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ABSTRACT12

We investigate the generalization of a CNN-based surrogate for the phase field model in pre-13

dicting both damage and peak load under uniaxial tension, given the 2D microstructure image of a14

unidirectional fiber-reinforced composite. We first discuss the phase field model and the numerical15

procedure to generate training and test data from synthetic microstructures with different volume16

fractions and fiber radii. We next present a two-stage approach for predicting peak load, achieved17

by first transforming a given fiber-encoded microstructure image to a continuous damage field;18

and second, predicting peak load from the damage field. A key finding is that the direct approach19

for predicting peak load from the microstructure image using a standard regression model fails to20

generalize. Instead, the damage field, even if imperfectly predicted, provides valuable cues for the21

CNN in generalizing across new microstructures within the range of parameters used in training.22

We describe several case studies to demonstrate the capability of the surrogate model to predict23

damage and peak load, and to interpolate over fiber radii and volume fractions.24
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INTRODUCTION25

Characterizing the mechanical performance of heterogeneous composites materials requires26

robust and efficient computational methods for simulating damage evolution at the microstructure27

scale. The phase field damage model in conjunction with the finite element method (FEM)28

has been widely used to predict fracture in homogeneous quasi-brittle materials; however, it is29

computationally expensive for heterogeneous composite material microstructures, despite the use30

of parallel computing. While computational multi-scale mechanics models are popular, the need31

for optimizing design-space parameters has led researchers to pursue computationally inexpensive32

surrogate models, based on micromechanics and, more recently, machine learning (ML) approaches.33

However, studies focusing on the generalization of ML approaches are necessary to effectively34

augment/replace well-established numerical methods to address complex fracture problems in a35

robust and efficient manner. Herein, we assess the generalization of convolutional neural network36

(CNN) based ML models as an efficient surrogate for the phase field damage model to predict37

fracture patterns in unidirectional fiber-reinforced composite microstructures.38

Predicting the initiation and propagation of cracks (damage) in fiber-reinforced composites is39

challenging owing to the intrinsic variability of microstructure configurations and the nonlinear40

nature of damage evolution (Shakiba et al. 2019; Tan and Martínez-Pañeda 2021). While the41

volume fraction of fibers is well correlated with the stiffness of the composite, the distribution of42

fibers, fiber size, shape and misalignment affect the damage evolution and failure response (Singh43

and Pal 2021; Ahmadian et al. 2019). The phase field fracture/damage model has been recently44

used to better understand the microscale failure mechanisms in quasi-brittle composite materials45

in relation to microstructure parameters (Kuhn and Müller 2016; Espadas-Escalante and Isaksson46

2019; Zhang et al. 2019). The major advantage of the phase field damage model is that it provides47

a thermodynamically consistent variational framework (Francfort and Marigo 1998; Miehe et al.48

2010; Lo et al. 2019) to simulate fracture initiation and propagation. However, its major drawback49

is the computational expense arising from mesh size and time step restrictions and iterative schemes50

to ensure accuracy and convergence. Despite recent work implementing quasi-Newton schemes,51
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monolithic solvers, adaptive mesh refinement, domain decomposition preconditioners, length-scale52

insensitive formulations, continuous/discontinuous Galerkin methods, (Kristensen and Martínez-53

Pañeda 2020; Bharali et al. 2022; Hirshikesh et al. 2021; Svolos et al. 2020; Svolos et al. 2022; Wu54

and Nguyen 2018; Gupta et al. 2022), the phase field damage model is computationally expensive55

for fast simulation of of fracture evolution in heterogeneous composite materials over size scales56

larger than a few millimeters, particularly in 3D.57

In the past few years, new ideas infused into the computational fracture mechanics area inspired58

by the success of ML approaches in other areas of engineering, speech recognition and computer59

vision. Restricting our attention to ML approaches for the phase-field fracture and/or composite60

strength prediction, existing approaches can be classified as: physics informed (trained using the61

governing PDEs) and data driven (i.e. trained using only data from experiments and/or computer62

simulations). Physics-informed neural networks (PINNs), originally introduced by Raissi et al.63

(Raissi et al. 2019), are a class of coordinate-based networks that can be explicitly optimized to64

satisfy a governing PDE. Application of PINNs to phase field fracture simulation is quite limited,65

for example, Goswami et al. (Goswami et al. 2020) proposed transfer learning enhanced PINNs.66

Despite recent efforts to speed up, the computational expense to solve the PDEs using PINNs67

is comparable to that of the FEM. In contrast, the traditional data-driven surrogates utilize ML68

models trained on data generated by solving PDEs using other numerical methods, such as the69

FEM. For example, Pathan et al. (Pathan et al. 2019) presented a supervised ML model which can70

predict the elastic modulus and tensile strength of a fiber-reinforced composite given the image of71

its microstructure, using a gradient-boosted tree regression algorithm.72

More recently, CNN-based deep learning models were developed to predict field quantities,73

such as stress, strain or damage, and material parameters, such as tensile strength. Croom et74

al. (Croom et al. 2022) built a UNet (Ronneberger et al. 2015) to predict the stress field in75

an additively manufactured metal directly from microstructure scans. Yang et al. (Yang et al.76

2021a; Yang et al. 2021b) developed a conditional GAN to predict strain and stress fields from 3D77

printed microstructure geometries. Bhaduri et al. (Bhaduri et al. 2021) applied UNet architecture78
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and transfer learning technique to predict the stress field in fiber-reinforced composite with a79

weighted mean square loss function. Mohammadzadeh et al. (Mohammadzadeh and Lejeune80

2021) proposed a MultiRes-WNet architecture based on convolutional blocks to predict binary81

damage field given an image of material distribution. Sepasdar et al. (Sepasdar et al. 2022)82

implemented UNet to predict stress field at the early stage of damage initiation and binary crack83

pattern for any given microstructure geometry, using a modified mean average error as the loss84

function. Zhou et al. (Zhou et al. 2021) used a CNN-based model for composite strength prediction85

given the microstructure RVE. However, to best of our knowledge, there are no studies focusing on86

surrogates for the phase field damage model and their generalization.87

In this article, we present a fast CNN-based surrogate for the phase field damage model, which88

belongs to the class of data driven deep learning approaches. Based on our observation that CNNs89

poorly generalize for predicting peak load (i.e., material strength) if provided with only the 2D90

microstructure (e.g., binary image that encodes the matrix and fibers), we propose a two-stage91

approach for predicting peak load. In first stage, we translate the microstructure image to its92

corresponding damage field at peak load, and in the second stage, we predict the peak load from93

the damage field. We find that this two-stage approach generalizes better compared to the one-94

stage or direct approach that predicts peak load exclusively from the microstructure image. To95

provide guidance on the selection of training sets for future applications, we further investigate96

the generalization of our CNN-based surrogate model to predict damage fields and peak loads for97

microstructures with different volume fractions and fiber radii.98

METHODOLOGY99

Phase field damage model100

The phase-field damage model employed here is an extension of Miehe’s model (Miehe et al.101

2010) proposed by Lo et al. (Lo et al. 2019). This model properly accounts for tension-compression102

asymmetry of damage evolution in brittle materials. To describe the model formulation, we consider103

an arbitrary linear elastic solidΩ ⊂ R2 with external boundary 𝜕Ω, as shown in Fig.1. The boundary104

𝜕Ω is split into disjoint Dirichlet and Neumann boundaries denoted by 𝜕ΩD and 𝜕ΩN, respectively.105
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The fiber domain Ω(f) is assumed to be undamaged at all times. The damaged state at any position x106

and time 𝑡 in the matrix domainΩ/Ω(f) is described by a scalar phase-field variable 𝐷 (x, 𝑡) ∈ [0, 1],107

where 𝐷 = 0 represents undamaged state and 𝐷 = 1 the fully damaged state.108

In the hybrid phase field model formulation, there are two unknown field variables that need to109

be solved for: the displacement field u and the phase-field damage variable 𝐷. To determine the110

displacement field u, we solve the governing equations of the elastostatic boundary value problem111

along with the corresponding boundary conditions over a space-time domain 𝑄 = Ω × [0, 𝑇]:112



∇ · 𝝈 = 0 in 𝑄

u = u∗ on 𝜕ΩD × [0, 𝑇]

𝝈 · n = t∗ on 𝜕ΩN × [0, 𝑇]

(1)113

where u∗ represents a prescribed displacement on the Dirichlet boundary 𝜕ΩD, t∗ represents a114

prescribed traction on the Neumann boundary 𝜕ΩN, 𝝈 is the Cauchy stress tensor defined by the115

isotropic linear elastic constitutive law under the plane strain assumption, and n is the outward116

normal to the boundary 𝜕ΩN. To determine the damage field 𝐷, we solve the governing equation117

for phase-field evolution in the rate form along with the associated boundary conditions:118


𝜂 ¤𝐷 = 𝑙cΔ𝐷 −

𝐷

𝑙c
+ 2(1 − 𝐷) 𝐻

𝐺c
in 𝑄

∇𝐷 · n = 0 on 𝜕Ω × [0, 𝑇]
(2)119

where Δ is the Laplace operator, 𝜂 is the viscous regularization parameter, 𝐻 is the history field120

variable ensuring the monotonic increase of the phase-field variable defined as (Lo et al. 2019)121

𝐻 (x, 𝑡) = max
𝜏∈[0,𝑡]

[𝜓+(𝜺(x, 𝜏))], (3)122

𝜺 is the small strain tensor, and 𝜏 is a pseudo-time variable related to the applied load/displacement123

rate. In the above equation, by defining the history field variable equal to the maximum value of124
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the tensile portion of the strain energy 𝜓+(𝜺) we ensure that damage is irreversible. We use the125

standard Galerkin finite element procedure to discretize and solve the equations using a staggered126

approach in the open source finite element software FEniCS (Alnæs et al. 2015). Full details of the127

procedure to solve these equations can be found in our recent article (Sun et al. 2021).128

Ground truth data generation by finite element method129

We consider an archetype problem of damage/fracture evolution within the 2-D representative130

volume element (RVE) of a unidirectional fiber-reinforced composite under applied uniaxial tension131

in plane strain. We generated several 2-D geometries of using the L-BFGS-B algorithm described132

in Section 2.3 of Pathan et al. (Pathan et al. 2017). Specifically, we chose square-shaped RVEs133

with side length of 𝐿 = 50 𝜇m and varied two microstructure parameters: the volume fraction 𝑉f is134

varied from 0.2 to 0.5, and the fiber radii 𝑅f is chosen as 2 𝜇m, 4 𝜇m or 6 𝜇m. To prevent damage135

artifacts from initiating and propagating near fibers that are near or intersect with the external136

boundary, we limit the fiber positions to a square interior region with side length 𝐿 − (𝑅f + 0.04𝐿),137

where 𝑅f is the chosen fiber radii and 0.4𝐿 is a small offset determined by trial-and-error. We138

assume that the fiber is a linear elastic material with a large stiffness (the Young’s modulus is 74139

GPa and the Poisson’s ratio is 0.2); whereas the matrix is a linear elastic material with a small140

stiffness (the Young’s modulus is 3.5 GPa and the Poisson’s ratio is 0.35) and accrues damage141

(critical strain energy release rate is 10 J/m2). For simplicity, the fiber and the matrix interface are142

assumed to be perfectly bonded, so failure by debonding does not occur. We take the phase-field143

viscosity (stabilization) parameter 𝜂 = 1.2 and length scale parameter 𝑙c = 0.8 𝜇m.144

The RVEs were discretized with a triangular finite element mesh with edge length ≈ 0.1 𝜇m,145

using the open-source mesh generation software Gmsh (Geuzaine and Remacle 2009). As illustrated146

in Fig. 1, we enforce the traction free condition on the left and right boundary of the RVE, and free147

slip (or roller) condition on the bottom boundary. The bottom left corner is pinned to prevent rigid148

body motion. At each pseudo-time step, to simulate the uniaxial extension test we apply a uniform149

displacement increment of 0.01 𝜇m on the top boundary. By summing the nodal reaction forces150

on the top boundary we obtain the applied load at each time step. We stop the simulation when the151
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applied load drops to 15 % of the maximum/peak load. By dividing the peak load by the length of152

the RVE, we can determine the tensile strength, although we prefer to compare peak load values153

for different cases. The peak load and the corresponding 2D damage field image obtained from the154

finite element simulations are stored and used as the ground truth data for training and testing the155

ML models, as discussed below.156

As shown in Table 1, we generated five datasets with different volume fractions and fiber radii157

for training and evaluating the proposed ML model. For dataset A, as a baseline, we consider 800158

samples in the training set and 200 samples in the test set. All samples in dataset A have the same159

fiber radius of 4 𝜇m and volume fraction of 0.5. The volume fraction of the samples in dataset B160

and C are set to be 0.5. In the training set of dataset B, we have 2000 samples (1000 each) with161

fiber radii of 2 or 6 𝜇m; whereas the training set of dataset C contains 2001 samples (667 each)162

with fiber radii of 2, 4, and 6 𝜇m. The test sets of datasets B and C are the same as that of dataset163

A. The fiber radius of dataset D and E samples is set to be 4 𝜇m. There are 2000 samples (1000164

each) in the training set of dataset D with volume fractions of 0.2 or 0.5; whereas the training set of165

dataset E has 2080 samples (130 each) with a range of volume fractions from 0.2 to 0.5. The test166

set of the datasets D and E are the same, which has 200 samples with a volume fraction of 0.3 and167

fiber radius of 4 𝜇m.168

Baseline model: Predicting peak load from microstructure169

We first consider a simple ML approach that can directly predict the peak load given the170

rasterized image of the RVE as input, as illustrated in Fig. 2a. The architecture of this CNN-171

based regression model is based on that proposed by Simonyan et al. (Simonyan and Zisserman172

2015). The RVE image is converted to a 512 × 512 pixel binary image, where fibers are marked173

as 1 and matrix is marked as 0. The 1 × 512 × 512 pixel input image is fed through a series of174

convolutional blocks, where each block performs: (1) a convolution with a set of learnable filters,175

in turn producing a multi-channel image; (2) batch normalization (Ioffe and Szegedy 2015); (3) a176

leaky ReLU activation (Khalid et al. 2020); and (4) spatial downsampling of the image by a factor177

of 2. We apply this series of operations until we reach a 512-channel image with spatial resolution178
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2×2. This image is then flattened into a 2, 048-dimensional vector, and through a 2-layer multilayer179

perceptron (MLP), the model produces a single value as output. This model is trained to minimize180

the mean squared error (MSE) between the microstructure’s ground-truth and predicted peak load.181

To evaluate the accuracy of this baseline or one-stage ML model in predicting the peak load, we182

trained and tested it on a sample dataset with fixed microstructure design parameters, that is, with a183

fiber radius of 4 𝜇m and a volume fraction of 0.5. The dataset includes 1000 paired RVE geometry184

images and the corresponding peak load values, and we split it into 80 % training set and 20 % test185

set. As evident from Fig. 2, this direct approach overfits to the training data (c.f. Fig. 2b), and fails186

to generalize to novel microstructures not observed during training (c.f. Fig. 2c). This suggests187

that microstructure geometry alone does not provide sufficient cues for this baseline CNN model188

to properly reason about the microstructure’s peak load. These results motivate our two-stage189

approach, where we seek to provide a CNN-based peak load predictor with richer information as190

input, in the form of a damage field image.191

CNN-based image-to-image-to-value surrogate model192

To obtain an improved prediction of peak load, we now consider a two-stage ML approach that193

first predicts the damage state given the rasterized image of the RVE as input, and then uses the194

damage field image to predict the peak load. We hypothesize the damage field at peak load can195

provide better information for peak load prediction than just the RVE geometry. This is based on196

the rationale that the phase field damage includes information on the strain energy state, material197

fracture toughness, along with the RVE geometry. Because this two-stage approach can predict198

both the damage field and peak load, it can be used as a surrogate for the phase field damage model.199

To predict damage field image from the RVE image, we employed a CNN-based image-to-image200

model with an encoder-decoder and skip connection architecture, similar to the UNet (Ronneberger201

et al. 2015), as shown in Fig. 3a. The encoder (left side) accepts the RVE image as input, a202

single-channel binary encoding of the fibers (c.f. Sec. Baseline model: Predicting peak load from203

microstructure). The purpose of the encoder is to produce a series of multi-channel images that204

increase in channel resolution, and decrease in spatial resolution, using a learned set of convolutional205
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blocks. The decoder (right side) accepts as input the last multi-channel image produced by the206

encoder, and performs a series of learnable convolutional blocks, each interleaved with spatial207

upsampling, until we reach a target image resolution of 512 × 512 pixels – it is this image that we208

treat as the predicted damage field. Skip connections are utilized, wherein multi-channel images209

produced by the encoder are concatenated, channel-wise, onto the images produced by the decoder,210

limited to layers that have equivalent spatial resolution.211

The parameters of the model are found by minimizing a mean absolute error (MAE) objective212

between the predicted damage field and the ground-truth damage field. Because the ground-truth213

damage fields are obtained from FEM-based simulations, each field is defined over a triangular214

mesh, thus incompatible with the model’s predicted image represented over a regular square grid.215

To resolve this issue, we resample the FEM damage field onto a 512 × 512 regular grid, which216

enables us to compute a pixel-wise MAE loss for optimization. Specifically, for each vertex on217

the triangular finite element mesh, we find the cell in the regular grid that contains this vertex and218

contribute this vertex’s nodal value to each of the grid cell’s four vertices. The contribution is219

obtained through a bilinear interpolation weight 𝑤 within each cell to calculate the grid point value220

𝑄, as described in Algorithm 1221

Algorithm 1 Resampling from FEM results to a rasterized image based on bilinear interpolation

Require: 𝑀 × 𝑀 image resolution, (X𝐿×1,Y𝐿×1) ∈ [0, 1] × [0, 1] (Normalized finite element
nodal coordinates), F𝐿×1 (Nodal values of the phase field damage).

1: Initialize Q𝑀×𝑀 = 0,W𝑀×𝑀 = 0
2: X← X × (𝑀 − 1),Y← Y × (𝑀 − 1)
3: X̂← ⌊X⌋, Ŷ← ⌊Y⌋
4: for 𝑝 ← 1 to 𝐿 do
5: for 𝑖 ← 𝑋̂𝑝 to 𝑋̂𝑝 + 1 do
6: for 𝑗 ← 𝑌𝑝 to 𝑌𝑝 + 1 do
7: 𝑤 ← (1 − |𝑖 − 𝑋𝑝 |) (1 − | 𝑗 − 𝑌𝑝 |)
8: 𝑄𝑖 𝑗 ← 𝑄𝑖 𝑗 + 𝑤 𝑓𝑝
9: 𝑊𝑖 𝑗 ← 𝑊𝑖 𝑗 + 𝑤

10: end for
11: end for
12: end for
13: Output the resampled image Q← Q/(W + 10−12)
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We employ this CNN-based surrogate model with the architecture shown in Fig. 3(a) due to the222

following considerations. First, encoder-decoder architectures have modest memory requirements223

and are computationally efficient; this is especially advantageous for models tasked with transform-224

ing one high-resolution image to another high-resolution image. Second, skip connections allow225

us to exploit intricate relationships between the spatial distribution of fibers and the damage field.226

Damage evolution in the microstructure is a localized phenomenon that directly depends on the227

stress/strain distribution in the RVE. By designing the decoder (i.e. damage field) to condition on228

features produced at multiple resolutions by the encoder (i.e. RVE geometry), we allow for the229

model to reason damage localization based on fiber distribution, at different spatial resolutions.230

Thus, the proposed two-stage approach consists of a pair of CNN-based deep learning models:231

(1) a CNN tasked with predicting the phase field damage, given a microstructure image; and (2) a232

CNN tasked with predicting the peak load, given a damage field as an image. We opt to use the233

same CNN model for predicting peak load given an image, as described in Section Baseline model:234

Predicting peak load from microstructure. We optimize for each of these CNN models separately,235

wherein the damage field model is optimized solely on instances of microstructure and ground-truth236

damage field images (c.f. Fig. 3b); whereas the peak load model is optimized on instances of the237

predicted damage field and corresponding peak load value (c.f. Fig. 3c). At inference time, given238

a microstructure image, we first predict the corresponding damage field, and then use this damage239

field to predict the peak load.240

Error metrics241

To determine the difference between the ground truth and the CNN-based ML model predictions,242

we utilize two commonly used error metrics, namely root mean square relative error (RMSRE) and243

normalized root mean square error (NRMSE).244

Because the peak load for each RVE is a unique value (dependent on the spatial distribution245

of fibers), for comparing the error across different RVEs it is more appropriate to first evaluate the246

relative error for each RVE and then calculate its root mean square. Hence for a given number 𝑁247
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of RVEs, we define the RMSRE between ground truth 𝑦 and ML model predictions 𝑦̄ as248

RMSRE =

√√√
1
𝑁
·

𝑁∑︁
𝑖=1

(
𝑦𝑖 − 𝑦̄𝑖

𝑦𝑖

)2
. (4)249

The damage field image is also uniquely determined by the spatial distribution of fibers, with250

zero damage within the fibers (i.e. fiber is linear elastic). However, the RMSRE is not suitable251

for evaluating the error in damage, because it can be zero at various locations within a given RVE,252

which means the relative error is not well defined. Therefore, for comparing the relative error253

of rasterized images of phase field damage between different RVEs, we define the NRMSE with254

respect to the RMS of the ground truth. Thus, for a ground truth image 𝑌 and a predicted image 𝑌255

with 𝑁 pixels, the NRMSE is defined as256

NRMSE =

√√∑𝑁
𝑖=1(𝑌𝑖 − 𝑌𝑖)2∑𝑁

𝑖=1𝑌
2
𝑖

. (5)257

Note that the average magnitude of the phase-field damage (i.e. the integral of damage over the258

RVE divided by its area) is different for each RVE. Therfore, to appropriately compare the error259

across different RVEs, we must use the NRMSE as defined above.260

RESULTS AND DISCUSSION261

Preliminary check: damage field and peak load prediction262

We first test whether the CNN-based surrogate model is able to predict the damage field and peak263

load with reasonable accuracy, if only the spatial distribution of the fibers is varied. Therefore, we264

trained and tested the model on a sample dataset with fixed microstructure parameters of volume265

fraction 0.5 and fiber radius 4 𝜇m. This dataset includes 1000 paired binary images of RVE266

geometry and damage field. We split the dataset into 80 % training set and 20 % test set.267

Figs. 4a and 4b show the model and ground truth damage field predictions and the difference for268

the smallest and largest NRMSE in the entire test dataset, respectively. In Fig. 4c we find that the269

NRMSE of more than 80 % cases is smaller than 0.17, and the average NRMSE across all cases is270
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0.1289, suggesting good generalization behavior on novel microstructures. As evident in Fig. 4b,271

larger error tends to manifest as a difference in the magnitude of damage. Otherwise, the locations272

in the microstructure where damage occurs, and where damage is absent, are generally preserved273

well in the predicted field. This suggests that the damage field input (provided to the CNN model274

for predicting peak load) will contain useful image cues, even when the predicted input is imperfect.275

Fig. 4e shows the comparison between the peak load results obtained from the FEM and the276

image-to-image-to-value (surrogate) model. The data points are distributed along the diagonal,277

which indicates that the regression model is able to learn/capture the relationship between the dam-278

age field and the peak load. Additionally, we notice that the surrogate model tends to underestimate279

the peak load value at the higher end and overestimate at the lower end. This is possibly due to280

the relatively smaller amount of training data corresponding to the peak load extremities. The281

baseline model (cf. Section Baseline model: Predicting peak load from microstructure) results are282

shown in Fig. 4f for comparison. Fig. 4d shows that the surrogate model has more cases within 2%283

relative error and smaller maximum relative error for peak load prediction than the baseline model.284

Quantitatively, the RMSRE between surrogate model prediction and ground truth of the peak load285

is 0.0212, and the maximum relative error is 0.0576, which are both smaller than the baseline286

model (RMSRE = 0.0336, Max relative error = 0.0941). Thus, the surrogate model demonstrates287

an improved capability for predicting peak load compared to the baseline model.288

Model generalization and training set selection289

Volume fraction and fiber radii are two microstructure design parameters that can be altered290

to improve the mechanical behavior of composite materials. In the above two sections, we only291

examined the accuracy of the surrogate model when testing and training on the dataset with the292

constant volume fraction and fiber radius. In this section, we address the generalization of the293

surrogate model across a range of volume fraction and fiber radii, which can be a formidable294

challenge. Particularly, it is useful to know how to select the appropriate training dataset so that the295

ML model performs well across different test sets spanning the range of microstructure parameters.296

We consider two relatively straightforward training strategies:297
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1. Extreme: train only using the dataset corresponding to the minimum and maximum values298

of microstructure parameters;299

2. Range: train using the dataset covering the entire range of microstructure parameters.300

For both strategies, we assess the accuracy of damaged field and peak load prediction using NRMSE301

and RMSRE metrics, respectively. We utilize a separate dataset within the range of parameters to302

test the ML model’s ability to interpolate or generalize.303

Training with the extremes of fiber radius304

We trained the surrogate model with the datasets (consisting of RVE and damage field images305

and peak load values) corresponding to volume fraction 𝑣f = 0.5 and the extremes of fiber radii306

𝑅f = 2 𝜇m and 6 𝜇m. Fig. 5(a) and Fig. 6(a) shows the model performance on the test dataset307

with 𝑣f = 0.5 and intermediate fiber radius 𝑅f = 4 𝜇m. The surrogate model predicted the308

locations of damage initiation and the overall damage pattern reasonably well (results not shown309

here), despite the discrepancy in the magnitude of the damage field. The NRMSE of 96 % cases310

are smaller than 0.23 with an average NRMSE of 0.1589 for the entire distribution, as shown in311

Fig. 5(a). The relative error between the peak load predictions from the surrogate model and the312

finite element method (FEM) is quite small with RMSRE = 0.0262, which is comparable to that313

from our preliminary check (RMSRE = 0.0162) in Section Preliminary check: damage field and314

peak load prediction. Considering that the surrogate model was never trained on fiber radii of315

𝑅f = 4 𝜇m, this study suggests that the two-stage approach can successfully generalize over the316

range of microstructure design parameters.317

Training with a range of fiber radii318

We next trained the surrogate model with the datasets of all three fiber radii 𝑅f = 2, 4 and 6 𝜇m319

and tested its performance for each fiber radii, separately. The purpose of this study is understand320

which of the two training strategies (i.e. extreme or range) improves accuracy of the damage field321

and peak load prediction. Figs. 5b–5d and 6b–6d show the results assessing the surrogate model322

performance on the test datasets of three different fiber radii. The surrogate model is able to predict323

13 Gao, March 24, 2023



damage pattern reasonably well (results not shown here), even for the cases with the largest NRMSE324

in the respective test datasets. However, there are magnitude differences in the damage field images325

corresponding to surrogate model and ground truth.326

Figures 5b–5d show that the NMRSE of the predicted damage field is less than 0.15 for more327

than 90% of cases across the three test sets. We notice that the surrogate model gives the smallest328

average NRMSE for damage field prediction on the test dataset with radius 2 𝜇m (Fig. 5b). We329

suspect this is because the RVE contains a larger number of fibers distributed uniformly through the330

matrix, which reduces the variability or uncertainty arising from the spatial distribution of fibers.331

Figures 6b–6d show that the surrogate model has more cases with < 2% relative error, demon-332

strating that it can generalize well when training with a range of fiber radii. Thus, the surrogate333

model is able to learn/capture the relationship between the damage field and the peak load.334

Model performance with different datasets335

We now examine the surrogate model’s performance across the three different datasets A, B,336

and C, as shown in Table 1. To elaborate our aim here: in Section Preliminary check: damage337

field and peak load prediction, we trained and tested the surrogate model using the dataset A with338

volume fracture 𝑣f = 0.5 and fiber radii, 𝑅f = 4 𝜇m, with an 80 % – 20 % split (see Table 1); in339

Section Model generalization and training set selection thus far, we trained and tested the surrogate340

model with datasets B and C, where we trained using the dataset with the extremes and range of the341

fiber radius, and tested using the dataset with an intermediate fiber radii. Thus, in all three datasets342

the test set is the same, which allows us to identify the best training strategy for the surrogate model.343

From Table 2, it is evident that the lowest NRMSE error for damage field prediction and RMSRE344

for peak load prediction is obtained with dataset C, compared to datasets A and B. Thus, training345

the surrogate model with datasets of three different fiber radii improves its accuracy compared to346

training with the same fiber radius as the test dataset. Therefore, training the surrogate model with347

the range of fiber radii is a better choice for ensuring generalization.348
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Training with the extremes of volume fraction349

We next trained the surrogate model with the datasets corresponding to fiber radius 𝑅f = 4 𝜇m350

and the extremes of fiber volume fraction 𝑣f = 0.2 and 0.5. Fig. 5e and 6e show the model351

performance on the test dataset with 𝑣f = 0.3 and 𝑅f = 4 𝜇m. This training and test dataset is352

denoted as dataset D in Table 1. The NRMSE of 85% of cases is smaller than 0.2, despite the353

maximum NMRSE being 0.35, as shown in Fig. 5e. Fig. 6e shows the relative errors between the354

peak load predictions from the surrogate model and the FEM are less than 4 % in most cases. This355

study illustrates that the surrogate model trained over the extremes of fiber volume fraction can be356

reasonably predictive at intermediate volume fractions.357

Training with the range of volume fraction358

We now investigate whether the model will exhibit improved generalization when training with359

the range of volume fraction. Therefore, we trained the surrogate model on a dataset consisting360

of 16 different volume fractions ranging from 20 % to 50 %. The fiber radius 𝑅f = 4 𝜇m is kept361

constant, so each additional fiber in the RVE increases the fiber volume fraction by 2%. To evaluate362

the accuracy of the two training strategies (i.e. extreme versus range), the surrogate model was363

tested on the same dataset with 𝑉f = 0.3 and 𝑅f = 4 𝜇m, as in the previous section. The details of364

the two relevant datasets are given in Table. 1.365

Fig. 5f and 6f shows the results assessing the surrogate model’s performance when trained and366

tested with dataset E spanning the entire range of fiber volume fractions. The average NRMSE is367

0.1481 when trained with dataset E, as opposed to 0.1477 when trained with dataset D (see Table368

2). The RMSRE of peak load prediction for dataset E is 2.67 %, compared to 3.27 % smaller than369

with dataset D.370

This study showed that training with a range of volume fractions slightly improves the surrogate371

model’s capability to predict peak load, compared to training with the extremes of volume fractions.372

Interestingly, the improvement in peak load prediction is not accompanied by an improvement in373

predicting the damage field (c.f. Fig. 5e and Fig. 5f). This finding indicates that a diverse coverage374

of volume fraction is of more benefit for peak load generalization, and helps to mitigate the375
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overprediction bias phenomena previously.376

Discussion377

In all the above studies, we restricted our attention to “generalization” across microstructure378

parameters within the range used in training and to loading/boundary conditions corresponding to379

uniaxial tension under plane strain. To assess generalization outside of the parameter range, we380

performed a preliminary study by training the model on the dataset with 𝑅f = 2 & 4 𝜇 m and testing381

on the dataset with 𝑅f = 6 𝜇 m. We find that the peak load error from the two-stage CNN model382

is larger for prediction outside the parameter range (NMRSE = 0.0542) compared to prediction383

within the parameter range (NMRSE = 0.0262). However, if we include a few RVEs 𝑅f = 6 𝜇 m in384

the training dataset, we find that two-stage ML model accuracy improves for prediction outside the385

parameter range (NMRSE = 0.0322). This is consistent with our observation that the error is the386

smallest when trained with the range of fiber radii or volume fraction. These results are included in387

Figure S6 in the supplementary material. Model generalization for the loading/BCs can be achieved388

by encoding these conditions as an additional channel of the input image; but this is not as simple389

for nonlinear damage prediction, unlike linear elastic stress prediction and will require more data390

for training and testing.391

While non-circular carbon fiber reinforced plastics (CFRPs) may have superior performance,392

circular CFRPs are most commonly used. Therefore, we only considered circular fibers in 2D393

RVEs relying on the assumption that the fibers are well-aligned in the longitudinal (out-of-plane)394

direction. The proposed two-stage ML model illustrates that the “image-to-value" CNN model395

shows better performance when trained with rasterized damage images compared to the RVE image,396

for the same model architecture and hyperparameters. We also varied the model architecture and397

hyperparameters (e.g. by considering different initial channels and the number of convolutional398

blocks). The corresponding RMSREs given in Table S1 in the supplementary information illustrate399

that the two-stage model predictions have smaller RMSRE compared to that from the one-stage400

model. This supports our hypothesis that the damage field provides better cues to the CNN model401

in predicting the peak load.402
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CONCLUSION403

In this paper, our goal was to formulate and train a computationally inexpensive surrogate for404

the phase field damage model, which can quickly predict the damage field and peak load given the405

microstructure geometry of a unidirectional fiber-reinforced composite. To this end, we developed406

a two-stage CNN-based deep learning model – where the first stage predicts the damage field given407

a microstructure image, and the second stage takes in this predicted damage field and predicts the408

peak load value. Our preliminary check showed that the model was able to learn the relationship409

between fiber distribution, damage field and peak load, with fixed fiber radii and volume fraction.410

We next demonstrated that the direct prediction of peak load from the RVE image using the CNN-411

based image-to-value model is less accurate compared to the indirect prediction of peak load from412

the damage field image. We next assessed the generalization of the surrogate model to predict413

damage field and peak load for different fiber radii and volume fractions with different datasets.414

Although the model provided reasonably accurate predictions of the damage field and peak load415

when training with only the extremes of fiber radii and volume fraction, we find that training with416

the range of fiber radii and volume fraction improves model generalization.417
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TABLE 1. Details of the various training and test datasets

No. Training set Test set
𝑉f 𝑅f(𝜇𝑚) Size 𝑉f 𝑅f(𝜇𝑚) Size

A 0.5 4 800 0.5 4 200
B 0.5 2, 6 1000+1000 0.5 4 200
C 0.5 2, 4, 6 667+667+667 0.5 4 200
D 0.2, 0.5 4 1000+1000 0.3 4 200
E 0.2, 0.22, ...,0.5 4 130×16 0.3 4 200
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TABLE 2. Error metrics obtained for each test set

Dataset
No.

Avg. NRMSE for
damage field prediction

RMSRE for peak
load prediction

A 0.1290 0.0212
B 0.1589 0.0262
C 0.1156 0.0172
D 0.1477 0.0327
E 0.1481 0.0267
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Fig. 1. Schematic of the solid domain Ω showing the representative volume element (RVE) of
a fiber-reinforced composite and a diffused crack interface described by the phase field damage
variable 𝐷.
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Fig. 2. (a) Architecture of the baseline or one-stage CNN-based model conditioned on images of
the composite microstructure. Comparison of the peak load predicted by the model, and the peak
load calculated by FEM evaluated on: (b) the training set and (c) the test set.
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Fig. 3. (a) Architecture of the CNN based model that takes in microstructure geometry as input
(left), and predicts its corresponding damage field at peak load (right); (b) training a CNN-based
UNet for damage field prediction; (c) training a second CNN model for peak load prediction; (d)
Model inference given a new RVE geometry.
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Fig. 4. Model performance evaluation on the test set with 𝑅f = 4 𝜇m and 𝑉f = 0.5: Damage
field predicted by the UNet model and the ground truth calculated by the FEM, and the difference
between them for the case with (a) the smallest NRMSE and (b) the largest NRMSE; (c) The
distribution of NRMSE; (d) The distribution of RMSRE for the peak load prediction. The peak
load predicted by (e) the surrogate model and (f) the baseline model against that from the FEM.
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a b

c d

e f

Fig. 5. The distribution of NRMSE for the damage field predicted by the model trained and
evaluated with (a) dataset B; (b) dataset C (evaluated with 𝑅f = 2 𝜇m);(c) dataset C; (d) dataset C
(evaluated with 𝑅f = 6 𝜇m);(e) dataset D; (f) dataset E.
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Fig. 6. The distribution of relative error for the peak load predicted by the model trained and
evaluated with (a) dataset B; (b) dataset C (evaluated with 𝑅f = 2 𝜇m);(c) dataset C; (d) dataset C
(evaluated with 𝑅f = 6 𝜇m);(e) dataset D; (f) dataset E.

32 Gao, March 24, 2023


	Phase field damage model
	Ground truth data generation by finite element method
	Baseline model: Predicting peak load from microstructure
	CNN-based image-to-image-to-value surrogate model
	Error metrics
	Preliminary check: damage field and peak load prediction
	Model generalization and training set selection
	Training with the extremes of fiber radius
	Training with a range of fiber radii
	Model performance with different datasets
	Training with the extremes of volume fraction
	Training with the range of volume fraction
	Discussion


