the extreme cases at which Manski’s bounds
are obtained. The parametric assumption says that if we line up families by their latent
propensity to have a third child, then families who are close to having the same propensity

(similar u) are, on average, not too dissimilar in their potential work outcomes. A weaker

21. This call illustrates the basic syntax introduced in Section 4.2. The specification of ivlike indicates four
moments in S (see Section 4.6). The specifications of m0 and m1 follow the syntax discussed in Section 4.4
with the u syntax for the unobserved variable. The propensity option indicates a simple logit regression
of morekids on samesex and a constant (Section 4.7), which in this case is numerically equivalent to a
binned estimator of the conditional probability of treatment.
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parameterization for the MTR, such as a polynomial of higher order than 2, would allow
families with similar fertility propensities to be more different, since such a function could
“wiggle” more quickly between the natural bounds of 0 and 1 for Y;.

While narrower than Manski’s nonparametric bounds, the bounds under a quadratic
parameterization are still quite wide; they are consistent with both large negative and
modest positive causal effects. However, because the outcome is binary and all four potential
s functions have been incorporated into the saturated specification ivlike = c(worked
~ morekids + samesex + morekids*samesex), we know from Proposition 3 of Mogstad
et al. (2018) that the bounds are sharp (best possible) in the sense of fully exhausting the
information contained in the model and the data. Thus, if the researcher is unsatisfied with
the width of the bounds, they have two paths to satisfaction: (i) make stronger (or different)
assumptions, or (ii) ask a less ambitious question by changing the target parameter.

A natural way to strengthen the assumptions is to eliminate the quadratic terms in the

MTR specifications, so that there are only four parameters:

ivmte(
AE,

worked ~ morekids + samesex + morekids * samesex,

ate'",
~u,
~u,

morekids ~ samesex

## Warning: MIR is point identified via GMM.

##
## Point estimate of the target parameter: -0.07791036

The bounds have collapsed to a point. This makes sense since we have not changed ivlike,
so we still have four moments, but relative to the quadratic case we have reduced the
number of parameters from six to four (Brinch et al., 2012, 2017). If we had done this
moment-counting exercise ahead of time, we could have added point = TRUE to the call
(Section 4.8):

ivmte (
AE,

worked ~ morekids + samesex + morekids * samesex,

ate'",
~u,

~u,
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morekids ~ samesex,
TRUE

##
## Point estimate of the target parameter: -0.07791036

Linearity is a restrictive parameterization, and one might be uncomfortable with the
fact that it allows for complete extrapolation from the 6% of the population represented
in the LATE to the entire population represented in the ATE. As an alternative, consider
combining the quadratic case with shape restrictions (Section 4.5). For example, we could

assume that the MTRs must generate an MTE curve that is negative and increasing:

ivmte (
AE,
worked ~ morekids + samesex + morekids * samesex,
"ate",
~u+ I(u2)),
~u+ I(u?2)),
TRUE,
0,
morekids ~ samesex
)
#it

## Bounds on the target parameter: [-0.08484221, -0.06323574]

## Audit terminated successfully after 1 round

The assumption behind this shape restriction is that the effect of having another child
on working is negative (m(1|u,z) — m(0|u,x) < 0, imposed via mte.ub = 0), and is more
negative for women who are more likely to have more children (m(1|u, z)—m(0|u, ) increasing
as a function of u, imposed viamte.inc = TRUE). Adding the assumption narrows the bounds
considerably, from [—.286,.105] to [—.085, —.063]. In this case, the resulting bounds happen
to be similar to the original linear IV estimate for compliers, but they are the product of a
formally-justified theoretical framework for extrapolation, rather than verbal extrapolation

and wishful thinking.

5.3 Easier extrapolation problems

Extrapolating from the complier group represented in the LATE (6%) to the entire population
represented in the ATE is a heroic challenge. Changing the target parameter to something

less ambitious makes the extrapolation problem easier. For example, one could consider
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extrapolated LATES, i.e. generalized LATEs (23) with uj, = max{p(0) — «,0} and uyp =
min{p(1) + «, 1} for different non-negative values of a (Mogstad et al., 2018, Section
4.2). For a = 0, the extrapolated LATE is equivalent to the usual LATE, while as
a — max{p(0),1 — p(1)}, it returns to the ATE.??

# Set up tvumte arguments as a list so they can be easily changed
args <- list(
AE,
worked ~ morekids + samesex + morekids * samesex,
"genlate",
~u+ I(u2)),
~u+ I(u2)),
morekids ~ samesex,
200

# Get propensity score and construct alpha list

p < predict(Im( AE, morekids ~ samesex),
data.frame( c(0, 1)),
"response"
)
alphalist <- seq( 0, max(p[1], (1 - p[2])), .01)

# Function for computing genlate bounds at different values
loopivmte <- function(args, alphalist) {
df.1b <- data.frame( alphalist, NA, "1b")
df .ub <- data.frame( alphalist, NA, "ub")
for (i in 1:length(alphalist)) {
args[["genlate.1b"]] <- max(p[1] - alphalist[i], 0)
args[["genlate.ub"]] <- min(p[2] + alphalist[i], 1)
r <- do.call(ivmte, args)
df .1b$value[i] <- r$bound[1]
df .ub$value[i] <- r$bound[2]
}
return(rbind(df.1b, df.ub))

# Run the quadratic case
plotquadratic <- loopivmte(args, alphalist)

plotquadratic$name <- "Quadratic"

# Run the quartic case

22. These calls use the genlate, genlate.lb, and genlate.ub parameters, which are discussed in Section
4.3.2, as well as the spline functionality discussed in Section 4.4.
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args[["m0"]] <= ~ u + I(u"2) + I(u"3) + I(u"4)
args[["m1"]] <- args[["m0"]]
plotquartic <- loopivmte(args, alphalist)

plotquartic$name <- "Quartic"

# Run the spline case

args[["m0"]] <- ~ uSplines(degree = 3, knots = seq(from = .1, to = .9, by = .1))
args[["m1"]] <- args[["m0"]]

plotspline <- loopivmte(args, alphalist)

plotspline$name <- "Cubic spline"

library("ggplot2")
plotdf <- rbind(plotquadratic, plotquartic, plotspline)
ggplot(plotdf, aes(x = alpha, y = value, color = name)) +

geom_line(data = subset(plotdf, type == "1b")) +
geom_line(data = subset(plotdf, type == "ub")) +
labs(

x = expression(paste("Extrapolation distance (", alpha, ")")),
y = "Bounds",

color = "MTR function"
) +
theme (legend.position = "bottom")

Figure 1: Bounds as a function of assumptions and extrapolation difficulty
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Figure 1 reports bounds on extrapolated LATEs as a function of « for three different
specifications of the MTR function. The tightest specification is the unconstrained quadratic
used above. The quartic specification takes the quadratic and adds third and fourth order
terms to the MTR function for both treatment states. The spline specification is a flexible
cubic spline with nine knots.

As expected, the bounds are always ordered in width with quadratic being narrowest
and the cubic spline being widest. For all specifications, the bounds start as a point at
a =0 (the LATE) and tend towards the ATE bounds as o — 1. This shows how the MTE
framework allows the researcher to achieve bounds of any width they desire, while still being
constrained by the reality that stronger conclusions require stronger assumptions. Given
this freedom, it is unlikely that the researcher’s preferred trade-off between assumptions
and conclusions is the corner solution of reporting only nonparametrically point-identified
parameters such as the LATE, which reflect both the weakest assumptions and the weakest

conclusions.

5.4 Covariates

Covariates (X;) serve two roles in all IV strategies. First, they can increase the credibility
of the assumption that the instrument is as good as randomly assigned by making that
assumption conditional on other observables. Second, covariates can reduce sampling
uncertainty to the extent that they soak up residual variation in the outcome and/or
treatment variables. In the MTE framework, covariates can also be used in a third role to
provide identifying content through separability (e.g. Carneiro et al., 2011; Brinch et al.,
2012, 2017).

To demonstrate this, we return to the quadratic specification with the ATE as the target

parameter, but now we fully interact the MTE specification in yob, viewed here as X;:

set.seed(1234) # the covariate part of the audit grid is stochastic

ivmte(
AE,
worked ~ (morekids + samesex + morekids * samesex) * yob,
"ate",
~1u + yob + u * yob + I(u"2) + I(u"2) * yob,
~u + yob + u * yob + I(u"2) + I(u"2) * yob,
morekids ~ yob + samesex + samesex * yob
)
#i#

## Bounds on the target parameter: [-0.2790478, 0.09365855]

## Audit terminated successfully after 1 round
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The bounds are quite similar to the previous bounds that we obtained without covariates.
This is expected because for each new interacted moment that is being matched we are
adding an interaction term in the MTR that must be fit. Eliminating one or more of these
interaction terms imposes separability, that is, the assumption that unobserved heterogeneity
in potential outcomes operates similarly for different values of the covariate. Here we

eliminate the quadratic interaction and see that the bounds narrow considerably.

set.seed(1234)

ivmte(
AE,
worked ~ (morekids + samesex + morekids * samesex) * yob,
"ate" s
~u + yob + u * yob + I(u"2),
~u + yob + u * yob + I(u"2),
morekids ~ yob + samesex + samesex * yob
)
#i#

## Bounds on the target parameter: [-0.1206799, 0.03139476]

## Audit terminated successfully after 1 round

With multiple types of assumptions to impose there is naturally a trade-off. For example,
we might want to use the information we obtain with separability to buy a more flexible

functional form.

set.seed(1234)

ivmte (
AE,
worked ~ (morekids + samesex + morekids * samesex) * yob,
"ate" s
~ 0 + uSplines( 3, seq ( .25, .75, .25)) + yob,
~ 0 + uSplines( 3, seq( .25, .75, .25)) + yob,
morekids ~ yob + samesex + samesex * yob
)
#i#

## Bounds on the target parameter: [-0.2945988, 0.1704043]

## Audit terminated successfully after 2 rounds

The regression approach starts to become particularly attractive in rich specifications
with multiple different covariates. This is because the number of possible moments that
could be matched blows up; using all of them is potentially unwise due to small-sample bias,
but it is also not necessarily clear how to choose which ones to use. The regression approach

removes this choice through the usual least squares weighting. For example:
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set.seed(1234)

ivmte(
AE,
worked,
"ate",
~ 0 + uSplines( 3, seq( .25, .75, .25)) + yob +
black + hisp + other,
~ 0 + uSplines( 3, seq( .25, .75, .25)) + yob +

black + hisp + other,
morekids ~ samesex + yob + black + hisp + other,

"gurobi"

##
## Bounds on the target parameter: [-0.2958156, 0.1643243]

## Audit terminated successfully after 2 rounds

5.5 Run time

In this section, we provide a sense of the run time involved in ivmte. The following
benchmarks were performed with a Intel Xeon W-2125 processor. The AE dataset has
209,133 observations.

library("microbenchmark")

quad.simple <-
list(
AE,
c(worked ~ morekids + samesex + morekids * samesex),
"ate",
morekids ~ samesex
)
quad.simple[["m0"]] <- ~ u + I(u~2)
quad.simple[["m1"]] <- quad.simple[["m0"]]
quad.const <- quad.simple
quad.const[["mte.inc"]] <- TRUE
quad.const[["mte.ub"]] <- 0

spline.reg <-

list(
AE,
"worked",
"ate",
~ 0 + uSplines( 3, seq( .25, .75, .25)) +

yob + black + hisp + other,
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morekids ~ samesex + yob + black + hisp + other,
"gurobi",
50

)

spline.reg[['m1"]] <- spline.reg[["m0"]]

m <- microbenchmark(
do.call(ivmte, quad.simple), # simple, unconstrained
do.call(ivmte, quad.const), # add some constraints
do.call(ivmte, spline.reg), # more complex specification

100

autoplot (m)

Figure 2: Run time distributions for three specifications

do.call(ivmte, spline.reg) -

do.call(ivmte, quad.const) -

do.call(ivmte, quad.simple) -

Time [seconds]

5.6 Confidence intervals

To conclude, we demonstrate how ivmte constructs confidence intervals (Section 4.9). If

we estimate the model assuming point identification, as with a linear specification, ivmte

returns:
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set.seed(1234) # the bootstrap is stochastic
r <- ivmte(
AE,

worked ~ morekids + samesex + morekids * samesex,

"ate",
~u,
~u,
TRUE,
100,
morekids ~ samesex
)
summary (r)
#it

## Point estimate of the target parameter: -0.07791036
## MTR coefficients: 4
## Independent/total moments: 4/4

##

## Bootstrapped confidence intervals (nonparametric):
## 90%: [-0.150156, -0.006348619]

## 95%: [-0.161036, 0.003467422]

## 99%: [-0.1650715, 0.02561266]

## p-value: 0.08
## Number of bootstraps: 100

While for the general case of bound estimation, ivmte returns:

set.seed(1234)
r <- ivmte(
AE,

worked ~ morekids + samesex + morekids * samesex,

"ate",
~u+ I(u2)),
~u+ I(u2)),
TRUE,
0,
100,
morekids ~ samesex
)
summary (r)
##

## Bounds on the target parameter: [-0.08484221, -0.06323574]
## Audit terminated successfully after 1 round
## MTR coefficients: 6
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## Independent/total moments: 4/4
## Minimum criteriomn: O

## Solver: Gurobi ('gurobi')

##

## Bootstrapped confidence intervals (backward):
## 90%: [-0.1409956, -0.01898701]

## 95%: [-0.14766, -0.009421106]

## 99%: [-0.1587216, 2.775558e-17]

## p-value: 0.02
## Number of bootstraps: 100
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