
Towards Performant Workflows, Monitoring and
Measuring

(Invited Paper)

Jeanette Sperhac
Center for Computational Research

University at Buffalo
Buffalo, NY 14203

Email: jsperhac@buffalo.edu

Robert L. DeLeon
Center for Computational Research

University at Buffalo
Buffalo, NY 14203

Email: rldeleon@buffalo.edu

Joseph P. White
Center for Computational Research

University at Buffalo
Buffalo, NY 14203

Email: jpwhite4@buffalo.edu

Matthew Jones
Center for Computational Research

University at Buffalo
Buffalo, NY 14203

Email: jonesm@buffalo.edu

Andrew E. Bruno
Center for Computational Research

University at Buffalo
Buffalo, NY 14203

Email: aebruno2@buffalo.edu

Renette Jones-Ivey
Institute for Computational and Data Sciences

University at Buffalo
Buffalo, NY 14203

Email: renettej@buffalo.edu

Thomas R. Furlani
Roswell Park

Comprehensive Cancer Center
Buffalo, NY 14203

Email: Thomas.Furlani@roswellpark.org

Jonathan E. Bard
Genomics and Bioinformatics Core

University at Buffalo
Buffalo, NY 14203

Email: jbard@buffalo.edu

Vipin Chaudhary
Computer Science and Engineering

University at Buffalo
Buffalo, NY 14203

Email: vipin@buffalo.edu

Abstract—As part of the U.S. National Science Foundation
(NSF) funded XD Metrics Service project, we are developing tools
and techniques for the audit and analysis of High Performance
Computing (HPC) and Cloud infrastructure. This includes a suite
of tools for the analysis of HPC jobs, based on performance
metrics collected from compute nodes. To date, we have developed
two closely related utilities: XDMoD, which was designed to mon-
itor usage and performance of NSF’s innovative HPC resources
(known as XSEDE), and Open XDMoD, which was designed to
monitor usage and performance in academic, governmental or
commercial cyberinfrastructures. Considerable effort has been
made to continually improve XDMoD, in order to capture the
most important aspects of modern research computing.

One area in which XDMoD is lacking is in tracking workflows,
which are broadly designated as containing the elements of data
transfer/input and one to many computational steps. As data sets
have become larger, data movement has become more time and
resource intensive, and hence more important to characterize. In
addition, multiple step workflows, in which one input spawns
a complex series of processes, are becoming more common.
Although XDMoD currently captures some of the information
required to properly track complex workflows, there are clearly
some key data that are missing. In this paper, we discuss the
existing state of workflow monitoring, and suggest strategies to
improve on the information captured.

Index Terms—Computer Performance, Data Processing

I. INTRODUCTION

The XD Metrics on Demand (XDMoD) tool provides
stakeholders with ready access to data about utilization,
performance, and quality of service for High Performance
Computing (HPC) and cloud resources [1], [2], [3], [4],

[5]. This comprehensive tool was originally developed to
support resources for the National Science Foundation (NSF)
innovative HPC program (known as XSEDE), and has been
open-sourced and made available to general application at
universities, government laboratories, and commercial enti-
ties [6]. XDMoD enables users, managers, and operations
staff to monitor, assess and maintain quality of service for
their computational, storage, and networking resources. To do
this, XDMoD harvests data from the various resources and
displays the resulting job, usage, and accounting metrics over
any desired timeframe, using the XDMoD web interface and
its array of visual analysis and charting tools. See Figure 1
for a view of the XDMoD user interface.
Scientific workflows, here called simply workflows, execute

a series of computational or data manipulation steps. Work-
flows may consist of automated software pipelines, or loosely
associated tasks executed one after the other. Workflows typi-
cally entail the use of widely distributed computing resources
ranging from storage to compute nodes, and may enable the
processing and analysis of data from large-scale scientific
experiments. Workflows can help to organize, streamline, and
document the scientific process, and can be shared along with
datasets, assisting with reproducibility.
XDMoD is instrumented to collect metrics on many aspects

of high-performance computing, but it does not comprehen-
sively collect and associate data on scientific workflows. One
of the obstacles is that any individual workflow may perform
many disparate tasks on a variety of resources. Desirable

978-1-7281-6607-0/20/$31.00 ©2020 IEEE
Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on March 20,2023 at 14:11:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Example screenshot of the XDMoD web interface showing usage, per-
formance data and quality-of-service metrics for an academic HPC resource.

data on workflows should describe numerous facets of these
computations, such as network usage incurred by transferring
large data sets, network usage outside of HPC resources, and
resource usage on non-HPC computational infrastructure, such
as webservers and databases. Standardizing instrumentation
across resources and connecting the dots between workflow
components and tasks present a challenge to workflow moni-
toring. A goal is to instrument computing resources so that we
can better understand network usage by even informal work-
flow jobs that involve substantial data transfer in addition to
computation. However, substantial information about several
aspects of workflow usage, such as network usage within the
HPC stage of workflow jobs, can be gleaned from XDMoD
now. With this paper we explore the monitoring already in
place, as well as the components still needed, to achieve
monitoring of workflows at this level.

II. PRIOR WORK

A. System monitoring

A number of monitoring tools can be used to track HPC
performance; a few open-source examples include Ganglia [7],
Lightweight Distributed Metric Service (LDMS) [8], [9],
[10], Performance Co-Pilot (PCP) [11], TACC Stats [12], and
XALT [13]. Others are discussed elsewhere [14]. Most of these
tools track hardware and OS performance counters, enabling
determination of computational nodes’ performance. Indeed,
several of these tools (PCP [11], TACC Stats [12]) provide
raw system-level performance data to the XDMoD processing
pipeline. Network monitoring of data transfers, and large scale
file transfer monitoring, has been addressed by Globus and
others [15], [16], [17].

One of XDMoD’s strengths lies in its modular design,
which permits incorporation of new data sources, enables
configuration for use on different systems, and provides views
tailored to a range of user roles, from center directors to
application developers. As architectures and practices evolve,

XDMoD can be adapted to monitor them. The present effort to
improve monitoring of workflows is just one example of efforts
to adapt XDMoD to changing computational paradigms.

B. Workflows

Workflows are computational tasks that involve multiple
distinct steps. For example, a simple workflow could involve
copying data from a database to a shared storage area, running
computational tasks on the data to produce some output,
and then storing the output in a destination database. Each
individual task may itself involve multiple stages. The compu-
tational task could involve, for instance, a serial pre-processing
step, compute-intensive parallel processing, and finally, a serial
post-processing task.
Web-based science gateways are an example of workflows.

For the I-TASSER (Zhanglab) Gateway [18] workflow, the
process begins when a user accesses the webserver and submits
input data, which is validated and then copied over a network
for further processing on a compute cluster. Next, the data are
prepared and an HPC job is submitted to the XSEDE Comet
resource. Once the HPC job is complete, the results are copied
back to the gateway cluster, and final processing generates
web page output. Finally, the user is sent an informational
email, and can then access the webserver and download the
results. Each step summarized here itself consists of multiple
computational and data processing tasks.
Workflows can take on several different forms. They can be

based on formal workflow utilities such as Pegasus [19] and
Apache Taverna [20], or specifications such as the Common
Workflow Language (CWL) [21] and Open Workflow Defini-
tion Language (OWDL) [22]. They can be produced by spe-
cific procedures encoded on gateways such as Zhanglab [18],
as described above, and many others in XSEDE [23]. Prob-
ably most commonly, workflows can be informal, custom
procedures to transfer data and then operate on it, which are
developed to address some specific processing requirement.
High-level monitoring of workflows is critical to ensuring

access to resources and planning for future acquisition, among
other concerns. Workflow monitoring is provided by a num-
ber of utilities and gateway frameworks, including Apache
Airavata [24], PIM [25], and others. For example, Apache
Airavata XBaya, which supports various workflow runtimes, is
capable of tracking workflow progress either synchronously or
asynchronously; similarly, Pegasus and others offer extensive
workflow monitoring capabilities.
Much workflow monitoring is understandably focused on

development-time tracking, error detection and recovery, es-
tablishing correctness and performance, and verifying prove-
nance [26], [27]. This focus is needed to produce useful,
extensible workflows and advance scientific results. However,
monitoring that takes a longer view will help to establish
trends in the demand for workflows. Accessing and cataloging
the metadata collected by workflow runtimes will be key to
establishing these pipelines and ultimately providing these
metrics. In this paper we pursue some higher-level aspects
of workflow monitoring to enable a better understanding of

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on March 20,2023 at 14:11:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. GHub crevasse detection workflow schematic. Yellow=user tasks;
blue=tasks automated in software, illustrates how the workflow handles data
wrangling and HPC job submission. Previously, scientists performed all steps
of the workflow manually.

workflow demand and the corresponding computational and
infrastructure needs of these useful tools.

III. WORKFLOW CASE STUDIES

To illustrate the issues presented by data-intensive work-
flows, we present two case studies that show different types
of issues from a monitoring perspective.

A. Crevasse detection workflow

An example of a workflow that encompasses data acquisi-
tion and processing followed by computation is a crevasse
detection workflow that runs on the Greenland Hub Gate-
way [28] hosted at the University at Buffalo (UB) Center for
Computational Research (CCR) [29]. In Southeast Greenland,
cold air temperatures and high snowfall rates give rise to
firn aquifers, vast stores of liquid water beneath the ice-sheet
surface [30]. Though invisible from the surface, firn aquifers
drain through crevasses to the glacier bed, influencing the
flow of the ice above [31]. The crevasses, which are variable
from one year to the next, are visible from the surface. Better
information on crevasse location is needed to inform the
glacier melting models prepared by ice-sheet scientists.

The crevasse detection workflow provides a direct way
to infer the drainage patterns of the firn aquifers around
Greenland in space and time. Figure 2 shows the workflow
consisting of multiple, formerly user-intensive processes that
are pipelined together.

A user submits the year range, crevasse detection toler-
ances, and the latitude/longitude bounds of interest, using a
Jupyter Notebook hosted on the GHub gateway [32]. The
Pegasus workflow then allocates compute nodes on the CCR
academic HPC cluster, from which it accesses, processes, and
grids the appropriate IceBridge altimetry datasets from the

National Snow and Ice Data Center (NSIDC) [33]. It then
runs a crevasse-identifying algorithm on the gridded data [34].
Finally, the workflow returns the results for the user to view
and download. Results include plots and text files of crevasse
size, shape, depth, and locations. Refer to Figure 3 for an
example output plot from the workflow showing identified
crevasse features.

Fig. 3. GHub crevasse detection workflow output. Features depicted in the
bottom plot signify crevasses identified according to user-supplied tolerances.

Typically, substantial user interaction would be required
to complete each of the steps in this computation. To run
this workflow, however, the user need only interact with a
GUI running in a web browser. This workflow pushes both
the management of the job and the data selection, transfer,
and conversion into the background, allowing the scientist to
focus on their analysis. The workflow can be readily shared
along with datasets, peer reviewed papers, and conference
presentations, for reproducible and shared research outcomes.
XDMoD can provide a time evolution view of the HPC

portion of formal workflows of this sort. The two timeseries
plots in Figure 4 illustrate a crevasse workflow job with its
initial data transfer step that ran within the HPC job portion
of the workflow. In the bottom plot, data staging can be seen
as two spikes that occur in the data transfer rate; once the
data have been programmatically selected on NSIDC’s web
portal [35] and downloaded to the HPC resource’s scratch
space, the CPU User % rises, as shown in the top plot,
indicating that the staged data are being processed.
Figure 5 shows average CPU User % for selected workflow

jobs. These jobs were submitted to UB CCR HPC resources by

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on March 20,2023 at 14:11:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 4. XDMoD timeseries plots from an individual HPC job show the effect
of workflow data staging. Top plot shows the CPU User % on the compute
nodes; bottom plot shows data transfer rates between the compute nodes and
the parallel filesystem (MiB/second). Note the peaks corresponding to fetching
the dataset (bottom) precede the high CPU usage (top) which indicates actual
processing.

two HUBzero-based gateways, VHub1 and GHub,2 from 2019-
03-01 to 2020-03-31. Most are workflow jobs run via Pegasus.
This figure illustrates the conundrum posed by these jobs:
While we can fully characterize them on the system side, we
have little to no insight into how the workflow was developed
and deployed. By making performance profiles available to
workflow developers and end users, real gains can be made in
understanding overall workflow efficiency.

B. Informal genomics workflow

Recent technological advances in the biological sciences
field of next-generation sequencing has led to a dramatic
increase in data production and demand for computational
power. Each data point produced by such sequencing platforms
consists of strings of “A”, “G”, “C”, and “T” characters, fifty
to three hundred elements long, representing the sequenced
DNA, along with associated data quality scores. Illumina-
based sequencing platforms, such as the NovaSeq, are capable
of producing 10 billion data points in the course of 48 hours.
The task of routinely analyzing this large quantity of complex
data requires scientific workflows.

Once sequenced on the Illumina platform, the data undergo
primary and secondary analysis using CCR’s compute clusters.
Figure 6 shows the CPU User % and data transfer rate for

1https://vhub.org
2https://vhub.org/groups/ghub/

Fig. 5. Workflow jobs submitted from the GHub and VHub gateways, 2019-
03-01 to 2020-03-31, are characterized by their CPU user time efficiency in
this XDMoD plot (100% is full CPU usage by the user application). Here,
fully 50% of the jobs show CPU User % of 70% or better (Reading clockwise
from the top of the chart, medium blue, >90%; red, 80–90%, and dark grey,
70–80%).

a genomics workflow. This workflow uses the HISAT2 [36]
alignment program to map next-generation sequencing reads.
For RNA sequencing experiments, raw sequencing data is
submitted for transcriptomic alignment to standard reference
genomes using HISAT2. During alignment, each character
string of DNA is compared against a reference genome
containing the sequence for the appropriate organism. Each
Illumina-based sequencing experiment produces data for mul-
tiple biological samples (typically between 6 and 48), each
requiring alignment. Using a custom batch script, samples and
their reference data are submitted to the HPC resource, each
sample as a separate job. HISAT2 then processes the sequence
data, and maps each data point to the reference genome.
Once each data point has been associated to the correct
position in the reference, the data set is sorted along a linear
representation of the specified reference using a coordinate
based system. This final step, in which each data point is
coordinate-sorted and written out to the final output file, is
typically I/O bound.
The runtime performance of the full genomics workflow is

dictated by two primary factors, depth-of-sequencing (number
of data points per sample), and the size of the reference
genome. For instance, the human reference genome has more
than three-billion nucleotides, whereas the E. coli bacterium
has just over five million nucleotides. This dramatic difference
in reference genome size directly impacts the time for align-
ment and final sorting. This HISAT2-based workflow is the
most common sequencing pipeline used by the UB Genomics
and Bioinformatics Core facility, with slight variations depen-
dent on the biological questions being addressed.
Due to the size and number of input files, data staging is

a critically important element of genomics workflows. The
sequencing instruments used by UB’s Genomics Core are di-
rectly connected to CCR’s HPC storage systems, and typically
produce several TiB per run. Despite the direct connection,
data transfers from the sequencers to the HPC storage are not
currently tracked, making it difficult to associate data transfers

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on March 20,2023 at 14:11:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 6. XDMoD timeseries plots from an individual HPC job show a workflow
pipeline in which the data was pre-staged. Top plot shows the CPU User % on
the compute nodes; bottom plot shows data transfer rates between the compute
nodes and the parallel filesystem (MiB/second). Note the initial CPU intensive
stage (top), followed by post processing writing out the results (bottom).

with the corresponding downstream HISAT2 alignment jobs.
However, even if the resources were instrumented to monitor
the data transfer, linking the data staging to the actual informal
workflow job would still be challenging.

As a result, the XDMoD timeseries plots illustrating the
workflow fail to capture the initial data transfer step, as shown
in Figure 6. As before, the top plot shows CPU User %, and
the bottom shows data transfer rate, but the dataset is already
staged, in contrast to that shown in Figure 4. The workflow
itself is constrained by the underlying filesystem, resulting in
the tight correlation seen between CPU and I/O load in Figure
6. However, this workflow is able to take good advantage of
processing power by ensuring that the necessary data are close
to the processors. The job illustrated here was also memory
intensive, hence the filesystem performance was exposed due
to the lack of I/O caching in memory.

In the case of the genomics workflow, it is less clear that any
inefficiency is incurred by the data transfer time itself, given
that data transfer happens asynchronously with the computing
portion of the work. Certainly there is a time cost to the data
transfer, however, in that the compute portion must wait until
the initial transfer is complete.

In contrast to the Pegasus workflow described in Section
III-A above, many data-intensive scientific workflows are ad-
hoc, requiring user intervention for data transfer and pro-
cessing, and complicating metric collection on these jobs. In
order to determine data transfer information for these informal

workflows, it may be necessary to secure cooperation or data
sharing from the submitting user, in addition to instrumenting
the transfer or compute nodes.

IV. ANALYSIS

A. Computational signatures of workflows

Though there is great variation among workflows, both
formal and informal, a common factor is the substantial use
and transfer of datasets. Indeed, workflows exist because they
can smoothly incorporate the handling, transfer, validation and
conversion of data together with computation steps, simpli-
fying the execution of these processes. The movement of
large datasets for custom user workflows is not specifically
tracked in XDMoD. To demonstrate that this hampers our
understanding of the true resource use of workflows, we
investigated ways that large data transfer workloads differ
from routine HPC jobs. To do so, we compared the XSEDE
jobs that most heavily used the Lustre parallel filesystem with
those that showed average Lustre usage. The data are from
the XDMoD database for XSEDE from 2019–2020; analysis
includes approximately 15M jobs; the results are shown in
Figure 7. Not surprisingly, for the large data transfer jobs, the
CPU spends a higher fraction of its time in system mode. This
time spent in system mode represents the system overhead on
handling and transferring datasets of substantial size.
Unfortunately, the main effects of transferring large data sets

in preparation for computation is the time spent on transfer
nodes, which delays the time to science and exaggerates bot-
tlenecks in the parallel filesystems. These drawbacks manifest
in increased job wall time, which decreases resource efficiency
and throughput. However, these effects are not well captured
to date.
For example, most if not all large filesystems provide

monitoring tools that can be used to track usage due to various
activities. Figure 8 shows one such annual plot for a local
HPC resource [29] running IBM’s Spectrum Scale (formerly
known as GPFS). While the overall traffic shown can be
traced to individual users, the filesystem reporting provides
no insight into per-job data movement. One can subtract the
job contribution (measured by XDMoD and its supporting
toolchains) from the filesystem view, but that is still not
sufficient to identify the actual workflow contributions (some
contributions can instead be due to completely unrelated lower
priority tasks such as remote backup, synchronization, etc.).

B. Workflows and gateways

In recent years, there has been a substantial gain in science
gateways usage as a percentage of NSF XSEDE usage [37],
[38]. Gateway jobs that run on computing resources external to
the gateways themselves can be considered to be workflows,
at least nominally; such jobs must stage and transfer data,
queue and run remote computations, then collect, transfer, and
represent the results for the gateway enduser to collect. Figure
9 shows the growth of gateway usage (in CPU Hours) on the
SDSC’s Comet resource over the five year period 2015–2020.
Note the log scale on the y-axis and the order of magnitude

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on March 20,2023 at 14:11:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 7. Density plot of the number of jobs of HPC jobs running on XSEDE
resources broken down by the fraction of time the O/S on the compute nodes
ran in system mode. For jobs that transfer more data to the Lustre parallel
filesystem, the CPU spends a much higher fraction of its time in the system
mode than do jobs with typical Lustre usage. Red line: jobs with Lustre
transmit rates greater than 1012 Bytes; Black line: jobs with Lustre transmit
rates between 108 and 109 Bytes. The data are for XSEDE in the last year
and the analysis includes 15M jobs.

growth in the relative gateway usage, and thus, workflow
usage.

Many of these gateways jobs are large bioinformatics work-
flows. Zhanglab [18] and Cipres [39] are two such bioinfor-
matics gateways, and the two most heavily used in XSEDE.
Figure 10 shows a hint of how such gateway workflows are
different from other jobs on the same resource. The data
plotted in the figure were gathered by XDMoD on SDSC
Comet, an XSEDE resource, during 2019–2020. The analysis
includes 4.5M jobs. As for the large parallel file system usage
jobs, the CPU spends more time in the system mode on these
gateway jobs than on the majority of other Comet jobs, again
suggesting that substantial file transfer may be contributing to
this overhead.

V. DISCUSSION

Since workflows are prominently featured in bioinformatics
and other data-intensive computations, we seek to position
XDMoD to better monitor workflows. Labeling jobs as being
or belonging to workflows, capturing the metadata that de-

Fig. 8. Overall throughput to UB CCR’s scratch filesystem over a one
year period. Top plot shows read/write bandwidth, bottom plot shows I/O
operations.

scribes these jobs, assembling the data from various sources,
determining appropriate metrics, and then designing means of
reporting this information to users must all be considered.
Numerous pitfalls complicate monitoring data transfers in

these informal workflows. These include: time lag between
receiving data from different resources using the workflow,
tracking extent of data transfer, and inferring network speeds.
Additionally, collecting workflow information may require
cooperation (data sharing) from the submitting user, gateway,
and/or workflow framework.

A. Labeling workflow components

For informal workflows, the smaller jobs that form workflow
components must be identified with labels or names. In the
simplest case, consistent job naming schemes could help
identify workflow related jobs so that their metadata could
be processed together. This approach has the advantage of
being simple and robust to the choice of resource manager. Al-
ternately, something akin to Slurm workload characterization

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on March 20,2023 at 14:11:10 UTC from IEEE Xplore. Restrictions apply.

Fig. 9. XDMoD plot of the growth of gateway usage (CPU Hours) on SDSC
Comet from 2015 to 2020. y axis is log scale. Note the order of magnitude
growth in the relative gateway usage.

Fig. 10. Density plot of the number of jobs comparing CPU System % for
Gateway jobs against other jobs, all run on the SDSC Comet XSEDE resource.
Note the the larger fraction of time that the CPU spends in the System mode
on the gateway jobs. The data, from 2019–2020, encompass 4.5M jobs.

keys (WCKey) could be used to label workflow component
parts [40]. Such keys could be set up for tasks such as the
genomics alignment described in Section III-B. Then, using
the key, Slurm could tag the job. Subsequent processing of
job metadata by XDMoD could then associate job elements
labeled in this way. The disadvantage of such an approach is
that it is specific to the Slurm resource manager.
Many apparently informal workflows consist of compu-

tational tools and software components, strung together to
form workflows. Some such tools are quite sophisticated.
Partnerships with tool developers could help encourage them
to place the right hooks in their codes so that they are chained
together to provide tracking metadata as well as accomplishing
the needed computational work.
In the case of “formal” workflows such as the one described

in Section III-A, some information about the workflow is
known. Even then, however, some workflows are missed.
Classification of the job software may be incorrect, or job
names may be misleading. Even for these workflows, labeling
and naming can be useful.

B. Job characteristics of interest

In order to monitor and characterize workflows, numerous
types of data should be gathered, and the relevant metrics
offered, for example:

• data transfer rates and network usage;
• CPU usage;
• CPU counters;
• network usage outside of HPC resources;
• and resource usage on non-HPC infrastructure, such as

webservers and databases.
This list is not intended to be comprehensive, but rather to
illustrate the current set of metrics useful for characterizing
workloads. The onus is then on the ability to systematically
harvest these metrics for workflows.

C. Capturing workflow information

Once workflows are labeled and identified, the next step is
capturing their information. In the case of formal workflows,
numerous frameworks such as Pegasus and others provide
extensive means for monitoring different workflow stages and
components. The challenge for a system such as XDMoD
would lie in collecting, associating, and aggregating these
data, in a fashion sufficiently general for different workflow
specification standards to make use of it. Ideally, user commu-
nities could assist by developing and contributing adapters for
different workflow specifications’ data, enabling unified data
collection. Additionally, for formal workflows, it should be
possible to capture the workflow data transfers per job, since
file staging is controlled within the workflow.
Informal workflows, which are not organized using work-

flow specifications or software, make information capture
much more difficult. The data collection options presented by
workflow frameworks are absent in this case. For informal
workflows, associating data such as network transfers with
a given workflow is also more of a challenge. These could

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on March 20,2023 at 14:11:10 UTC from IEEE Xplore. Restrictions apply.

be inferred based on time, however, this will result in false
positives. Liu et al. [16] developed a system for automatically
identifying I/O intensive jobs from the logs of the filesystem
I/O nodes. They were able to mine the correlation between
I/O traffic and application executions to obtain information
on application I/O patterns. This data mining relies on the
assumption that a given application has a consistent I/O pattern
that remains the same between different HPC jobs. Such an
approach might be useful here.

Once we know the data transfer is occurring inside the
workflow, we can make inferences about network speed, etc.
Monitoring information collected from gateway frameworks
will be useful, in the case of formal workflows. Instrumen-
tation of transfer nodes or logs from, e.g., Globus can also
be put to use. It may be possible to note where low CPU
User figures correspond to data fetch. Furthermore, known
workflow jobs (e.g.) could be represented in a way that
highlights the different aspects of the workflow, time taken
in different inferred tasks, for instance. In addition to metrics
currently collected by XDMoD, it will be important to tie
into both additional monitoring tools, like perfSONAR[17] for
networking and Globus[15] for large scale file transfer, as well
as formal workflow tools like Pegasus and similar frameworks.

Although there are commercial products [41] that do in-
frastructure and application monitoring on clouds, including
hybrid clouds, these products do not work with applications
involving complex workflows or require large effort for every
specific workflow. However, these products have sophisticated
methods for doing synthetic (active) monitoring to simulate a
path that a customer would take to execute their application.
These paths can then be continuously monitored for avail-
ability, response time and functionality. Combining synthetic
and passive monitoring (as in current verion of XDMoD) will
allow for quantifying user experience.

VI. CONCLUSION & FUTURE WORK

Workflows will continue to grow in importance in com-
putational science and engineering, particularly as more re-
searchers engage from diverse fields of study. As more compu-
tational resources are located off premise (e.g., clouds), how do
we ensure that these workflows achieve maximum efficiency
in computation, storage, and network usage?

• Provide quantitative feedback on performance and utiliza-
tion to both developers and users,

• Expose the underlying bottlenecks in all aspects of the
environment,

• Gather information regarding workflows (formal and in-
formal) across various disciplines and resources for a
holistic view.

It will be increasingly important to tie together the disparate
sources of metrics, including everything from workflow frame-
work monitoring outputs, and network information, to provide
a comprehensive view of overall workflow performance.

ACKNOWLEDGEMENT

The authors would like to thank CCR Systems Admin-
istration staff member Sam Guercio and the members of
the XDMoD development team, including Cynthia Cornelius,
Steven M. Gallo, Greg Dean, Jeffrey T. Palmer, Benjamin
Plessinger, Ryan Rathsam, Nikolay Simakov, and former
members Rudra Chakraborty, Martins Innus, Thomas Yearke,
Amin Ghadersohi, and Ryan Gentner.
This work was performed in part at the University at

Buffalos Center for Computational Research [29]. We also
acknowledge use of resources procured under NIH award
S10OD024973 (”High Performance Data and Computing In-
frastructure”), and under NSF award 1724891 (MRI: Acquisi-
tion of High Performance Computing Infrastructure to Support
Computational and Data-Enabled Science and Engineering).
This work was sponsored by the National Science Foundation
under award ACI 1445806 for the XD Metrics Service (XMS).
Vipin Chaudhary was funded by an NSF IPA grant. Opinions,
findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect
the views of the National Science Foundation.

REFERENCES

[1] Center for Computational Research, University at Buffalo, “XD Metrics
on Demand (XDMoD),” https://xdmod.ccr.buffalo.edu, 2017.

[2] J. C. Browne, R. L. DeLeon, A. K. Patra, W. L. Barth, J. Hammond,
M. D. Jones, T. R. Furlani, B. I. Schneider, S. M. Gallo, A. Ghadersohi,
R. J. Gentner, J. T. Palmer, N. Simakov, M. Innus, A. E. Bruno, J. P.
White, C. D. Cornelius, T. Yearke, K. Marcus, G. von Laszewski, and
F. Wang, “Comprehensive, open-source resource usage measurement
and analysis for HPC systems,” Concurrency and Computation: Practice
and Experience, vol. 26, no. 13, pp. 2191–2209, 2014, cPE-14-0027.R1.
[Online]. Available: https://dx.doi.org/10.1002/cpe.3245

[3] T. R. Furlani, M. D. Jones, S. M. Gallo, A. E. Bruno, C.-D. Lu,
A. Ghadersohi, R. J. Gentner, A. K. Patra, R. L. DeLeon, G. von
Laszewski, L. Wang, and A. Zimmerman, “Performance metrics and
auditing framework using applications kernels for high performance
computer systems,” Concurrency and Computation, 2012.

[4] T. R. Furlani, B. I. Schneider, M. D. Jones, J. Towns, D. L. Hart,
S. M. Gallo, R. L. DeLeon, C. Lu, A. Ghadersohi, R. J. Gentner, A. K.
Patra, G. Laszewski, F. Wang, J. T. Palmer, and N. Simakov, “Using
XDMoD to facilitate XSEDE operations, planning and analysis,” in
Proceedings of the Conference on Extreme Science and Engineering
Discovery Environment: Gateway to Discovery (XSEDE ’13). ACM,
2013, p. 8.

[5] J. C. Browne, R. L. DeLeon, C. Lu, M. D. Jones, S. M. Gallo,
A. Ghadersohi, A. K. Patra, W. L. Barth, J. Hammond, T. R. Furlani, and
R. T. McLay, “Enabling comprehensive data-driven system management
for large computational facilities,” in Proceedings of SC13: International
Conference for High Performance Computing, Networking, Storage and
Analysis (SC ’13). ACM, 2013, p. 11.

[6] J. T. Palmer, S. M. Gallo, T. R. Furlani, M. D. Jones, R. L. DeLeon,
J. P. White, N. Simakov, A. K. Patra, J. M. Sperhac, T. Yearke,
R. Rathsam, M. Innus, C. D. Cornelius, J. C. Browne, W. L. Barth,
and R. T. Evans, “Open XDMoD: A tool for the comprehensive
management of high-performance computing resources,” Computing in
Science and Engineering, vol. 17, no. 4, pp. 52–62, 2015. [Online].
Available: https://dx.doi.org/10.1109/MCSE.2015.68

[7] M. L. Massie, B. N. Chun, and D. E. Culler, “The ganglia distributed
monitoring system: design, implementation, and experience,” Parallel
Computing, vol. 30, no. 7, pp. 817 – 840, 2004. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167819104000535

[8] A. Agelastos, B. Allan, J. Brandt, P. Cassella, J. Enos, J. Fullop, A. Gen-
tile, S. Monk, N. Naksinehaboon, J. Ogden, M. Rajan, M. Showerman,
J. Stevenson, N. Taerat, and T. Tucker, “The lightweight distributed
metric service: A scalable infrastructure for continuous monitoring of

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on March 20,2023 at 14:11:10 UTC from IEEE Xplore. Restrictions apply.

large scale computing systems and applications,” in SC14: International
Conference for High Performance Computing, Networking, Storage and
Analysis, Nov 2014, pp. 154–165.

[9] J. M. Brandt, A. C. Gentile, D. J. Hale, and P. P. Pebay, “Ovis: a
tool for intelligent, real-time monitoring of computational clusters,” in
Proceedings 20th IEEE International Parallel Distributed Processing
Symposium. IEEE Computer Society, April 2006, pp. 8 pp.–.

[10] S. Feldman, D. Zhang, D. Dechev, and J. Brandt, “Extending
ldms to enable performance monitoring in multi-core applications,”
in Proceedings of the 2015 IEEE International Conference on
Cluster Computing, ser. CLUSTER ’15. Washington, DC, USA:
IEEE Computer Society, 2015, pp. 717–720. [Online]. Available:
https://doi.org/10.1109/CLUSTER.2015.125

[11] Silicon Graphics Inc, Aconex, and Red Hat, “Performance Co-Pilot
(pcp),” https://pcp.io, 2000.

[12] T. Evans, W. L. Barth, J. C. Browne, R. L. DeLeon, T. R. Furlani,
S. M. Gallo, M. D. Jones, and A. K. Patra, “Comprehensive resource
use monitoring for HPC systems with TACC Stats,” in Proceedings
of the First International Workshop on HPC User Support Tools, ser.
HUST ’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 13–21.
[Online]. Available: https://dx.doi.org/10.1109/HUST.2014.7

[13] K. Agrawal, M. R. Fahey, R. McLay, and D. James, “User environment
tracking and problem detection with XALT,” in Proceedings of the
First International Workshop on HPC User Support Tools, ser. HUST
’14. Piscataway, NJ, USA: IEEE Press, 2014, pp. 32–40. [Online].
Available: https://dx.doi.org/10.1109/HUST.2014.6

[14] T. Furlani, M. Jones, S. Gallo, A. Bruno, C. Lu, A. Ghadersohi, R. Gen-
tner, A. Patra, R. DeLeon, G. Laszewski, L. Wang, and A. Zimmerman,
“Performance metrics and auditing framework using application kernels
for high-performance computer systems,” Concurrency and Computa-
tion: Practice and Experience, vol. 25, p. 918, 2013.

[15] I. Foster, “Globus online: Accelerating and democratizing science
through cloud-based services,” IEEE Internet Computing, vol. 15, no. 3,
pp. 70–73, 2011.

[16] Y. Liu, R. Gunasekaran, X. Ma, and S. S. Vazhkudai, “Server-side log
data analytics for i/o workload characterization and coordination on large
shared storage systems,” in SC16: International Conference for High
Performance Computing, Networking, Storage and Analysis, Nov. 2016,
pp. 819–829.

[17] T. perfSONAR Project and contributors, “performance service-oriented
network monitoring architecture (perfsonar),” https://perfsonar.net, 2005.

[18] W. Zheng, C. Zhang, E. W. Bell, and Y. Zhang, “I-tasser gateway:
A protein structure and function prediction server powered by
xsede,” Future Generation Computer Systems, vol. 99, pp. 73 – 85,
2019. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167739X18314705

[19] E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan, P. J.
Maechling, R. Mayani, W. Chen, R. F. da Silva], M. Livny, and
K. Wenger, “Pegasus, a workflow management system for science
automation,” Future Generation Computer Systems, vol. 46, pp. 17
– 35, 2015. [Online]. Available: http://www.sciencedirect.com/science/
article/pii/S0167739X14002015

[20] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers,
S. Owen, S. Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher,
J. Bhagat, K. Belhajjame, F. Bacall, A. Hardisty, A. Nieva de la
Hidalga, M. P. Balcazar Vargas, S. Sufi, and C. Goble, “The Taverna
workflow suite: designing and executing workflows of Web Services
on the desktop, web or in the cloud,” Nucleic Acids Research,
vol. 41, no. W1, pp. W557–W561, 05 2013. [Online]. Available:
https://doi.org/10.1093/nar/gkt328

[21] P. Amstutz, M. R. Crusoe, N. Tijani, (editors), B. Chapman,
J. Chilton, M. Heuer, A. Kartashov, D. Leehr, H. Mnager,
M. Nedeljkovich, M. Scales, S. Soiland-Reyes, and L. Sto-
janovic, “Common workflow language, v1.0. specification,” Common
Workflow Language working group, 2016, https://w3id.org/cwl/v1.0/
doi:10.6084/m9.figshare.3115156.v2.

[22] J. Gentry, C. Llanwarne, M. Lin, P. Magee, B. OConnor, O. Rodeh, and
G. V. der Auwera, “Open workflow definition language (open wdl),”
https://openwdl.org/.

[23] “XSEDE Science Gateway Catalog,” https://www.xsede.org/ecosystem/
science-gateways.

[24] S. Marru, L. Gunathilake, C. Herath, P. Tangchaisin, M. Pierce,
C. Mattmann, R. Singh, T. Gunarathne, E. Chinthaka, R. Gardler,
A. Slominski, A. Douma, S. Perera, and S. Weerawarana, “Apache

airavata: A framework for distributed applications and computational
workflows,” in Proceedings of the 2011 ACM Workshop on Gateway
Computing Environments, ser. GCE 11. New York, NY, USA:
Association for Computing Machinery, 2011, p. 2128. [Online].
Available: https://doi.org/10.1145/2110486.2110490

[25] T. Kroes, H. Achterberg, M. Koek, A. Versteeg, W. Niessen, A. van der
Lugt, P. van het Hof, B. van Lew, and B. Lelieveldt, “PIM: A
visualization-oriented web application for monitoring and debugging
of large-scale image processing studies,” in Medical Imaging 2020:
Imaging Informatics for Healthcare, Research, and Applications, P.-H.
Chen and T. M. Deserno, Eds., vol. 11318, International Society for
Optics and Photonics. SPIE, 2020, pp. 62 – 68. [Online]. Available:
https://doi.org/10.1117/12.2541540

[26] M. D. Valerio, S. S. Sahoo, R. S. Barga, and J. J. Jackson, “Capturing
workflow event data for monitoring, performance analysis, and man-
agement of scientific workflows,” in 2008 IEEE Fourth International
Conference on eScience, 2008, pp. 626–633.

[27] E. Deelman, T. Peterka, I. Altintas, C. D. Carothers, K. K. van Dam,
K. Moreland, M. Parashar, L. Ramakrishnan, M. Taufer, and J. Vetter,
“The future of scientific workflows,” The International Journal of High
Performance Computing Applications, vol. 32, no. 1, pp. 159–175,
2018. [Online]. Available: https://doi.org/10.1177/1094342017704893

[28] J. Sperhac, K. Poinar, R. Jones-Ivey, J. Briner, B. Csatho, S. Nowicki,
E. Simon, and A. Patra, “Ghub: Building a glaciology gateway to
unify a community,” in Gateways ’19 Proceedings, September 2019,
doi:10.17605/OSF.IO/JGHBZ.

[29] Center for Computational Research, University at Buffalo, “UB CCR
Support Portfolio,,” 2020, http://hdl.handle.net/10477/79221.

[30] Forster, R. R. and Box, J. E. and van den Broeke, M. R. and Miège, C.
and Burgess, E. W. and van Angelen, J. H., “Extensive liquid meltwater
storage in firn within the Greenland ice sheet,” Nature Geoscience,
vol. 7, pp. 95–98, 2014.

[31] Poinar, K and Joughin, I and Lilien, D and Brucker, L and Kehrl, L
and Nowicki, S, “Drainage of Southeast Greenland Firn Aquifer Water
through Crevasses to the Bed,” Front. Earth Sci., vol. 5, 2017.

[32] GHub project team, “GHub Gateway,” https://vhub.org/groups/ghub/,
2019, accessed March 31, 2020.

[33] “National Snow and Ice Data Center (NSIDC), U.S.” https://nsidc.org/.
Accessed March 31, 2020.

[34] A. Petty, M. Tsamados, N. Kurtz, S. Farrell, T. Newman, J. Harbeck,
D. Feltham, and J. Richter-Menge, “Characterizing arctic sea ice topog-
raphy using high-resolution icebridge data,” The Cryosphere, vol. 10,
pp. 1161–1179, 2016.

[35] M. Studinger, “IceBridge ATM L1B elevation and return strength,
version 2,” Boulder, Colorado, USA. NASA National Snow and Ice
Data Center Distributed Active Archive Center, 2013, updated 2020, doi:
https://doi.org/10.5067/19SIM5TXKPGT. Accessed March 20, 2020.

[36] D. Kim, B. Langmead, and S. L. Salzberg, “Hisat: a fast spliced aligner
with low memory requirements,” Nature Methods, vol. 12, no. 4, pp.
357–360, 2015. [Online]. Available: https://doi.org/10.1038/nmeth.3317

[37] N. A. Simakov, J. P. White, R. L. DeLeon, S. M. Gallo, M. D.
Jones, J. T. Palmer, B. D. Plessinger, and T. R. Furlani, “A
Workload Analysis of NSF’s Innovative HPC Resources Using
XDMoD,” CoRR, vol. abs/1801.04306, 2018. [Online]. Available:
http://arxiv.org/abs/1801.04306

[38] J. M. Sperhac, R. L. DeLeon, T. R. Furlani, S. M. Gallo, M. Innus,
M. D. Jones, J. T. Palmer, A. Patra, B. D. Plessinger, R. Rathsam,
N. Simakov, J. P. White, R. Chakraborty, and G. Dean, “Managing
computational gateway resources with xdmod,” Future Generation
Computer Systems, vol. 98, pp. 154 – 166, 2019. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167739X18310732

[39] M. A. Miller, W. Pfeiffer, and T. Schwartz, “The cipres science gateway:
A community resource for phylogenetic analyses,” in Proceedings of
the 2011 TeraGrid Conference: Extreme Digital Discovery, ser. TG 11.
New York, NY, USA: Association for Computing Machinery, 2011.
[Online]. Available: https://doi.org/10.1145/2016741.2016785

[40] A. Yoo, M. Jette, and M. Grondona, “SLURM: Simple Linux Utility
for Resource Management,” in Lecture Notes in Computer Science,
D. Feitelson, L. Rudolph, and U. Schwiegelshohn, Eds. Berlin:
Springer, 2003, vol. 2862, ch. Job Scheduling Strategies for Parallel
Processing. JSSPP 2003.

[41] “Dynatrace,” https://www.dynatrace.com.

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on March 20,2023 at 14:11:10 UTC from IEEE Xplore. Restrictions apply.

