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Robust Higher-Order Spatial Iterative Learning
Control for Additive Manufacturing Systems
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Abstract— In this article, a higher-order spatial iterative learn-
ing control (HO-SILC) scheme is proposed, targeting heightmap
tracking for a class of 3-D structures fabricated by repetitive
addition of material in a layer-by-layer fashion using additive
manufacturing (AM) technology. AM processes are innately
iteration-varying, resulting in large model uncertainties due
to iteration-varying system parameters and surface variations.
HO-SILC has been shown to be useful in repetitive systems
with model uncertainties by improving system performance with
respect to convergence speed and robustness. In this article,
HO-SILC is used to iteratively construct a feedforward control
signal to improve part quality in multilayered AM constructs.
The system dynamics are approximated by discrete 2-D spatial
convolution kernels that incorporate in-layer and layer-to-layer
variations. The proposed HO-SILC framework incorporates data
available from previously printed devices, as well as multiple
previously printed layers, to enhance the overall performance.
The condition for robust monotonic convergence (RMC) of the
iteration-varying HO-SILC algorithm is based on the Lyapunov
stability criteria. Simulation results of an AM process termed
electrohydrodynamic jet (e-jet) printing demonstrate that a well-
designed HO-SILC framework is effective and can improve
the performance by 60%. In addition, HO-SILC is robust to
iteration-varying model uncertainties, especially at higher layers
where iteration-varying surface variations are more pronounced.

Index Terms— Intelligent and flexible manufacturing, learning
control, Lyapunov methods, stability of linear systems.

I. INTRODUCTION

N THE past few decades, there has been a growing interest

in additive manufacturing (AM) technologies due to their
potential for simplified processing and design space freedom.
Through AM, a printed device, which could be structural
or contain other functional characteristics, such as a sensor,
is generated by selective addition of material on the surface
in a layer-by-layer fashion [1], [2], [3]. Due to the wide range
of materials that can be used in AM processes, AM-fabricated
devices, specifically those from jet-based printing processes,
have been used in diverse applications, including flexible
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electronics [4], biological sensors [5], and optical filters [3].
The performance of such devices depends on the uniformity
and consistency of the printed layers [2]. However, for most
AM systems, it is very difficult to actuate and sense in real
time [6]. The output and subsequent error measurements are
only available after the material is deposited onto the substrate.
In addition, most AM processes are iteration-varying, with
the system parameters and plant dynamics changing from
device to device and layer to layer. Thus, the behavior of the
printing at a given layer depends on material and topography
interactions from previous layers, which vary in real-world
applications. Control methods that leverage the iterative nature
of these processes in the presence of disturbances are needed.

Iterative learning control (ILC) is a run-to-run control
technique that has been widely used in systems with repetitive
characteristics in order to achieve accurate output tracking of
a reference trajectory over a short number of iterations [7].
Temporal ILC uses past information in the time domain
in order to build an appropriate feedforward control signal
with the aim of ensuring convergence of the tracking error
from iteration to iteration. Previous studies [8], [9], [10]
have considered ILC architectures that address bounded
iteration-varying model parameters, and provide convergence
guarantees to a bounded neighborhood of a nominal system.

First-order ILC (FO-ILC) leverages the data from the
most recent iteration, to construct an optimal feedforward
signal. While FO-ILC has proven to be useful for reference
tracking of repetitive systems, it might lose performance when
uncertainties are high. To achieve better performance with
respect to convergence speed, higher-order ILC (HO-ILC) has
been developed, where the feedforward signal is synthesized
using historical data from multiple iterations [10], [11], [12],
[13], [14], [15]. There have been several attributes stated
in the literature that motivate the implementation of HO-
ILC over FO-ILC. Phan and Longman [15] presented
anecdotal evidence of merit to justify either HO- or FO-ILC
depending on the situation. However, Bien and Huh [13] and
Chen et al. [14] argued that an HO-ILC framework
demonstrated better convergence speed and robustness than
an FO-ILC framework, while Moore [16] asserted that the
real motivation behind the use of HO-ILC was to reduce the
effects of disturbances and noise. Similarly, Bu et al. [11], Wei
and Li [12], and Norrlof and Gunnarsson [17] claimed that
an HO-ILC design achieved faster convergence as compared
with an FO-ILC framework due to the effects of learning over
several previous iterations. Importantly, these methods have
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primarily been considered for performance improvements in
the temporal domain.

There has been some work in the literature focused on
extending temporal ILC to the spatial domain, such that system
parameters can be defined based on 2-D spatial coordinates,
x and y [18]. In these processes, the ILC algorithms aim to
decrease the 2-D spatial tracking errors e(x, y) from iteration
to iteration. Spatial ILC (SILC) has been demonstrated for
topography control in AM processes [18]; however, current
SILC frameworks have been designed for single-layer material
deposition [18], [19], [20]. In many AM structures, the
devices are fabricated by repetitive material deposition over
existing layers. The printing of multiple layers leads to surface
variations due to previous layer topography and results in
iteration-varying dynamics and model uncertainties. In recent
years, the SILC framework has been extended to consider
model uncertainties due to iteration-varying system parameters
for single-layer structures [19]. The iteration-varying SILC
algorithm in [19] enables robust monotonic convergence
(RMC) for a run-to-run AM process based on Lyapunov
stability criteria.

Our previous work introduced a first-order SILC (FO-
SILC) framework [21] that considered in-layer and layer-
to-layer dynamics to achieve uniformly printed layers in
multimaterial 3-D structures. The control input of the proposed
FO-SILC was updated from the previously printed device
information along the device axis (j horizontal) within the
same layer [. A drawback of this previous framework stems
from the additive process itself. The FO-SILC framework only
leveraged the errors from the previous layer to derive current
layer errors, Ae;, j(x, y). This approached ignored the buildup
of errors that can occur from layer to layer, potentially causing
large deviations from the desired total height. Importantly, the
learning process can be more complicated at higher layers
in which large surface variations have resulted from the
accumulation of errors, leading to large model uncertainties.
A controller should be able to compensate for the total
accumulated error ¢; j(x, y) in the layer direction / (vertical
z-axis), which is especially important in cases when a large
number of layers are deposited. Thus, new theories are needed
to control in-layer errors as well as the total accumulated
error in multilayered structures. In this article, we propose
the use of higher-order SILC (HO-SILC) to achieve better
convergence performance as compared with FO-SILC [11] due
to the additional information that is leveraged from previous
layers.

This article extends our earlier work in [21] and [22]
toward the development of a multidimensional, HO-SILC
framework in the lifted and frequency domains. The
proposed HO-SILC scheme encompasses interval model
uncertainties and spatially varying dynamics arising in the
printing of multilayered components due to droplet-to-droplet
coalescence effects or unevenness of the previous layers. Here,
we investigate different linear/nonlinear models to describe
material spreading in multilayered structures, and evaluate the
performance of the proposed HO-SILC when these different
models are used. Our proposed approach differs from those
in the literature [17], [23], since the transfer operator matrices
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that convert the HO-SILC to an FO-SILC for stability analysis
are constructed based on the layer-by-layer nature of the
AM process. The proposed HO-SILC framework incorporates
vertical learning through the combined effect of previous layer
spatial dynamics and layer-to-layer learning (learning from
previous layers in the same device) and horizontal learning
from device to device (in the same layer). The proposed
HO-SILC differs from traditional HO-ILC frameworks due to
the 2-D aspect of the learning. Traditional HO-ILC considers
information from previous data across the iteration axis. HO-
SILC incorporates learning over two axes, along the device
axis (j horizontal) and over multiple iterations in the layer
axis (/ vertical), which has similarities to the 2-D adaptive ILC
framework in [24]. In addition, design ideas are presented to
explore the effect of HO-SILC parameters on robustness and
speed of convergence. The contributions of this work include
the following:

1) development of an HO-SILC framework for controlled
printing of 3-D structures that combines device-to-
device and layer-to-layer learning in the lifted and
frequency domains, while considering iteration-varying
spatial dynamics;

2) a detailed methodology for transforming HO-SILC of
AM processes to an FO-SILC representation for stability
and robustness analysis;

3) development of a design methodology for deriving
learning filters that directly embed stability criteria for
nominal HO-SILC systems;

4) design of a boundary prediction of the maximum
allowable uncertainty around a nominal plant for
monotonic convergent of the iterative norm-optimal HO-
SILC algorithm.

Simulation results using a model of an electrohydrodynamic
jet (e-jet) printing process are used to demonstrate the
feasibility of the proposed HO-SILC framework for AM
process control. In the absence of experimental data, the
simulation environment approximates the frue model using a
nonlinear model based on the design presented in [25], which
incorporates nonlinear dynamics, such as surface effects of
the liquid droplets and the effect of previous layer surface
variations. Note that for simplicity and fast computation
purposes, a nominal model is used to design the controller.

II. PRELIMINARIES

In this section, preliminary notations and definitions that
will be used in the rest of the paper will be defined.

A. Notation

The finite set of Z, for an odd and positive integer n is
defined as follows:

All—n 3—n n—3 n—1

Ly = ) seees )
2 2 2 2

with Z; £ {0}. A generic scalar function p(x, y) sampled at

discrete values can be combined in the matrix form, as shown

in the equation at the bottom of the next page, where finite

support of p is supp(p) = {(x, y) € Zn, X Zn, : p(x,y) # 0}.
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Setting n, and n, as positive odd integers makes the central
location of p at (0,0). An example of this generic function
is the heightmap in pu-AM systems defined as a 2-D array
of printed droplets in the spatial domain. The 2-D discrete
Fourier transform (DFT) representation of p(x, y) is defined
as follows:

ny—1ny—1

P(u,v) = Z Z

x=0 y=0

where x& = [(ny/2)] + 1, y® = [(ny/2)] + 1, and |[-] is
the floor operator. Hereafter, we will use capital italic font to
show the frequency domain variables.

A vectorization operator v(-) can be applied to a matrix,
P € R"™>"y to convert the matrix into a column vector form,
P c R"¥1, given as follows:

2 v(P) = vee(PT)

(p (x +x2 y+ yA) e—izn(;‘i‘+r”,§))

where vec(-) is the conventional columnwise vectorization
operator. The Frobenius norm of a matrix P € R"™*" ig
equal to the I, norm of the vectorized matrix, || P|r = ||P]|2.

B. Definitions
1) circ(pi, p2,..., pn) is defined as a block circulant
matrix with square submatrices of the same size,
P1, P2, - - -, Pn, Where n is an odd number. The ith block
of the middle column in circ(py, p2, ..., pn) is always
pi [19]. For example, if n =3

P2 p1op3
circ(pr, p2.p3) = | p3 P2 p1
p1 Py P2

2) A matrix is said to be block circulant with circulant
blocks (BCCBs) if it is defined as follows:

H 2 circ (HHX : HLH;I) € RMX"
2 2 2
1—n 3—ny
Hiécirc(h(i, y),h(i, )),
2 2
ny — 1
ki = , e Ry

where h(x,y) is a discrete function, with the same
support as p. Note that the [/ norm of H equals the
maximum modulus of its DFT representation; i.e., |H|> =
| H(u, v)lloc = max,y|Hu,v)|. The BCCB property of a
matrix makes fast Fourier transforms (FFTs) possible, which
has been demonstrated to be computationally less expensive
in calculating matrix products and norms [18], especially in
applications with large n values.

Ag,(x,y)

Fig. 1.

Schematic of AM spatial dynamics described in (1).

III. GENERAL ITERATION-VARYING AM SYSTEM

In order to enable automated topography control for
droplet-based AM processes, models that describe heightmap
evolution in a layer-by-layer fashion are needed. Examples
of these models are presented in [25], [26], [27], [28], and
[29]. In these models, the printed topography of the next layer,
8i+1 € R™>*" is a linear or nonlinear function of the current
layer topography, g; € R"x*"y and the input signal of the next
layer, fi11 € R™>" [ is the layer number. The following
assumptions are considered for the AM process described in
Fig. 1.

gi) A: The spreading behavior of a printed material on a flat
surface is different from that on a nonflat surface [29].

2) Aj: The plant spatial dynamics are causal in the
temporal and noncausal in the spatial domain, meaning
that the applied input at a given position will affect
the output in the advanced layers and surrounding
coordinates [29].

3) Aj3: The plant matrix (H) is considered bounded input,
bounded output (BIBO) stable, meaning that there exist
positive finite scalars & and ¢, such that given a bounded
input, ||f;(x, y)|| < &, the resulted output will always be
bounded, [lg(x, )l < ¢, V(x,y) € R™*" (§ and ¢
are independent of /).

Assumptions Aj and A, denote that the spatial dynamics of
a given plant (H) are a function of previous layer topography
(g,_1) and the surrounding environment. Assumption A3 holds
for the additive system described in Fig. 1, given that
material addition to the substrate is bounded by a predefined
volume of available material. Furthermore, because of actuator
constraints, the input is limited by an upper bound [19].
A simple linear representation of such a model is described
as follows:

g =g +H@E_Dh (D

p(x,y)=
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where i = v(fi(x,y)) € R™! is the input signal,
g 2 v(g(x,y) € R is the output, and H € R™" is
the interval plant matrix that describes the relation between
system input and output. We will use H;_ instead of H(g;_;)
for brevity. H is an interval matrix if all of its elements are
interval parameters. In other word, the interval H is a member
of the following matrix set:

'={H eR™|H=<H<H)}

where < is elementwise inequality. Note that the plant bounds
are known and fixed properties of the iteration-varying system
that can be measured by running the additive process described
in (1) multiple times and measuring maximum and minimum
droplet spreading on spatially varying surfaces [29]. For a
general AM process, we are interested in controlling the
heightmap increment (Ag, £ g, — g;_,) with respect to the
previous layer described as follows:

Ag = H_if;, H_jeH 2

where H! is the interval set associated with Hj_j.
In Section VI-A, we will describe in detail the different
available models for the additive process in (1).

IV. HO-SILC DESIGN FOR MULTILAYER STRUCTURES

In our prior work in [21], we derived an FO-SILC
framework that used the information from a previous
iteration in the device axis (horizontal learning) to construct
the feedforward input signal. In this work, we extend
that framework by adding layer-to-layer learning (vertical
direction), as presented in Fig. 2(b) and (c). Note that both
SILC frameworks incorporate the effect of previous layer
contours through construction of the plant model in (1).
We term the proposed SILC algorithm HO-SILC, because
learning occurs over one iteration in the device axis (j,
horizontal) and / —1 iterations in the layer axis (/, vertical). For
a multilayered structure, as shown in Fig. 2(a), the following
HO-SILC update law is proposed:

fl,j+1 = (L.}}prl,j + LZAel,j)

-1

+ Z (L?fl—i,jﬂ + L, Aez—i,j+1) (3)

=
with L’}, Lh, Ll}", and LY € R"™*" defined as the horizontal
input and error filters, and vertical input and error filters. Note
that in (3), printing is in the horizontal direction from device
to device. The update law in (3) is suitable for devices, such
as [21] and [30], in which multiple materials are printed at
specific layers, or the reference incremental height is changing
from layer to layer.

A. Design of Learning Filters

There are many different methods that can be employed
from temporal ILC to design the input and error filters in (3),
such as proportional-type ILC, model inversion, and Q-filter
design [31]. Here, we implement a norm optimal-SILC (NO-
SILC) algorithm [18], which seeks to minimize a quadratic
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cost function in the spatial domain. We define a weighted error
vector e}"j 41> @s follows:

A
€ i1 = Ae i1 HorAey jp+ e
T
a—1] 4)

where the values of «; € [0,1] are layer-varying user-
defined control parameters. The quadratic cost function that is
minimized to solve for the NO-SILC learning filters is defined
as follows:

+o-1Ae) 11

- A

a = [ag, a1, 02, ...,

T T
d= qe;l,)j+1e}l,)j+l +r (fl»j+1 - fl,j) (fl,j+1 - flsj)
-1
T
+Sf]7:j+1fl,j+1 + Zﬂir (fj+1 —fi—i j+1)
i=1
X (f1.j+1 = fimij+1) )

where ¢, s, and r are real positive scalars that penalize
the weighted error, input signal, and change in the input
signal from iteration to iteration. The values of g; € [0, 1]
are layer-varying user-defined parameters to weight the
influence of previous layer input signals, such that
B 2 [B1. B2, ... Bi—1]1". In order to emphasize more recent
layers, we set o) = (a'/|l@l)) and B/ = (B'/|BI), with
o, B € [0, 1]. Note that if « = 1 in (4), the cost function (5)
is optimized over the total error.

1) Lifted-Domain Learning Filters: Given that Agf is the
desired output at layer /, the predicted incremental error can
be expressed as follows:

Ael’j = Ag? — Hl—l,jfl,j- (6)

Using the assumption of iteration-invariant desired reference
trajectories, we can relate two successive errors (iteration to

iteration) within the same layer using the following equation:
Ae 1 = Aepj+ Hi—y 1 j — Hi—y jafi j+a- (7

Substituting (4) and (7) into (5) and setting the partial
derivatives of J with respect to f; j11 equal to zero, the
following relationships can be obtained for the filters based
on the nominal plant, Hy:

Lh = ((s +r+r Zﬂ,’)l + aquOTHO)

(rI +a0qH0 O)

-1

\

(3a)
-1

Ll = ((s +r +r ,3 )I —i—aéqHOTHo) apgHJ (8b)
) -1

I +ayqHT Ho) Birl  (8c)

~

LY = (s—i—r—}—rz,B’

i _ _L1h
LY _a—iLf. (8d)

0
2) Frequency-Domain Learning Filters: If the plant matrix
in (1) is BCCB, the learning filters and the update law in (3)
and (8) have frequency representations, which enable us to use
computationally efficient FFT methods. The frequency domain
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Printing direction
—_—

@ I

Aepjyy

b) Reference: Agd )
®) % Controller: Output: Ag; ;

= HO-SILC

Input: f ; .
¥ plant

Vertical Learning

Sensor:

f1—241+1

AFM ~.—

fI—N,_;+1

Fig. 2. Closed-loop control of AM process. (a) Learning happens from layer to layer (vertical) and device to device (horizontal) to control material deposition
in 3-D structures. (b) HO-SILC is used as a recursive control strategy to close the loop. (c) Standard HO-SILC block diagram. / denotes the layer index, and

j denotes the iteration index.

representation of the learning filters in (8) for a BCCB plant
matrix is presented as follows:

ayqH o Hy + rlyxn

L' (u,v) = (u, v)
apqHY o Ho + (s +r+ ”szl ) Lixn
(%a)
ayq Hy
L, v) = od (1, v)
apgHE o Ho + (s +r+r>7iB ) Lyxn
(%9b)
. rBi1
LY (u,v) = Pilnn (u, v)
apgHE o Ho + (s +r4+r>it ) Lyxn
(90)
/
v; Yion :
Le’(u,v)za—/Le(u,v), i=1,...,1—-1 (9d)

0

where o is the Hadamard or entrywise product of two matrices,
and H is the frequency domain representation of the nominal
plant. A full description of the frequency domain conversion
can be found in [18]. L}]’p, L' L ?’, and LY € R™*M are
2-D DFTs of the learning ﬁlters in (8). Because of the BCCB
structure of Hp and the learning filters, the update law in (3)
for the BCCB plant model can be equivalently represented in
the frequency domain as follows:

Fi v (u,v)
- (Lf;, oF;+L"o AE,J) (u, v)

+ Z (L? o AF_jj+1+ Ly o AEl—i,j+1) (u,v). (10)

i=1

B. HO-SILC Transformation to FO-SILC

HO-ILC algorithms generally have faster convergence as
compared with FO-ILC, because HO-ILC uses the information
from multiple previous trials to construct the control signal.
In the literature, there are very few examples of MC of
HO-ILC systems [10], [17], while the stability condition of
FO-ILC is well described. It is possible to leverage the proofs
for FO-ILC to analyze stability of an HO-ILC system by
converting the HO-ILC algorithm to an FO-ILC framework.

In this section, we follow methods developed in [8], [23],
and [32] to convert the HO-SILC framework in (3) to an
FO-SILC. This modified FO-ILC framework will then be used
to investigate stability margins for the iteration-varying model
described in (2). The approach taken here is a bit different than
[8], [23], and [32]. The transfer functions from HO-SILC to
FO-SILC are constructed based on the layer-by-layer nature
of AM process, such that the FO-SILC system incorporates
learning along the iteration axis, j, as well as the layer axis,
l.

The HO-SILC algorithm defined in (3) can be expressed
based on the closed-loop plant matrices, by inserting (6)
into (3) as follows:

-1
fj11 = Tlh_l’jfl,j + Z Tllii_l,j_Hflfi,j+l
i=1
-1
+ (L’; + ZLZ") Agd (11

i=1

with 7/, = L — LIHy jand 7", | . = L} — L{'Hi—i1
being the closed-loop horizontal and vertical plant matrices,
respectively. Equation (11) can be further simplified by
concatenating the input signals over the vertical axis, [, such
that

7,j+1 = Dy jz; + Kz i1 +C
T Inx1
zj =t 6,40, er
2o = — Do — Kio)” C (12)
where D; ; € RinxIn K;; € RInxIn - and C; e RI™*! are

a diagonal block matrix, upper triangular block matrix, and
constant vector, respectively

Tlh—l,j 0 0
0
Dy = (13a)
h
Uy (;),
0 To,j
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6
— v v V-2 V-1
0 Tziz,j+1 Tzf3,j+1 T1,j+1 TO’J'Jrl
v V-2 V-2
0 T,25 41 i Tojn
K[’] =
v v
0 Tl,lj+1 TO,2j+1
v
0 TO’IJ.H
) .. 0
(13b)
(LD + LY 4 -+ L") Agd
C = (Li? + L +ng) Agd (13¢)
(Lh+ L") Ag?
h A od
L L;Ag

Equation (12) can be further simplified to the following
FO-SILC format:

2, i1 = Fp 71 + F,
—1
Fij=(I—-K;) D

F, =(I-k ;) C. (14)

‘We used the same notation as [8] and [17] for transfer matrices
F, ; and F,. The FO-SILC algorithm in (14) will be used
in the following section to investigate the asymptotic and
monotonic properties of the HO-SILC update law in (11)
following methods described in [8], [10], [17], and [19].

V. STABILITY AND CONVERGENCE

In most control systems, a fundamental goal is to guarantee
the convergence of the tracking error to zero or within a
neighborhood of a nominal value over a small number of
iterations. Asymptotic stability of iteration-varying systems
requires the joint spectral radius of the iterative plant to
be less than one, which is a difficult problem [19], [33].
In many manufacturing applications, such as the optical sensor
presented in [2], large transient errors may introduce failures in
the functional capabilities of the printed device. Therefore, the
controller should be designed to regulate material deposition,
such that the layer errors decrease from iteration to iteration
and layer to layer. In this work, we focus on monotonic
stability of iterative systems subjected to bounded model
uncertainties, which is an often desirable property for AM
processes. We combine the methods developed in [10],
[17], and [19] to derive stability conditions for HO-SILC
processes subjected to iteration-varying model uncertainties.
First, we design the learning filters, such that the nominal
system is stable. Then, a stability radius, rajy, is designed
based on the Lyapunov equation, such that the iterative system
remains stable as long as the magnitude of model uncertainties
is less than the stability radius at all iterations. We follow the
method developed by Norrlof and Gunnarsson [17] to convert
HO-SILC to an FO-SILC. Then, we follow [10] and [19]
to design the stability margins of the converted FO-SILC
subjected to interval uncertainty.

Theorem 1: The system in (1) controlled by the FO-SILC
in (14) [or HO-SILC in (11)] is monotonically convergent in
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the I, norm, |Z; j+1 — Zyollp < 1Zi,j — Ziollp, if
lE7,llp <1
“Fr”p <&

where & is positive scalar that ensures || F, || , remains bounded.
Corollary 1: The monotonic stability condition in (15) can
be expressed as follows:

L
1=kl

Proof: K ; is a strictly upper triangular block matrix
containing block matrices of higher-order terms, Tlv} e R"*"n,
with [ block zero matrices and 0 € R"*", along the diagonal.
From linear algebra, Al is zero for a strictly triangular matrix
A € R with dimension [ [34], [35], [36]. We use this
property for strictly upper triangular block matrix K; ; to avoid
matrix inversion in (14), using the fact that K 11 ;= 0 (I denotes
the number of layers). Here

Vi, j
(15)

RMC £ < |Dijl, <1 Vi j. (16)

! 2 -1
1-Kl ;= -K) (I+ K+ K2+ +K5") an
implies that

-1 2 -1
(1= K1) = (1+Kij+ K2+ + k7). a8)
Inserting (18) into (15) results in
~1
|7l = || (1 = &)~ Dus
2 -1
< (14K + &2+ + KI5 D
2 -1
< (141K |+ DK I+ + 1K) ) 2]
(19)
where the right-hand side of (19) is a geometric sum that
can be rewritten as (1 — [|K; ;=1 /(1 — 1Kz ;1) x |IDyjll.
Therefore, if the RMC parameter (1 — [K;;|I'"")/( —
1K) x 1Dyl < 1, |[Fy, ]| will be less than one. [ |
Note that because of norm properties in (19), the RMC
criteria in corollary 1 are more conservative than the criteria
presented in (15).
A. Nominal Stability and Convergence

For the additive model in (1), the nominal plant matrix
results from the desired topography, Hyp = H(g,;). The
nominal matrices are

—Toh o0
Do, = | : Ry
L0 - Toh
_O TOUI . TOU172 Tovlfl
Ko, = 0 T;Ul (20)
LO 0
In this case, the following properties are true:
120, = 7], 21a)
-1
[Koll, = 21771, (21b)
i=1
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with Th L}}—Lh Hp and TU’ = L;’ — LY Hy. Equation (21b)

has an equal sign for /o, norm of BCCB H( matrix.
Theorem 2: The system in (1) controlled by a nominal

system representation of FO-SILC in (14) [or HO-SILC

in (11)] is asymptotically stable (AS) for the nominal system

if and only if
p(TOh) <1

where p is the spectral radius.

Proof: To prove the nominal stability of (11), we need
to prove the nominal representation of (14) is stable. The
nominal form of the system given by (14) is AS if p(Fp,) < 1,
with Fo, = (I — Ko,)~'Do,. (I — Ko,)~" is a strictly upper
triangular block matrix with block-diagonal matrices equal to
I; therefore, the eigenvalues of Fp, are equal to the eigenvalues
of Dy,. Dy, is a block-diagonal matrix, and its spectral radius
is equal to the spectral radius of the matrix T(f'. Therefore, the
nominal system is stable if ,o(TOh) < 1. [ |

The monotonic stability of the FO-SILC algorithm in (12)
derives from (15); a nominal system representation of (14) is
RMC stable using contraction mapping if || Fo, ||, < 1. Using
corollary 1, the conservative RMC criteria for the nominal
system are defined as follows: RMCy £ (1 — ||K0,||1;1)/(1 —
| Ko llp) x ||T(f’||p < 1. Note that if ||Kq,[l, < 1, we can
ignore || Ky, ||l_1 compared with 1, especially at higher layers
as a result, RMCy can be approximate by a line, RMC{" £
Ko llp + 11Dl p < 1. The value RMCy = 1 is the boundary
level for RMC stable regions of the nominal plant.

Remark 1: In order to avoid norm calculations of the high
dimensional Fp, or Ky, € RInxIn the /., norm can be used.
Equation (21b) has an equality sign for /,, which reduces
dimensionality in calculating matrix norms of TOUi e R
instead of Ko, € RI"xIn,

(22)

B. Maximum AIU

In this section, we design the learning gain matrices
in (8), such that HO-SILC remains stable for the maximum
allowable interval uncertainty (AIU) added to the nominal
plant. Altin et al. [19] formulated the iteration-varying system
behavior as that of robustness under interval uncertainties with
spatially invariant bounds for an FO-SILC system. In this
section, we extend their results to HO-SILC systems.

Assume that the iteration-varying plant H; ; = Ho+ AH, ;
is an interval matrix, and AH; ; is additive uncertainty of
the nominal plant. In order to quantify the maximum amount
of allowable uncertainty, we define the uncertainty radius as
AH, £ (H — H)/2. In general, ensuring the asymptotic and
monotonic stability in (22) and (15) for all H;; € H I s
a difficult problem [19], [37]. The goal here is to find the
maximum AIU, rapy, such that the RMC criteria in (16) are
guaranteed for all |AH; ;|| < raju. We can solve this problem
by ensuring the maximum amount of uncertainty in the system
remains smaller than rayy at all iterations. In other words,
if the learning filters in (9) are designed, such that ||AH,|| <
rau, we can ensure |AH) ;|| < rau for all iterations and
layers. Iteration-varying matrices in (11) can be written as
T, = Ty — LUAH, j and T, = T)" — L' AHj j. We can

decompose the rest of the matrices as in (23), (24a), and (24b),
as shown at the bottom of the next page. Inserting (17) and (23)
into (14), F can be decomposed as the following:

Fij= (’ + (Ko, + AKpj) + -+ (Ko, + AKU)H)

x (Do, + ADy ;)
= (ao, +a;, AKy +32,AK12J + - )

x (Do, + ADy ;) (252)
o =1+ Ko, + K, + -+ Kg ' (25b)
L =1+2Ko +3Kj + ~+(l—1)K(l)]’2, [>2
(25¢)
2 =1+ 3Ko, +6Kj + 10K;
+...+wK{)73’ [ >3. (25d)

2

Ignoring the higher-order terms for small model uncertainties
around the nominal plant (AH" >~ 0 for n > 2)

Fo, = ag, Dy,
AF; ~ (al,AK,,j +a2,AKfj) Dy,

+ (a0, +a,AK;j) ADy;. (26)

Theorem 3: Given the learning matrices designed for the
nominal plant Hp, such that the nominal system is AS
(p(TOh) < 1), the iterative system in (1), controlled by the
FO-SILC in (14), remains AS if

_ / ua
Asym asym i+ ’ul 4||P”oo

AH, <r r =
” "”P AIU » AIU 2#2

where w1 and o are positive scalars that are a function of the
learning filters and nominal plant

u1 =20, (Fo,)p, na = 26 (Fy,)

01 = (301>p <Ll;>p +

27)

+ 67 (28a)

P
-1

<a1,>p<T$>pz<sz>p

i=1
2

-1 -1
et ], S0, (], (S0
= - (28b)

where (B), e max (|| B, ||BT||,,) for an arbitrary square

matrix B in /, norm. In (27), P is a symmetric and positive
definite matrix that satisfies the Lyapunov stability of the
nominal plant [10]

Fy P Fy,

—P=-1I (29)

Proof: Assume the FO-SILC in (14) is AS for the nominal
plant; from Lyapunov stability, there exists a positive definite
P > 0, such that (29) is satisfied. The iteration-varying FO-
SILC is AS in the Lyapunov sense, if the following inequality
is satisfied with the same P from (29):

F',PFj—P<0 [1=12..L, j=12..1.

(30)
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Defining ||[AH ||, = max; j(||[AH; j|lp), the following induced
norms hold for AK; ; and AD; ;:

|ap], <Lt (3la)

[—1
N (Z L ||p) N TS
i=l1

Inserting (26) and (29) into (30) and taking the norm of both
sides, we have the following:

IAH]
P P

(Fo, + AF ) P(Fo,+ AFj)— P <0

(Fo), (AFLj), +(AF),

lI-1lp )

(32)

< —.
1Pl

Using (31a) and (31b) and taking [, norm of both sides of (26),
we have the following:

(AFL;), < 02(AH), +61(AH), (33)

where 6; and 6, are defined in (28b). Neglecting higher-
order terms for small model uncertainties (| A H ||’117 ~0,VYn >
3), (32) can be simplified to a quadratic equation for (AH),

)2

wi(AH)p + na(AH);,

<0 (34)
1Pl

which is negative when (AH)), (—u1 + (u] +
An2/IIPlso))'?)/2p2).  p1 and are  defined
in (28a) and (28b). Therefore, ryy; (=1 + (13 +
4(u2/1IPlloo))?)/(2u2). Note that if (34) holds, then (32) is
true, not vice versa. [ |

Note that assuming bounded model uncertainty, Theorem 3
provides sufficient condition for BIBO stability of the
HO-SILC in (11).

Theorem 4: Given the learning matrices are designed, such
that the nominal system is RMC stable (|| Fy, || < 1,VI), the
iterative additive process in (1), controlled by the FO-SILC
in (14), remains robustly monotonically stable if

— 244 M2
mono __HUT VI T AR,
ratlu = 2102

where P; is a positive definite matrix that satisfies the
following equation:

<
w2

mono

“AHr”p < TAIU >

(35)
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Proof: As it was explained earlier in (15), monotonic
stability of (14) is achieved if ||F} j|l, < 1. If the I norm
is used, then || F7 jll2 = o (£}, ;). The maximum singular value
of a matrix (here, F; ;) is defined as follows:

&R = [o (FT ).

Equation (37) implies if ,o(Fl’Tj Fj) < 1, then 6 (F} ;) < 1.
In other words, the maximum singular value problem for
MC can be solved equivalently as an eigenvalue problem.
Following the same steps as (30)—(34), maximum allowable
uncertainty of the nominal plant for MC of (14) can be
achieved [10]. Note that the eigenvalues of FT F are equal
to the eigenvalues of S

(37

0o F.
S1.j = So, +AS1j. Sij= [Fz ‘ ([)J}
sJ
0 AFT
L A
AS} [AFM 0 } (38)

Assume the FO-SILC in (14) is monotonically stable for
the nominal plant; from Lyapunov stability, there exists a
positive definite Py > 0, such that (36) holds. Similarly,
the iteration-varying FO-SILC is monotonically stable based
on the Lyapunov stability (0(S; ;) = o(fy,;) < 1), if the
following inequality holds with the same Py from (36):
S/iPsSij—Ps <0 VI& . (39)
Inserting (38) into (39) and using (36), we have the following:
So PsAS1j + AS/;PiSo, + AS [ PsAS j < 1. (40)
Given ||So,ll, = (Fo,)p and |AS; jll, = (AF; ), and taking
[, norm of both sides of (40), we have the following:

2(Fy ), (AF;), +(AF,), < 1)

PPl

Using (26) and (33), (41) simplifies to a quadratic equation
for |[AH|l,

0

uillAH |, + il AH|S — (42)

<
I Psll p

; 0 FT which is negative when [AH|, < (—u1 + (,u% +
So, PsSo, — Ps = —1, S, = [Fo 8’]- (36)  4(u2/lIPsllp)"/?)/(2p2). w1 and  pp are  defined
! in (28a) and (28b). Therefore, ry{}® = (—u1 + (,u% +
Dy j =Dy +AD;;, K j=Ko+AK;j, Fj=F,+AF; (23)
AH_y 0
AD;j=-L! : : (24a)
0 AHy ;
0 LJAH 211 LPAH 341 L,/ AHy 11
0 L¢' AHp-3 )41 L Ho, j+1
0 L¢' AHo 41
0 0
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Fig. 3.  Heightmap evolution process. (a) Schematic of an e-jet printer:
controlled device fabrication follows the print-cure-scan cycle. High-voltage
pulse actuation is applied at the nozzle tip to eject a droplet of material
with droplet volume related to pulsewidth. (b) Evolution of the solid surface
topography as a heightmap signal is modeled as the integration of a
convolution of input f with kernel 4. & is a function of local variation in
g for each pixel in g. Subscript / represents the layer index.

height increment

4(pa/lIPs ) /?)/(212). Note that if (42) is true, then (41)
is true, not vice versa. [ |
Remark 2: By direct substitution of Sp, into (36), it is
evident that Py = diag(P, P) and [|Ps], = [|Pllp, which
results in rio1® = ri})". We denote ray £ rii® = r
as an estimate on the maximum AIU.
Remark 3: The special structure of Ko, in (20) results in

1Ko ll1 = 1Ko, Il oo-
VI. SYSTEM MODEL AND SIMULATION SETUP

In this section, we apply the proposed HO-SILC framework
to a simulation study using different models of an e-jet
printing process. E-jet achieves material deposition using an
electrostatic field, allowing for high-resolution deposition and
material diversity. Drop-on-demand printing is achieved using
synchronized substrate motion (jog time) and high-voltage
pulses applied to the nozzle tip of an e-jet printer. Varying the
rectangular wave pulsewidth (while holding all other printing
parameters constant) allows for variation in printed droplet
size, as shown in Fig. 3(a). The simulation assumes a known
relationship between pulsewidth and droplet size. Controlled
topography evolution requires output measurements. As such,
the printing process follows a print-cure-scan cycle to obtain
the necessary measurement data [see Fig. 3(a)]: 1) print an
array of droplets of prescribed sizes at discretized coordinates;
2) cure (solidify) the droplets; and 3) scan the solid surface to
obtain heightmap measurements of topography [29].

A. Model Approximation

In this section, we explore three methods to estimate
the spreading model of liquid inks, 6, such that |[g/41 —
o (g1, fl+])0|| is minimized, where 6 is an estimation of the
true 6, and ¢(g;, fi+1) is a nonlinear transformation between
gi+1 and 0. Note that a linearized form of ¢ can be used for
control design. Fig. 4 shows the experimental data from [28]
that are used for model development and validation. We use
eight devices (63 nodes x8) in Fig. 4 for training and two
devices to test the accuracy of the model of constrained linear
regression (CLR) and convolutional recurrent neural network
(CRNN) models in the next sections. The variables g1, g2,
and Ag; define material height at layer 1 and layer 2, and the

9
500 F % . . . % . :
I o
d &
400+ o Ag ]
£ % % %
=3
S IR S B R
2 ; ¥ ¥
200 ’ ; I P e -
A
] o o o u]
100 | o ]
0 i i i i i
0 2 4 6 8 10 12
Device

Fig. 4. Experimental data for deposition of Loctite 3526: g1, g2, and Agy
are average height of layers 1 and 2, and incremental height at layer 2 over
a7 x 9 discretized domain.

incremental height at layer 2. To capture the merging behavior
of Loctite 3526 with itself, we assume a base layer of material
and start the system identification using the input signal at
layer 2 ( f2). The layers are printed using a 2-D pseudorandom
binary sequence (PRBS) pulsewidth signal (described in [28]),
with a 35 x 45-um spatial plane discretized into 7 x 9 grids
for a 5-pum droplet-to-droplet distance known as pitch.

1) Constrained Linear Regression: The sequence of
material addition in multilayer structures using a constrained
regression model is developed in [28]

g1 (X, y) = (g1 hg) (. y) + (fhy % hy) (x.y). (43)

In (43), hy € R is the discrete impulse response to the
current layer input, while hg € R>*3 is the discrete impulse
response to the previous layer output. fl{”H € R"™>*"y is the
pulsewidth signal at layer /. Assuming rotational symmetry
of liquid droplets in [28], iy and &, are defined by only six
parameters. To find the unknown GLR = [h T]T e RIZx1,
the design matrix ¢ (g, fl 1) € R"*12 g constructed using the
conv2(-) function in MATLAB, and the optimization, || g;+1 —

o (g1, f/il)éLR ||, is solved using the built-in solver Isglin() in
MATLAB. Assuming volume conservation from layer to layer,
hg has only one nonzero element at the center, hg(3,3) = 1.
For Loctite 3526, h ¢ is calculated as follows:

0.09 0.09 021 0.09 0.09
0.09 021 038 021 009
hp=[021 038 071 038 021 (=)
0.09 021 038 021 009]| M
0.09 0.09 021 0.09 0.09

2) LPV Model: The linear parameter-varying (LPV) model
in [29] is described using the following 2-D convolution
equation:

g y) =g 1.+ D "V —m.y—n)
MeLy,

neZny

* PPV (m, ). (44)
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Following the model of [29] and assuming the relationship
between the applied pulsewidth and droplet volume is known,
we take a 2-D array of cube roots of drop volumes to be
the input, denoted by f-PV. The variable /":" describes the
spreading behavior of a printed droplet on the neighboring
coordinates for an input signal with magnitude one applied at
coordinate (m,n) and layer / — 1. Spreading behavior of the
printed droplet depends on surface energy and topography of
the substrate, as well as surface tension, viscosity, and density
of the printing material [30].

The dependence of ~\™" on existing topography g is
modeled using the multivariate regression method proposed
in [29]. In this method, numerical simulations of droplets
spreading on nonflat surfaces are computed for equilibrium
contact angles associated with a specific material/substrate
combination: 30° for the ink (Loctite 3526) used in
this simulation. Subsequently, an ordinary least squares
multivariate linear regression is performed, where the elements
from each 3 x 3 pixel crop of the heightmap g are the
predictor variables, and the elements from each measured
3 x 3 pixel impulse response / are the response variables.
The fit regression model is used to evaluate the spatially
varying impulse response (method M2 in [29]), h;—1(x, y),
for the 3 x 3 pixel crop of the heightmap g; centered at
pixel coordinates (x,y). Taking the average of h;_i(x,y)
over all spatial coordinates (x € Zp,,y € Zj,) results in
a spatially invariant impulse response (method M3 in [29]),
h;—1 in Fig. 5(a) and (b). Note that the spatially invariant
approximation results in a less accurate model than the
spatially varying model; however, the spatially invariant plant
matrix is BCCB. Importantly, the magnitude of g, does not
affect the impulse response; only the local variation in g
affects h;. The nominal model, hg, is calculated using the
regression model’s prediction of spreading on a reference
topography, g4, denoted as hy = h(ggs), and shown in
Fig. 5(b) for a flat reference topography used in this example.
In contrast, an example of an impulse response for a nonflat
surface is shown in Fig. 5(a). Impulse response bounds are
calculated from the supremum and infimum of each element of
h; determined by simulating the deposition of printed material
on multiple topographies of the same substrate material.

3) Convolutional Recurrent Neural Network: Layer-to-layer
material addition using a CRNN model is developed in [25].
This model considers the surface tension of liquid droplets,
parameterized by « known as the flowability parameter, that
causes the droplets to move from higher to lower height
locations of nearby pixels

¥y, =y"' - Do (KDTy;‘l) + W, (452)
g (i)=In (y n e>'1”<">+”0) , itelln] (45b)
Y, =g (45¢)

where y] € R"*! defines the network internal states at layer
[ and time step ¢, which refer to the unmeasured material
addition states during in-layer deposition of a single droplet
in liquid form. Also, g, € R"*! is the measured topography
of layer / once the material has been UV cured. In addition,
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(a) nonflat: g(nm)
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Fig. 5. Topography-dependent impulse response. The estimated impulse
response is spatial-invariant (method M3 of [29]), meaning that it is the
same for every spatial coordinate of g(x,y). Note that the estimated
impulse response is iteration-varying. (a) Effect of a nonflat surface.
At left is a 4 x 4 pixel of a random g signal to show the
effect of significant surface variation. At right is the 3 x 3 model’s
corresponding impulse response (7). (b) Effect of flat surface. At left is a
4 x 4 pixel of a flat reference topography signal. At right is the 3 x 3 model’s
corresponding nominal impulse response (h¢). (¢) Upper and lower bounds

of h, h, and h, such that h < h < h.

1S R™*1 is the ratio of the size of the deposited droplet at
time step ¢ to the maximum droplet size. The input signal of
the entire layer is given by fF*""N = 3" u/. Note that we
assume the relationship between the applied pulsewidth and
the droplet size is known. D € R™*" is the incidence matrix
that transforms the height profile of all discretized grids into
height differences or links. D(i, j) is either 1 or —1 for nearby
pixels, and zero for nodes that are far away in 2-D space.

We define the number of links between the nodes as nj,
with K = «I € R™*™ constructed as a diagonal matrix
with nonzero elements along the diagonal that captures the
material flow along each link. In 45a, o(l;) represents the
leaky soft threshold function that is set to zero if the effective
flow at each time step is smaller than a threshold value e,
I, = K DTy;_1 < €. The matrix W, € R"™" is a BCCB
matrix associated with the convolution kernel » € R>*3, such
that W,u) = v(b * uj). Note that, b is the kernel related
to the spreading behavior of the largest droplet. From the
definition of uj, the elements of the input signal flCRNN are
bounded between 0 < flCRNN(i) < 1. Finally, vo is the
material shrinkage parameter due to UV curing, and y is
a nonnegative scalar that ensures that the output heightmap
remains nonnegative.

To derive the CRNN model, the unknown parameters of
OCRNN' — ¢ b, K, y, vg] for the printing material of interest
(e.g., Loctite 3526) are calculated from experimental data
using the steps described in [25]

€ =6.66, k=112x107>
y = 1.014, vy = 56.88 (nm)
—6.77 =999 4558 —9.99 —9098
2397 28.03 5874 272 —1.17
b=|3268 3676 100.0 45.12 39.80 | (nm).
7.60 1.08 3991 —638  3.30
2435  6.66 2695 091 20098

4) Model Validation: To evaluate the performance of the
different modeling approaches, experimental data from printed
samples of Loctite 3526 are used to derive the difference
between the measured and predicted output topographies. The
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Fig. 6. Performance comparison: experimental data from printing Loctite
3526 is used to compare the different modeling approaches. The error is

exp A . exp . .
computed as e = g, — g2, where & is the prediction of g;™" using different
modeling approaches. Note that g, is a function of ngP and the input signal
at the second layer.

error metric is defined as ||g§Xp — qﬁ(ngP, ffjf)é”%, where
g%*P refers to the measured experimental values, f*P is the
derived input signal, and 6 is the model from each method,
respectively. Note that the input signal for each model is
different.

The results in Fig. 6 illustrate that the CRNN model that
considers surface material flowability is more accurate than
the other models. However, the CRNN model is nonlinear
and computationally expensive; thus, it is well suited to
represent the frue system in the simulation case studies, but
cannot be used for linear control design. As a comparison,
the linear LPV and CLR models are ~50% computationally
faster than the CRNN model. The LPV model captures the
wetting nonlinearity due to nonflatness of the previous layer
and yet still maintains access to linear control. However,
the LPV model does not capture droplet-to-droplet effects
due to surface tension, since the model assumes that the
droplets are placed far away from each other. In this approach,
multiples passes are required to form a thin film by depositing
droplets spatially distanced from each other and curing the
material between passes to avoid coalescence effects. Since
the experimental layers in Fig. 4 are fabricated in one
printing pass, the LPV model does not capture unmodeled
nonlinearities due to surface tension of the droplets for thin-
film formation. Alternatively, the CLR model captures droplet-
to-droplet effects within the 4y matrix. However, this model
does not take previous layer topography into consideration,
thus ignoring an important consideration for error propagation
from layer to layer. In this work, we consider the use of the
LPV and linearized CRNN models to develop the controllers.
We will use the nonlinear CRNN model as the frue system
within the simulation case studies.

5) Lifted Conversion: The systems defined in (44) can
be transferred into the lifted form through the use of
a vectorization operator defined in Section II-A. A full
description of the lifted-domain conversion can be found
in [18]. For brevity, we present the lifted form of (44) in the

following equation:

g =g +Hg )", HeH' (46)

with £PV & w (VL y) €
g £ v(gx, y) e R

To convert the CRNN model in (45) to the lifted domain and
enable access to linear control, we consider a linearized form
of the CRNN model around an equilibrium point (f., Ag,):

R**!  and

Ag = H /58NN + Ag, — HE, (47)

where H; € R"™" is the Jacobian matrix at the equilibrium
point. Note that the Jacobian matrix, Hy, is not BCCB;
therefore, DFT calculations in (9) and (10) are not possible
for the linearized CRNN model. More details on Jacobian and
equilibrium point calculations are presented in the Appendix.

In addition to Assumptions Aj—Ag3, the following assump-

tions are considered for the CRNN or LPV models in (47)
and (46).

1) A4: The heightmap increments using the LPV model
obey scalar multiplication and linear superposition.
Therefore, the model described in (46) does not capture
drop coalescence effects.

2) As: The CRNN model based on [25] is geometrically
independent, and the Jacobian matrix in (47) is iteration-
invariant.

Assumption A4 is a major assumption of the additive model
in (46) that simplifies the system dynamics for control design.
Many AM processes exhibit coalescence/surface effects that
preclude linear superposition [29]. For instance, in a physical
AM deposition process, depositing twice the volume of
material does not cause the incremental heightmap to double.
We capture these nonlinearities through model uncertainty
applied to the plant model in (45). The CRNN model, on the
other hand, considers these surface effects by implementing a
graph structure with n; links between nodes that incorporate
the effect of the liquid material flow between nearby droplets.
Assumption Ajs implies that the model parameters of the ink
are generalizable to any geometry for the CRNN model in (45)
based on the incorporation of a physical understanding of
mass conservation during height evolution. When we linearize
the CRNN model around an equilibrium point, the resulting
Jacobian matrix is a constant matrix.

B. Simulation Study

For this simulation, a multilayered structure with
L = 6 layers is considered [Fig. 2(a)]. The reference
device structure has the reference height map, Ag?, given
in Fig. 2(a) with 100-nm layer heights for all layers, which
is uniform except for the two outer rings of pixels that
are reduced by half to better represent material drop-off at
the edges. Each layer is printed in a single printing pass
on top of a cured surface. For the first (bottom) layer in
the simulation, the underlying surface, (I = 0), is assumed
to be a prelayer of cured printing material, so that the
first-layer surface interactions with other substrate materials
need not be considered. In e-jet printing, droplet volume has
a standard variation of 25% over a wide range of droplet
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TABLE 1
DESIGN METHODOLOGY FOR THE LPV MODEL, = 0.0
[ I, norm I norm |
a [Ko Il IT4] [ RMCo | RMC?[ [[Fo, [[[ [IP]l [ raws || [Ko ] [Tl | RMCo | RMC"| [[Fo, [I[ [P [ ramw
0.00 | 0.00 0.099| 0.099 0.099 0.099| 1.01 | 0.561| 0.00 0.190| 0.190 0.190 0.189| 1.022| 0.232
0.25 | 0.308 | 0.099| 0.144 0.408 0.099| 1.01 | 0.442]|| 0.598 | 0.189| 0.459 0.788 0.210| 1.024| 0.136
0.50 | 0.849 | 0.099| 0.450 0.948 0.099| 1.01 | 0.345|| 1.742 | 0.188| 12.13 1.931 0.241| 1.028| 0.077
0.75| 1917 | 0.099| 10.24 2.016 0.099| 1.01 | 0.243|| 4.311 | 0.185| 1552.7 | 4.497 0.295| 1.032| 0.034
1.0 | 4216 | 0.099| 735.24 | 4.316 0.099| 1.01 | 0.103|| 9.822 | 0.176| 176100 | 9.998 0.394| 1.038| 0.012
TABLE 11
DESIGN METHODOLOGY FOR THE LPV MODEL, 8 = 0.25
[ > norm I norm |
o[ Ko, I ITA [ RMCo | RMC7] [Fo ] IPI | raw || Ko ] T4l | RMCo | RMCZ”] [ [ TPI | rarw
0.0 0.111 | 0.088| 0.099 0.199 0.098| 1.009| 0.545|| 0.216 | 0.167| 0.213 0.383 0.192] 1.021| 0.198
0.25| 0.301 | 0.088] 0.126 0.389 0.098| 1.009| 0.475|| 0.670 | 0.167| 0.476 0.837 0.201| 1.022| 0.135
0.50 | 0.837 | 0.088| 0.386 0.926 0.098| 1.009| 0.376|| 1.781 | 0.166| 11.86 1.947 0.227| 1.024| 0.079
0.75| 1.893 | 0.088| 8.519 1.981 0.098| 1.009| 0.274|| 4.257 | 0.163| 1268.9 | 4.42 0.280| 1.027| 0.037
1.0 | 4.141 | 0.088| 587.9 4.229 0.098| 1.009| 0.127 || 9.491 | 0.154| 125870 | 9.645 0.379| 1.032| 0.014
TABLE IIT
DESIGN METHODOLOGY FOR THE LPV MODEL, g = 0.75
[ I, norm I norm |
o | [Ko [ TGl [ RMCo [ RMCA |[Fo, [ [Pl [ raw || Ko, I IIT§ll [ RMCo [ RMCGF”| [[Fo, I] [P [ raw
0.0 0.148 | 0.081| 0.095 0.229 0.092| 1.008| 0.562|| 0.353 | 0.152| 0.236 0.506 0.190| 1.019| 0.183
0.25| 0.297 | 0.081| 0.115 0.378 0.092| 1.008 | 0.501|| 0.799 | 0.152| 0.601 0.952 0.199| 1.019| 0.128
0.50 | 0.829 | 0.081| 0.347 0911 0.092| 1.008| 0.400|| 1.803 | 0.151| 11.49 1.954 0.218| 1.021| 0.084
0.75 | 1.876 | 0.081| 7.47 1.957 0.092| 1.008| 0.298|| 4.210 | 0.148| 1085.7 | 4.359 0.255| 1.022| 0.044
1.0 | 4.083 | 0.081| 497.8 4.164 0.092| 1.008| 0.145|| 9.233 | 0.139| 97126 9.373 0.342| 1.026| 0.017
. L. . . 200 w
sizes [38]. Therefore, a normally distributed white noise —6-a=0, §=0
is added to the input signal of both models [linearized + =05, =0 &
CRNN in (47) and LPV in (46)]. For example, for the 150 a=1, =0 M@/@“
LPV model, a normally distributed white noise with a — coas 0, 5=05 @
. . . . g a=0.5, 3=0.5 a
variance of 0.25 pum is added to the input signal, such that = a=1.3=05 o a® LT
. ~ ! . & + &
Ag; = Hi-1 it o (Lixi + N(0,0.25%),x1), where 1 is a - A a=0,4=1 i
S . ; . — 1001 o 4=05p-1
vector of ones. The input will be constrained to nonnegative 3 ) 1 e
. = T oa=1,p0=
values to ensure an additive process. Eiv
It is important to note that the input of the first iteration at = 501 -
the first layer is zero, f1 1 = 0, implying that there is no prior @gﬁ 0t ? bbb
L . . . . o LEp>>>>PY
knowledge of the appropriate input. This results in no material Pl EH;H ITYYY Y 1144 ddds
being deposited during the first iteration of the first layer. 0 gﬁﬁﬁ"" : ‘ ‘ ‘ ‘
However, the input of the: ﬁrs.t device at .hlgher layers, [ > 2, 0 5 10 15 20 o5 30
comes from the last dev1ce.1n the previous layer,'such. that Layer [
f A= f ~1.J> where J = 30 is the total number of iterations. Fig. 7.  Total error comparison: HO-SILC results in a lower total error

The LPV model in (46) is used to design the HO-SILC
learning filters in (9), and the results are shown in
Figs. 7 and 8(a) and (b) and Tables I-III. The linearized CRNN
model in (47) is used to design the learning filters in (8),
and the results are shown in Fig. 9. In the absence of the
experimental data, the error is calculated from the difference
between the desired and simulated height increment predicted
by the nonlinear CRNN model in Section VI-A3. The plant
matrix bounds for the LPV model, H and H, are calculated
from h and / in Fig. 5(c) by the BCCB construction method
described in Section II-B.

For Loctite 3526, the nominal impulse response and the
invariant bounds shown in Fig. 5(c) and the corresponding
norms are as follows: |AHy|>» = 0.411, ||AH,||» = 0.118,
and ||[AH,|lco = 0.123. We set ¢ = 1, r = 0.01, and

s = 0.09 and look for appropriate « and B, such that

compared with FO-SILC. o = 0 and B = 0 refer to an FO-SILC design
that only applies horizontal learning (iteration to iteration; L = 30, g = 1,
r =0.01, and s = 0.09).

IFo,llp <1 and |AH, |, < raw,. Note that («, ) = (0, 0)
results in an FO-SILC update law that only leverages device-
to-device (iteration) learning in the horizontal direction [21].
Unlike [19], we use “dlyap(FgL,I)” in MATLAB to solve
the discrete-time Lyapunov equation in (29) and calculate P.
In this example, Fy, is not BCCB, and we cannot use DFT
simplifications from [19].

VII. SIMULATION RESULTS

In this section, simulation results of the system described
in Sections III and VI-B using HO-SILC are investigated.
Tables I-IIT show that by proper selection of o and B, the
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Convergence of the Frobenius norm of the incremental error: the LPV model in Section VI-A2 is used to design the learning filters in (10). The

control update time associated with (10) for updating the feedforward signal per iteration in simulation is 1.34 s. Iteration j = 0 refers to the first device
(L=6,g=1,r=0.01, and s = 0.09). (a) FO-SILC design with « = 0 and g = 0, which only has horizontal learning (iteration to iteration). No learning
happens over layers. (b) HO-SILC design with « = 0.9 and g = 0.5. The HO-SILC design integrates horizontal learning from device to device with vertical
learning from previous layers. HO-ILC offers better performance over the layers compared with the FO-SILC.

stability radius, raju, can be tuned. It is expected that higher
values of rapy, improve robustness to model uncertainties,
while smaller values of Fy, ensuring |[Foll, < 1, increase
speed of convergence. In addition, for a constant 8, o does
not change the maximum singular value of F, , o = ||Fo, |2,
which is approximately equal to ||Tg||2. To be specific, for
fixed B, monotonic stability of the nominal system is achieved
if ||Tg||2 < 1. The reason is that the diagonal elements of

J
Fg Fy, are equal to Th2 (I+TU[ ), while off-diagonal elements

are the functions of Th (Tg))/ for j =1,...,2L — 2. Given
||Th||2 < 1 and ||TU’ ||2 < 1, the off- dlagonal elements are
smaller compared with the main diagonal elements, which
results in |[Fo, [l =~ ||Tg||2 based on (37). The simulation
results in Tables I-III show that all pairs of («, B) satisfy
IFoll, < 1. We highlighted the pairs that satisfy the RMC
criteria in Theorems 3 and 4, for both /; and /o, norms. The
results show that the /oo norm is more conservative than the
[> norm; therefore, we will focus on the /; norm.

In 3-D structures that are fabricated using AM technologies,
the error in previous layers adds up in the upper layers
and affects the total heightmap and corresponding standard
deviations. HO-SILC can improve the total error by
incorporating previous layer errors in the cost function in (5).
Fig. 7 shows the HO-SILC performance for different values
of (a, B). The results show that HO-SILC can improve the
overall performance (smaller total heightmap error) when
compared with FO-SILC. Based on the provided information
in Tables I-III, a lower value of o (while 8 is fixed) leads to
larger raty. However, it also degrades the overall performance.
Larger values of o impose more weighting on previous layer
errors in (4) that results in smaller total errors, €; ;. On the
other hand, larger values of 8 for a constant « result in an
increase in the achievable rary and decrease the total error.
Therefore, by proper tuning of higher-order parameters, the
stability robustness and the performance of the HO-SILC with

respect to the total error can be improved. Hereafter, we will
set the HO-SILC parameters, « = 0.9 and g = 0.5.

Fig. 8(a) and (b) presents the Frobenius norm of the
incremental errors, Ae; j, for FO-SILC and HO-SILC
controllers based on the LPV model in Section VI-A2.
Fig. 8(a) shows that the final incremental errors of the
FO-SILC update law are in the same range over the layers.
Fig. 8(b) shows that by using HO-SILC, a significant
improvement (around 60% for six layers) in the incremental
errors over the layers is achieved. The first layer shows the
highest error, with the error signals decreasing due to vertical
learning through the iterations. In Fig. 8, the simulation time
associated with the controller update in (10) is around 1.34 s,
which is 50% faster compared with the control update time
(2.85 s) associated with (3) and (9) for the linearized CRRN
model in (47). The reason is that the LPV plant model is
BCCB, and (10) can be used to update the feedforward signal
in Fig. 8.

Fig. 9 shows the performance of the HO-SILC controller
designed using a linearized CRNN model (47). Recall that
the linearized CRNN model in (47) is from the nonlinear
CRNN model used as the true model in the simulation. Note
that the Jacobian matrix in (47) is not BCCB; thus, DFT
calculations are not possible, and the controller derivation
requires more time as compared with the HO-SILC algorithm
designed with the LPV model in Fig. 8. In addition, the
computation time required to calculate the Jacobian matrix
in (47) is /3.5 h, which is a one-time calculation that can
be done before running the experiment. The results in Fig. 9
show that, although the HO-SILC based on the linearized
CRNN model considers surface tension effects, the controller
performance is similar to the HO-SILC based on the LPV
model. The reason is that unlike the inkjet printing process
used in [25], the e-jet printing process modeled in this work
uses high viscosity inks for which the droplets tend to stay at
their deposited locations. The reduction in movement on the
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Fig. 9.  Performance of the HO-SILC with the linearized CRNN model

in (47): convergence of the Frobenius norm of the incremental error with the
HO-SILC design in (3) and (8), based on the linearized CRNN model in (47).
The average control update time in simulation for updating the feedforward
signal per iteration is 2.8 s.

surface post printing reduces the surface tension and droplet
coalescence-related effects and shows minimal effects on film
formation. Furthermore, model uncertainties due to surface
tension of the liquid droplets are often repetitive and, thus,
would be learned through the implementation of the HO-
SILC. Therefore, it is recommended to use a more simple
model, such as LPV in Section VI-A2 or the CLR model in
Section VI-Al, to design a robust HO-SILC controller based
on the criteria in Theorems 1-4 and Tables I-III that enable
the fast DFT calculations in (10).

It should be noted that although the LPV model captures
wetting nonlinearities due to existing heightmap nonflatness
[H(g,_1)] [29], it is still less accurate compared with the
nonlinear CRNN model (see Fig. 6). Here, our aim is to
do the following: 1) use a simple BCCB model, such as
the LPV (or CLR) model to enable fast DFT computations
and still maintain our access to linear control [(46) and (47)
are linear with respect to the input signal] and 2) capture
the nonlinearities and model mismatches within the interval
uncertainty bounds that are described in Theorems 3 and
4. The simulation results show that a control design with
either of the LPV or the linearized CRNN model estimations
are able to learn the nonlinearities and model mismatches,
as demonstrated in Figs. 8 and 9, in which the CRNN is used
as the true system, and the other two are used for control
design. The controller is able to learn the nonlinearities after a
few iterations, and the performance is improved in both cases.

VIII. CONCLUSION

In this article, we present an HO-SILC framework for
iteration-varying uncertain AM systems. We consider iteration-
varying model uncertainties as interval uncertainties subjected
to spatial-invariant bounds. In order to leverage DFT-based
tools for computational efficiency, the iteration-varying plant
model is considered to be BCCB. An RMC criterion is
formalized as a useful tool to predict the stability of the
HO-SILC algorithm in the presence of iteration-varying model
uncertainties. Our analysis considers the RMC criterion as

IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY

a measure of maximum allowable uncertainty around the
nominal plant, such that the iterative system remains stable.
Simulation results using a model of an e-jet printing system
demonstrate that HO-SILC can be successfully employed in
AM processes to regulate the input of an iterative model and
improve the heightmap reference tracking. We demonstrate
that through proper tuning of the higher-order terms of the
HO-SILC algorithm, an improved performance in terms of
layer to layer and overall height errors can be achieved. The
improvements performance is especially prevalent at higher
layers, where the uncertainties from previous layer variations
are more pronounced. Higher-order, spatial learning control
has applications outside of AM systems. For example, any
system that exhibits spatially dependent dynamics through a
repetitive action (e.g., exoskeletons, robotic pick, and place)
could benefit from a control framework that compensates for
errors across both a spatial and temporal domain. Importantly,
spatial interactions are often disjointed temporally and are
commonly ignored. The proposed framework addresses this
issue by incorporating spatial information into the control law.
Future work will focus on implementation of HO-SILC on an
experimental platform.

APPENDIX

Suppose (fe, Age) are the equilibrium pair of (45). For the
multilayer structure in Fig. 2, the desired incremental height at
all layers and iterations is fixed to Ag?. Assuming that at the
equilibrium, the iteration-varying spatial dynamics converge to
a nominal behavior and llim Agj = Ag?. Since the desired

— 00

—>00

topography is a flat laye]:r with a thickness of d = 100 nm
(Ag? = dI,x,), there is no height difference across the
layer at the equilibrium, and therefore, no droplet-to-droplet
movement along the links is expected, o (/;) = 0. In addition,
since the reference for all layers is equal, the equilibrium point
of layer 1 is equal to the equilibrium point of other layers.
Simplifying (45b), at the equilibrium for layer 1, y’ at the
equilibrium is calculated as follows:

¥ = 1n(ed+”0 _ yevo) 1, 1) (48)

where y” is the uncured topography at the equilibrium when
the last droplet at layer 1 is deposited. Substituting (48)
into (45a) and assuming o (K DTy/™") = 0 at the equilibrium,
the input signal at the equilibrium f, is calculated as follows:

fo = Wy In(e40 = ye) 1 (49)

where 1,,«1 1s a vector of ones.

1) Linearization of the CRNN Model: The linearized
approximation model of (45) at (f,, Ag.), which approximates
the dynamics of the nonlinear equation (45) around the
equilibrium point, is calculated as follows:

(3g1 9811
Ag ~ (28—
afi  Afi

In addition, H; = (dg;)/(df;) is the Jacobian at the
equilibrium, and (dg;—1)/(df;) = 0. The Jacobian matrix is

) (fi = fo) + Age. (50)
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calculated as follows:

d dg; oy
Hy = o8l _ iil (51a)
afi 9y ofi
g1 . 1
— =diag{ — ), i=1,2,...,n 51b
o~ P et ) o1
ayn n—1
3_fll =W, — DY o' (y)KD W, 1. (51c)
t=1

Equation (51b) is consistent with the results in [25].
Equation (51c) is calculated from step-by-step partial
derivation of (45b) and (45a). 1(;—;) € R"*" in (51) is a block-
diagonal matrix with all elements equal to zero, expect the first
t diagonal terms, which are equal to one. For example, 1(1_1)
has only one nonzero element equal to one on (i,i) = (1, 1).
Similar to [25], o/(y;) is as follows:

1, if KDTy,(i) > €
o'(y) =18=001, if —e < KDTy,(i) <e (52)
1, if KDTy, (i) < —e.

The Jabobian matrix in (51a) is not BCCB, because the
second element in (51c) is not BCCB. Note that the linearized
equation (50) is an approximation of the nonlinear CRNN
model in (45).
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