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Abstract— In this article, a higher-order spatial iterative learn-
ing control (HO-SILC) scheme is proposed, targeting heightmap
tracking for a class of 3-D structures fabricated by repetitive
addition of material in a layer-by-layer fashion using additive
manufacturing (AM) technology. AM processes are innately
iteration-varying, resulting in large model uncertainties due
to iteration-varying system parameters and surface variations.
HO-SILC has been shown to be useful in repetitive systems
with model uncertainties by improving system performance with
respect to convergence speed and robustness. In this article,
HO-SILC is used to iteratively construct a feedforward control
signal to improve part quality in multilayered AM constructs.
The system dynamics are approximated by discrete 2-D spatial
convolution kernels that incorporate in-layer and layer-to-layer
variations. The proposed HO-SILC framework incorporates data
available from previously printed devices, as well as multiple
previously printed layers, to enhance the overall performance.
The condition for robust monotonic convergence (RMC) of the
iteration-varying HO-SILC algorithm is based on the Lyapunov
stability criteria. Simulation results of an AM process termed
electrohydrodynamic jet (e-jet) printing demonstrate that a well-
designed HO-SILC framework is effective and can improve
the performance by 60%. In addition, HO-SILC is robust to
iteration-varying model uncertainties, especially at higher layers
where iteration-varying surface variations are more pronounced.

Index Terms— Intelligent and flexible manufacturing, learning
control, Lyapunov methods, stability of linear systems.

I. INTRODUCTION

IN THE past few decades, there has been a growing interest

in additive manufacturing (AM) technologies due to their

potential for simplified processing and design space freedom.

Through AM, a printed device, which could be structural

or contain other functional characteristics, such as a sensor,

is generated by selective addition of material on the surface

in a layer-by-layer fashion [1], [2], [3]. Due to the wide range

of materials that can be used in AM processes, AM-fabricated

devices, specifically those from jet-based printing processes,

have been used in diverse applications, including flexible
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electronics [4], biological sensors [5], and optical filters [3].

The performance of such devices depends on the uniformity

and consistency of the printed layers [2]. However, for most

AM systems, it is very difficult to actuate and sense in real

time [6]. The output and subsequent error measurements are

only available after the material is deposited onto the substrate.

In addition, most AM processes are iteration-varying, with

the system parameters and plant dynamics changing from

device to device and layer to layer. Thus, the behavior of the

printing at a given layer depends on material and topography

interactions from previous layers, which vary in real-world

applications. Control methods that leverage the iterative nature

of these processes in the presence of disturbances are needed.

Iterative learning control (ILC) is a run-to-run control

technique that has been widely used in systems with repetitive

characteristics in order to achieve accurate output tracking of

a reference trajectory over a short number of iterations [7].

Temporal ILC uses past information in the time domain

in order to build an appropriate feedforward control signal

with the aim of ensuring convergence of the tracking error

from iteration to iteration. Previous studies [8], [9], [10]

have considered ILC architectures that address bounded

iteration-varying model parameters, and provide convergence

guarantees to a bounded neighborhood of a nominal system.

First-order ILC (FO-ILC) leverages the data from the

most recent iteration, to construct an optimal feedforward

signal. While FO-ILC has proven to be useful for reference

tracking of repetitive systems, it might lose performance when

uncertainties are high. To achieve better performance with

respect to convergence speed, higher-order ILC (HO-ILC) has

been developed, where the feedforward signal is synthesized

using historical data from multiple iterations [10], [11], [12],

[13], [14], [15]. There have been several attributes stated

in the literature that motivate the implementation of HO-

ILC over FO-ILC. Phan and Longman [15] presented

anecdotal evidence of merit to justify either HO- or FO-ILC

depending on the situation. However, Bien and Huh [13] and

Chen et al. [14] argued that an HO-ILC framework

demonstrated better convergence speed and robustness than

an FO-ILC framework, while Moore [16] asserted that the

real motivation behind the use of HO-ILC was to reduce the

effects of disturbances and noise. Similarly, Bu et al. [11], Wei

and Li [12], and Norrlof and Gunnarsson [17] claimed that

an HO-ILC design achieved faster convergence as compared

with an FO-ILC framework due to the effects of learning over

several previous iterations. Importantly, these methods have
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primarily been considered for performance improvements in

the temporal domain.

There has been some work in the literature focused on

extending temporal ILC to the spatial domain, such that system

parameters can be defined based on 2-D spatial coordinates,

x and y [18]. In these processes, the ILC algorithms aim to

decrease the 2-D spatial tracking errors e(x, y) from iteration

to iteration. Spatial ILC (SILC) has been demonstrated for

topography control in AM processes [18]; however, current

SILC frameworks have been designed for single-layer material

deposition [18], [19], [20]. In many AM structures, the

devices are fabricated by repetitive material deposition over

existing layers. The printing of multiple layers leads to surface

variations due to previous layer topography and results in

iteration-varying dynamics and model uncertainties. In recent

years, the SILC framework has been extended to consider

model uncertainties due to iteration-varying system parameters

for single-layer structures [19]. The iteration-varying SILC

algorithm in [19] enables robust monotonic convergence

(RMC) for a run-to-run AM process based on Lyapunov

stability criteria.

Our previous work introduced a first-order SILC (FO-

SILC) framework [21] that considered in-layer and layer-

to-layer dynamics to achieve uniformly printed layers in

multimaterial 3-D structures. The control input of the proposed

FO-SILC was updated from the previously printed device

information along the device axis ( j horizontal) within the

same layer l. A drawback of this previous framework stems

from the additive process itself. The FO-SILC framework only

leveraged the errors from the previous layer to derive current

layer errors, �el, j (x, y). This approached ignored the buildup

of errors that can occur from layer to layer, potentially causing

large deviations from the desired total height. Importantly, the

learning process can be more complicated at higher layers

in which large surface variations have resulted from the

accumulation of errors, leading to large model uncertainties.

A controller should be able to compensate for the total

accumulated error el, j (x, y) in the layer direction l (vertical

z-axis), which is especially important in cases when a large

number of layers are deposited. Thus, new theories are needed

to control in-layer errors as well as the total accumulated

error in multilayered structures. In this article, we propose

the use of higher-order SILC (HO-SILC) to achieve better

convergence performance as compared with FO-SILC [11] due

to the additional information that is leveraged from previous

layers.
This article extends our earlier work in [21] and [22]

toward the development of a multidimensional, HO-SILC

framework in the lifted and frequency domains. The

proposed HO-SILC scheme encompasses interval model

uncertainties and spatially varying dynamics arising in the

printing of multilayered components due to droplet-to-droplet

coalescence effects or unevenness of the previous layers. Here,

we investigate different linear/nonlinear models to describe

material spreading in multilayered structures, and evaluate the

performance of the proposed HO-SILC when these different

models are used. Our proposed approach differs from those

in the literature [17], [23], since the transfer operator matrices

that convert the HO-SILC to an FO-SILC for stability analysis

are constructed based on the layer-by-layer nature of the

AM process. The proposed HO-SILC framework incorporates

vertical learning through the combined effect of previous layer

spatial dynamics and layer-to-layer learning (learning from

previous layers in the same device) and horizontal learning
from device to device (in the same layer). The proposed

HO-SILC differs from traditional HO-ILC frameworks due to

the 2-D aspect of the learning. Traditional HO-ILC considers

information from previous data across the iteration axis. HO-

SILC incorporates learning over two axes, along the device

axis ( j horizontal) and over multiple iterations in the layer

axis (l vertical), which has similarities to the 2-D adaptive ILC

framework in [24]. In addition, design ideas are presented to

explore the effect of HO-SILC parameters on robustness and

speed of convergence. The contributions of this work include

the following:
1) development of an HO-SILC framework for controlled

printing of 3-D structures that combines device-to-

device and layer-to-layer learning in the lifted and

frequency domains, while considering iteration-varying

spatial dynamics;

2) a detailed methodology for transforming HO-SILC of

AM processes to an FO-SILC representation for stability

and robustness analysis;

3) development of a design methodology for deriving

learning filters that directly embed stability criteria for

nominal HO-SILC systems;

4) design of a boundary prediction of the maximum

allowable uncertainty around a nominal plant for

monotonic convergent of the iterative norm-optimal HO-

SILC algorithm.
Simulation results using a model of an electrohydrodynamic

jet (e-jet) printing process are used to demonstrate the

feasibility of the proposed HO-SILC framework for AM

process control. In the absence of experimental data, the

simulation environment approximates the true model using a

nonlinear model based on the design presented in [25], which

incorporates nonlinear dynamics, such as surface effects of

the liquid droplets and the effect of previous layer surface

variations. Note that for simplicity and fast computation

purposes, a nominal model is used to design the controller.

II. PRELIMINARIES

In this section, preliminary notations and definitions that

will be used in the rest of the paper will be defined.

A. Notation

The finite set of Zn for an odd and positive integer n is

defined as follows:
Zn �

{
1 − n

2
,

3 − n
2

, . . . ,
n − 3

2
,

n − 1

2

}

with Z1 � {0}. A generic scalar function p(x, y) sampled at

discrete values can be combined in the matrix form, as shown

in the equation at the bottom of the next page, where finite

support of p is supp(p) = {(x, y) ∈ Znx ×Zny : p(x, y) �= 0}.
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Setting nx and ny as positive odd integers makes the central

location of p at (0, 0). An example of this generic function

is the heightmap in μ-AM systems defined as a 2-D array

of printed droplets in the spatial domain. The 2-D discrete

Fourier transform (DFT) representation of p(x, y) is defined

as follows:

P(u, v) =
nx −1∑
x=0

ny−1∑
y=0

(
p
(
x + x�, y + y�

)
e
−i2π

(
ux
nx

+ vy
ny

))

where x� = �(nx/2)� + 1, y� = �(ny/2)� + 1, and �·� is

the floor operator. Hereafter, we will use capital italic font to

show the frequency domain variables.

A vectorization operator ν(·) can be applied to a matrix,

P ∈ R
nx ×ny , to convert the matrix into a column vector form,

P ∈ R
n×1, given as follows:

P � ν(P) = vec
(
PT
)

where vec(·) is the conventional columnwise vectorization

operator. The Frobenius norm of a matrix P ∈ R
nx ×ny is

equal to the l2 norm of the vectorized matrix, ‖P‖F = ‖P‖2.

B. Definitions
1) circ(p1, p2, . . . , pn) is defined as a block circulant

matrix with square submatrices of the same size,

p1, p2, . . . , pn , where n is an odd number. The i th block

of the middle column in circ(p1, p2, . . . , pn) is always

pi [19]. For example, if n = 3

circ(p1, p2, p3) =
⎡
⎣p2 p1 p3

p3 p2 p1

p1 p3 p2

⎤
⎦ .

2) A matrix is said to be block circulant with circulant

blocks (BCCBs) if it is defined as follows:
H � circ

(
H 1−nx

2
, H 3−nx

2
, . . . , Hnx −1

2

)
∈ R

n×n

Hi � circ

(
h
(

i,
1 − ny

2

)
, h
(

i,
3 − ny

2

)
,

. . . , h
(

i,
ny − 1

2

))
, ∈ R

ny×ny

where h(x, y) is a discrete function, with the same

support as p. Note that the l2 norm of H equals the

maximum modulus of its DFT representation; i.e., ‖H‖2 =
‖H(u, v)‖∞ = max(u,v)|H(u, v)|. The BCCB property of a

matrix makes fast Fourier transforms (FFTs) possible, which

has been demonstrated to be computationally less expensive

in calculating matrix products and norms [18], especially in

applications with large n values.

Fig. 1. Schematic of AM spatial dynamics described in (1).

III. GENERAL ITERATION-VARYING AM SYSTEM

In order to enable automated topography control for

droplet-based AM processes, models that describe heightmap

evolution in a layer-by-layer fashion are needed. Examples

of these models are presented in [25], [26], [27], [28], and

[29]. In these models, the printed topography of the next layer,

gl+1 ∈ R
nx ×ny , is a linear or nonlinear function of the current

layer topography, gl ∈ R
nx ×ny , and the input signal of the next

layer, fl+1 ∈ R
nx ×ny . l is the layer number. The following

assumptions are considered for the AM process described in

Fig. 1.
1) A1: The spreading behavior of a printed material on a flat

surface is different from that on a nonflat surface [29].

2) A2: The plant spatial dynamics are causal in the

temporal and noncausal in the spatial domain, meaning

that the applied input at a given position will affect

the output in the advanced layers and surrounding

coordinates [29].

3) A3: The plant matrix (H ) is considered bounded input,

bounded output (BIBO) stable, meaning that there exist

positive finite scalars ξ and ζ , such that given a bounded

input, ‖fl(x, y)‖ < ξ , the resulted output will always be

bounded, ‖gl(x, y)‖ < ζ , ∀(x, y) ∈ R
nx ×ny (ξ and ζ

are independent of l).
Assumptions A1 and A2 denote that the spatial dynamics of

a given plant (H ) are a function of previous layer topography

(gl−1) and the surrounding environment. Assumption A3 holds

for the additive system described in Fig. 1, given that

material addition to the substrate is bounded by a predefined

volume of available material. Furthermore, because of actuator

constraints, the input is limited by an upper bound [19].

A simple linear representation of such a model is described

as follows:
gl = gl−1 + H(gl−1)fl (1)

p (x, y) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p
(

1 − nx

2

1 − ny

2

)
p
(

1 − nx

2

3 − ny

2

)
· · · p

(
1 − nx

2

ny − 1

2

)

p
(

3 − nx

2

3 − ny

2

)
p
(

3 − nx

2

3 − ny

2

)
· · · p

(
3 − nx

2

ny − 1

2

)
...

...
. . .

...

p
(

nx − 1

2

1 − ny

2

)
p
(

nx − 1

2

3 − ny

2

)
· · · p

(
nx − 1

2

ny − 1

2

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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where fl � ν( fl(x, y)) ∈ R
n×1 is the input signal,

gl � ν(gl(x, y)) ∈ R
n×1 is the output, and H ∈ R

n×n is

the interval plant matrix that describes the relation between

system input and output. We will use Hl−1 instead of H(gl−1)

for brevity. H is an interval matrix if all of its elements are

interval parameters. In other word, the interval H is a member

of the following matrix set:
H I = {H ∈ R

n×n | H 	 H 	 H
}

where 	 is elementwise inequality. Note that the plant bounds

are known and fixed properties of the iteration-varying system

that can be measured by running the additive process described

in (1) multiple times and measuring maximum and minimum

droplet spreading on spatially varying surfaces [29]. For a

general AM process, we are interested in controlling the

heightmap increment (�gl � gl − gl−1) with respect to the

previous layer described as follows:
�gl = Hl−1fl , Hl−1 ∈ H I (2)

where H I is the interval set associated with Hl−1.

In Section VI-A, we will describe in detail the different

available models for the additive process in (1).

IV. HO-SILC DESIGN FOR MULTILAYER STRUCTURES

In our prior work in [21], we derived an FO-SILC

framework that used the information from a previous

iteration in the device axis (horizontal learning) to construct

the feedforward input signal. In this work, we extend

that framework by adding layer-to-layer learning (vertical

direction), as presented in Fig. 2(b) and (c). Note that both

SILC frameworks incorporate the effect of previous layer

contours through construction of the plant model in (1).

We term the proposed SILC algorithm HO-SILC, because

learning occurs over one iteration in the device axis ( j ,

horizontal) and l−1 iterations in the layer axis (l, vertical). For

a multilayered structure, as shown in Fig. 2(a), the following

HO-SILC update law is proposed:
fl, j+1 =

(
Lh

f fl, j + Lh
e �el, j

)

+
l−1∑
i=1

(
Lvi

f fl−i, j+1 + Lvi
e �el−i, j+1

)
(3)

with Lh
f , Lh

e , Lvi
f , and Lvi

e ∈ R
n×n defined as the horizontal

input and error filters, and vertical input and error filters. Note

that in (3), printing is in the horizontal direction from device

to device. The update law in (3) is suitable for devices, such

as [21] and [30], in which multiple materials are printed at

specific layers, or the reference incremental height is changing

from layer to layer.

A. Design of Learning Filters

There are many different methods that can be employed

from temporal ILC to design the input and error filters in (3),

such as proportional-type ILC, model inversion, and Q-filter

design [31]. Here, we implement a norm optimal-SILC (NO-

SILC) algorithm [18], which seeks to minimize a quadratic

cost function in the spatial domain. We define a weighted error

vector ew
l, j+1, as follows:

ew
l, j+1 � �el, j+1 + α1�el−1, j+1 + · · · + αl−1�e1, j+1


α � [α0, α1, α2, . . . , αl−1]T (4)

where the values of αi ∈ [0, 1] are layer-varying user-

defined control parameters. The quadratic cost function that is

minimized to solve for the NO-SILC learning filters is defined

as follows:
J = qewT

l, j+1ew
l, j+1 + r

(
fl, j+1 − fl, j

)T (fl, j+1 − fl, j
)

+ sfT
l, j+1fl, j+1 +

l−1∑
i=1

βi r
(
fl, j+1 − fl−i, j+1

)T
× (fl, j+1 − fl−i, j+1

)
(5)

where q, s, and r are real positive scalars that penalize

the weighted error, input signal, and change in the input

signal from iteration to iteration. The values of βi ∈ [0, 1]
are layer-varying user-defined parameters to weight the

influence of previous layer input signals, such that

β � [β1, β2, . . . , βl−1]T. In order to emphasize more recent

layers, we set α′
i = (αi/‖
α‖) and β ′

i = (β i/‖ 
β‖), with

α, β ∈ [0, 1]. Note that if α = 1 in (4), the cost function (5)

is optimized over the total error.

1) Lifted-Domain Learning Filters: Given that �gd
l is the

desired output at layer l, the predicted incremental error can

be expressed as follows:
�el, j = �gd

l − Hl−1, j fl, j . (6)

Using the assumption of iteration-invariant desired reference

trajectories, we can relate two successive errors (iteration to

iteration) within the same layer using the following equation:
�el, j+1 = �el, j + Hl−1, j fl, j − Hl−1, j+1fl, j+1. (7)

Substituting (4) and (7) into (5) and setting the partial

derivatives of J with respect to fl, j+1 equal to zero, the

following relationships can be obtained for the filters based

on the nominal plant, H0:

Lh
f =

((
s + r + r

l−1∑
i=1

β ′
i

)
I + α′

0q H T
0 H0

)−1

×
(

r I + α′
0q H T

0 H0

)
(8a)

Lh
e =

((
s + r + r

l−1∑
i=1

β ′
i

)
I + α′

0q H T
0 H0

)−1

α′
0q H T

0 (8b)

Lvi
f =

((
s + r + r

l−1∑
i=1

β ′
i

)
I + α′

0q H T
0 H0

)−1

β ′
i r I (8c)

Lvi
e = α′

i
α′

0

Lh
f . (8d)

2) Frequency-Domain Learning Filters: If the plant matrix

in (1) is BCCB, the learning filters and the update law in (3)

and (8) have frequency representations, which enable us to use

computationally efficient FFT methods. The frequency domain
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Fig. 2. Closed-loop control of AM process. (a) Learning happens from layer to layer (vertical) and device to device (horizontal) to control material deposition
in 3-D structures. (b) HO-SILC is used as a recursive control strategy to close the loop. (c) Standard HO-SILC block diagram. l denotes the layer index, and
j denotes the iteration index.

representation of the learning filters in (8) for a BCCB plant

matrix is presented as follows:

Lh
f (u, v) = α′

0q H∗
0 ◦ H0 + r1n×n

α′
0q H∗

0 ◦ H0 +
(

s + r + r
∑l−1

i=1 β ′
i

)
1n×n

(u, v)

(9a)

Lh
e (u, v) = α′

0q H∗
0

α′
0q H∗

0 ◦ H0 +
(

s + r + r
∑l−1

i=1 β ′
i

)
1n×n

(u, v)

(9b)

Lvi
f (u, v) = rβ ′

i 1n×n

α′
0q H∗

0 ◦ H0 +
(

s + r + r
∑l−1

i=1 β ′
i

)
1n×n

(u, v)

(9c)

Lvi
e (u, v) = α′

i
α′

0

Lh
e (u, v) , i = 1, . . . , l − 1 (9d)

where ◦ is the Hadamard or entrywise product of two matrices,

and H0 is the frequency domain representation of the nominal

plant. A full description of the frequency domain conversion

can be found in [18]. Lh
f , Lh

e , Lvi
f , and Lvi

e ∈ R
nx ×ny are

2-D DFTs of the learning filters in (8). Because of the BCCB

structure of H0 and the learning filters, the update law in (3)

for the BCCB plant model can be equivalently represented in

the frequency domain as follows:
Fl, j+1 (u, v)

=
(

Lh
f ◦ Fl, j + Lh

e ◦ �El, j

)
(u, v)

+
l−1∑
i=1

(
Lvi

f ◦ �Fl−i, j+1 + Lvi
e ◦ �El−i, j+1

)
(u, v) . (10)

B. HO-SILC Transformation to FO-SILC

HO-ILC algorithms generally have faster convergence as

compared with FO-ILC, because HO-ILC uses the information

from multiple previous trials to construct the control signal.

In the literature, there are very few examples of MC of

HO-ILC systems [10], [17], while the stability condition of

FO-ILC is well described. It is possible to leverage the proofs

for FO-ILC to analyze stability of an HO-ILC system by

converting the HO-ILC algorithm to an FO-ILC framework.

In this section, we follow methods developed in [8], [23],

and [32] to convert the HO-SILC framework in (3) to an

FO-SILC. This modified FO-ILC framework will then be used

to investigate stability margins for the iteration-varying model

described in (2). The approach taken here is a bit different than

[8], [23], and [32]. The transfer functions from HO-SILC to

FO-SILC are constructed based on the layer-by-layer nature

of AM process, such that the FO-SILC system incorporates

learning along the iteration axis, j , as well as the layer axis,

l.
The HO-SILC algorithm defined in (3) can be expressed

based on the closed-loop plant matrices, by inserting (6)

into (3) as follows:

fl, j+1 = T h
l−1, j fl, j +

l−1∑
i=1

T vi
l−i−1, j+1fl−i, j+1

+
(

Lh
e +

l−1∑
i=1

Lvi
e

)
�gd (11)

with T h
l, j = Lh

f − Lh
e Hl, j and T vi

l−i−1, j = Lvi
f − Lvi

e Hl−i−1, j
being the closed-loop horizontal and vertical plant matrices,

respectively. Equation (11) can be further simplified by

concatenating the input signals over the vertical axis, l, such

that

zl, j+1 = Dl, j zl, j + Kl, j zl, j+1 + Cl

zl, j =
[
fT
l, j , . . . , fT

2, j , fT
1, j

]T ∈ R
ln×1

zl,∞ = (I − Dl,∞ − Kl,∞)−1Cl (12)

where Dl, j ∈ R
ln×ln, Kl, j ∈ R

ln×ln, and Cl ∈ R
ln×1 are

a diagonal block matrix, upper triangular block matrix, and

constant vector, respectively

Dl, j =

⎡
⎢⎢⎢⎢⎢⎣

T h
l−1, j 0 · · · 0

0
. . .

...
... T h

1, j 0

0 · · · T h
0, j

⎤
⎥⎥⎥⎥⎥⎦ (13a)
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Kl, j =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 T v1
l−2, j+1 T v2

l−3, j+1 · · · T vl−2

1, j+1 T vl−1

0, j+1

0 T v1
l−3, j+1 · · · T vl−2

1, j+1 T vl−2

0, j+1

. . .
. . .

...
...

... 0 T v1
1, j+1 T v2

0, j+1

0 T v1
0, j+1

0 · · · 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13b)

Cl =

⎡
⎢⎢⎢⎢⎢⎣

(
Lh

e + Lv1
e + · · · + Lvl−1

e
)
�gd

...(
Lh

e + Lv1
e + Lv2

e
)
�gd(

Lh
e + Lv1

e
)
�gd

Lh
e �gd

⎤
⎥⎥⎥⎥⎥⎦ . (13c)

Equation (12) can be further simplified to the following

FO-SILC format:
zl, j+1 = Fl, j zl, j + Fr

Fl, j = (
I − Kl, j

)−1 Dl, j

Fr = (
I − Kl, j

)−1 Cl . (14)

We used the same notation as [8] and [17] for transfer matrices

Fl, j and Fr . The FO-SILC algorithm in (14) will be used

in the following section to investigate the asymptotic and

monotonic properties of the HO-SILC update law in (11)

following methods described in [8], [10], [17], and [19].

V. STABILITY AND CONVERGENCE

In most control systems, a fundamental goal is to guarantee

the convergence of the tracking error to zero or within a

neighborhood of a nominal value over a small number of

iterations. Asymptotic stability of iteration-varying systems

requires the joint spectral radius of the iterative plant to

be less than one, which is a difficult problem [19], [33].

In many manufacturing applications, such as the optical sensor

presented in [2], large transient errors may introduce failures in

the functional capabilities of the printed device. Therefore, the

controller should be designed to regulate material deposition,

such that the layer errors decrease from iteration to iteration

and layer to layer. In this work, we focus on monotonic

stability of iterative systems subjected to bounded model

uncertainties, which is an often desirable property for AM

processes. We combine the methods developed in [10],

[17], and [19] to derive stability conditions for HO-SILC

processes subjected to iteration-varying model uncertainties.

First, we design the learning filters, such that the nominal

system is stable. Then, a stability radius, rAIU, is designed

based on the Lyapunov equation, such that the iterative system

remains stable as long as the magnitude of model uncertainties

is less than the stability radius at all iterations. We follow the

method developed by Norrlof and Gunnarsson [17] to convert

HO-SILC to an FO-SILC. Then, we follow [10] and [19]

to design the stability margins of the converted FO-SILC

subjected to interval uncertainty.

Theorem 1: The system in (1) controlled by the FO-SILC

in (14) [or HO-SILC in (11)] is monotonically convergent in

the l p norm, ‖Zl, j+1 − Zl,∞‖p < ‖Zl, j − Zl,∞‖p, if

‖Fl, j‖p < 1 ∀l, j

‖Fr‖p < ξ (15)

where ξ is positive scalar that ensures ‖Fr‖p remains bounded.

Corollary 1: The monotonic stability condition in (15) can

be expressed as follows:

RMC �
1 − ∥∥Kl, j

∥∥l−1

p

1 − ∥∥Kl, j
∥∥

p

× ∥∥Dl, j
∥∥

p < 1 ∀l, j. (16)

Proof: Kl, j is a strictly upper triangular block matrix

containing block matrices of higher-order terms, T vi
l, j ∈ R

n×n ,

with l block zero matrices and 0 ∈ R
n×n , along the diagonal.

From linear algebra, Al is zero for a strictly triangular matrix

A ∈ R
l×l with dimension l [34], [35], [36]. We use this

property for strictly upper triangular block matrix Kl, j to avoid

matrix inversion in (14), using the fact that K l
l, j = 0 (l denotes

the number of layers). Here

I − K l
l, j = (I − Kl, j

) (
I + Kl, j + K 2

l, j + · · · + K l−1
l, j

)
(17)

implies that(
I − Kl, j

)−1 =
(

I + Kl, j + K 2
l, j + · · · + K l−1

l, j

)
. (18)

Inserting (18) into (15) results in∥∥Fl, j
∥∥ =

∥∥∥(I − Kl, j
)−1 Dl, j

∥∥∥
≤
∥∥∥(I + Kl, j + K 2

l, j + · · · + K l−1
l, j

)
Dl, j

∥∥∥
≤
(

1 + ∥∥Kl, j
∥∥+ ∥∥Kl, j

∥∥2 + · · · + ∥∥Kl, j
∥∥l−1

) ∥∥Dl, j
∥∥

(19)

where the right-hand side of (19) is a geometric sum that

can be rewritten as (1 − ‖Kl, j‖l−1)/(1 − ‖Kl, j‖) × ‖Dl, j‖.

Therefore, if the RMC parameter (1 − ‖Kl, j‖l−1)/(1 −
‖Kl, j‖) × ‖Dl, j‖ < 1, ‖Fl, j‖ will be less than one.

Note that because of norm properties in (19), the RMC

criteria in corollary 1 are more conservative than the criteria

presented in (15).

A. Nominal Stability and Convergence

For the additive model in (1), the nominal plant matrix

results from the desired topography, H0 = H(gd). The

nominal matrices are

D0l =
⎡
⎣T h

0 · · · 0
...

. . .
...

0 · · · T h
0

⎤
⎦

K0l =

⎡
⎢⎢⎣

0 T v1
0 · · · T vl−2

0 T vl−1

0
. . .

...
...

0 T v1
0

0 · · · 0

⎤
⎥⎥⎦ . (20)

In this case, the following properties are true:∥∥D0l

∥∥
p =

∥∥∥T h
0

∥∥∥
p

(21a)

∥∥K0l

∥∥
p ≤

l−1∑
i=1

∥∥T vi
0

∥∥
p (21b)
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with T h
0 = Lh

f −Lh
e H0 and T vi

0 = Lvi
f −Lvi

e H0. Equation (21b)

has an equal sign for l∞ norm of BCCB H0 matrix.

Theorem 2: The system in (1) controlled by a nominal

system representation of FO-SILC in (14) [or HO-SILC

in (11)] is asymptotically stable (AS) for the nominal system

if and only if

ρ
(

T h
0

)
< 1 (22)

where ρ is the spectral radius.

Proof: To prove the nominal stability of (11), we need

to prove the nominal representation of (14) is stable. The

nominal form of the system given by (14) is AS if ρ(F0l ) < 1,

with F0l = (I − K0l )
−1 D0l . (I − K0l )

−1 is a strictly upper

triangular block matrix with block-diagonal matrices equal to

I ; therefore, the eigenvalues of F0l are equal to the eigenvalues

of D0l . D0l is a block-diagonal matrix, and its spectral radius

is equal to the spectral radius of the matrix T h
0 . Therefore, the

nominal system is stable if ρ(T h
0 ) < 1.

The monotonic stability of the FO-SILC algorithm in (12)

derives from (15); a nominal system representation of (14) is

RMC stable using contraction mapping if ‖F0l ‖p < 1. Using

corollary 1, the conservative RMC criteria for the nominal

system are defined as follows: RMC0 � (1 − ‖K0l ‖l−1
P )/(1 −

‖K0l ‖p) × ‖T h
0 ‖p < 1. Note that if ‖K0l ‖p � 1, we can

ignore ‖K0l ‖l−1
p compared with 1, especially at higher layers;

as a result, RMC0 can be approximate by a line, RMC
app
0 �

‖K0l ‖p + ‖D0l ‖p < 1. The value RMC0 = 1 is the boundary

level for RMC stable regions of the nominal plant.

Remark 1: In order to avoid norm calculations of the high

dimensional F0l or K0l ∈ R
ln×ln, the l∞ norm can be used.

Equation (21b) has an equality sign for l∞, which reduces

dimensionality in calculating matrix norms of T vi
0 ∈ R

n×n

instead of K0l ∈ R
ln×ln.

B. Maximum AIU

In this section, we design the learning gain matrices

in (8), such that HO-SILC remains stable for the maximum

allowable interval uncertainty (AIU) added to the nominal

plant. Altin et al. [19] formulated the iteration-varying system

behavior as that of robustness under interval uncertainties with

spatially invariant bounds for an FO-SILC system. In this

section, we extend their results to HO-SILC systems.

Assume that the iteration-varying plant Hl, j = H0 + �Hl, j
is an interval matrix, and �Hl, j is additive uncertainty of

the nominal plant. In order to quantify the maximum amount

of allowable uncertainty, we define the uncertainty radius as

�Hr � (H − H)/2. In general, ensuring the asymptotic and

monotonic stability in (22) and (15) for all Hl, j ∈ H I is

a difficult problem [19], [37]. The goal here is to find the

maximum AIU, rAIU, such that the RMC criteria in (16) are

guaranteed for all ‖�Hl, j‖ < rAIU. We can solve this problem

by ensuring the maximum amount of uncertainty in the system

remains smaller than rAIU at all iterations. In other words,

if the learning filters in (9) are designed, such that ‖�Hr‖ <

rAIU, we can ensure ‖�Hl, j‖ < rAIU for all iterations and

layers. Iteration-varying matrices in (11) can be written as

T h
l, j = T h

0 − Lh
e �Hl, j and T vi

l, j = T vi
0 − Lvi

e �Hl, j . We can

decompose the rest of the matrices as in (23), (24a), and (24b),

as shown at the bottom of the next page. Inserting (17) and (23)

into (14), F can be decomposed as the following:

Fl, j =
(

I + (K0l + �Kl, j
)+ · · · + (K0l + �Kl, j

)l−1
)

× (D0l + �Dl, j
)

=
(

a0l + a1l �Kl, j + a2l �K 2
l, j + · · ·

)
× (D0l + �Dl, j

)
(25a)

a0l = I + K0l + K 2
0l

+ · · · + K l−1
0l

(25b)

a1l = I + 2K0l + 3K 2
0l

+ · · · + (l − 1) K l−2
0l

, l ≥ 2

(25c)

a2l = I + 3K0l + 6K 2
0l

+ 10K 3
0l

+ · · · + (l − 1) (l − 2)

2
K l−3

0l
, l ≥ 3. (25d)

Ignoring the higher-order terms for small model uncertainties

around the nominal plant (�Hn � 0 for n > 2)

F0l = a0l D0l

�Fl, j �
(

a1l �Kl, j + a2l �K 2
l, j

)
D0l

+ (a0l + a1l �Kl, j
)
�Dl, j . (26)

Theorem 3: Given the learning matrices designed for the

nominal plant H0, such that the nominal system is AS

(ρ(T h
0 ) < 1), the iterative system in (1), controlled by the

FO-SILC in (14), remains AS if

‖�Hr‖p < rAsym
AIU , rasym

AIU =
−μ1 +

√
μ2

1 + 4 μ2‖P‖∞
2μ2

(27)

where μ1 and μ2 are positive scalars that are a function of the

learning filters and nominal plant

μ1 = 2θ1

〈
F0l

〉
p , μ2 = 2θ2

〈
F0l

〉
p + θ2

1 (28a)

θ1 = 〈a0l

〉
p

〈
Lh

e

〉
p

+ 〈a1l

〉
p

〈
T h

0

〉
p

l−1∑
i=1

〈
Lvi

e
〉
p

θ2 = 〈a1l

〉
p

〈
Lh

e

〉
p

l−1∑
i=1

〈
Lvi

e
〉
p + 〈a2l

〉
p

〈
T h

0

〉
p

( l−1∑
i=1

〈
Lvi

e
〉
p

)2

(28b)

where 〈B〉p � max(‖B‖p, ‖BT ‖p) for an arbitrary square

matrix B in l p norm. In (27), P is a symmetric and positive

definite matrix that satisfies the Lyapunov stability of the

nominal plant [10]

FT
0l

P F0l − P = −I. (29)

Proof: Assume the FO-SILC in (14) is AS for the nominal

plant; from Lyapunov stability, there exists a positive definite

P > 0, such that (29) is satisfied. The iteration-varying FO-

SILC is AS in the Lyapunov sense, if the following inequality

is satisfied with the same P from (29):

FT
l, j P Fl, j − P < 0, l = 1, 2, . . . , L , j = 1, 2, . . . , J.

(30)
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Defining ‖�H‖p � maxl, j (‖�Hl, j‖p), the following induced

norms hold for �Kl, j and �Dl, j :∥∥�Dl, j
∥∥

p ≤
∥∥∥Lh

e

∥∥∥
p
‖�H‖p (31a)

∥∥�Kl, j
∥∥

p ≤
( l−1∑

i=1

∥∥Lvi
e
∥∥

p

)
‖�H‖p . (31b)

Inserting (26) and (29) into (30) and taking the norm of both

sides, we have the following:(
F0l + �Fl, j

)T P
(
F0l + �Fl, j

)− P < 0

‖.‖p−−→ 2
〈
F0l

〉
p

〈
�Fl, j

〉
p + 〈�Fl, j

〉2
p <

1

‖P‖p
. (32)

Using (31a) and (31b) and taking l p norm of both sides of (26),

we have the following:〈
�Fl, j

〉
p ≤ θ2〈�H〉2

p + θ1〈�H〉p (33)

where θ1 and θ2 are defined in (28b). Neglecting higher-

order terms for small model uncertainties (‖�H‖n
p ≈ 0,∀n ≥

3), (32) can be simplified to a quadratic equation for 〈�H〉p

μ1〈�H〉p + μ2〈�H〉2
p − 1

‖P‖p
< 0 (34)

which is negative when 〈�H〉p < (−μ1 + (μ2
1 +

4(μ2/‖P‖∞))1/2)/(2μ2). μ1 and μ2 are defined

in (28a) and (28b). Therefore, rasym
AIU = (−μ1 + (μ2

1 +
4(μ2/‖P‖∞))1/2)/(2μ2). Note that if (34) holds, then (32) is

true, not vice versa.

Note that assuming bounded model uncertainty, Theorem 3

provides sufficient condition for BIBO stability of the

HO-SILC in (11).

Theorem 4: Given the learning matrices are designed, such

that the nominal system is RMC stable (‖F0l ‖ < 1,∀l), the

iterative additive process in (1), controlled by the FO-SILC

in (14), remains robustly monotonically stable if

‖�Hr‖p < rmono
AIU , rmono

AIU =
−μ1 +

√
μ2

1 + 4 μ2‖Ps‖p

2μ2
(35)

where Ps is a positive definite matrix that satisfies the

following equation:

ST
0l

Ps S0l − Ps = −I, S0l =
[

0 FT
0l

F0l 0

]
. (36)

Proof: As it was explained earlier in (15), monotonic

stability of (14) is achieved if ‖Fl, j‖p < 1. If the l2 norm

is used, then ‖Fl, j‖2 = σ̄ (Fl, j ). The maximum singular value

of a matrix (here, Fl, j ) is defined as follows:

σ̄ (Fl, j ) =
√

ρ
(

FT
l, j Fl, j

)
. (37)

Equation (37) implies if ρ(FT
l, j Fl, j ) < 1, then σ̄ (Fl, j ) < 1.

In other words, the maximum singular value problem for

MC can be solved equivalently as an eigenvalue problem.

Following the same steps as (30)–(34), maximum allowable

uncertainty of the nominal plant for MC of (14) can be

achieved [10]. Note that the eigenvalues of FT F are equal

to the eigenvalues of S

Sl, j = S0l + �Sl, j , Sl, j =
[

0 FT
l, j

Fl, j 0

]

�Sl, j =
[

0 �FT
l, j

�Fl, j 0

]
. (38)

Assume the FO-SILC in (14) is monotonically stable for

the nominal plant; from Lyapunov stability, there exists a

positive definite Ps > 0, such that (36) holds. Similarly,

the iteration-varying FO-SILC is monotonically stable based

on the Lyapunov stability (ρ(Sl, j ) = σ̄ (Fl, j ) < 1), if the

following inequality holds with the same Ps from (36):

ST
l, j Ps Sl, j − Ps < 0 ∀l & j. (39)

Inserting (38) into (39) and using (36), we have the following:
ST

0l
Ps�Sl, j + �ST

l, j Ps S0l + �ST
l, j Ps�Sl, j < I. (40)

Given ‖S0l ‖p = 〈F0l 〉p and ‖�Sl, j‖p = 〈�Fl, j 〉p and taking

l p norm of both sides of (40), we have the following:

2
〈
F0l

〉
p

〈
�Fl, j

〉
p + 〈�Fl, j

〉2
p <

1

‖Ps‖p
. (41)

Using (26) and (33), (41) simplifies to a quadratic equation

for ‖�H‖p

μ1‖�H‖p + μ2‖�H‖2
p − 1

‖Ps‖p
< 0 (42)

which is negative when ‖�H‖p < (−μ1 + (μ2
1 +

4(μ2/‖Ps‖p))
1/2)/(2μ2). μ1 and μ2 are defined

in (28a) and (28b). Therefore, rmono
AIU = (−μ1 + (μ2

1 +

Dl, j = D0l + �Dl, j , Kl, j = K0l + �Kl, j , Fl, j = F0l + �Fl, j (23)

�Dl, j = −Lh
e

⎡
⎢⎣

�Hl−1, j · · · 0
...

. . .
...

0 · · · �H0, j

⎤
⎥⎦ (24a)

�Kl, j = −

⎡
⎢⎢⎢⎢⎢⎣

0 Lv1
e �Hl−2, j+1 Lv2

e �Hl−3, j+1 · · · Lvl−1
e �H0, j+1

0 Lv1
e �Hl−3, j+1 · · · Lvl−2

e H0, j+1

...
. . .

...

0 Lv1
e �H0, j+1

0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦ (24b)
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Fig. 3. Heightmap evolution process. (a) Schematic of an e-jet printer:
controlled device fabrication follows the print-cure-scan cycle. High-voltage
pulse actuation is applied at the nozzle tip to eject a droplet of material
with droplet volume related to pulsewidth. (b) Evolution of the solid surface
topography as a heightmap signal is modeled as the integration of a
convolution of input f with kernel h. h is a function of local variation in
g for each pixel in g. Subscript l represents the layer index.

4(μ2/‖Ps‖p))
1/2)/(2μ2). Note that if (42) is true, then (41)

is true, not vice versa.

Remark 2: By direct substitution of S0l into (36), it is

evident that Ps = diag(P, P) and ‖Ps‖p = ‖P‖p, which

results in rmono
AIU = rasym

AIU . We denote rAIU � rmono
AIU = rasym

AIU ,

as an estimate on the maximum AIU.

Remark 3: The special structure of K0l in (20) results in

‖K0l ‖1 = ‖K0l ‖∞.

VI. SYSTEM MODEL AND SIMULATION SETUP

In this section, we apply the proposed HO-SILC framework

to a simulation study using different models of an e-jet

printing process. E-jet achieves material deposition using an

electrostatic field, allowing for high-resolution deposition and

material diversity. Drop-on-demand printing is achieved using

synchronized substrate motion (jog time) and high-voltage

pulses applied to the nozzle tip of an e-jet printer. Varying the

rectangular wave pulsewidth (while holding all other printing

parameters constant) allows for variation in printed droplet

size, as shown in Fig. 3(a). The simulation assumes a known

relationship between pulsewidth and droplet size. Controlled

topography evolution requires output measurements. As such,

the printing process follows a print-cure-scan cycle to obtain

the necessary measurement data [see Fig. 3(a)]: 1) print an

array of droplets of prescribed sizes at discretized coordinates;

2) cure (solidify) the droplets; and 3) scan the solid surface to

obtain heightmap measurements of topography [29].

A. Model Approximation

In this section, we explore three methods to estimate

the spreading model of liquid inks, θ , such that ‖gl+1 −
φ(gl , fl+1)θ̂‖ is minimized, where θ̂ is an estimation of the

true θ , and φ(gl , fl+1) is a nonlinear transformation between

gl+1 and θ . Note that a linearized form of φ can be used for

control design. Fig. 4 shows the experimental data from [28]

that are used for model development and validation. We use

eight devices (63 nodes ×8) in Fig. 4 for training and two

devices to test the accuracy of the model of constrained linear

regression (CLR) and convolutional recurrent neural network

(CRNN) models in the next sections. The variables g1, g2,

and �g2 define material height at layer 1 and layer 2, and the

Fig. 4. Experimental data for deposition of Loctite 3526: ḡ1, ḡ2, and �ḡ2
are average height of layers 1 and 2, and incremental height at layer 2 over
a 7 × 9 discretized domain.

incremental height at layer 2. To capture the merging behavior

of Loctite 3526 with itself, we assume a base layer of material

and start the system identification using the input signal at

layer 2 ( f2). The layers are printed using a 2-D pseudorandom

binary sequence (PRBS) pulsewidth signal (described in [28]),

with a 35 × 45-μm spatial plane discretized into 7 × 9 grids

for a 5-μm droplet-to-droplet distance known as pitch.

1) Constrained Linear Regression: The sequence of

material addition in multilayer structures using a constrained

regression model is developed in [28]

gl+1 (x, y) = (gl ∗ hg
)
(x, y) + ( f p

l+1 ∗ h f
)
(x, y) . (43)

In (43), h f ∈ R
5×5 is the discrete impulse response to the

current layer input, while hg ∈ R
5×5 is the discrete impulse

response to the previous layer output. f p
l+1 ∈ R

nx ×ny is the

pulsewidth signal at layer l. Assuming rotational symmetry

of liquid droplets in [28], h f and hg are defined by only six

parameters. To find the unknown θ L R = [hT
f hT

g ]T ∈ R
12×1,

the design matrix φ(gl , f p
l+1) ∈ R

n×12 is constructed using the

conv2(·) function in MATLAB, and the optimization, ‖gl+1 −
φ(gl , f p

l+1)θ̂
L R‖, is solved using the built-in solver lsqlin() in

MATLAB. Assuming volume conservation from layer to layer,

hg has only one nonzero element at the center, hg(3, 3) = 1.

For Loctite 3526, h f is calculated as follows:

h f =

⎡
⎢⎢⎢⎢⎣

0.09 0.09 0.21 0.09 0.09

0.09 0.21 0.38 0.21 0.09

0.21 0.38 0.71 0.38 0.21

0.09 0.21 0.38 0.21 0.09

0.09 0.09 0.21 0.09 0.09

⎤
⎥⎥⎥⎥⎦
(nm

ms

)
.

2) LPV Model: The linear parameter-varying (LPV) model

in [29] is described using the following 2-D convolution

equation:
gl(x, y) = gl−1(x, y) +

∑
m∈Znx
n∈Zny

h(m,n)
l−1 (x − m, y − n)

∗ f LPV
l (m, n). (44)
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Following the model of [29] and assuming the relationship

between the applied pulsewidth and droplet volume is known,

we take a 2-D array of cube roots of drop volumes to be

the input, denoted by f LPV
l . The variable h(m,n)

l−1 describes the

spreading behavior of a printed droplet on the neighboring

coordinates for an input signal with magnitude one applied at

coordinate (m, n) and layer l − 1. Spreading behavior of the

printed droplet depends on surface energy and topography of

the substrate, as well as surface tension, viscosity, and density

of the printing material [30].

The dependence of h(m,n)
l on existing topography gl is

modeled using the multivariate regression method proposed

in [29]. In this method, numerical simulations of droplets

spreading on nonflat surfaces are computed for equilibrium

contact angles associated with a specific material/substrate

combination: 30◦ for the ink (Loctite 3526) used in

this simulation. Subsequently, an ordinary least squares

multivariate linear regression is performed, where the elements

from each 3 × 3 pixel crop of the heightmap g are the

predictor variables, and the elements from each measured

3 × 3 pixel impulse response h are the response variables.

The fit regression model is used to evaluate the spatially

varying impulse response (method M2 in [29]), hl−1(x, y),

for the 3 × 3 pixel crop of the heightmap gl centered at

pixel coordinates (x, y). Taking the average of hl−1(x, y)

over all spatial coordinates (x ∈ Znx , y ∈ Zny ) results in

a spatially invariant impulse response (method M3 in [29]),

hl−1 in Fig. 5(a) and (b). Note that the spatially invariant

approximation results in a less accurate model than the

spatially varying model; however, the spatially invariant plant

matrix is BCCB. Importantly, the magnitude of gl does not

affect the impulse response; only the local variation in gl
affects hl . The nominal model, h0, is calculated using the

regression model’s prediction of spreading on a reference

topography, gd , denoted as h0 = h(gd), and shown in

Fig. 5(b) for a flat reference topography used in this example.

In contrast, an example of an impulse response for a nonflat

surface is shown in Fig. 5(a). Impulse response bounds are

calculated from the supremum and infimum of each element of

hl determined by simulating the deposition of printed material

on multiple topographies of the same substrate material.

3) Convolutional Recurrent Neural Network: Layer-to-layer

material addition using a CRNN model is developed in [25].

This model considers the surface tension of liquid droplets,

parameterized by κ known as the flowability parameter, that

causes the droplets to move from higher to lower height

locations of nearby pixels

yt
l = yt−1

l − Dσ
(

K DT yt−1
l

)
+ Wuut

l (45a)

gl (i) = ln
(
γ + eyn

l (i)+v0

)
, i, t ∈ [1, n] (45b)

y0
l = gl−1 (45c)

where yt
l ∈ R

n×1 defines the network internal states at layer

l and time step t , which refer to the unmeasured material

addition states during in-layer deposition of a single droplet

in liquid form. Also, gl ∈ R
n×1 is the measured topography

of layer l once the material has been UV cured. In addition,

Fig. 5. Topography-dependent impulse response. The estimated impulse
response is spatial-invariant (method M3 of [29]), meaning that it is the
same for every spatial coordinate of g(x, y). Note that the estimated
impulse response is iteration-varying. (a) Effect of a nonflat surface.
At left is a 4 × 4 pixel of a random g signal to show the
effect of significant surface variation. At right is the 3 × 3 model’s
corresponding impulse response (h). (b) Effect of flat surface. At left is a
4 × 4 pixel of a flat reference topography signal. At right is the 3 × 3 model’s
corresponding nominal impulse response (h0). (c) Upper and lower bounds
of h, h̄, and h, such that h 	 h 	 h̄.

ut
l ∈ R

n×1 is the ratio of the size of the deposited droplet at

time step t to the maximum droplet size. The input signal of

the entire layer is given by f CRNN
l = ∑n

t=1 ut
l . Note that we

assume the relationship between the applied pulsewidth and

the droplet size is known. D ∈ R
n×nl is the incidence matrix

that transforms the height profile of all discretized grids into

height differences or links. D(i, j) is either 1 or −1 for nearby

pixels, and zero for nodes that are far away in 2-D space.

We define the number of links between the nodes as nl ,

with K = κ I ∈ R
nl×nl constructed as a diagonal matrix

with nonzero elements along the diagonal that captures the

material flow along each link. In 45a, σ(lt ) represents the

leaky soft threshold function that is set to zero if the effective

flow at each time step is smaller than a threshold value ε,

lt = K DT yt−1
l < ε. The matrix Wu ∈ R

n×n is a BCCB

matrix associated with the convolution kernel b ∈ R
5×5, such

that Wuut
l = ν(b ∗ ut

l ). Note that, b is the kernel related

to the spreading behavior of the largest droplet. From the

definition of ut
l , the elements of the input signal f CRNN

l are

bounded between 0 ≤ f CRNN
l (i) ≤ 1. Finally, v0 is the

material shrinkage parameter due to UV curing, and γ is

a nonnegative scalar that ensures that the output heightmap

remains nonnegative.

To derive the CRNN model, the unknown parameters of

θCRNN = [ε, b, κ, γ, v0] for the printing material of interest

(e.g., Loctite 3526) are calculated from experimental data

using the steps described in [25]

ε = 6.66, κ = 1.12 × 10−5

γ = 1.014, v0 = 56.88 (nm)

b =

⎡
⎢⎢⎢⎢⎣

−6.77 −9.99 45.58 −9.99 −9.98

23.97 28.03 58.74 2.72 −1.17

32.68 36.76 100.0 45.12 39.80

7.60 1.08 39.91 −6.38 3.30

24.35 6.66 26.95 0.91 20.98

⎤
⎥⎥⎥⎥⎦ (nm).

4) Model Validation: To evaluate the performance of the

different modeling approaches, experimental data from printed

samples of Loctite 3526 are used to derive the difference

between the measured and predicted output topographies. The
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Fig. 6. Performance comparison: experimental data from printing Loctite
3526 is used to compare the different modeling approaches. The error is
computed as e = gexp

2 − ĝ2, where ĝ2 is the prediction of gexp
2 using different

modeling approaches. Note that ĝ2 is a function of gexp
1 and the input signal

at the second layer.

error metric is defined as ‖gexp
2 − φ(gexp

1 , f exp
l+1)θ̂‖2

2, where

gexp refers to the measured experimental values, f exp is the

derived input signal, and θ̂ is the model from each method,

respectively. Note that the input signal for each model is

different.

The results in Fig. 6 illustrate that the CRNN model that

considers surface material flowability is more accurate than

the other models. However, the CRNN model is nonlinear

and computationally expensive; thus, it is well suited to

represent the true system in the simulation case studies, but

cannot be used for linear control design. As a comparison,

the linear LPV and CLR models are ≈50% computationally

faster than the CRNN model. The LPV model captures the

wetting nonlinearity due to nonflatness of the previous layer

and yet still maintains access to linear control. However,

the LPV model does not capture droplet-to-droplet effects

due to surface tension, since the model assumes that the

droplets are placed far away from each other. In this approach,

multiples passes are required to form a thin film by depositing

droplets spatially distanced from each other and curing the

material between passes to avoid coalescence effects. Since

the experimental layers in Fig. 4 are fabricated in one

printing pass, the LPV model does not capture unmodeled

nonlinearities due to surface tension of the droplets for thin-

film formation. Alternatively, the CLR model captures droplet-

to-droplet effects within the h f matrix. However, this model

does not take previous layer topography into consideration,

thus ignoring an important consideration for error propagation

from layer to layer. In this work, we consider the use of the

LPV and linearized CRNN models to develop the controllers.

We will use the nonlinear CRNN model as the true system

within the simulation case studies.

5) Lifted Conversion: The systems defined in (44) can

be transferred into the lifted form through the use of

a vectorization operator defined in Section II-A. A full

description of the lifted-domain conversion can be found

in [18]. For brevity, we present the lifted form of (44) in the

following equation:
gl = gl−1 + H(gl−1)f

LPV
l , H ∈ H I (46)

with fLPV
l � ν( f LPV

l (x, y)) ∈ R
n×1, and

gl � ν(gl(x, y)) ∈ R
n×1.

To convert the CRNN model in (45) to the lifted domain and

enable access to linear control, we consider a linearized form

of the CRNN model around an equilibrium point (fe, �ge):

�gl = HJ fCRNN
l + �ge − HJ fe (47)

where HJ ∈ R
n×n is the Jacobian matrix at the equilibrium

point. Note that the Jacobian matrix, HJ , is not BCCB;

therefore, DFT calculations in (9) and (10) are not possible

for the linearized CRNN model. More details on Jacobian and

equilibrium point calculations are presented in the Appendix.

In addition to Assumptions A1–A3, the following assump-

tions are considered for the CRNN or LPV models in (47)

and (46).
1) A4: The heightmap increments using the LPV model

obey scalar multiplication and linear superposition.

Therefore, the model described in (46) does not capture

drop coalescence effects.

2) A5: The CRNN model based on [25] is geometrically

independent, and the Jacobian matrix in (47) is iteration-

invariant.
Assumption A4 is a major assumption of the additive model

in (46) that simplifies the system dynamics for control design.

Many AM processes exhibit coalescence/surface effects that

preclude linear superposition [29]. For instance, in a physical

AM deposition process, depositing twice the volume of

material does not cause the incremental heightmap to double.

We capture these nonlinearities through model uncertainty

applied to the plant model in (45). The CRNN model, on the

other hand, considers these surface effects by implementing a

graph structure with nl links between nodes that incorporate

the effect of the liquid material flow between nearby droplets.

Assumption A5 implies that the model parameters of the ink

are generalizable to any geometry for the CRNN model in (45)

based on the incorporation of a physical understanding of

mass conservation during height evolution. When we linearize

the CRNN model around an equilibrium point, the resulting

Jacobian matrix is a constant matrix.

B. Simulation Study

For this simulation, a multilayered structure with

L = 6 layers is considered [Fig. 2(a)]. The reference

device structure has the reference height map, �gd , given

in Fig. 2(a) with 100-nm layer heights for all layers, which

is uniform except for the two outer rings of pixels that

are reduced by half to better represent material drop-off at

the edges. Each layer is printed in a single printing pass

on top of a cured surface. For the first (bottom) layer in

the simulation, the underlying surface, (l = 0), is assumed

to be a prelayer of cured printing material, so that the

first-layer surface interactions with other substrate materials

need not be considered. In e-jet printing, droplet volume has

a standard variation of 25% over a wide range of droplet
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TABLE I

DESIGN METHODOLOGY FOR THE LPV MODEL, β = 0.0

TABLE II

DESIGN METHODOLOGY FOR THE LPV MODEL, β = 0.25

TABLE III

DESIGN METHODOLOGY FOR THE LPV MODEL, β = 0.75

sizes [38]. Therefore, a normally distributed white noise

is added to the input signal of both models [linearized

CRNN in (47) and LPV in (46)]. For example, for the

LPV model, a normally distributed white noise with a

variance of 0.25 μm is added to the input signal, such that

�gl, j = Hl−1, j fLPV
l, j ◦ (1n×1 + N(0, 0.252)n×1), where 1 is a

vector of ones. The input will be constrained to nonnegative

values to ensure an additive process.

It is important to note that the input of the first iteration at

the first layer is zero, f1,1 = 0, implying that there is no prior

knowledge of the appropriate input. This results in no material

being deposited during the first iteration of the first layer.

However, the input of the first device at higher layers, l ≥ 2,

comes from the last device in the previous layer, such that

fl,1 = fl−1,J , where J = 30 is the total number of iterations.

The LPV model in (46) is used to design the HO-SILC

learning filters in (9), and the results are shown in

Figs. 7 and 8(a) and (b) and Tables I–III. The linearized CRNN

model in (47) is used to design the learning filters in (8),

and the results are shown in Fig. 9. In the absence of the

experimental data, the error is calculated from the difference

between the desired and simulated height increment predicted

by the nonlinear CRNN model in Section VI-A3. The plant

matrix bounds for the LPV model, H and H , are calculated

from h and h in Fig. 5(c) by the BCCB construction method

described in Section II-B.

For Loctite 3526, the nominal impulse response and the

invariant bounds shown in Fig. 5(c) and the corresponding

norms are as follows: ‖�H0‖2 = 0.411, ‖�Hr‖2 = 0.118,

and ‖�Hr‖∞ = 0.123. We set q = 1, r = 0.01, and

s = 0.09 and look for appropriate α and β, such that

Fig. 7. Total error comparison: HO-SILC results in a lower total error
compared with FO-SILC. α = 0 and β = 0 refer to an FO-SILC design
that only applies horizontal learning (iteration to iteration; L = 30, q = 1,
r = 0.01, and s = 0.09).

‖F0L ‖p < 1 and ‖�Hr‖p < rAIUp . Note that (α, β) = (0, 0)

results in an FO-SILC update law that only leverages device-

to-device (iteration) learning in the horizontal direction [21].

Unlike [19], we use “dlyap(FT
0L

, I)” in MATLAB to solve

the discrete-time Lyapunov equation in (29) and calculate P.

In this example, F0L is not BCCB, and we cannot use DFT

simplifications from [19].

VII. SIMULATION RESULTS

In this section, simulation results of the system described

in Sections III and VI-B using HO-SILC are investigated.

Tables I–III show that by proper selection of α and β, the
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Fig. 8. Convergence of the Frobenius norm of the incremental error: the LPV model in Section VI-A2 is used to design the learning filters in (10). The
control update time associated with (10) for updating the feedforward signal per iteration in simulation is 1.34 s. Iteration j = 0 refers to the first device
(L = 6, q = 1, r = 0.01, and s = 0.09). (a) FO-SILC design with α = 0 and β = 0, which only has horizontal learning (iteration to iteration). No learning
happens over layers. (b) HO-SILC design with α = 0.9 and β = 0.5. The HO-SILC design integrates horizontal learning from device to device with vertical
learning from previous layers. HO-ILC offers better performance over the layers compared with the FO-SILC.

stability radius, rAIU, can be tuned. It is expected that higher

values of rAIUp improve robustness to model uncertainties,

while smaller values of F0, ensuring ‖F0‖p < 1, increase

speed of convergence. In addition, for a constant β, α does

not change the maximum singular value of F0L , σ̄ = ‖F0L ‖2,

which is approximately equal to ‖Th
0‖2. To be specific, for

fixed β, monotonic stability of the nominal system is achieved

if ‖Th
0‖2 < 1. The reason is that the diagonal elements of

FT
0L

F0L are equal to Th2

0 (I+Tv
j
i

0 ), while off-diagonal elements

are the functions of Th2

0 (Tvi
0 ) j for j = 1, . . . , 2L − 2. Given

‖Th
0‖2 < 1 and ‖Tvi

0 ‖2 < 1, the off-diagonal elements are

smaller compared with the main diagonal elements, which

results in ‖F0l ‖2 � ‖Th
0‖2 based on (37). The simulation

results in Tables I–III show that all pairs of (α, β) satisfy

‖F0‖p < 1. We highlighted the pairs that satisfy the RMC

criteria in Theorems 3 and 4, for both l2 and l∞ norms. The

results show that the l∞ norm is more conservative than the

l2 norm; therefore, we will focus on the l2 norm.

In 3-D structures that are fabricated using AM technologies,

the error in previous layers adds up in the upper layers

and affects the total heightmap and corresponding standard

deviations. HO-SILC can improve the total error by

incorporating previous layer errors in the cost function in (5).

Fig. 7 shows the HO-SILC performance for different values

of (α, β). The results show that HO-SILC can improve the

overall performance (smaller total heightmap error) when

compared with FO-SILC. Based on the provided information

in Tables I–III, a lower value of α (while β is fixed) leads to

larger rAIU. However, it also degrades the overall performance.

Larger values of α impose more weighting on previous layer

errors in (4) that results in smaller total errors, el, j . On the

other hand, larger values of β for a constant α result in an

increase in the achievable rAIU and decrease the total error.

Therefore, by proper tuning of higher-order parameters, the

stability robustness and the performance of the HO-SILC with

respect to the total error can be improved. Hereafter, we will

set the HO-SILC parameters, α = 0.9 and β = 0.5.

Fig. 8(a) and (b) presents the Frobenius norm of the

incremental errors, �el, j , for FO-SILC and HO-SILC

controllers based on the LPV model in Section VI-A2.

Fig. 8(a) shows that the final incremental errors of the

FO-SILC update law are in the same range over the layers.

Fig. 8(b) shows that by using HO-SILC, a significant

improvement (around 60% for six layers) in the incremental

errors over the layers is achieved. The first layer shows the

highest error, with the error signals decreasing due to vertical

learning through the iterations. In Fig. 8, the simulation time

associated with the controller update in (10) is around 1.34 s,

which is 50% faster compared with the control update time

(2.85 s) associated with (3) and (9) for the linearized CRRN

model in (47). The reason is that the LPV plant model is

BCCB, and (10) can be used to update the feedforward signal

in Fig. 8.

Fig. 9 shows the performance of the HO-SILC controller

designed using a linearized CRNN model (47). Recall that

the linearized CRNN model in (47) is from the nonlinear

CRNN model used as the true model in the simulation. Note

that the Jacobian matrix in (47) is not BCCB; thus, DFT

calculations are not possible, and the controller derivation

requires more time as compared with the HO-SILC algorithm

designed with the LPV model in Fig. 8. In addition, the

computation time required to calculate the Jacobian matrix

in (47) is ≈3.5 h, which is a one-time calculation that can

be done before running the experiment. The results in Fig. 9

show that, although the HO-SILC based on the linearized

CRNN model considers surface tension effects, the controller

performance is similar to the HO-SILC based on the LPV

model. The reason is that unlike the inkjet printing process

used in [25], the e-jet printing process modeled in this work

uses high viscosity inks for which the droplets tend to stay at

their deposited locations. The reduction in movement on the
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Fig. 9. Performance of the HO-SILC with the linearized CRNN model
in (47): convergence of the Frobenius norm of the incremental error with the
HO-SILC design in (3) and (8), based on the linearized CRNN model in (47).
The average control update time in simulation for updating the feedforward
signal per iteration is 2.8 s.

surface post printing reduces the surface tension and droplet

coalescence-related effects and shows minimal effects on film

formation. Furthermore, model uncertainties due to surface

tension of the liquid droplets are often repetitive and, thus,

would be learned through the implementation of the HO-

SILC. Therefore, it is recommended to use a more simple

model, such as LPV in Section VI-A2 or the CLR model in

Section VI-A1, to design a robust HO-SILC controller based

on the criteria in Theorems 1–4 and Tables I–III that enable

the fast DFT calculations in (10).

It should be noted that although the LPV model captures

wetting nonlinearities due to existing heightmap nonflatness

[H(gl−1)] [29], it is still less accurate compared with the

nonlinear CRNN model (see Fig. 6). Here, our aim is to

do the following: 1) use a simple BCCB model, such as

the LPV (or CLR) model to enable fast DFT computations

and still maintain our access to linear control [(46) and (47)

are linear with respect to the input signal] and 2) capture

the nonlinearities and model mismatches within the interval

uncertainty bounds that are described in Theorems 3 and

4. The simulation results show that a control design with

either of the LPV or the linearized CRNN model estimations

are able to learn the nonlinearities and model mismatches,

as demonstrated in Figs. 8 and 9, in which the CRNN is used

as the true system, and the other two are used for control

design. The controller is able to learn the nonlinearities after a

few iterations, and the performance is improved in both cases.

VIII. CONCLUSION

In this article, we present an HO-SILC framework for

iteration-varying uncertain AM systems. We consider iteration-

varying model uncertainties as interval uncertainties subjected

to spatial-invariant bounds. In order to leverage DFT-based

tools for computational efficiency, the iteration-varying plant

model is considered to be BCCB. An RMC criterion is

formalized as a useful tool to predict the stability of the

HO-SILC algorithm in the presence of iteration-varying model

uncertainties. Our analysis considers the RMC criterion as

a measure of maximum allowable uncertainty around the

nominal plant, such that the iterative system remains stable.

Simulation results using a model of an e-jet printing system

demonstrate that HO-SILC can be successfully employed in

AM processes to regulate the input of an iterative model and

improve the heightmap reference tracking. We demonstrate

that through proper tuning of the higher-order terms of the

HO-SILC algorithm, an improved performance in terms of

layer to layer and overall height errors can be achieved. The

improvements performance is especially prevalent at higher

layers, where the uncertainties from previous layer variations

are more pronounced. Higher-order, spatial learning control

has applications outside of AM systems. For example, any

system that exhibits spatially dependent dynamics through a

repetitive action (e.g., exoskeletons, robotic pick, and place)

could benefit from a control framework that compensates for

errors across both a spatial and temporal domain. Importantly,

spatial interactions are often disjointed temporally and are

commonly ignored. The proposed framework addresses this

issue by incorporating spatial information into the control law.

Future work will focus on implementation of HO-SILC on an

experimental platform.

APPENDIX

Suppose ( fe, �ge) are the equilibrium pair of (45). For the

multilayer structure in Fig. 2, the desired incremental height at

all layers and iterations is fixed to �gd . Assuming that at the

equilibrium, the iteration-varying spatial dynamics converge to

a nominal behavior and lim
l→∞
j→∞

�gl, j = �gd . Since the desired

topography is a flat layer with a thickness of d = 100 nm

(�gd = d In×n), there is no height difference across the

layer at the equilibrium, and therefore, no droplet-to-droplet

movement along the links is expected, σ(lt ) = 0. In addition,

since the reference for all layers is equal, the equilibrium point

of layer 1 is equal to the equilibrium point of other layers.

Simplifying (45b), at the equilibrium for layer 1, yn
e at the

equilibrium is calculated as follows:
yn

e = ln
(

ed+v0 − γ ev0

)
1(n, 1) (48)

where yn
e is the uncured topography at the equilibrium when

the last droplet at layer 1 is deposited. Substituting (48)

into (45a) and assuming σ(K DT yt−1
l ) = 0 at the equilibrium,

the input signal at the equilibrium fe is calculated as follows:
fe = W −1

u ln
(

ed+v0 − γ ev0

)
1n×1 (49)

where 1n×1 is a vector of ones.

1) Linearization of the CRNN Model: The linearized

approximation model of (45) at ( fe, �ge), which approximates

the dynamics of the nonlinear equation (45) around the

equilibrium point, is calculated as follows:

�gl �
(

∂gl

∂ fl
− ∂gl−1

∂ fl

)
e
( fl − fe) + �ge. (50)

In addition, HJ = (∂gl)/(∂ fl) is the Jacobian at the

equilibrium, and (∂gl−1)/(∂ fl) = 0. The Jacobian matrix is
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calculated as follows:
HJ = ∂gl

∂ fl
= ∂gl

∂yn
l

∂yn
l

∂ fl
(51a)

∂gl

∂yn
l

= diag

(
1

1 + γ e(v0−yn
l (i))

)
, i = 1, 2, . . . , n (51b)

∂yn
l

∂ fl
= Wu − D

n−1∑
t=1

σ ′(yt )K DT Wu1(1−t). (51c)

Equation (51b) is consistent with the results in [25].

Equation (51c) is calculated from step-by-step partial

derivation of (45b) and (45a). 1(1−t) ∈ R
n×n in (51) is a block-

diagonal matrix with all elements equal to zero, expect the first

t diagonal terms, which are equal to one. For example, 1(1−1)

has only one nonzero element equal to one on (i, i) = (1, 1).

Similar to [25], σ ′(yt ) is as follows:

σ ′(yt ) =

⎧⎪⎨
⎪⎩

1, if K DT yt (i) > ε

δ = 0.01, if −ε < K DT yt (i) < ε

1, if K DT yt (i) < −ε.

(52)

The Jabobian matrix in (51a) is not BCCB, because the

second element in (51c) is not BCCB. Note that the linearized

equation (50) is an approximation of the nonlinear CRNN

model in (45).
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