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Abstract

There is a need for computational models capable of predicting meltwater-assisted crevasse growth

in glacial ice. Mass loss from glaciers and ice sheets is the largest contributor to sea-level rise

and iceberg calving due to hydrofracture is one of the most prominent yet less understood glacial

mass loss processes. To overcome the limitations of empirical and analytical approaches, we here

propose a new phase őeld-based computational framework to simulate crevasse growth in both

grounded ice sheets and ŕoating ice shelves. The model incorporates the three elements needed to

mechanistically simulate hydrofracture of surface and basal crevasses: (i) a constitutive descrip-

tion incorporating the non-linear viscous rheology of ice, (ii) a phase őeld formulation capable of

capturing cracking phenomena of arbitrary complexity, such as 3D crevasse interaction, and (iii)

a poro-damage representation to account for the role of meltwater pressure on crevasse growth.

A stress-based phase őeld model is adopted to reduce the length-scale sensitivity, as needed to

tackle the large scales of iceberg calving, and to adequately predict crevasse growth in tensile

stress regions of incompressible solids. The potential of the computational framework presented

is demonstrated by addressing a number of 2D and 3D case studies, involving single and multiple

crevasses, and considering both grounded and ŕoating conditions. The model results show a good

agreement with analytical approaches when particularised to the idealised scenarios where these

are relevant. More importantly, we demonstrate how the model can be used to provide the őrst

computational predictions of crevasse interactions in ŕoating ice shelves and 3D ice sheets, shed-

ding new light into these phenomena. Also, the creep-assisted nucleation and growth of crevasses is

simulated in a realistic geometry, corresponding to the Helheim glacier. The computational frame-
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work presented opens new horizons in the modelling of iceberg calving and, due to its ability to

incorporate incompressible behaviour, can be readily incorporated into numerical ice sheet models

for projecting sea-level rise.
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1. Introduction

Ice sheets are large masses of glacial ice that inundate the surrounding landscape in Greenland

and Antarctica today, and many other regions during ice ages [1]. These act as enormous stores

of freshwater - containing approximately 70% of the planet’s supply [2] - that assist in regulat-

ing a stable global climate, through maintaining global ocean-water levels and controlling surface

temperatures by reŕecting solar radiation due to its high albedo properties [3]. Ice sheets thin

toward their margins, and if these are located in marine settings, they will form ŕoating extensions

known as ice shelves, which act to provide resistive buttressing to downslope ŕow and reduce the

ŕux of grounded ice to the ocean. However, increasing global temperatures as a result of carbon

emissions has lead to higher rates of ablation than accumulation, resulting in ice shelf and ice sheet

thinning in some key areas where ice-sheet instability may follow [4]. Surface and basal crevasses

can form within ice sheets as a consequence of ongoing deformations within the ice. These are

deep crack-like defects that can propagate in an unstable manner and lead to large-scale iceberg

calving events, and in extreme cases the catastrophic break up of ice shelves. The frequency of

these events has grown in recent decades, beginning with the disintegration of Larsen A (1995)

[5] and Larsen B (2002) [6] ice shelves, and more recently signiőcant surface melting and iceberg

calving on Larsen C (2017) [7], Pine Island and Thwaites (2018-2020) [8], and Conger (2022) ice

shelves. Fracture within ice shelves can result in a loss of resistance to down slope glacial ŕow,

leading to ice-sheet thinning, additional ŕotation of grounded ice and, thus, potentially irreversible

grounding line retreats [9].

Deposition of grounded glacial ice into the ocean is one of the leading contributors to sea

level rise [10], having direct implications within this Century on low-lying coastal regions through

ŕooding, increased extreme environmental events, degradation of farmland and loss of habitat,
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among others. A key driving factor for their stability is the production of surface meltwater as a

result of elevated surface temperatures [11]. When ice shelves and glaciers melt, meltwater ŕows

down-slope into surface crevasses, causing additional tensile stresses to form within the crevasse.

This leads to crevasse instability, and with sufficient meltwater, the crevasse can propagate through

the full thickness of the ice column. This process is generally referred to in the glaciological

literature as hydrofracture [12]. A recent study by Lai et al. [13] found that approximately 60 ±
10 % of Antarctic ice shelves provide signiőcant buttressing to downslope ŕow and are vulnerable

to meltwater driven hydrofracture, highlighting the signiőcance of studying the formation and

propagation of crevasses in glaciers. An illustration of a grounded ice sheet, transitioning to a

crevassed ŕoating ice shelf is shown in Fig. 1.

Fig. 1: Illustration of a grounded ice sheet and a ŕoating ice shelf, containing both surface and basal crevasses, and

with calving events occurring at the terminus.

Ice sheet fracture and crevasse propagation have been mainly modelled previously using an-

alytical methods. The estimation of crevasse penetration depths in an idealised glacier was őrst

described by Nye in 1955 [14] based on the so-called ’zero stress’ model. Nye assumed that ice has
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no tensile resistance to fracture and that a crevasse will stabilise at a depth where the longitudinal

tensile stress is balanced by the lithostatic compressive stress [15]. This was later extended by Benn

et al. to include the presence of meltwater within crevasses [16]. Linear elastic fracture mechanics

models were introduced to provide a more accurate prediction of the depth of an isolated crevasse

[17, 18]. By exploiting the principle of superposition, stress intensity factors can be calculated by

integrating over the crevasse depth for the normal tensile stress, the lithostatic compressive stress,

and the meltwater pressure. In order for crevasses to stabilise, the net stress intensity factor Knet

must be equal to the material’s fracture toughness Kc. However, these analytical approaches have

well-known limitations, such as (i) idealised scenarios and boundary conditions are assumed; (ii)

creep effects, resulting from the continual movement of glaciers under their own weight, are ne-

glected; and (iii) crevasse interaction cannot be captured.

Recently, computational methods have been used to predict crevasse growth and iceberg calv-

ing events. Local and non-local continuum damage mechanics formulations have been presented to

predict ice sheet fracture [19ś22]. These works have overcome some of the limitations intrinsic to

analytical approaches, but often at the cost of using empirical parameters. Variational phase őeld

fracture models offer an alternative approach, enabling the simulation of realistic conditions (3D

geometries, multiple interacting crevasses, etc.) and providing a connection to fracture mechan-

ics theory. Phase őeld fracture models have gained remarkable popularity in recent years due to

their ability to predict complex cracking phenomena including crack bifurcation, coalescence and

nucleation from arbitrary sites [23ś25]. New phase őeld-based formulations have been presented

for dynamic fracture [26, 27], ductile damage [28, 29], environmentally assisted cracking [30, 31],

fatigue crack growth [32, 33], hydraulic fracture [34, 35], and battery degradation [36, 37]; among

other (see Refs. [38, 39] for an overview). In this work, we aim at extending the success of phase

őeld fracture models to the area of glacier crevassing and iceberg calving. To this end, a new

phase őeld formulation is presented capable of capturing the creep behaviour of glacial ice and the

role of ŕuid pressure in driving crevasse growth. Also, for the őrst time, crevasse interaction is

predicted in both 2D and 3D. Very recently, Sun et al. [40] used a phase őeld approach to predict

hydrofracture in 2D linear elastic glaciers, assuming compressible behaviour and disregarding creep

effects. Unlike them, we base our framework on a stress-based phase őeld fracture formulation,

which offers several advantages in the context of hydrofracturing of glacier crevasses. First, strain
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energy-based approaches are unsuited for incompressible rheologies. This is not only important

due to the incompressible nature of glacial ice, but also because it hinders its integration into large-

scale computational models for ice sheet evolution and sea level rise, which assume incompressible

ŕow (see, e.g., the Community Ice Sheet Model (CISM) [41]). Second, ice-sheet fracture is driven

by tensile stresses and not strains, with crevasses propagating solely in regions where the net lon-

gitudinal stress is positive [42]. This is naturally accounted for in a stress-based phase őeld model,

while requiring a particular ad hoc split in strain energy-based formulations [40, 43]. Third, a

phase őeld length-scale insensitive driving force can be deőned, enabling the use of coarser meshes,

a key enabler given the large scales involved. These advantages provide further motivation for this

work, presenting the őrst stress-based phase őeld computational framework for hydrofracturing of

creeping glaciers and ice shelves.

The rest of the paper is outlined as follows. The theoretical and computational framework

presented is described in Section 2. The model is then used in Section 3 to predict hydrofracturing

in case studies of particular interest. First, the propagation of single crevasses in grounded ice

considering both linear and non-linear rheologies is investigated. A parametric study is conducted

to assess the role of relevant material parameters, seawater level and meltwater depth. Second, we

simulate the growth of a őeld of densely spaced crevasses in a grounded glacier, comparing against

the predictions of Nye’s zero stress model. Third, the growth of basal and surface crevasses (and

their interaction) is for the őrst time simulated for a ŕoating ice shelf, using appropriate Robin

boundary conditions. Fourth, the combined creep-phase őeld fracture model is used to predict the

nucleation and growth of crevasses in a realistic geometry, corresponding to the Helheim glacier.

Finally, we provide the őrst 3D analysis of crevasse propagation in ice sheets. Concluding remarks

end the manuscript in Section 4.

2. Numerical framework

In this section, we present our computational framework, which encompasses the three ele-

ments that are needed to resolve the hydrofracture process taking place in ice sheets; namely, the

viscoplastic behaviour of ice, the propagation of meltwater-őlled crevasses, and the role of melt-

water pressure on crevasse propagation. These are modelled by means of Glen’s ŕow law [44], a

stress-based phase őeld description of fracture [45], and a meltwater-ice poro-damage model [21],
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Fig. 2: Schematic diagram of a meltwater őlled crevasse in glacial ice, illustrating the intact phase (ϕ = 0), fully

cracked phase (ϕ = 1) and transition phase (0 < ϕ < 1). In the damaged and transition phases, there is a hydrostatic

pressure contribution to damage arising from the meltwater. Relevant to the poro-damage part of the model, hs

denotes the meltwater depth, and zs is the distance between the glacier base and the bottom of the crevasse, with

z being the vertical height.

respectively. Fig. 2 illustrates upon a single crevasse the mechanistic and modelling assumptions

of our framework. In the following, we present the kinematics of the problem (Section 2.1), formu-

late the energy functionals (Section 2.2), particularise the model upon suitable constitutive choices

(Section 2.3), and brieŕy describe the őnite element implementation (Section 2.4). Throughout,

the formulation refers to a body occupying an arbitrary domain Ω ⊂ IRn (n ∈ [1, 2, 3]), with an

external boundary ∂Ω ⊂ IRn−1 with outwards unit normal n.

2.1. Kinematics and general considerations

The primary variables are the displacement őeld vector u and the damage phase őeld ϕ. Re-

stricting our attention to small strains and isothermal conditions, the strain tensor ε reads

ε =
1

2

(

∇u
T +∇u

)

, (1)

with the strain őeld itself being additively decomposed into its elastic and viscous parts, such that

ε = ε
e + ε

v . (2)

The growth of meltwater-őlled crevasses is described by means of a smooth continuous scalar

phase őeld, which takes a value of ϕ = 0 in intact ice and of ϕ = 1 in fully damaged regions (see
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Fig. 2). The aim is to overcome the need to track discrete crack surfaces, which is a cumbersome

task. Thus, the intact ice-crack interface is not explicitly modelled but instead smeared over a

őnite domain, replacing interfacial boundary conditions by a differential equation that describes

the evolution of the phase őeld ϕ. The smearing of the interface is controlled by a phase őeld

length scale ℓ. Accordingly, a discontinuous surface Γ is regularised through the following crack

surface functional [46]:

Γℓ (ϕ) =

∫

Ω

γℓ (ϕ,∇ϕ) dV , (3)

where γℓ is the so-called crack surface density functional.

2.2. Energy functionals

A total potential energy can be deőned by incorporating the contributions from the bulk strain

energy density ψs, which itself accounts for both viscous (ψv
s ) and elastic (ψe

s) contributions, and

the regularised fracture energy ψf . Thus, considering the work done by external tractions T and

body forces b, the total potential energy of the solid can be expressed as,

Ψpot (u, ϕ) =

∫

Ω

[ψs (u, ϕ) + ψf (ϕ,∇ϕ)] dV −
∫

Ω

b · u dV −
∫

∂Ω

T · u dS . (4)

As discussed below, it is important to consider as well the kinetic energy of the body, which is

given by

Ψkin (u̇) =
1

2

∫

Ω

ρu̇ · u̇ dV , (5)

where ρ is the mass density of the material and u̇ = ∂u/∂t. The Lagrangian for the coupled

deformation-fracture problem can then be formulated by combining the kinetic and total potential

energies, such that

L (u, u̇, ϕ) = Ψkin (u̇)−Ψpot (u, ϕ) =

∫

Ω

[

1

2
ρu̇ · u̇− ψs (u, ϕ)− ψf (ϕ,∇ϕ) + b · u+T · u

]

dV .

(6)

We shall now make constitutive assumptions and, building upon these, proceed to formulate

the local force balances.

2.3. Constitutive theory

We proceed to particularise our choices with the aim of providing a suitable framework for

predicting ice-sheet hydrofracture. To this end, the bulk strain energy density of the solid is given

in terms of its elastic and viscous counterparts as,

ψs = g (ϕ)ψe
s (ε

e) + ψv
s (ε

v) = g (ϕ)

{

1

2
λ [tr (εe)]2 + µtr (εe · εe)

}

+

∫ t

0

(σ0 : ε̇
v) dV , (7)

7



where σ0 is the undamaged Cauchy stress tensor, λ and µ are the Lamé parameters, and g (ϕ) is

a phase őeld degradation function, to be deőned. Then, the homogenised (damaged) stress tensor

can be estimated as σ = ∂εeψs. As described below, the viscous behaviour of the solid is described

by Glen’s ŕow law [44], a commonly used choice for glacial ice.

2.3.1. Creep behaviour of ice: Glen’s ŕow law

Glacial ice is a polycrystalline material undergoing a state of constant stress and operating

close to its melting point. It is therefore prone to creep. Creep deformation is a well documented

process within glaciers and was őrst studied by Glen in 1955 [44]. Glen proposed a steady state

creep law based on the Bingham-Norton/Maxwell model, by which the viscous strain rates are

given as

ε̇
v = A (σe)

n−1
σ

′

0 , (8)

where A is the creep coefficient, σ′

0 = σ0 − tr(σ0)I/3 is the undamaged deviatoric stress tensor,

n is the creep exponent, and σe is an equivalent stress measure deőned as σe =
√

1
2
σ′

0 : σ
′

0. The

creep coefficient A and the creep exponent n are typically calibrated with experiments, with the

former exhibiting the following Arrhenius dependency with temperature,

A = A0 exp
Q

RT
, (9)

where T is the absolute temperature, Q is the activation energy, R is the universal gas constant,

and A0 is the creep coefficient at a reference temperature T0.

2.3.2. A stress-based phase őeld fracture model

The evolution of damage is driven by the phase őeld variable ϕ. A length-scale insensitive,

stress-based approach is adopted, inspired by the work by Miehe et al. [45]. This choice enables

us to capture purely stress-driven fractures in incompressible solids using relatively coarse meshes;

as required to model hydrofractures in creeping glaciers. Accordingly, the fracture energy density

is formulated as,

ψf (ϕ, ∇ϕ) = 2ψc

(

ϕ+
ℓ2

2
|∇ϕ|2

)

. (10)

Unlike conventional phase őeld fracture models, Eq. (10) shows that the present formulation

introduces the phase őeld through a linear term. This naturally results in a damage threshold,

below which ϕ = 0, preserving the elastic properties of uncracked regions. In (10), ψc is a fracture
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energy density, which in a stress-based approach is deőned as a function of a critical fracture stress

or material strength σc, such that [45]:

ψc =
σ2
c

2E
. (11)

Here, E denotes the material’s Young’s modulus. It remains to deőne the degradation function

g(ϕ), which reduces the elastic stiffness of the solid - see Eq. (7). The choice of g(ϕ) must fulőll

the following conditions,

g (0) = 1, g (1) = 0, g′ (ϕ) ≤ 0 for 0 ≤ ϕ ≤ 1 . (12)

Here, we choose to adopt the following quadratic degradation function

g (ϕ) = (1− ϕ)2 . (13)

Finally, the phase őeld evolution law is given by [45],

ϕ− ℓ2∇2ϕ = 2 (1− ϕ)Dd . (14)

Where the left hand side is the geometric resistance and the right hand side corresponds to the

driving force. Here, Dd is the crack driving force state function, which is here deőned based on

the principal tensile stress criterion, such that

Dd = ζ

〈

3
∑

a=1

(⟨σ̃a⟩
σc

)2

− 1

〉

(15)

Such a crack driving force state function is adequate for fractures resulting from the decohesion

of surfaces perpendicular to the maximum principal stress and provides a quadratically increasing

stress threshold for stress levels above a failure surface in the principal stress space, as determined

by the material strength σc. Also, Eq. (15) provides a criterion independent of the phase őeld

length scale ℓ, which minimises the sensitivity of the results to this parameter. Given that the

őnite element mesh has to be sufficiently őne to resolve ℓ, typically requiring an element size

seven times smaller [47], this facilitates tackling the large scales inherent to iceberg calving. For

completeness, a non-dimensional parameter ζ has been introduced that, for ζ ̸= 1 values, inŕuences

the slope of the stress-strain curve in the post-critical range. This is shown below by exploring

the one-dimensional predictions of (14) and (15). Hence, the evolution of the phase őeld in a

one-dimensional setting (∇ϕ = 0) is given by,

ϕ =
2Dd

1 + 2Dd

, (16)
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and accordingly the damaged (homogenised) uniaxial stress is found by making use of the following

relationship,

σ = (1− ϕ)2 σ0 =

(

1− 2Dd

1 + 2Dd

)2

Eε (17)

where ε is the uniaxial strain. The responses obtained are shown in Fig. 3, for selected choices of

the parameter ζ. A linear response is predicted until the critical fracture stress is reached, with the

post-critical regime being sensitive to the value of ζ; higher values translate into a less dissipative

damage process, with the response appearing to converge for ζ > 5. For simplicity, we will assume

ζ = 1 but will also consider its inŕuence in a parametric study.

0 1 2 3 4 5

0

0.5

1

Fig. 3: Uniaxial stress-strain response, as predicted by the stress-based phase őeld model adopted, showcasing the

role of the post peak parameter ζ on the material’s post failure behaviour.

2.3.3. A porodamage description of meltwater-driven crevasse growth

Meltwater plays a key role in crevasse propagation, introducing local tensile stresses that can

become equal or larger than the lithostatic compressive stress. It is thus pivotal to incorporate

the role of the water pressure pw in the damaged (ϕ = 1) and transition (0 < ϕ < 1) regions, as

meltwater can accumulate in damaged zones and in the localised pore structure that arises in the

transition region due to the nucleation, growth and coalescence of microvoids and microcracks. To

this end, we follow Terzaghi’s concept of an effective stress [48] and Biot’s theory of poroelasticity
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[49]. Hence, the resulting stress tensor is deőned as,

σ̃ = (1− ϕ)2σ0 −
[

1− (1− ϕ)2
]

pwαI , (18)

where α is Biot’s coefficient. In this work, α = 1. The use of degradation functions in Eq. (18)

constrains the water pressure to damaged regions and removes the load carrying capacity of ice

in fractured domains. Here, the water pressure pw is a hydrostatic term that is depth dependent.

For surface crevasses it is deőned as,

pw = ρwg ⟨hs − (z − zs)⟩ , (19)

where ρw is the density of freshwater, hs is the meltwater depth, z is the vertical height and zs is

the distance between the glacier base and the bottom of the crevasse (see Fig. 2). The presence of

the Macaulay brackets in Eq. (19) implies that the pressure is zero above the water surface. Also,

it is important to note that zs is updated for every time increment, as deőned by the minimum

depth at which ϕ = 1. Consequently, the role of meltwater pressure extends beyond the initial

damage zone and appropriately evolves with the propagating crevasse. On the other hand, for

basal crevasses it is assumed that the crevasse is fully saturated with ocean-water at depths below

the ocean-water level hw. The water pressure within basal crevasses is then given by

pw = −ρsg ⟨hw − z⟩ (20)

In this context, the material density is interpolated as a function of the damage state, and the

freshwater (ρw) and glacial ice (ρi) densities, reading

ρ = (1− ϕ)2 ρi +
[

1− (1− ϕ)2
]

ρw . (21)

2.4. Finite Element implementation

Finally, we proceed to formulate the particularised coupled balance equations and brieŕy de-

scribe the őnite element implementation. Considering the constitutive choices described in Section

2.3, the local force balances are given by,

∇ ·
{

(1− ϕ)2C0 (ε− ε
v)−

[

1− (1− ϕ)2
]

pwI
}

+ b = ρü in Ω (22)

ϕ− ℓ2∇2ϕ = 2 (1− ϕ) max
τ∈[0,t]

ζ

〈

3
∑

a=1

(⟨σ̃a⟩
σc

)2

− 1

〉

in Ω (23)
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with the natural boundary conditions

σ̃ · n = T in ∂Ω (24)

∇ϕ · n = 0 in ∂Ω (25)

Here, C0 is the elastic stiffness tensor and the ansatz in the right hand side of Eq. (23) is introduced

to ensure damage irreversibility. The discretised system resulting from the weak form of (22)-(23)

is solved using a so-called multi-pass (alternate minimization) staggered scheme [50]. An implicit

BDF time-stepping scheme is employed to solve, in a Backward Euler fashion, each set of equations.

The commercial őnite element package COMSOL is used.

3. Results

In this section, we present a series of 2D and 3D numerical examples, aimed at capturing the

propagation of surface and basal crevasses within grounded glaciers and ŕoating ice shelves. For

2D examples, we consider an idealised rectangular glacier of length L = 500 m and height H = 125

m, under the assumption of plane strain conditions. For simplicity, we neglect lateral shear and

restrict the domain to a ŕow line near the terminus with x and z representing the along-ŕow and

vertical coordinates. Gravitational load due to self-weight is applied as a uniform body force in the

z-direction with a magnitude of −ρig. We also consider the surface meltwater pressure pw within

a crevasse using the poro-damage approach presented in Eq. (19). A Neumann-type traction

is applied normal to the ice-ocean interface at the terminus, with the hydrostatic ocean-water

pressure varying linearly with depth and a magnitude of −ρsg ⟨hw − z⟩. Boundary conditions that

are speciőc to the grounded glacier and ŕoating ice shelf cases are discussed in sections 3.1 and 3.3,

respectively. Our simulations deal with glacial ice, whose material properties are given in Table 1,

along with the densities of seawater and meltwater.
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Material parameter Magnitude

Young’s modulus, E [MPa] 9500 [51]

Poisson’s ratio, ν [-] 0.35 [51]

Density of glacial ice, ρi [kg/m3] 917 [52]

Density of meltwater, ρw [kg/m3] 1000 [52]

Density of seawater, ρs [kg/m3] 1020 [52]

Fracture toughness, Kc [MPa
√

m] 0.10 [53]

Critical fracture stress, σc [MPa] 0.1185 [54]

Creep exponent, n [-] 3 [22]

Creep coefficient A [MPa−ns−1] 7.156 ×10−7 [55]

Tab. 1: Material properties assumed in this work (unless otherwise stated). The values are chosen to characterise

the behaviour of glacial ice, with the subscript number denoting the relevant reference.

The strength σc magnitude is chosen to be an intermediate magnitude within the experimentally

reported values of the critical fracture stress in glacial ice, which are in the range 0.08-0.14 MPa

[53, 56, 57]. An estimate of the phase őeld length scale, which plays a negligible role in this

model, can be obtained through the Hillerborg et al. [58] relation, which for plane strain reads:

ℓ = (1 − ν2)K2
c /σ

2
c . Considering the toughness of glacial ice (Kc = 0.1 MPa

√
m), this gives a

magnitude of ℓ = 0.625 m, which is the value adopted here (unless otherwise stated). To attain

mesh-independent results, the characteristic element size along the crevasse propagation region is

always chosen to be at least 5 times smaller than the phase őeld length scale ℓ.

3.1. Propagation of a single crevasse on a grounded glacier

We begin our numerical experiments by gaining insight into the behaviour of crevasses in

grounded glaciers. Mimicking the conditions relevant to grounded glaciers, a free slip condition is

applied to the bottom surface, restraining the displacement in the vertical direction. The normal

component of the displacement őeld at the far left edge is restrained to prevent rigid body motion

in the horizontal direction. The top surface, representing the atmosphere-ice interface, is deőned

as a free boundary. A visual representation of the geometry and boundary conditions for the

grounded glacier can be found in Fig. 4a. In each of the following simulations, we reőne the mesh

beneath the initial notch, seen in Fig. 4b. The entire domain is discretised using approximately

200,000 quadrilateral quadratic elements.
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(a)

(b)

Fig. 4: Crevasse growth in a grounded glacier: (a) diagram showing the boundary conditions of a grounded glacier

containing a single surface crevasse, and (b) őnite element mesh employed, with the mesh reőned along the expected

crevasse propagation path.

3.1.1. Stress state within a pristine grounded glacier

Prior to introducing damage, we determine the stress states within pristine glaciers that are

land terminating (hw = 0) and ocean terminating (hw = 0.5H). For simplicity, a linear elastic

rheology is assumed. Important variables are the stresses in the longitudinal x-direction σxx, and

the crack driving force Dd, given by Eq. (15). The results obtained are reported in Fig. 5, in

terms of contours of σxx and Dd. An edge effect on σxx is observed at the far right terminus as

a result of the traction free condition. However, away from the glacier terminus, the longitudinal

stress őeld is invariant with the x-coordinate, owing to the idealised rectangular geometry. The

maximum tensile stress occurs at the top surface and varies linearly with depth to a compressive

region at the base, for both land and ocean terminating glaciers. For a land terminating glacier,

the distribution of longitudinal stress is symmetric along the centre-line z = H/2, similar to the

stress proőle resulting from pure bending of a cantilevered beam [52]. The effect of including the

ocean-water pressure at the glacier terminus on the far őeld longitudinal stress can be observed

by comparing Figs. 5a and 5b. Here, the ocean-water pressure provides a compressive stress that

is constant with depth (in the far őeld region) and that decreases the extent of the tensile stress
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region near the top surface. If the ocean-water height is sufficiently large (≈ 90% of ice thickness),

this can cause the glacier to become buoyant and form a ŕoating ice shelf/tongue, resulting in an

increased compressive stress regime. Vertical stress predictions (not shown) exhibit a behaviour

that is also invariant with x-coordinate and that is compressive throughout the entire geometry,

with the vertical stress being zero at the top surface and increasing linearly with depth.

Fig. 5: Pristine grounded glacier. Contours of the longitudinal stress σxx, (a) and (b), and the crack diving force

state function Dd, (c) and (d), for a land terminating glacier (hw = 0) and an ocean terminating glacier (hw = 0.5H).

Consider now the crack driving force state function Dd contours, Figs. 5c and 5d. Because

only principal tensile stresses above the material strength contribute to damage, see Eq. (15), Dd

is only non-zero in the upper region. This agrees with the expected distribution for the damage

driving force; non-zero in the tensile regions, with the maximum value located at the upper surface,

and zero in regions of compressive stress. Since the vertical stresses are compressive throughout

the entire proőle, any crevasse propagation should be a mode I fracture, driven by the longitudinal

stress σxx. Unlike strain energy based approaches [40], the present formulation appropriately

captures a damage driving force that is only positive in tensile stress regions, consistent with

linear elastic fracture mechanics (LEFM) predictions.

3.1.2. Crevasse propagation

We next consider a grounded glacier with an isolated surface crevasse, represented by an initial

rectangular notch of height ds = 2.5 m and width b = 10 m, which is located at mid-length of the top
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surface. This facilitates comparisons with LEFM. Following Ref. [40], we also consider a damage

threshold F th, below which Dd = 0. As discussed in Ref. [40] and shown below, this threshold has

no inŕuence on the őnal crevasse depth predicted but assists in localising damage. The magnitude

of F th is chosen to be the maximum value of Dd predicted in the pristine (unnotched) glacier

simulation. In this way, one can ensure that damage only nucleates ahead of the crevasse, in

agreement with the conditions relevant to the LEFM analysis (where crack nucleation does not

occur). A similar effect can be achieved by increasing the value of the critical fracture stress σc.

However, more research is needed before a quantitative link can be established between a material

property and the damage threshold required to localise cracking ahead of the initial crevasse, as

the latter appears to be dependent on the boundary value problem under consideration. We start

the őnite element analysis by initialising the stress state, in the absence of damage, and then

conduct a subsequent time-dependent step to predict crevasse growth. The contributions from

kinetic energy are found to play an important role in regularising the problem as, in the absence

of inertia, equilibrium requires balancing an internal load carrying capacity that is being degraded

by the damage with a prescribed gravity load. This suggests a deeper investigation into the role

of inertia in ice-sheet fracture, which will be the objective of future work. In each simulation,

the meltwater depth ratio hs/ds is kept at a constant value (i.e. the meltwater depth increases

proportionally with the crevasse depth). A parametric study is carried out for selected values of

ocean-water level hw = (0, 0.5H, 0.9H) and meltwater depth ratios, to determine their inŕuence

on őnal crevasse depths. The results from the computational model are then compared with the

stabilised crevasse depths predicted by LEFM using the ‘double edge cracks’ weighting functions

presented in Appendix B. This study was performed for both linear elastic and non-linear viscous

rheologies.

3.1.3. Linear Elastic Rheology

We őrst consider a linear elastic rheology for the grounded glacier, so as to validate model

predictions with those obtained using analytical LEFM methods. The computational predictions

of normalised crevasse depth versus time are shown in Fig. 6a for an ocean-water height of

hw = 0.5H and selected values of the meltwater depth. It can be seen that the crevasses propagate

rapidly and stabilise at a constant depth. In agreement with expectations, larger meltwater depths

lead to higher crevasse depths, with the crevasse propagating all the way to the base of the glacier

for hs/ds > 0.5. A plot of the normalised stable crevasse depths for both the analytical LEFM and
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phase őeld models is given in Fig. 6b as a function of the meltwater and ocean-water depth ratios.

The stabilised crevasse depths estimated with the phase őeld model show a very good agreement

with those predicted using LEFM for all values of meltwater depth ratio and ocean-water height.

It can be seen that land terminating glaciers (hw = 0) are susceptible to deeper fractures, even

without the presence of meltwater, as there is no ocean-water compressive pressure at the terminus.

The crevasse depth reduces signiőcantly when ocean-water is present. For example, a dry crevasse

is predicted to propagate to 37.8% of the glacier height for an ocean-water depth of hw = 0.5H.

Crevasse depth gradually increases with meltwater depth ratio for ratios less than 0.5, whereas

the crevasse penetrates the full glacier thickness for meltwater depth ratios greater than 0.5. For

the near ŕoating glacier cases (hw = 0.9H) the compressive stresses due to the ocean-water are

signiőcantly large enough to completely offset the tensile regions in the upper surface of glacier,

and thus there is no meltwater depth ratio at which the crevasse can extend beyond the initial

notch length.
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Fig. 6: Crevasse growth in a grounded glacier. Normalised crevasse depth predictions for a single isolated crevasse

in a linear elastic ice sheet: (a) phase őeld predictions of normalised crevasse depth versus time; and (b) phase őeld

and analytical LEFM predictions of normalised crevasse depth versus meltwater depth ratio as a function of the

ocean-water height.

The process of crevasse growth is shown in Fig. 7, through plots of phase őeld ϕ contours at

selected time intervals. The results correspond to the case of a meltwater depth ratio of hs/ds = 0.2

and an ocean-water height of hw = 0.5H, but the qualitative behaviour is the same in all cases. A

17



sharp mode I crack propagates directly below the initial crevasse until reaching the region where

the compressive stresses are sufficiently large to arrest the crack.

(a)

(b)

(c)

Fig. 7: Crevasse growth in a grounded glacier. Phase őeld damage evolution as a function of time: (a) t = 0.00 s,

(b) t = 0.02 s, and (c) t = 0.40 s. The results correspond to the case of a meltwater depth ratio of hs/ds = 0.2 and

an ocean-water height of hw = 0.5H, assuming a linear elastic compressible rheology.

3.1.4. Parametric analysis

We shall now conduct sensitivity studies on relevant material, fracture and numerical parame-

ters. The base model considered here is an isolated dry surface crevasse with an ocean-water level

hw = 0.5H. We consider the individual effect on the stabilised crevasse depth of the mode I critical

fracture stress or cohesive strength σc, the crack driving force threshold F th, the post peak slope

18



parameter ζ, and the phase őeld length scale ℓ, whilst keeping all other parameters constant. The

results obtained are shown in Fig. 8.
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Fig. 8: Crevasse growth in a grounded glacier. Normalised surface crevasse depth versus time predictions for a dry

isolated crevasse with an ocean-water ratio of hw = 0.5H. Parametric study varying (a) critical fracture stress σc ,

(b) crack driving force threshold F th, (c) post peak slope parameter ζ, and (d) phase őeld length scale ℓ.

Consider őrst the sensitivity to the material strength σc, Fig. 8a, which is varied within the

range 0.1185−0.4740 MPa. In agreement with expectations, the predicted crevasse depth decreases

with increasing σc. The results obtained for different values of the crack driving force threshold

can be found in Fig. 8b. We őnd that there is little variation in predicted őnal crevasse depth

when increasing the threshold to up to seven times, with a maximum percentage difference of

2.4% between values of stabilised crevasse depth. The results obtained for various values of the

post-peak parameter ζ are given in Fig. 8c. A small inŕuence is observed, with higher ζ values
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leading to larger crevasse depths, as they result in a higher Dd magnitude for the same stress level.

This is also consistent with the sharper drop in the uniaxial stress-strain curve with increasing ζ

shown in Fig. 3. Finally, the sensitivity to the phase őeld length scale ℓ is explored in Fig. 8d.

The results conőrm the rather negligible sensitivity of the phase őeld formulation employed to the

magnitude of ℓ.

3.1.5. Non-linear viscous rheology

We next investigate the inŕuence of the rheology upon the őnal crevasse depth by considering

the non-linear viscous Glen’s ŕow law (Section 2.3.1). Here, we run a time-dependent creep sim-

ulation without phase őeld damage to allow for a steady-state stress proőle to develop within the

glacier. The results of the creep simulation are then used to initialise the phase őeld model, so as

to study the propagation of a crevasse based on an incompressible stress state. Results showing

the normalised crevasse depth versus time for the non-linear viscous rheology are found in Fig. 9a

with increasing values of meltwater depth ratio hs/ds and for an ocean-water height of hw = 0.5H.

A comparison between the stabilised crevasse depths from the phase őeld model and LEFM can

be found in Fig. 9b. The inŕuence of meltwater within the crevasse is qualitatively similar to

the linear elastic case, with stabilised crevasse depths becoming progressively larger with increased

meltwater. Full fracture is predicted at a meltwater depth ratio hs/ds = 0.5 or larger.
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Fig. 9: Crevasse growth in a grounded glacier. Normalised crevasse depth predictions for a single isolated crevasse

assuming a non-linear viscous rheology: (a) phase őeld predictions of normalised crevasse depth versus time; and (b)

phase őeld and analytical LEFM predictions of normalised crevasse depth versus meltwater depth ratio as a function

of the ocean-water height. The LEFM predictions are shown for both compressible (ν = 0.35) and incompressible

(ν = 0.5) constitutive behaviour.

Consider now Fig. 9b; two key observations emerge. First, neglecting the non-linear viscous

rheology of ice implies underpredicting the extent of crevasse propagation. A dry glacier crevasse

extends to 65.6% of the glacier height when incorporating creep deformation, compared to only

37.8% when considering a linear elastic compressive rheology. Second, the normalised crevasse

depths from the phase őeld model (using ν = 0.35) are comparable to those from the LEFM model

assuming incompressible behaviour (ν = 0.5). Despite the compressible elastic deformation, the

longitudinal stress proőle is dictated by the incompressible viscous deformation according to the

Glen’s law. Thus, we őnd that őrst-order estimates obtained from analytical LEFM approaches

should consider a Poisson’s ratio of ν = 0.5 to avoid underpredicting the impact of meltwater on

ice-sheet stability. Our őndings are consistent with the calculations by Plate et al. [59], where

Poisson’s ratio was found to have a notable inŕuence on the fracture driving force for elastic ice

sheets.

3.2. Propagation of multiple surface crevasses in a grounded marine-terminating glacier

We next determine the penetration depths for a uniform őeld of densely spaced surface crevasses.

The same glacier geometry from the previous example is used, but we consider seven surface
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crevasses, each spaced at 50 m apart and located sufficiently far away from the glacier terminus,

so that the edge effects do not inŕuence crevasse growth (see Fig. 10). Here, we aim to study the

effect of neighbouring crevasses, which are expected to provide crack shielding that reduces the

őnal crevasse depth, and to compare the phase őeld model results with those predicted by the Nye

zero stress model [14]. The results from the Nye zero stress model are found by computing the

depth at which the far őeld longitudinal stress becomes zero, represented by the dashed purple line

in Fig. 10. The model uses approximately 1.6 million linear triangular elements, with the mesh

being reőned ahead of each crevasse.

Fig. 10: Multiple crevasse growth in a grounded marine-terminating glacier. Diagram showing the boundary

conditions of a grounded glacier with a őeld of densely spaced crevasses (spaced 50 m apart from each other).

Plots of the phase őeld damage variable can be found in Fig. 11, for an ocean-water height of

hw = 0.5H and a meltwater depth ratio of hs/ds = 0.1. Qualitatively, the behaviour resembles that

of the single crevasse model - crevasses propagate rapidly and subsequently arrest upon reaching

the compressive region at the bottom. Each crevasse stabilises to a similar depth, although the

outer crevasses penetrate slightly deeper because they experience shielding only from one side.
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Fig. 11: Multiple crevasse growth in a grounded glacier. Phase őeld damage evolution as a function of time: (a)

t = 0.00 s, (b) t = 0.01 s, and (c) t = 0.40 s. The results correspond to the case of a meltwater depth ratio of

hs/ds = 0.1 and an ocean-water height of hw = 0.5H, assuming a linear elastic compressible rheology.

To shed light on the effect of crack shielding, we take measurements from the fourth crevasse at

mid-length and compare with the predictions from the zero stress model; the results are shown in

Fig. 12. The agreement is overall very good; as also observed in the LEFM comparisons, the model

provides a good agreement with analytical predictions when particularised to the conditions where

these analytical estimates are relevant. For the speciőc case of ocean-water height of hw = 0.5H,

the phase őeld model predicts a slightly deeper crevasse penetration compared to the zero stress

model for smaller values of meltwater depth ratio. For the near ŕoating condition (hw = 0.9H), the
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ocean-water height is sufficiently large to completely offset the tensile region in the upper surface

of the glacier. Thus the longitudinal stress proőle is compressive throughout the entire height of

the glacier (except near the terminus) and no amount of meltwater in the crevasse can extend it

beyond its initial geometry.
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Fig. 12: Multiple crevasse growth in a grounded glacier. Normalised crevasse depth versus meltwater depth ratio

predictions as a function of the ocean-water height. Comparisons between the present phase őeld model and

analytical predictions from Nye’s zero-stress model [14], for a linear elastic ice sheet.

3.3. Propagation of surface and basal crevasses on a ŕoating ice shelf

Ice shelves form along coastal regions of Antarctica as a result of ongoing glacial ŕow and

associated thinning to the point at which grounded ice becomes aŕoat (i.e. the grounding line).

Here there are two possibilities: (1) the mass loss terms at the grounding line (calving and melting)

are greater than or equal to the ŕux of ice across the grounding line, and so the ice sheet will

terminate here; and (2) the ŕux of ice exceeds mass loss terms, and ice ŕows across the grounding

line to form a ŕoating slab of ice. In this section, we assume plane strain conditions and consider

a ŕoating ice shelf of length L = 5000 m and height H = 125 m. To enforce the ŕoating boundary

condition at the base of the ice shelf, we prescribe a Robin type boundary condition, where the

buoyancy pressure is a function of the vertical displacement uz given by ρsg (hw − uz). A free slip

24



boundary condition is applied to the far left terminus to restrain horizontal displacement, and allow

vertical displacement that might arise due to deformation. The ocean-water pressure is applied

in the direction normal to the far right terminus, increasing linearly with depth. The elevation of

the ocean surface from the undeformed basal surface of the glacier is calculated using the ratio

between the density of ice and ocean water hw = ρi/ρs ≈ 90%. The geometry is discretised by

means of approximately 450,000 triangular plane strain linear elements.

Fig. 13: Growth of surface and basal crevasses in a ŕoating ice shelf. Diagram showing the geometry and boundary

conditions.

3.3.1. Propagation of surface crevasses

We őrst consider the őnite element predictions of the longitudinal stress proőle within a pristine

ice shelf at different horizontal locations. Speciőcally, we obtain stress distributions at positions

x = [0, 2500, 4500, 4950] m, measured from the left edge of the glacier. The numerical predictions

are then compared with the analytical solution, derived from the theory of elasticity, which is given

in Appendix A. The results are shown in Fig. 14, where it can be seen that the stress proőles at

far őeld horizontal locations such as x = 0.5L (2500 m) are in good agreement with the predictions

obtained from Eq. (A.22), whereas there is a deviation from the analytical solution at locations

x = 0.95L (4500 m) and x = 0.99L (4950 m), near the far right terminus. This edge effect is

apparent over a greater horizontal distance when compared with the grounded glacier scenario,

and is a consequence of the bending moment at the terminus due to the triangularly distributed

seawater pressure. Hereafter, we only investigate the propagation of surface crevasses at horizontal

locations far away from the terminus for increasing values of meltwater depth ratios and compare

them with LEFM predictions based on the analytical stress solution.
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Fig. 14: Surface crevasse in a ŕoating ice shelf. Distribution of longitudinal stress σxx versus depth at different

horizontal positions. The numerical predictions are compared to the analytical solution, given in Appendix A.

The change in basal boundary condition from the free slip grounded condition to the Robin-

type ŕoating condition means that the double edge crack formulation is no longer appropriate for

ŕoating ice shelves. To determine the appropriate weight function for the stress intensity factor

in ŕoating ice shelves, Jiménez et al. [52] compared various formulations for calculating Knet
I

with numerically computed stress intensity factors using the displacement correlation method. It

was found that the single edge crack weighting function was the most appropriate for a ŕoat-

ing ice shelf, as given by Krug et al. [54]. For the different horizontal locations, we determine

the appropriate relation for the longitudinal stress distribution as function of the vertical coordi-

nate z from őnite element simulations and use it to evaluate stress intensity factors with Eq. (B.6).

The analytical and computational predictions of stabilised surface crevasse depths within ŕoat-

ing ice shelves are plotted in Fig. 15. For locations within the far őeld region (i.e. x = 2500 m),

the longitudinal stress proőle is compressive throughout the entire depth and there is no meltwater

depth that will cause the crevasse to propagate beyond its initial depth of 10 m. However, surface

crevasses that are close to the terminus are vulnerable to full penetration at higher meltwater

depth ratios. The phase őeld model gives good agreement with the LEFM model for ŕoating ice

shelves when using the longitudinal stress distribution obtained from the őnite element simulation

and the weight function given in Eq. (B.6).
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Fig. 15: Growth of a surface crevasse in a ŕoating ice shelf. Analytical (LEFM-based) and computational phase

őeld predictions of stabilised crevasse depths as a function of the meltwater depth ratio (hs/ds). The results are

provided at horizontal locations x = 2500 m and x = 4950 m.

3.3.2. Interaction Between Surface and Basal Crevasses

In a ŕoating ice shelf, iceberg calving can occur when the combined depth of surface and basal

crevasses at a location reaches the full ice thickness [60]. Therefore, we consider the propagation

of a surface and a basal crevasse within close proximity of each other and near the calving front.

The surface crevasse is introduced at the horizontal position x = 4950 m and a meltwater depth

ratio of hs/ds = 0.8 is assumed, whereas the basal crevasse, located at a horizontal distance S to

the surface crevasse, is assumed to be fully water-őlled. We consider different values of horizontal

spacing S = {0, 5, 10, 15} m between the surface and basal crevasses, to investigate if they will

coalesce to form a full depth crevasse. The results obtained are shown in Figs. 16 and 17. The

phase őeld contours shown in Fig. 16 reveal three qualitative őndings: (i) the őnal depth of the

surface crevasse appears to be insensitive to the presence of the basal crevasse; (ii) the depth of

the basal crevasse increases with S, the separation to the surface crevasse; and (iii) the basal and

surface crevasse do not coalescence with each other. This last effect is attributed to the mixed

mode conditions that arise in the vicinity of two mode I cracks whose tips are in close proximity
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[61].

(a) (b)

(c) (d)

Fig. 16: Growth of surface and basal crevasses in a ŕoating ice shelf. Phase őeld damage contours after reaching

the arrest of the crevasses, considering four selected values for the horizontal separation (S) between the basal and

surface crevasse. For the surface crevasse, the meltwater depth ratio equals hs/ds = 0.8.

The quantitative output of the calculations is shown in Fig. 17. Consider őrst Fig. 17a, where

the predictions of crevasse depth are shown for the surface crevasse, as well as for the basal crevasse

in isolation and at selected separation distances from the surface crevasse. First, a comparison

with Fig. 15 (for hs/ds = 0.8) shows that the extent of surface crevasse penetration is the same

with and without the presence of a basal crevasse. This is unlike the basal crevasse, which exhibits

a stabilised crevasse depth that it is very sensitive to the proximity of a surface crevasse. As

shown in Fig. 17a, the stabilised crevasse depth increases with the distance to the surface crevasse,

with the limit case being given by the result obtained in the absence of a surface crevasse. The

combined basal and surface crevasse depth is shown in Fig. 17b. It is interesting to note that

the growth of the basal crevasse is hindered by the presence of the surface crevasse when they are

aligned, and consequently calving is not observed. Also, since basal and surface crevasses do not

coalescence, their combined depth exceeds the glacier height for sufficiently large separations. For

28



basal crevasses directly beneath the surface crevasse, the crevasse propagates to 37.7% of the ice

shelf depth, compared with 80.6% for the isolated basal crevasse.
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Fig. 17: Growth of surface and basal crevasses in a ŕoating ice shelf. The basal and surface crevasses are separated

by a horizontal distance S. (a) Predictions of crevasse depth versus time for surface and basal crevasses with varying

horizontal spacing S; and (b) evolution of the combined basal and surface crevasse depth versus time for selected

choices of the horizontal spacing S.

3.4. Nucleation and growth of crevasses: application to the Helheim glacier

In this section, we simulate the initiation and propagation of crevasses from arbitrary sites

in the Helheim glacier, one of the largest outlet glaciers in southeast Greenland. The aim is to

show how the creep analysis can be used to determine the nucleation of crevasses, which are then

predicted to grow in a coupled deformation-fracture simulation. To generate the glacier geometry,

we take the surface elevation and basal topography data from őeld observations (see Refs. [54, 62]).

A free slip boundary condition is applied normal to the base and the inlet ŕow velocity is restrained

to zero at the left edge. Also, we apply an oceanwater pressure at the glacier terminus and assume

an ocean water height of hw = 0.85H. The geometry is discretised using approximately 140,000

triangular quadratic plane strain elements.
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Fig. 18: Nucleation and growth of crevasses in the Helheim glacier. Initial geometry, as taken from observational

data by Nick et al. [62].

The őrst step involves running a time-dependent creep simulation to determine the regions in

which damage initiates. A crevasse nucleation criterion is deőned by which crevasses are assumed

to nucleate in regions where the product of the damage driving force state function Dd and the

equivalent creep strain εc =
√

(2/3)εc : εc is above a certain threshold. This is denoted by red

colour contours in Fig. 19. As it can be observed, this crack nucleation criterion is fulőlled at

shallow regions within the upper surface, notably in areas with increased surface gradient and

regions close to the calving front. This distribution is supported by the results by Krug et al. [54],

wherein a similar pattern to initiation sites was reported from a time-dependent creep analysis. Ice

is then removed from the regions where the nucleation criterion has been met, to act as initiation

points for crevasse growth in the subsequent phase őeld step.

Fig. 19: Nucleation and growth of crevasses in the Helheim glacier. Distribution of the nucleation variable Ddε
c,

with red colour contours denoting the areas where the nucleation threshold has been exceeded.

Damage evolution is subsequently predicted using the phase őeld model with the updated

geometry, assuming non-linear viscous ice rheology. As shown in Fig. 20c, we őnd that a őeld

of densely spaced surface crevasses can initiate at sites both close to and away from the calving

front. However, the depth at which they propagate to is shallow in comparison to the glacier

geometry (approximately 40 m deep). This is in agreement with the őeld observations of Mottram
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and Benn [63], who measured crevasse depths close to the calving front of Breiðamerkurjökull in

Iceland, őnding that crevasses only penetrated tens of meters in depth. At the calving front, we

also observe that damage can propagate to the full depth of the glacier, illustrating the possibility

of ice cliff failure and retreat of the grounding line. This case study showcases the ability of the

computational framework developed to combine creep and damage modelling to predict both the

nucleation of crevasses and the subsequent propagation, for realistic geometries and conditions.
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Fig. 20: Nucleation and growth of crevasses in the Helheim glacier. Phase őeld damage evolution of the Helheim

glacier assuming a non-linear viscous rheology at times (a) t = 0 s, (b) t = 0.30 s, and (c) t = 0.80 s.

3.5. Crevasse interactions in 3D marine-terminating ice sheets

The őnal numerical example intends to demonstrate the ability of the modelling framework

presented to simulate damage propagation in three dimensions, including complex cracking phe-

nomena such as crevasse interaction. We consider an idealised grounded glacier of height H = 125

m, length H = 500 m, and width W = 750 m. Two dry surface crevasses are initially deőned,
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each positioned at opposite ends of the glacier. Each crevasse is offset 25 metres either side of the

centre-line in the x-direction, as shown in Fig. 21. Similar to the 2D plane strain case, we restrain

the displacement normal to the surface at the far left edge and at the base. The displacement in

the y-direction is also restrained at both lateral faces of the x− z plane. The ocean-water pressure

is applied at the far right terminus, assuming an ocean-water height of hw = 0.5H. In this nu-

merical experiment, the phase őeld length scale is chosen to be equal to ℓ = 10 m; as discussed in

Section 2 and demonstrated in Section 3.1.4, the present phase őeld formulation shows a negligible

sensitivity to the choice of ℓ. This enables simulating large-scale phenomena and present the őrst

3D ice sheet fracture simulations. The characteristic element size along the potential crevasse

propagation region is chosen to be at least 5 times smaller than ℓ and the model is discretised

using 1.5M linear tetrahedral elements.

Fig. 21: Crevasse interactions in 3D marine-terminating ice sheets. Diagram showing the boundary conditions and

geometry of the three dimensional boundary value problem.

The results obtained are shown in Fig. 22, through contours of the phase őeld variable in

the fully damaged regime (ϕ = 1). Initially, the two crevasses propagate vertically (along the

z-direction) and horizontally (along the y-direction). Subsequently, as the two crevasses approach

each other, the crack tip stress state becomes mixed mode and this results in the two crevasses

curving away from each other. This is followed by the development of a hook-shaped geometry

before their coalescence. Similar fracture patterns have been observed in geological faults, with

remote sections of the fault growing as purely tensile fractures, whilst in close proximity to each

other the faults grow as mixed mode fractures [64, 65]. This behavior has also been observed in
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laboratory experiments [61].

(a) (b) (c)

Fig. 22: Crevasse interactions in 3D ice sheets: ϕ = 1 contours showing the evolution of the two dry surface crevasses

at times (a) t = 0 s, (b) t = 0.05 s, and (c) t = 0.4 s.

4. Conclusions

We have presented a new stress-based poro-damage phase őeld model for predicting hydrofrac-

tures in creeping glaciers and ice shelves. The proposed framework enables resolving the underlying

physical processes behind crevasse growth and iceberg calving, without the limitations and uncer-

tainties intrinsic to widely-used empirical and analytical approaches. The model combines: (i)

Glen’s ŕow law, to adequately capture the non-linear viscous rheology of glacier ice; (ii) a poro-

damage scheme that incorporates the role of meltwater pressure in assisting crevasse propagation;

and (iii) a stress-based phase őeld description of the intact ice-crack interface. This last element is

of particular importance when modelling propagating crevasses as strain energy-based phase őeld

formulations are limited when dealing with incompressible solids and cracks driven solely by tensile

stresses. The coupled framework is numerically implemented using the őnite element method and

used to simulate őve boundary value problems of particular interest. First, the inŕuence of the

choice of material rheology and relevant parameters are investigated by simulating the propagation

of a single crevasse in grounded glaciers. Second, crevasse interaction is assessed by predicting the

growth of a őeld of densely spaced crevasses in a grounded glacier. The third case study addresses

the interaction between surface and basal crevasses in a ŕoating ice shelf, appropriately simulated

using Robin boundary conditions. Nucleation and growth of crevasses in a realistic geometry, that

of the Helheim glacier, is predicted in the fourth case study, combining a sequential creep-damage

analysis. Finally, the last case study provides the őrst simulation of interacting crevasses in 3D ice
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sheets. Several conclusions can be obtained from the model’s insight into these case studies:

• The model adequately predicts the propagation of crevasses in regions where the net longi-

tudinal stress is tensile, without the need for ad hoc fracture driving force decompositions

and exhibiting very little sensitivity to the choice of phase őeld length scale ℓ.

• Model predictions provide a good agreement with LEFM and Nye’s zero stress model when

particularised to the idealised conditions where these analytical approaches are relevant.

• Increasing amounts of meltwater, as a result of climate change, can signiőcantly enhance

crevasse propagation, with iceberg calving being predicted for meltwater depth ratios of 50%

or larger.

• Predicted crevasse depths are greater when considering the incompressible stress state in-

trinsic to a non-linear viscous rheology. Thus, őrst-order estimates obtained from analytical

LEFM approaches should consider a Poisson’s ratio of ν = 0.5 to avoid underpredicting the

impact of meltwater on ice-sheet stability.

• The model captures how the presence of neighbouring surface crevasses provides a shielding

effect on the stress concentration and reduces the predicted crevasse depth.

• The model accurately predicts the growth of surface crevasses within ŕoating ice shelves near

the shelf front for large meltwater depth ratios. Also, if a surface crevasse is in close proximity

to a basal crevasse then a reduction in basal crevasse penetration depth is observed.

• Crevasses are predicted to nucleate in areas with high surface gradients, highlighting the

need for an adequate characterisation of the glacier’s geometry.

• The large-scale 3D analyses conducted demonstrate the capabilities of the model of opening

new horizons in the modelling of crevasse growth phenomena under the computationally-

demanding conditions relevant to iceberg calving.

Potential future extensions of the present computational framework include incorporating basal

melting, lateral and basal friction effects, and ice refreezing. We offer this novel approach as a

means to capture the process of crevassing and calving within ice sheets and ice shelves, to better

capture these processes in efforts to prognostically assess ice-sheet vulnerability to ice shelf stability
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and the resulting accelerated ice sheet ŕow to the ocean and sea level rise, and/or grounding line

retreat (potentially driven by calving at a marine-terminating margin).
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Appendix A. Derivation of the far őeld longitudinal stress

In this appendix the derivation of the far őeld longitudinal stress σxx is presented for the

grounded glacier through the equilibrium equations and Hooke’s law of linear elasticity in three

dimensions. The equilibrium equations for each of the three directions are as follows:

∂σxx
∂x

+
∂σxy
∂y

+
∂σxz
∂z

= 0 (A.1)

∂σxy
∂x

+
∂σyy
∂y

+
∂σyz
∂z

= 0 (A.2)

∂σxz
∂x

+
∂σyz
∂y

+
∂σzz
∂z

+ ρig = 0 (A.3)

With the assumptions of plane strain, the stresses being invariant with the x-coordinate and

out of plane stresses being zero, these equations are reduced to:

∂σxy
∂y

= 0 (A.4)

∂σyy
∂y

= 0 (A.5)

∂σzz
∂z

+ ρig = 0 (A.6)

Rearranging the equilibrium equation in the z-direction and integrating with respect to the

vertical coordinate z the vertical stress due to the lithostatic force is given by

σzz =

∫

−ρigδz (A.7)
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Substituting in the following boundary conditions

σzz = −ρigH at z = 0

σzz = 0 at z = H

leads to the hydrostatic assumption of vertical stress

σzz = −ρig(H − z) (A.8)

The equations of linear elasticity are then used (along with the plane strain assumption) to

őnd the out of plane normal stress σyy in relation to the in-plane normal stresses σxx and σzz:

εxx =
1

E
[σxx − ν(σyy + σzz)] (A.9)

εyy =
1

E
[σyy − ν(σxx + σzz)] (A.10)

εzz =
1

E
[σxx − ν(σxx + σyy)] (A.11)

Setting εyy = 0 and rearranging to őnd σyy gives:

σyy = ν(σxx + σzz) (A.12)

Substituting this into the into the longitudinal strain equation gives:

εxx =
1

E

[

(1− ν2)σxx − ν(1 + ν)σzz
]

(A.13)

The membrane stress assumption is then adopted due to the thickness of glaciers being several

orders of magnitude smaller than the length. The horizontal displacement is therefore invariant

with depth, leading to the the following derivative:

∂εxx
∂z

= 0 (A.14)

Applying this constraint to Eq. A.13 and rearranging in terms of the derivative of horizontal

stress gives:
∂σxx
∂z

=
ν

1− ν

∂σzz
∂z

(A.15)

Substituting the above equation in Eq. A.6 yields

∂σxx
∂z

= − ν

1− ν
ρig (A.16)
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Since the longitudinal stress is invariant with x-coordinate and with the plane strain assump-

tion, the longitudinal stress is only variant on the z-coordinate.

σxx = − ν

1− ν
ρigz + C1 (A.17)

where C1 is the indeőnite integration constant that can be determined by considering the force

equilibrium in the longitudinal direction for the lithostatic force of ice and the hydrostatic force of

the ocean water Fw = 1
2
ρsgh

2
w as

∑

Fx =

∫ H

0

σxxdz + Fw = 0 (A.18)

Evaluating the deőnite integral in Eq. (A.18) allows for the constant C1 to be determined as

follows:
[

− ν

1− ν

ρigz
2

2
+ C1z

]H

0

= − ν

1− ν

ρigH
2

2
+ C1H (A.19)

− ν

1− ν

ρigH
2

2
+ C1H = −ρsg

h2w
2

(A.20)

C1 =
ν

2(1− ν)
ρigH − 1

2
ρsg

h2w
H

(A.21)

The longitudinal stress σxx is thus given by

σxx =
ν

1− ν

[

ρig

(

z − H

2

)]

− 1

2
ρsg

h2w
H

(A.22)

Note that the above expression does not include the effects of the meltwater pressure acting

within the crevasse, which creates an additional tensile stress. The meltwater pressure pw is added

to σxx to give the net longitudinal stress used in LEFM and Nye zero stress models as follows:

pw = ρwg ⟨hs − (z − zs)⟩ (A.23)

σnet(z) = σxx(z) + pw(z) (A.24)

Appendix B. Discussion of appropriate LEFM model for calculation of crevasse depths

The linear elastic fracture mechanics model considers the effect of local stress singularity by

evaluating the net stress intensity factor Knet
I at the crack tip. This is compared to the fracture

toughness KIC , which is a measure of the material’s resistance to fracture. Whilst the stress
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intensity factor is equal to the fracture toughness, the crack will propagate in an unstable manner;

however, as the crack penetrates to greater depths (where the longitudinal stress reduces) the

stress intensity factor decreases and the crack will arrest when Knet
I becomes less than KIC . The

stress intensity factor is calculated using Eq. B.1 and is integrated over the entire crevasse depth

due to the driving stress (far őeld longitudinal stress) varying linearly with depth. The use of σnet

allows us to incorporate the contributions of the ice self weight, the ocean-water pressure and the

meltwater pressure into the stress intensity factor.

Knet
1 =

∫ d

0

MD (χ,H, d) σnet (χ) dχ. (B.1)

We evaluate the stress intensity factor using an iterative code in MATLAB by gradually increas-

ing the crevasse depth to őnd the vertical coordinate where the arrest condition is met. Typical

values of KIC for glacial ice have been determined from experimental data and are in the range of

KIC = 0.1− 0.4 MPa
√

m [53, 56, 66]. For this study a value of KIC = 0.1 MPa
√

m was chosen.

In Eq. B.1, MD is a weight function that is dependent upon the boundary conditions and

specimen geometry. Owing to the boundary condition differences, the appropriate weight functions

for the grounded glacier and the ŕoating condition cases are different. For the grounded glacier

condition, the ’double edge cracks’ formulation gives good agreement with the stress intensity

factors calculated using the displacement correlation method within FEM [52]. The weight function

for the double edge cracks model is given by [67]

MD =
2√
2H

[

1 + f1

(χ

d

)

f2

(

d

H

)]

θ

(

d

H
,
χ

H

)

, (B.2)

where χ = H − d, d is the trial crevasse depth, and the functions f1, f2 and θ are deőned as:

f1 = 0.3

[

1−
(χ

d

)
5

4

]

, (B.3)

f2 =
1

2

[

1− sin

(

πd

2H

)][

2 + sin

(

πd

2H

)]

, (B.4)

θ =

√

tan( πd
2H

)
√

1−
[

cos( πd
2H

)

cos( πχ

2H
)

]

. (B.5)

For the ŕoating ice shelf condition, the stress intensity factors calculated using the weight

function method in Krug et al. [54] and van der Veen [18] give better agreement with the stress
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intensity factors calculated using the displacement correlation method [52]. The formulation for

the weight function β used by Krug et al. is given below:

Knet
1 =

∫ d

0

β (z,H, d) (σxx + pw(z)) (χ) dχ (B.6)

where

β (z,H, d) =
2

√

2π (d− z)

[

1 +M1

(

1− z

d

)0.5

+M2

(

1− z

d

)

+M3

(

1− z

d

)1.5
]

, (B.7)

M1 = 0.0719768− 1.513476λ− 61.1001λ2 + 1554.95λ3 − 14583.8λ4 + 71590.7λ5

− 205384λ6 + 356469λ7 − 368270λ8 + 208233λ9 − 49544λ10, (B.8)

M2 = 0.246984 + 6.47583λ+ 176.456λ2 − 4058.76λ3 + 37303.8λ4 − 181755λ5

+ 520551λ6 − 904370λ7 + 936863λ8 − 531940λ9 + 12729λ10, (B.9)

M3 = 0.529659− 22.3235λ+ 532.074λ2 − 5479.53λ3 + 28592.2λ4

− 81388.6λ5 + 128746λ6 − 106246λ7 + 35780.7λ8, (B.10)

and λ = d/H.
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