

**1 Contrasting patterns of venom regeneration in a centipede
2 (*Scolopendra viridis*) and a scorpion (*Centruroides hentzi*)
3 Gunnar S. Nystrom^a, Lucy G. Fry^a, Schyler A. Ellsworth^a, and Darin R. Rokyta^{a,*}**

4 ^a Department of Biological Science, Florida State University, Tallahassee, Florida 32306

5

6 * Corresponding author: drokyta@bio.fsu.edu

7 **Keywords:** centipede, scorpion, venom, regeneration

8 Corresponding author:

9 Darin R. Rokyta

10 Florida State University

11 Department of Biological Science

12 319 Stadium Dr.

13 Tallahassee, FL USA 32306-4295

14 email: drokyta@bio.fsu.edu

15 phone: (850) 645-8812

¹⁶ Abstract

¹⁷ As biochemical traits with clear fitness consequences, venoms serve a critical ecological
¹⁸ role for the animals that produce them. Understanding how venoms are maintained
¹⁹ and regenerated after use will, therefore, provide valuable insight into the ecology of
²⁰ venomous animals. Furthermore, most studies on venomous organisms often require
²¹ removing animals from the wild and waiting extended periods of time between venom
²² extractions. Uncovering the patterns of venom regeneration across different species will
²³ likely lead to the development of more efficient venom extraction protocols, reducing
²⁴ both experimental time and the number of animals required. Using reversed-phase high-
²⁵ performance liquid chromatography, we identified asynchronous regeneration of venom
²⁶ protein component abundances in the centipede *Scolopendra viridis* but found no ev-
²⁷ idence for asynchronous venom regeneration in the scorpion *Centruroides hentzi*. We
²⁸ also observed high levels of intraspecific venom variation in *C. hentzi*, emphasizing the
²⁹ importance of testing for intraspecific venom variation in studies evaluating the syn-
³⁰ chronicity of venom regeneration. Although the regeneration of relative venom protein
³¹ component abundances is an asynchronous process in *S. viridis*, we provide evidence
³² that the presence-absence of major venom components is not an asynchronous process
³³ and suggest that studies relying on just the presence/absence of individual proteins (e.g.
³⁴ bioprospecting, drug discovery) could use catch-and-release methods of venom extraction
³⁵ to reduce the number of animals removed from the wild.

36 1 Introduction

37 With their conspicuous functional roles and genetic tractability, animal venoms are pow-
38 erful systems that have historically provided unique insight into the fields of evolution
39 (Fry et al., 2003; Undheim et al., 2014; Whittington et al., 2018; Holding et al., 2021), pro-
40 tein interaction and structural biology (Wang et al., 2005; Velasco-Bolom et al., 2018),
41 and drug discovery (Cushman and Ondetti, 1991; Tcheng and OâŽShea, 2002; Mil-
42 janich, 2004; Cardoso et al., 2021). Venoms are complex protein-dominated, biochemical
43 phenotypes that have evolved across numerous metazoan lineages for use in predation
44 and defense (Casewell et al., 2013), microbiome regulation (Gao et al., 2007; Baracchi
45 and Tragust, 2017), intraspecific conflict (Grant et al., 2007), and maternal care (Tragust
46 et al., 2013). This diversity of function and clearly linked fitness implications underscore
47 the importance of venoms for the animals that maintain them. As venoms are depleted
48 after use, understanding how animals maintain and regenerate their venoms will not
49 only have implications for the ecology of venomous animals and their communities, but
50 may provide insight into the genetic regulatory mechanisms that produce a complex
51 phenotype.

52 Research using animal venoms often requires either identifying and/or isolating indi-
53 vidual venom components (*e.g.* novel drug discovery) or quantifying the relative abun-
54 dances of such components (*e.g.* characterizing expression differences). Both of these
55 strategies employ similar venom extraction and collection methods that require (1) re-
56 moving animals from the wild or captive breeding and (2) waiting an extended period
57 of time between venom extractions to allow for complete regeneration. Therefore, un-
58 raveling the dynamics of venom content regeneration will help refine and tailor venom
59 extraction methods, which could ultimately reduce the time and number of animals
60 required.

61 In snakes, one of the more comprehensively studied venomous lineages, it can take a
62 few days to more than two weeks for venom from a depleted gland to be fully restored
63 (Kochva, 1960; Schaeffer Jr et al., 1972; Brown et al., 1975; Luna et al., 2009), with this
64 restoration coming at a metabolic cost (McCue, 2006; Pintor et al., 2010). Regeneration
65 of venom content also seems to happen asynchronously in snakes (Oron et al., 1978;
66 Taylor et al., 1986; Guo et al., 2009; Luna et al., 2013), although that may not always
67 be the case (Pintor et al., 2011). In invertebrates, near-complete venom regeneration
68 has been observed to take anywhere between a few days and up to several weeks in
69 various lineages, such as spiders (Perret, 1977; Boevé et al., 1995; Kuhn-Nentwig et al.,
70 2004), scorpions (Nisani et al., 2007, 2012; Carcamo-Noriega et al., 2019; Díaz-García
71 et al., 2019), hymenopterans (Haight, 2012), and centipedes (Cooper et al., 2014). Even
72 amongst species from the same lineage, venom regeneration may happen at different
73 rates, as observed by the time required for near-complete venom regeneration in the
74 scorpions *Parabuthus transvaalicus* (8 days; Nisani et al., 2012), *Centruroides limpidus*
75 (13 days; Carcamo-Noriega et al., 2019), and *Rhopalurus junceus* (15-21 days; Díaz-
76 García et al., 2019). After venom extraction, *P. transvaalicus* experience a significant

77 increase in oxygen consumption, supporting the hypothesis that venom regeneration in
78 scorpions has a metabolic cost (Nisani et al., 2007, 2012). Asynchronous regeneration
79 of proteinaceous venom components has also been observed in invertebrates, such as
80 tarantulas (Perret, 1977; Boevé et al., 1995), scorpions (Pimenta et al., 2003; Nisani
81 et al., 2012; Díaz-García et al., 2019; Carcamo-Noriega et al., 2019), and one centipede
82 species (*Scolopendra polymorpha*; Cooper et al., 2014). In some cases, the regeneration
83 of activity and toxicity, not just venom content, is asynchronous. For example, Carcamo-
84 Noriega et al. (2019) show that not only is the regeneration of venom components from
85 the scorpion *C. limpidus* asynchronous, but the regeneration of this venom's toxicity
86 against crickets and activity towards human voltage-dependent Na^+ channel Nav1.6 is
87 also asynchronous.

88 These discernible differences in the rates of venom content regeneration and poten-
89 tially the regeneration of venom toxicity among different species emphasize the impor-
90 tance of increasing our understanding of venom regeneration dynamics on a species spe-
91 cific level. Furthermore, although asynchronous regeneration of relative venom protein
92 abundances has been observed in the previously discussed invertebrates, whether this
93 asynchronicity translates to presence-absence differences in venom components at differ-
94 ent regeneration intervals is unclear. Therefore, we analyzed venom protein content at
95 five regeneration intervals using reversed-phase high-performance liquid chromatography
96 to test for asynchronous regeneration of venom protein components in the centipede,
97 *Scolopendra viridis*, and the scorpion, *Centruroides hentzi*.

98 2 Materials and Methods

99 2.1 Specimen collection

100 *Scolopendra viridis* centipedes and *C. hentzi* scorpions were collected from Leon County,
101 Florida. Adult *S. viridis* were collected by flipping logs, peeling bark from dead trees,
102 and pitfall trapping. Pitfall trapping activities were conducted under a US Department
103 of Agriculture Forest Service Special Use Permit (Authorization ID: WAK9112018522).
104 Adult *C. hentzi* were collected using UV-flashlights and peeling bark from dead trees
105 after dark. All centipedes and scorpions were housed individually at the Florida State
106 University Department of Biological Science. Unlike *C. hentzi*, which exhibit obvious
107 sexual dimorphism in the size and length of metasomal segments (females have shorter,
108 more rounded metasomal segments), *S. viridis* sex was determined using a microscope
109 by the presence (male) or absence (female) of two genital gonopods (Bonato et al., 2010;
110 McMonigle, 2014).

111 2.2 Venom collection and processing

112 We collected a total of 16 male *S. viridis* and 15 female *C. hentzi*. To test the synchronicity
113 of venom protein regeneration over time in *S. viridis* and *C. hentzi*, individuals were

114 randomly divided into five groups per species with each group allowed a different interval
115 of time to regenerate venom between an initial and second venom extraction. These time
116 intervals were 1, 2, 4, 10, and 14 days post-initial venom extraction.

117 Centipedes and scorpions were fed and subsequently starved for 21 days prior to the
118 initial venom extraction (*i.e.* day 0). To prepare for venom extraction, animals were
119 anesthetized under CO₂ for 90 seconds. Venom was extracted from *S. viridis* by electros-
120 timulation at the base of the forcipules and from *C. hentzi* by electrostimulation at the
121 base of the telson, as previously described (Ward et al., 2018b; Ward and Rokyta, 2018).
122 In several scorpion species, venom secretion has been observed along a continuum with
123 an initial clear secretion defined as “prevenom” (Yahel-Niv and Zlotkin, 1979; Gopalakr-
124 ishnakone et al., 1995; Inceoglu et al., 2003; Abdel-Rahman et al., 2009). Therefore,
125 each *S. viridis* and *C. hentzi* were electrostimulated at least three times to ensure com-
126 plete emptying of the glands and consistency between venom extractions. Extracted
127 venom was suspended in 100 μ L of LC/MS quality water, centrifuged at 12,000 \times G for
128 three minutes, freeze-dried using a lyophilizer, and stored at -80°C. Immediately before
129 use, lyophilized venom samples were re-suspended in LC/MS quality water and spun at
130 12,000 \times G for 30 seconds to pellet insoluble material. Total venom protein content was
131 quantified using a Nanodrop 2000c (Thermo Scientific).

132 2.3 Reversed-phase high-performance liquid chromatography

133 To evaluate differences in the synchronicity of *S. viridis* and *C. hentzi* venom protein
134 regeneration over time, we performed reversed-phase high-performance liquid chromatog-
135 raphy (RP-HPLC) on both the initial and the second, time-dependent venom extraction
136 from the 16 *S. viridis* (32 total venom samples) and the 15 *C. hentzi* (30 total venom
137 samples). This was completed using the Shimadzu Prominence HPLC system. We used
138 a standard solvent regimen consisting of solvent A (0.1% trifluoroacetic acid [TFA] in
139 water) and solvent B (0.06% TFA in acetonitrile). Approximately 15 μ g of venom pro-
140 tein from each sample was injected onto an Aeris 3.6 μ m C18 column (Phenomenex, 125
141 Torrance, CA). All samples were allowed to run with a flow rate of 0.2 mL/min over a
142 125-minute gradient. This gradient was initialized at 10% B for five minutes, gradually
143 increased to 55% B over 110 minutes, increased again to 75% B over five minutes, held
144 at 75% B for another five minutes, and finished with 15-minutes at 100% B to wash the
145 column. Peak clusters in RP-HPLC chromatographic profiles were identified in single-
146 blind fashion using the manual peak integration tools in the Shimadzu Lab Solutions
147 software.

148 2.4 Statistical analysis

149 All statistical analyses were performed using the relative abundances of identified RP-
150 HPLC peak clusters. Statistical analyses for *S. viridis* and *C. hentzi* were performed
151 separately using R v. 3.6.3 (R Core Team, 2017) with figures generated using the ggplot2

152 package (Wickham, 2016). To test for variation in venom regeneration at different time
153 intervals, we first performed an ilr (isometric log-ratio) transformation on the RP-HPLC
154 relative peak cluster abundance data. We then ran a permutational multivariate analysis
155 of variance (PERMANOVA) using the adonis function from the vegan package in R
156 (Oksanen et al., 2013) on the ilr-transformed relative abundance data from the second,
157 regenerated venom sample with individuals grouped by regeneration time interval. To
158 determine which peak clusters contributed most of the variation in RP-HPLC profiles
159 from both the initial and regenerated venom samples, we ran a variance matrix on clr
160 (centered log-ratio) transformed peak cluster abundance data using the robCompositions
161 package in R (Templ et al., 2011).

162 To visualize patterns of venom regeneration over time, we performed a robust prin-
163 cipal component analysis (PCA) on the RP-HPLC profiles from the second, regenerated
164 venom extraction using the pcaCoDa function from the robCompositions package in R
165 (Templ et al., 2011). The pcaCoDa function transforms the data using an ilr transfor-
166 mation, performs a robust PCA, and backtransforms the resulting loadings and scores
167 using the clr transformation. This PCA method demonstrates superior results for com-
168 positional data and can be easily interpreted (Filzmoser et al., 2009). We then quantified
169 the relative impact of the top two principal components (*i.e.* PC1 and PC2) by fitting
170 a linear regression model with the principal component as the dependent variable and
171 venom regeneration interval as the independent variable using the inherent lm function
172 in R.

173 3 Results

174 3.1 Venom protein content regeneration in male *Scolopendra* 175 *viridis*

176 Venom protein content from initial venom extractions of all *S. viridis* averaged 27.26
177 μg (12.96–54.93 μg ; Figure 1, Supplemental Data 1). Initial venom extraction yields
178 for intervals 1, 2, 4, 10, and 14 days averaged 17.97, 33.21, 32.82, 23.44, and 28.47 μg ,
179 respectively (Figure 1, Supplemental Data 1). Venom yield from the regenerated venom
180 samples in the 1, 2, 4, 10, and 14-day regeneration interval groups averaged 15.73, 9.11,
181 12.81, 10.29, and 28.64 μg , respectively (Figure 1, Supplemental Data 1). Although two
182 of the four individuals from the 14-day regeneration interval group fully replenished the
183 total venom protein content in their venom, the average percent regeneration of total
184 venom protein content among all four individuals after 14 days was 82%, indicating that
185 venom protein content regeneration in *S. viridis* takes at least 10–14 days.

186 **3.2 Asynchronous venom regeneration in male *Scolopendra***
187 ***viridis***

188 After performing RP-HPLC on an initial and regenerated venom sample from 16 male
189 *S. viridis* individuals, we identified 13 distinct peak clusters in chromatographic profiles
190 (Figure 2, Supplemental Data 2). Figure S1 shows all 16 *S. viridis* initial venom sample
191 RP-HPLC profiles for comparison of identified peak clusters. We identified a significant
192 difference in relative peak cluster abundance across time interval of the regenerated
193 venom samples (PERMANOVA; $p < 0.01$), providing evidence for asynchronous venom
194 regeneration in *S. viridis*. Utilizing a variance matrix, we determined that the five RP-
195 HPLC peak clusters that contributed the most variation in the initial venom samples were
196 peak clusters 1, 2, 5, 9, and 13, which contributed 16.20%, 5.92%, 6.74%, 36.22%, and
197 6.99% respectively (Figure 4). However, the five peak clusters that contributed the most
198 variation in the regenerated venom samples were peak clusters 1, 6, 8, 9, and 11, which
199 contributed 27.35%, 22.97%, 5.99%, 13.27%, and 8.30% of the variation, respectively
200 (Figure 4). We then took the resulting peak cluster variances from our variance matrix
201 and performed a linear regression using the clr-transformed variance of the initial venom
202 sample peak clusters and the clr-transformed variance of the regenerated venom sample
203 peak clusters. With this regression, we identified a weak correlation between the variance
204 of the initial venom sample peak clusters and the variance of the regenerated venom
205 sample peak clusters ($\rho = 0.48$, $R = 0.55$, $R^2 = 0.31$, and $p = 0.05$; Figure 4), indicating
206 that the amount of variation each peak cluster was responsible for was similar across
207 most peak clusters in both the initial and regenerated venom samples.

208 Our PCA analysis on the RP-HPLC peak cluster data from the regenerated venom
209 samples (Figure 5) revealed a distinct separation between venom chromatographic pro-
210 files from individuals with shorter venom regeneration intervals (*i.e.* 1, 2, and 4 days)
211 and individuals with longer venom regeneration intervals (*i.e.* 10 and 14 days) in PC1-
212 PC2 space. The most variable peak clusters in PC1-PC2 space included four of the five
213 most variable peak clusters in the variance matrix on the regenerated venom samples
214 (*i.e.* peak clusters 1, 8, 9, and 11). However, instead of peak 6 (*i.e.* fifth most variable
215 peak cluster identified in the variance matrix), our PCA identified peak cluster 12 as
216 one of the top five peak clusters that contributed the most variation in PC1-PC2 space.
217 Peak cluster 1 was the peak cluster responsible for the largest portion of the variation in
218 both the variance matrix and PC1-PC2 space and was observed in higher abundance in
219 venom from individuals with shorter regeneration intervals (*i.e.* 1, 2, and 4 days). Peak
220 clusters 6 and 12 were observed at higher abundances in the venom from individuals
221 with longer regeneration intervals (*i.e.* 10 and 14 days). Peak cluster 9 was observed
222 in low abundances in the group with a one day regeneration interval, compared to the
223 other four groups. Interestingly, peak clusters 8 and 11 were observed at the highest
224 abundance in the one- and 14-day regeneration interval groups.

225 The top two principal components, PC1 (49.9%) and PC2 (22.7%), accounted for
226 72.6% of the total variation. To quantify the relative impact of PC1 and PC2, we fit

227 a linear regression between the top two principal components and venom regeneration
228 interval. We identified a significant relationship between PC1 and venom regeneration
229 interval ($\rho = -0.72$, $R = -0.83$, $R^2 = 0.69$, and $p < 0.01$; Figure 6), providing more
230 convincing evidence for asynchronous venom regeneration in *S. viridis* between one and
231 14 days. However, we found no significant relationship between PC2 and venom regen-
232 eration interval ($\rho = 0.21$, $R = -0.02$, $R^2 = 0.00$, and $p = 0.94$; Figure 6).

233 3.3 Venom protein content regeneration in female *Centruroides* 234 *hentzi*

235 Total venom protein content of initial venom extractions from all *C. hentzi* averaged
236 135.04 μ g (22.89–251.7 μ g; Figure 3, Supplemental Data 3). Initial venom extraction
237 yields for intervals 1, 2, 4, 10, and 14 days averaged 56.04, 216.18, 163.53, 82.06, and
238 157.39 μ g, respectively (Figure 3, Supplemental Data 3). Venom yield from the regener-
239 ated venom samples in the 1, 2, 4, 10, and 14-day interval groups averaged 8.04, 60.21,
240 47.82, 45.83, and 65.86 μ g, respectively (Figure 3, Supplemental Data 3). Total venom
241 protein content was, on average, only 64% and 42% regenerated at 10 and 14 days, re-
242 spectively, suggesting that even after 14 days, total venom protein content in *C. hentzi*
243 was not fully regenerated.

244 3.4 No detectable asynchronous venom regeneration in female 245 *Centruroides hentzi*

246 We identified 21 distinct RP-HPLC peak clusters from the initial and regenerated venom
247 samples collected from 15 female *C. hentzi* (Figure 2, Supplemental Data 2). Figure S2
248 shows all 15 *C. hentzi* initial venom sample RP-HPLC profiles for comparison of identified
249 peak clusters. As the large number of identified peak clusters combined with our small
250 sample size would limit further statistical testing (e.g. PCA), we grouped peak clusters
251 into bins encompassing approximately 10-minute intervals along RP-HPLC profiles. We
252 selected 10-minute intervals starting from peak cluster 1 at approximately 10 minutes,
253 and excluded any 10-minute intervals that contained no identified peaks, resulting in
254 eight distinct bins (Bin 1 = Peak 1; 10–20 minutes, Bin 2 = Peaks 2–3; 20–30 minutes,
255 Bin 3 = Peaks 4–6; 30–40 minutes, Bin 4 = Peak 7; 40–50 minutes, Bin 5 = Peaks
256 8–11; 50–60 minutes, Bin 6 = Peaks 12–16; 60–70 minutes, Bin 7 = Peaks 17–19; 70–82
257 minutes, and Bin 8 = Peaks 20–21; 85–95 minutes)

258 After running a PERMANOVA on the binned relative peak cluster abundance data
259 for the regenerated venom samples, we did not identify any significant difference in venom
260 regeneration across time ($p = 0.17$), indicating a lack of any detectable asynchronicity
261 in venom regeneration. Our variance matrix identified bins 1, 4, 6, 7, and 8, as those
262 that contributed the most variation in both the initial and regenerated venom samples
263 (Figure 7A). Bins 1, 4, 6, 7, and 8 contributed 13.27%, 22.74%, 12.33%, 15.52%, and
264 20.76% of the variation in initial venom samples and 26.33%, 11.84%, 16.33%, 9.14%, and

265 22.74% of the variation in regenerated venom samples, respectively. After performing
266 a clr-transformation on the resulting initial and regenerated binned variances and a
267 regression between these variances, we identified a significant correlation between the
268 variance of the initial venom sample bins and the variance of the regenerated venom
269 sample bins ($\rho = 0.67$, $R = 0.80$, $R^2 = 0.64$, and $p = 0.02$; Figure 7B). This indicates
270 that the amount of variation each bin was responsible for was similar across bins in both
271 the initial and regenerated *C. hentzi* venom samples.

272 Our PCA analysis (Figure 8) did not reveal a distinct separation in PC1-PC2 space
273 as did our PCA analysis on *S. viridis* venom. The top two principal components, PC1
274 (66.4%) and PC2 (15.1%), accounted for approximately 81.5% of the total variation in
275 venom samples. After fitting linear regressions between our top two principal components
276 and venom regeneration interval, we did not identify any significant relationship between
277 PC1 and venom regeneration interval ($\rho = -0.38$, $R = -0.30$, $R^2 = 0.09$, and $p = 0.28$;
278 Figure 9), or PC2 and venom regeneration interval ($\rho = 0.43$, $R = 0.5$, $R^2 = 0.25$, and
279 $p = 0.06$; Figure 9), providing further evidence for a lack of any asynchronous venom
280 regeneration in *C. hentzi*.

281 **3.5 Presence-absence differences in venom RP-HPLC peak clus- 282 ters across regeneration intervals are not the result of asyn- 283 chronous venom regeneration**

284 Although we identified evidence for asynchronous venom regeneration in *S. viridis*, we
285 observed the presence of all venom RP-HPLC peak clusters in at least two individuals
286 from each regeneration interval group (Supplemental Data 1). Furthermore, though
287 we did not detect asynchronous venom regeneration in *C. hentzi*, we still observed the
288 presence of all venom RP-HPLC peak clusters in at least two individuals from each
289 regeneration interval group (Supplemental Data 3). In *S. viridis* venom, the only venom
290 samples that did not contain a measurable abundance for every peak cluster were one
291 10-day regenerated sample (missing peak cluster 1) and one initial venom sample from
292 each of the 1 and 10-day interval groups (both missing peak cluster 9). In the *C. hentzi*
293 RP-HPLC profiles, the only venom sample that did not contain a measurable abundance
294 for each of the 21 peak clusters was the initial venom sample from one individual in
295 the 1-day interval group (missing peak cluster 19). Therefore, although the regeneration
296 of relative venom RP-HPLC peak cluster abundance is an asynchronous process in *S.*
297 *viridis*, the presence-absence of a particular RP-HPLC peak cluster at any point in the
298 regeneration of *S. viridis* or *C. hentzi* venom does not seem to be asynchronous. As
299 venom RP-HPLC peak clusters typically correspond to a general toxin type or family,
300 the presence of all peak clusters at each regeneration interval provides evidence that a
301 venom sample from *S. viridis* or *C. hentzi* at any point in the regeneration cycle would
302 contain a measurable quantity of most, if not all, venom proteins.

303 **4 Discussion**

304 **4.1 Asynchronous venom regeneration in *S. viridis* and compar-**
305 **ison to venom regeneration in *S. polymorpha***

306 In this study, we identified evidence for asynchronous venom regeneration in the centipede
307 *S. viridis*. Only one other study has attempted to study the timing of venom protein
308 regeneration in centipedes (Cooper et al., 2014). Similar to our results in *S. viridis* after
309 14 days (*i.e.* 82% total venom protein regeneration), Cooper et al. (2014) found that
310 regeneration of total venom protein content in *S. polymorpha* (sister species to *S. viridis*)
311 took longer than 14 days and was still not fully regenerated after a 7-month follow up
312 study (76% regenerated). Cooper et al. (2014) suggested that the inability for venom
313 to regenerate to levels of the initial estimates could be the result of electrostimulation
314 causing damage to the venom gland structure. Although we did not observe any fatalities
315 or obvious harm to the animal after venom extraction, damage to the venom glands could
316 have resulted in lower levels of venom regeneration.

317 Cooper et al. (2014) also observed an effect of extraction interval on the relative abun-
318 dance of five of the ten RP-FPLC chromatographic regions in *S. polymorpha* venom, pro-
319 viding evidence for asynchronous regeneration of the relative abundance of venom protein
320 components in *S. polymorpha*. The findings of Cooper et al. (2014) coupled with our
321 evidence for asynchronous venom regeneration in *S. viridis* suggests that asynchronous
322 venom regeneration may be widespread in centipedes of the genus *Scolopendra*, although
323 studies on more species would be needed to confirm this hypothesis. Furthermore, our
324 PCA and PC1-regeneration interval regression analyses (Figure 5, Figure 6; left) show a
325 distinct separation between the 1, 2, and 4-day intervals, which loaded positively on PC1,
326 and the 14-day interval, which loaded negatively on PC1, with the 10-day interval group
327 loading in between. This suggests *S. viridis* venom is undergoing the most significant
328 changes in relative protein component abundance between four and 14 days. Performing
329 mass spectrometry on fractionated venom peak clusters would be needed to confirm the
330 proteins present at particular peak clusters and the potential effects of asynchronous
331 venom protein regeneration on the predatory and defensive capabilities of *S. viridis*.

332 Although incomplete expulsion of venom from glands is possible in our study, we
333 expect that our consistent venom extraction procedures would still lead to venom-glands
334 with similar states of venom expulsion. Nonetheless, incomplete expulsion of venom
335 from glands could have resulted in an underestimation of the time needed for venom
336 regeneration and, if it resulted in a venom sample dominated by one or a few proteins,
337 could have confounded our ability to detect asynchronous venom regeneration. Cooper
338 et al. (2014) suggested that dissection and examination of venom glands before and after
339 venom extraction could provide information on the extent of venom gland depletion from
340 techniques such as electrostimulation. Conversely, our venom extraction procedure was
341 meant to completely exhaust the venom glands, a phenomenon that may not be common
342 in wild centipedes, emphasizing that caution must be taken when interpreting results in

343 laboratory studies of venom regeneration.

344 **4.2 Lack of detectable asynchronous venom regeneration in *C.***
345 ***hentzi* may be confounded by high levels of intraspecific**
346 **venom variation**

347 Here we also present evidence for a lack of detectable asynchronous venom protein content
348 regeneration in *C. hentzi* scorpions. Interestingly, unlike in our study, asynchronous
349 regeneration of relative venom protein abundances has been identified in four scorpion
350 species to date, *Tityus serrulatus* (Pimenta et al., 2003), *P. transvaalicus* (Nisani et al.,
351 2012), *C. limpidus* (Carcamo-Noriega et al., 2019), and *R. junceus* (Díaz-García et al.,
352 2019). In the studies on *P. transvaalicus*, *C. limpidus*, and *R. junceus*, the authors noted
353 that near-complete venom protein regeneration occurred after 8, 13, and 15–21 days,
354 respectively. Although we did not observe near-complete regeneration of protein content
355 in *C. hentzi* after our 14-day interval, this is not outside the regeneration times observed
356 in the aforementioned studies.

357 Our ability to detect asynchronous venom regeneration in *C. hentzi* could have been
358 hindered by our low sample size or high levels of intraspecific variation in *C. hentzi*
359 venoms. To test for intraspecific variation that could confound our results in *C. hentzi*,
360 we first performed an ilr transformation on the relative peak cluster abundance data
361 from the initial venom samples. We then ran a PERMANOVA with samples grouped
362 by the respective venom regeneration interval between the initial and second venom
363 extraction. For consistency, we also repeated this test for intraspecific variation using
364 our *S. viridis* data. Although we did not identify any significant intraspecific variation in
365 our initial *S. viridis* venom samples (PERMANOVA; $p = 0.37$), we did identify significant
366 intraspecific variation in our initial *C. hentzi* venom samples (PERMANOVA; $p = 0.02$).
367 Intraspecific venom variation has been identified in *C. hentzi* before, with this variation
368 being the result of differences between females and not males (Ward et al., 2018a).
369 However, unlike our study, Ward et al. (2018a) observed intraspecific variation among
370 female *C. hentzi* from different populations. The observed variation in *C. hentzi* of
371 the same sex and population from our study underscores the importance of testing for
372 intraspecific variation when assessing the potential for asynchronous venom regeneration.
373 Further studies on venom regeneration in *C. hentzi* that employ larger sample sizes and
374 account for intraspecific venom variation would be needed to confirm the observed lack
375 of asynchronous venom regeneration.

376 **4.3 Lack of presence-absence differences in RP-HPLC peak clus-
377 ters across regeneration intervals and the impacts for design-
378 ing venom-related experiments**

379 Our RP-HPLC analysis of venom regeneration intervals in both *S. viridis* and *C. hentzi*
380 revealed a measurable concentration of every RP-HPLC chromatographic peak cluster in
381 at least two individuals from each venom regeneration interval group, providing evidence
382 that a venom sample from *S. viridis* or *C. hentzi* taken after one day of venom regenera-
383 tion would contain a measurable quantity of most, if not all, venom protein components.
384 As individual chromatographic peak clusters may contain significant abundances of more
385 than one type of protein, it is possible that presence-absence of some venom proteins
386 from *S. viridis* or *C. hentzi* may not have been detected. However, we expect that larger
387 patterns of overall toxin family presence-absence difference would have been identified
388 in our analysis.

389 Since a single venom extraction from a scorpion or centipede ($>300 \mu\text{g}$ in this study)
390 provides a much lower total protein content than a single extraction from many snakes
391 ($>10 \text{ mg}$ in many cases; Morrison et al., 1982; Pe and Cho, 1986; Margres et al., 2014),
392 studies that use or isolate individual venom components from invertebrates often require
393 multiple venom extractions or the use of multiple animals. This results in an increase
394 in experimental time and effort that often necessitates removing animals from the wild.
395 However, our results show that although prolonged waiting periods between venom ex-
396 tractions seem to be necessary for complete regeneration of venom protein abundances,
397 they are not necessary for studies that only require the presence of an individual protein
398 in the venom, at least not for those involving *S. viridis* and *C. hentzi*. Therefore, studies
399 on bio-prospecting, drug discovery, or the analysis of single proteins could perform venom
400 extractions immediately upon capture and subsequently release the animal, decreasing
401 the impacts on wild populations.

402 **5 Conclusions**

403 The results of our study build upon the growing literature detailing asynchronous regen-
404 eration of venom protein components in invertebrates, particularly centipedes. Future
405 experiments utilizing mass spectrometry of individual venom components is needed to
406 confirm which venom components are experiencing asynchronous regeneration. Further-
407 more, our inability to detect asynchronous venom regeneration in *C. hentzi* provides evi-
408 dence for a scorpion species that may not experience asynchronous regeneration of venom
409 protein components. However, this lack of asynchronous venom regeneration could have
410 resulted from our low sample size or the high levels of intraspecific venom variation
411 identified in *C. hentzi*, indicating that further studies would be needed to confirm this
412 finding. We also observed that the time required for complete venom regeneration in *S.*
413 *viridis* and *C. hentzi* differed from the regeneration of other invertebrates, highlighting
414 the need for designing species-specific extraction protocols. Finally, the presence of all

415 venom RP-HPLC peak clusters after one day of venom regeneration in both *S. viridis* and
416 *C. hentzi* provides convincing evidence that studies relying on just the presence/absence
417 of individual proteins (e.g. bioprospecting, drug discovery) could use catch-and-release
418 methods of venom extraction, ultimately reducing the number of animals removed from
419 the wild.

420 **Acknowledgments**

421 We thank Carl Whittington for assistance with performing the RP-HPLC analyses and
422 thank Micaiah Ward for her valuable expertise and advice on centipede venoms.

423 **Funding**

424 Funding for this work was provided by the National Science Foundation (NSF DEB-
425 1145978 and NSF DEB 1638902).

426 **Conflicts of Interest**

427 The authors declare no conflicts of interest.

428 **Availability of Data and Materials**

429 All data are available within the manuscript and supplemental files.

430 **References**

431 Abdel-Rahman, M. A., M. A. A. Omran, I. M. Abdel-Nabi, H. Ueda, and A. McVean,
432 2009. Intraspecific variation in the egyptian scorpion *Scorpio maurus palmatus* venom
433 collected from different biotopes. *Toxicon* 53:349–359.

434 Baracchi, D. and S. Tragust, 2017. Venom as a component of external immune defense
435 in Hymenoptera. *Evolution of venomous animals and their toxins* Pp. 213–233.

436 Boevé, J.-L., L. Kuhn-Nentwig, S. Keller, and W. Nentwig, 1995. Quantity and quality
437 of venom released by a spider (*Cupiennius salei*, Ctenidae). *Toxicon* 33:1347–1357.

438 Bonato, L., G. D. Edgecombe, J. G. Lewis, A. Minelli, L. A. Pereira, R. M. Shelley, and
439 M. Zapparoli, 2010. A common terminology for the external anatomy of centipedes
440 (Chilopoda). *Zookeys* P. 17.

441 Brown, R. S., M. B. Brown, A. Bdolah, and E. Kochva, 1975. Accumulation of some
442 secretory enzymes in venom glands of *Vipera palaestinae*. *Am. J. Physiol. LC* 229:1675–
443 1679.

444 Carcamo-Noriega, E. N., L. D. Possani, and E. Ortiz, 2019. Venom content and tox-
445 icticity regeneration after venom gland depletion by electrostimulation in the scorpion
446 *Centruroides limpidus*. *Toxicon* 157:87–92.

447 Cardoso, F. C., J. Castro, L. Grundy, G. Schober, S. Garcia-Caraballo, T. Zhao,
448 V. Herzig, G. F. King, S. M. Brierley, and R. J. Lewis, 2021. A spider-venom peptide
449 with multitarget activity on sodium and calcium channels alleviates chronic visceral
450 pain in a model of irritable bowel syndrome. *Pain* 162:569–581.

451 Casewell, N. R., W. Wüster, F. J. Vonk, R. A. Harrison, and B. G. Fry, 2013. Complex
452 cocktails: the evolutionary novelty of venoms. *Trends Ecol. Evol.* 28:219–229.

453 Cooper, A. M., W. J. Kelln, and W. K. Hayes, 2014. Venom regeneration in the centipede
454 *Scolopendra polymorpha*: evidence for asynchronous venom component synthesis. *Zo-
455 ology* 117:398–414.

456 Cushman, D. W. and M. A. Ondetti, 1991. History of the design of captopril and related
457 inhibitors of angiotensin converting enzyme. *Hypertension* 17:589–592.

458 Díaz-García, A., A. Yglesias-Rivera, J. L. Ruiz-Fuentes, R. Ochoa-Cardentey, J. R. T.
459 Viltres, H. Rodríguez-Sánchez, and T. G. Peña, 2019. Effect of frequency of *Rhopalurus*
460 *junceus* scorpion venom collection on protein content and biological activity. *Trends
461 Med.* 19:1–5.

462 Filzmoser, P., K. Hron, and C. Reimann, 2009. Principal component analysis for compo-
463 sitional data with outliers. *Environmetrics: Off J. Int. Environmetrics Soc.* 20:621–632.

464 Fry, B. G., W. Wüster, R. M. Kini, V. Brusic, A. Khan, D. Venkataraman, and
465 A. Rooney, 2003. Molecular evolution and phylogeny of elapid snake venom three-
466 finger toxins. *J. Mol. Evol.* 57:110–129.

467 Gao, B., C. Tian, and S. Zhu, 2007. Inducible antibacterial response of scorpion venom
468 gland. *Peptides* 28:2299–2305.

469 Gopalakrishnakone, P., J. Cheah, and M. Gwee, 1995. Black scorpion (*Heterometrus*
470 *longimanus*) as a laboratory animal: maintenance of a colony of scorpion for milking
471 of venom for research, using a restraining device. *Lab. Anim.* 29:456–458.

472 Grant, T. et al., 2007. *Platypus*. CSIRO Publishing.

473 Guo, Y.-W., H.-W. Liu, Y.-C. Lin, and M.-C. Liang, 2009. Non-parallel expression of a
474 triflavin-like disintegrin venom protein in the main glands of *Trimeresurus mucrosqua-*
475 *matus*. *Toxin Rev.* 28:266–270.

476 Haight, K. L., 2012. Patterns of venom production and temporal polyethism in workers
477 of jerdonâĂŹs jumping ant, *Harpegnathos saltator*. *J. Insect Physiol.* 58:1568–1574.

478 Holding, M. L., J. L. Strickland, R. M. Rautsaw, E. P. Hofmann, A. J. Mason, M. P.
479 Hogan, G. S. Nystrom, S. A. Ellsworth, T. J. Colston, M. Borja, et al., 2021. Phy-
480 logically diverse diets favor more complex venoms in North American pitvipers.
481 *Proc. Natl. Acad. Sci. U.S.A.* 118.

482 Inceoglu, B., J. Lango, J. Jing, L. Chen, F. Doymaz, I. N. Pessah, and B. D. Hammock,
483 2003. One scorpion, two venoms: prevenom of *Parabuthus transvaalicus* acts as an
484 alternative type of venom with distinct mechanism of action. *Proc. Natl. Acad. Sci.*
485 *U.S.A.* 100:922–927.

486 Kochva, E., 1960. A quantitative study of venom secretion by *Vipera palaestinae*. *Am.*
487 *J. Trop. Med* 9:381–390.

488 Kuhn-Nentwig, L., J. Schaller, and W. Nentwig, 2004. Biochemistry, toxicology and
489 ecology of the venom of the spider *Cupiennius salei* (Ctenidae). *Toxicon* 43:543–553.

490 Luna, M. S., T. M. Hortencio, Z. S. Ferreira, and N. Yamanouye, 2009. Sympathetic
491 outflow activates the venom gland of the snake *Bothrops jararaca* by regulating the
492 activation of transcription factors and the synthesis of venom gland proteins. *J. Exp.*
493 *Bio.* 212:1535–1543.

494 Luna, M. S., R. H. Valente, J. Perales, M. L. Vieira, and N. Yamanouye, 2013. Activation
495 of *Bothrops jararaca* snake venom gland and venom production: a proteomic approach.
496 *J. Proteom.* 94:460–472.

497 Margres, M. J., J. J. McGivern, K. P. Wray, M. Seavy, K. Calvin, and D. R. Rokytka,
498 2014. Linking the transcriptome and proteome to characterize the venom of the eastern
499 diamondback rattlesnake (*Crotalus adamanteus*). *J. Proteom.* 96:145–158.

500 McCue, M. D., 2006. Cost of producing venom in three North American pitviper species.
501 *Copeia* 2006:818–825.

502 McMonigle, O., 2014. Centipedes in captivity: the reproductive biology and husbandry
503 of Chilopoda. Coachwhip Publications Greenville.

504 Miljanich, G., 2004. Ziconotide: neuronal calcium channel blocker for treating severe
505 chronic pain. *Curr. Med. Chem.* 11:3029–3040.

506 Morrison, J., J. Pearn, and A. Coulter, 1982. The mass of venom injected by two elapidae:
507 the taipan (*Oxyuranus scutellatus*) and the australian tiger snake (*Notechis scutatus*).
508 *Toxicon* 20:739–745.

509 Nisani, Z., D. S. Boskovic, S. G. Dunbar, W. Kelln, and W. K. Hayes, 2012. Investigat-
510 ing the chemical profile of regenerated scorpion (*Parabuthus transvaalicus*) venom in
511 relation to metabolic cost and toxicity. *Toxicon* 60:315–323.

512 Nisani, Z., S. G. Dunbar, and W. K. Hayes, 2007. Cost of venom regeneration in
513 *Parabuthus transvaalicus* (Arachnida: Buthidae). *Comp. Biochem. Physiol. Part A*
514 *Mol. Integr. Physiol.* 147:509–513.

515 Oksanen, J., F. Blanchet, R. Kindt, P. Legendre, P. Minchin, R. O'Hara, G. Simpson,
516 P. Solymos, M. Stevens, and H. Wagner, 2013. Vegan: community ecology package.
517 R package ver. 2.0–10.

518 Oron, U., S. Kinamon, and A. Bdolah, 1978. Asynchrony in the synthesis of secretory
519 proteins in the venom gland of the snake *Vipera palaestinae*. *Biochem. J.* 174:733–739.

520 Pe, T. and K. A. Cho, 1986. Amount of venom injected by Russell's viper (*Vipera*
521 *russelli*). *Toxicon* 24:730–733.

522 Perret, B. A., 1977. Venom regeneration in tarantula spiders. Analysis of venom
523 produced at different time intervals. *Comp. Biochem. Physiol. A Physiol.* 56:607–613.

524 Pimenta, A. M. C., F. D. M. Almeida, M. E. de Lima, M. F. Martin-Eauclaire, and
525 P. E. Bougis, 2003. Individual variability in *Tityus serrulatus* (Scorpiones, Buthi-
526 dae) venom elicited by matrix-assisted laser desorption/ionization time-of-flight mass
527 spectrometry. *Rapid Commun. Mass Spectrom.* 17:413–418.

528 Pintor, A. F., A. K. Krockenberger, and J. E. Seymour, 2010. Costs of venom production
529 in the common death adder (*Acanthophis antarcticus*). *Toxicon* 56:1035–1042.

530 Pintor, A. F., K. L. Winter, A. K. Krockenberger, and J. E. Seymour, 2011. Venom phys-
531 iology and composition in a litter of common death adders (*Acanthophis antarcticus*)
532 and their parents. *Toxicon* 57:68–75.

533 R Core Team, 2017. R: A Language and Environment for Statistical Com-
534 puting. R Foundation for Statistical Computing, Vienna, Austria. URL
535 <https://www.R-project.org/>.

536 Schaeffer Jr, R. C., S. Bernick, T. H. Rosenquist, and F. E. Russell, 1972. The histochem-
537 istry of the venom glands of the rattlesnake *Crotalus viridis helleri*: Monoamine
538 oxidase, acid and alkaline phosphatase. *Toxicon* 10:295–297.

539 Taylor, D., D. Iddon, P. Sells, S. Semoff, and R. Theakston, 1986. An investigation on
540 venom secretion by the venom gland cells of the carpet viper (*Echis carinatus*). *Toxicon*
541 24:651–659.

542 Tcheng, J. E. and J. C. O'Shea, 2002. Eptifibatide: a potent inhibitor of the platelet
543 receptor integrin glycoprotein IIb/IIIa. *Expert Opin. Pharmacother.* 3:1199–1210.

544 Templ, M., K. Hron, and P. Filzmoser, 2011. Robcompositions: Robust estimation for
545 compositional data. Manual and Package, version 1.

546 Tragust, S., B. Mitteregger, V. Barone, M. Konrad, L. V. Ugelvig, and S. Cremer, 2013.
547 Ants disinfect fungus-exposed brood by oral uptake and spread of their poison. *Curr.*
548 *Biol.* 23:76–82.

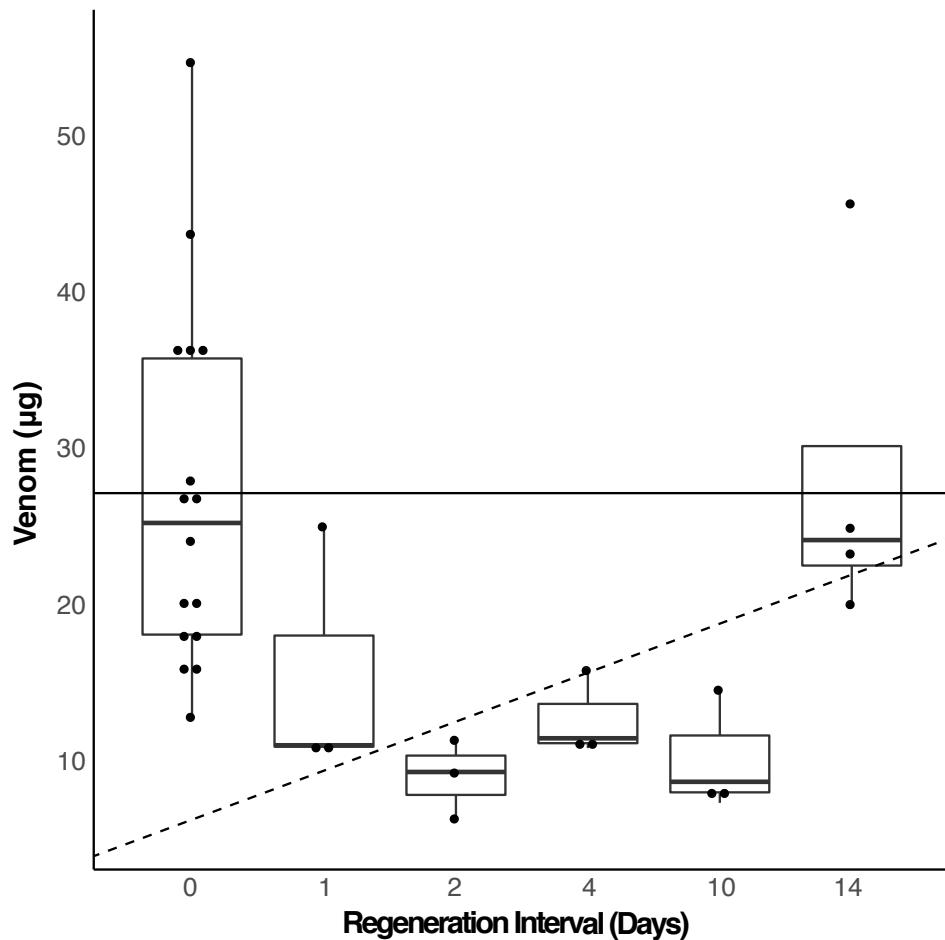
549 Undheim, E. A. B., A. Jones, K. R. Clauser, J. W. Holland, S. S. Pineda, G. F. King,
550 and B. G. Fry, 2014. Clawing through evolution: toxin diversification and convergence
551 in the ancient lineage Chilopoda (centipedes). *Mol. Bio. Evol.* 31:2124–2148.

552 Velasco-Bolom, J.-L., G. Corzo, and R. Garduño-Juárez, 2018. Molecular dynamics sim-
553 ulation of the membrane binding and disruption mechanisms by antimicrobial scorpion
554 venom-derived peptides. *J. Biomol. Struct. Dyn.* 36:2070–2084.

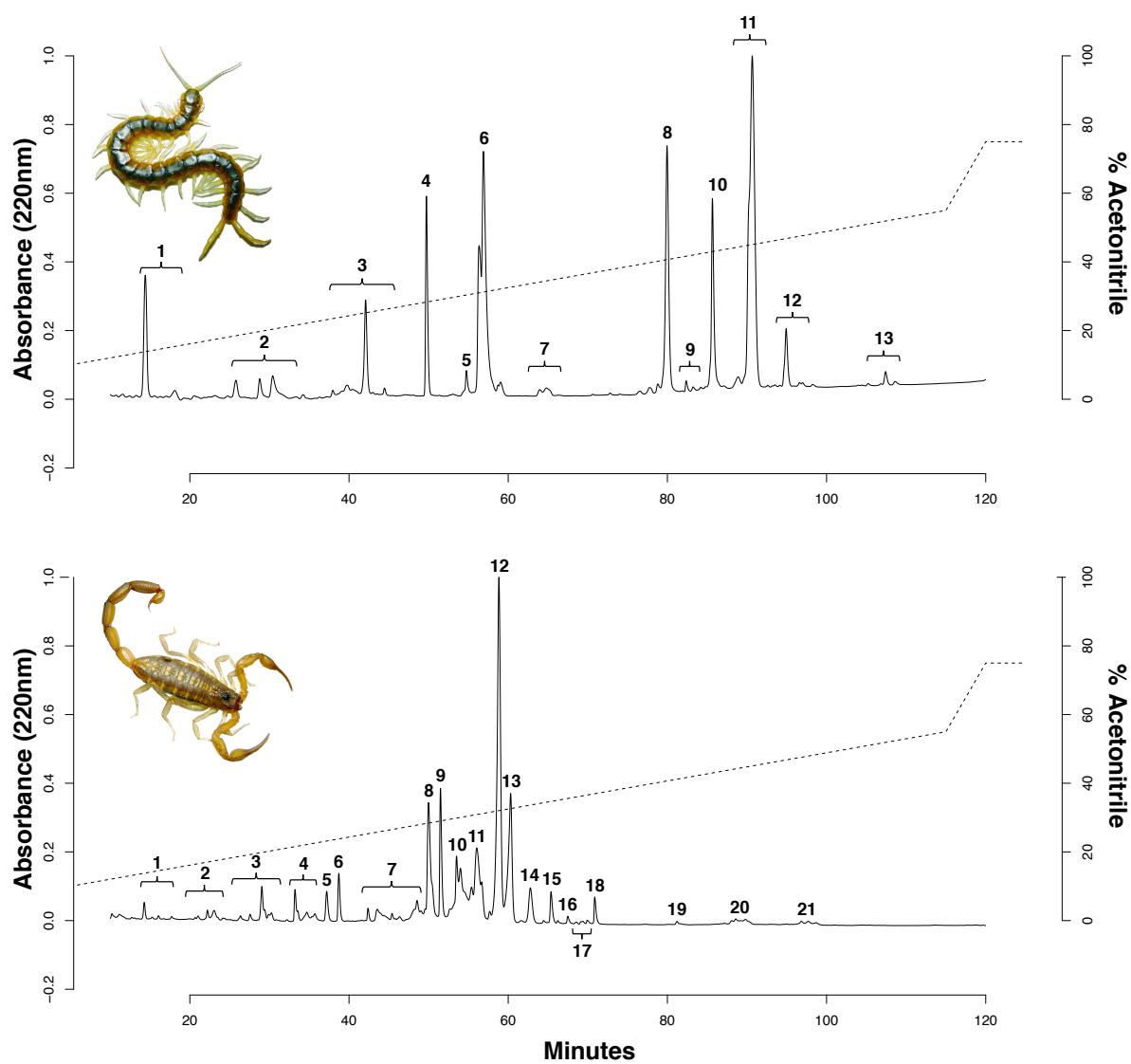
555 Wang, J., B. Shen, M. Guo, X. Lou, Y. Duan, X. P. Cheng, M. Teng, L. Niu, Q. Liu,
556 Q. Huang, et al., 2005. Blocking effect and crystal structure of natrin toxin, a cysteine-
557 rich secretory protein from *Naja atra* venom that targets the BKCa channel. *Biochem-
558 istry* 44:10145–10152.

559 Ward, M. J., S. A. Ellsworth, M. P. Hogan, G. S. Nystrom, P. Martinez, A. Budhdeo,
560 R. Zelaya, A. Perez, B. Powell, H. He, et al., 2018a. Female-biased population di-
561 vergence in the venom of the Hentz striped scorpion (*Centruroides hentzi*). *Toxicon*
562 152:137–149.

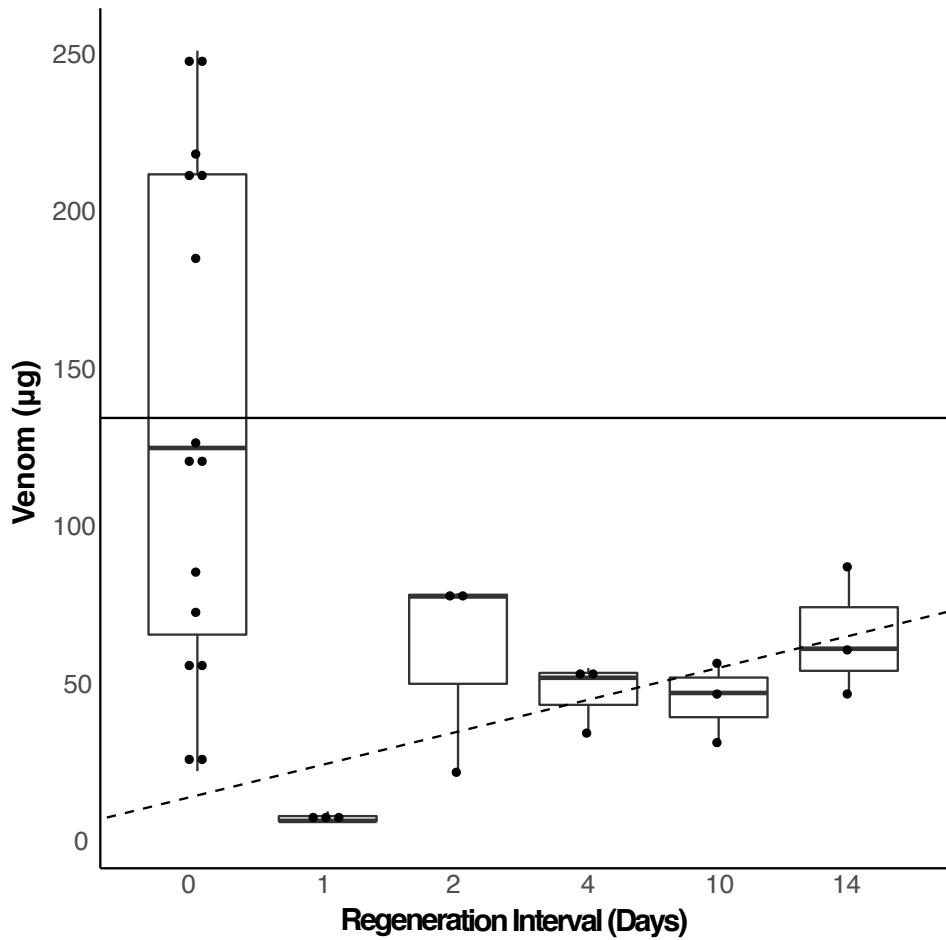
563 Ward, M. J., S. A. Ellsworth, and D. R. Rokyta, 2018b. Venom-gland transcriptomics
564 and venom proteomics of the Hentz striped scorpion (*Centruroides hentzi*; Buthidae)
565 reveal high toxin diversity in a harmless member of a lethal family. *Toxicon* 142:14–29.

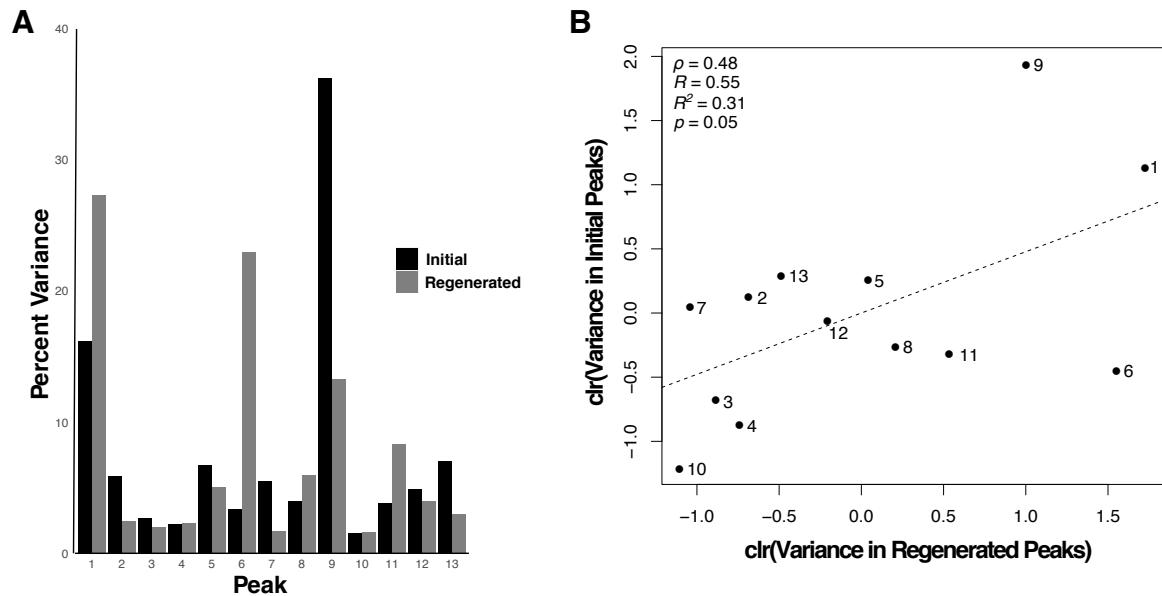

566 Ward, M. J. and D. R. Rokyta, 2018. Venom-gland transcriptomics and venom pro-
567 teomics of the giant Florida blue centipede, *Scolopendra viridis*. *Toxicon* 152:121–136.

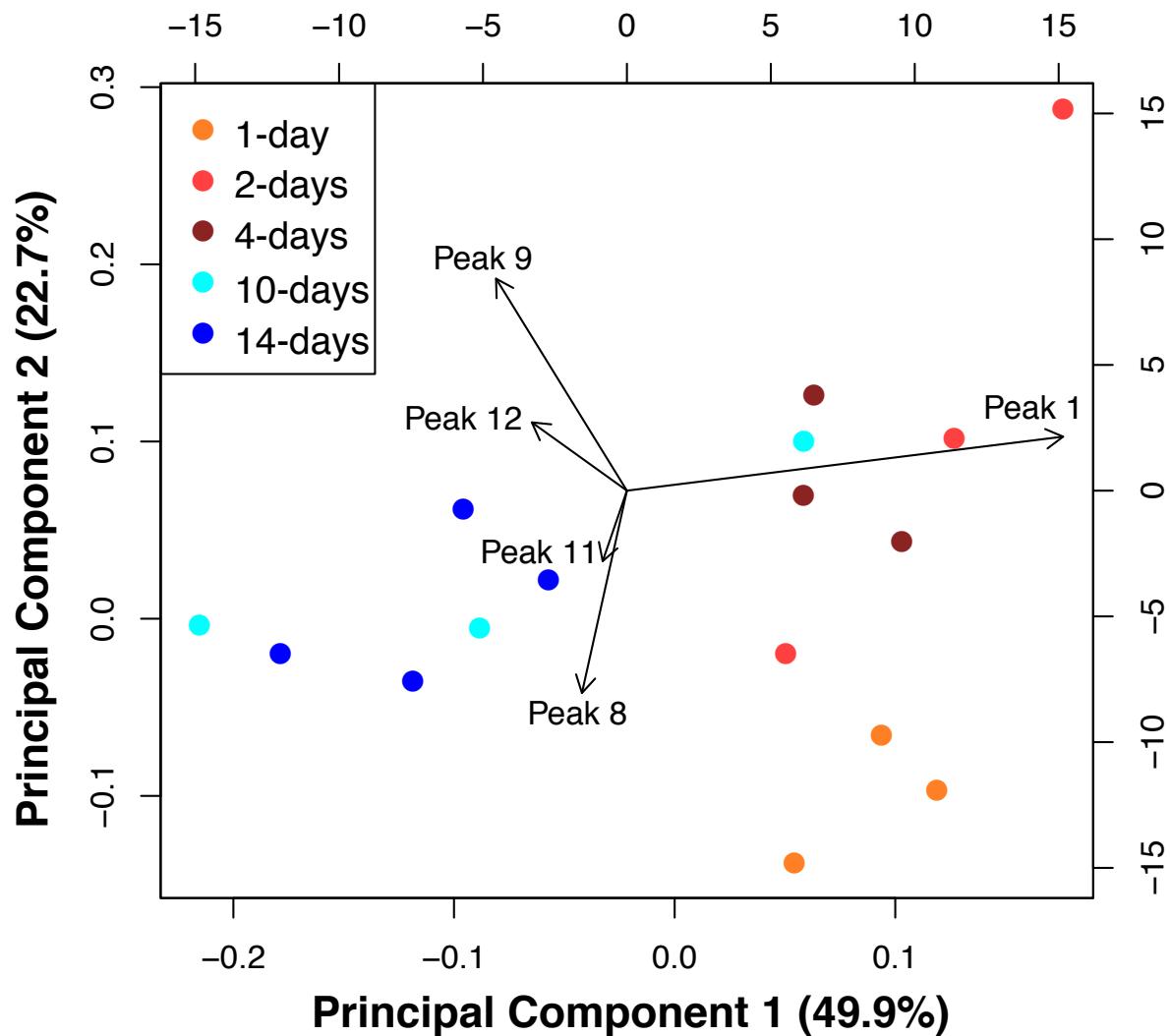
568 Whittington, A. C., A. J. Mason, and D. R. Rokyta, 2018. A single mutation unlocks
569 cascading exaptations in the origin of a potent pitviper neurotoxin. *Mol. Bio. Evol.*
570 35:887–898.

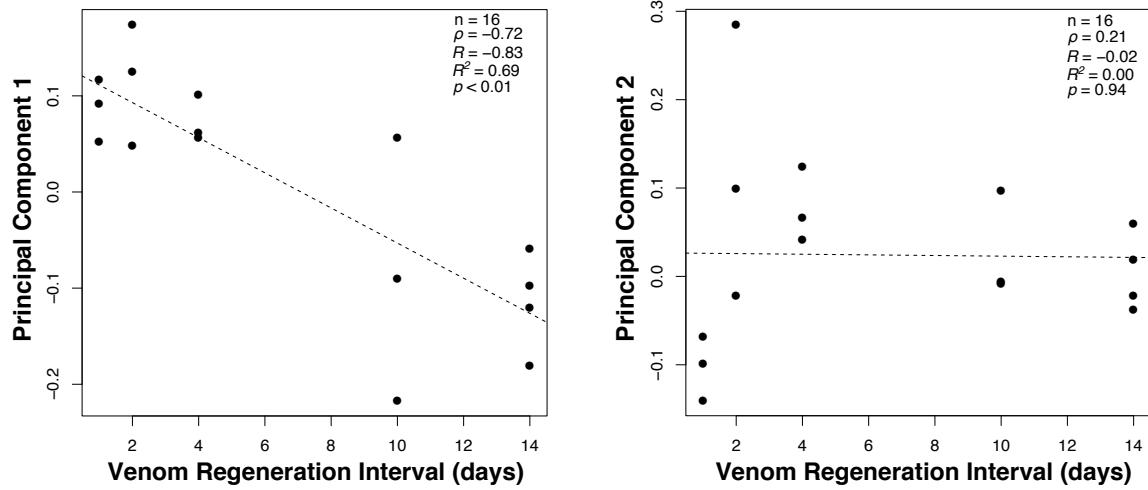

571 Wickham, H., 2016. *ggplot2: Elegant Graphics for Data Analysis*. Springer-Verlag New
572 York. URL <https://ggplot2.tidyverse.org>.

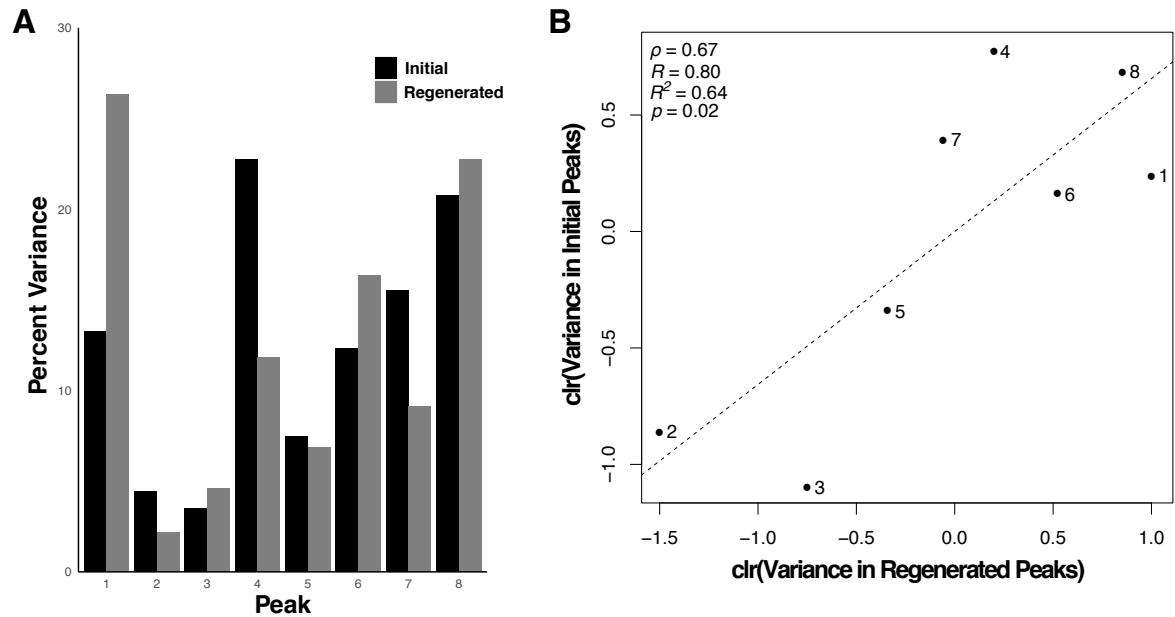
573 Yahel-Niv, A. and E. Zlotkin, 1979. Comparative studies on venom obtained from indi-
574 vidual scorpions by natural stings. *Toxicon* 17:435–446.

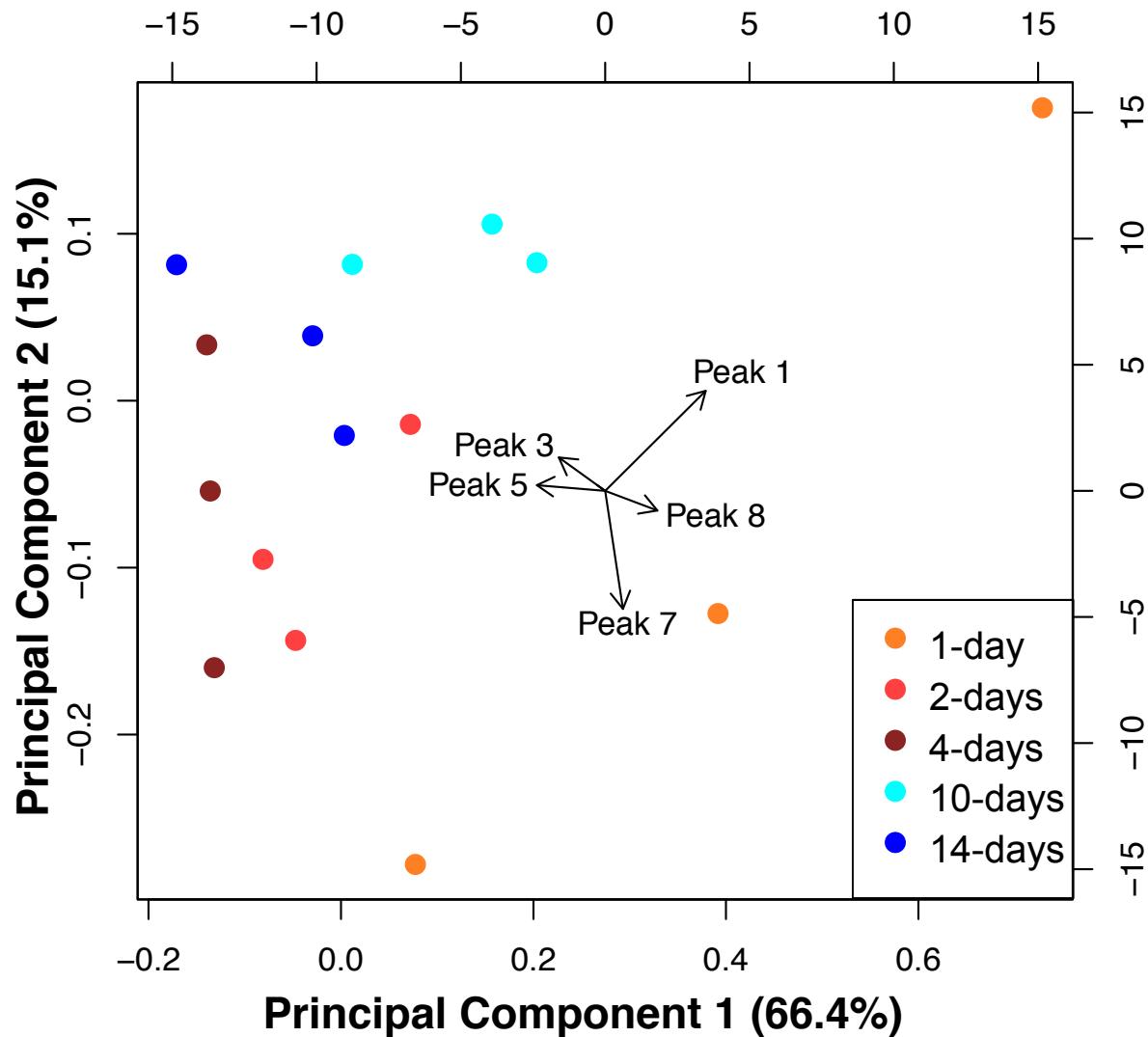

575 **Figures and Figure Legends**


Figure 1. Boxplot showing the change in total venom protein content from between the initial venom samples and the 1–14 day regenerated venom samples in *S. viridis*. The solid horizontal line represents the mean quantity of venom in μg of the initial, non-regenerated venom samples. The dashed line represents a regression of venom quantity by regeneration interval, not including initial samples at Day 0 ($\rho = 0.39$, $R = 0.47$, $R^2 = 0.22$, and $p = 0.07$).


Figure 2. Representative RP-HPLC profiles with numbered peak clusters for *S. viridis* (top; 13 total peak clusters) and *C. hentzi* (bottom; 21 total peak clusters) venom.


Figure 3. Boxplot showing the change in total venom protein content from between the initial venom samples and the 1–14 day regenerated venom samples in *C. hentzii*. The solid horizontal line represents the mean quantity of venom in μg of the initial, non-regenerated venom samples. The dashed line represents a regression of venom quantity by regeneration interval, not including initial samples at Day 0 ($\rho = 0.55$, $R = 0.57$, $R^2 = 0.32$, and $p = 0.03$).


Figure 4. (A) Barplot showing the percent variance for each RP-HPLC peak cluster in both the initial and regenerated venom samples from *S. viridis*. The five peak clusters that contributed the most variation in the initial and regenerated venom samples were peak clusters 1, 2, 5, 9, and 13, and 1, 6, 8, 9, and 11, respectively. (B) Regression of clr-transformed variance in the initial venom peak clusters and clr-transformed variance in the regenerated venom peak clusters shows significant agreement.


Figure 5. Principal component analysis of *S. viridis* extracted venom samples at each regeneration time interval (*i.e.* 1, 2, 4, 10, 14 days post-initial venom extraction) reveals a distinct separation between venom samples extracted at shorter regeneration intervals (*i.e.* 1, 2, and 4 days) compared to longer regeneration intervals (*i.e.* 10 and 14 days).

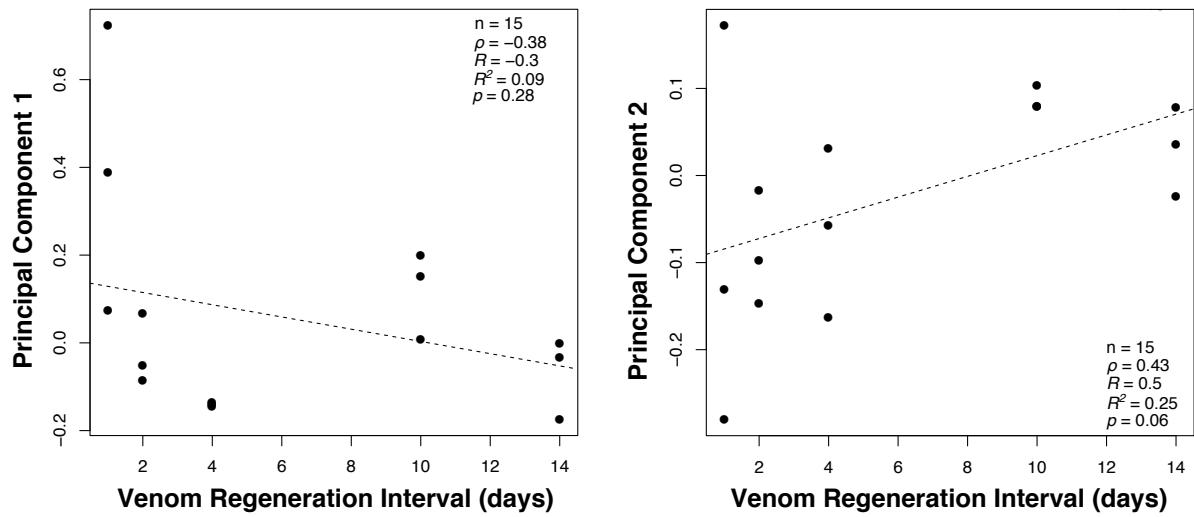

Figure 6. Regression of principal component 1 (left) and principal component 2 (right) by regeneration interval reveal a significant relationship between PC1 and venom regeneration interval, providing statistical evidence for asynchronous venom regeneration in *S. viridis*.

Figure 7. (A) Barplot showing the percent variance for each RP-HPLC binned peak cluster in both the initial and regenerated venom samples from *C. hentzi*. The five peak clusters that contributed the most variation in both the initial and regenerated venom samples were peaks 1, 4, 6, 7, and 8. (B) Regression of clr-transformed variance in the initial venom peak clusters and clr-transformed variance in the regenerated venom peak clusters shows a weak agreement.

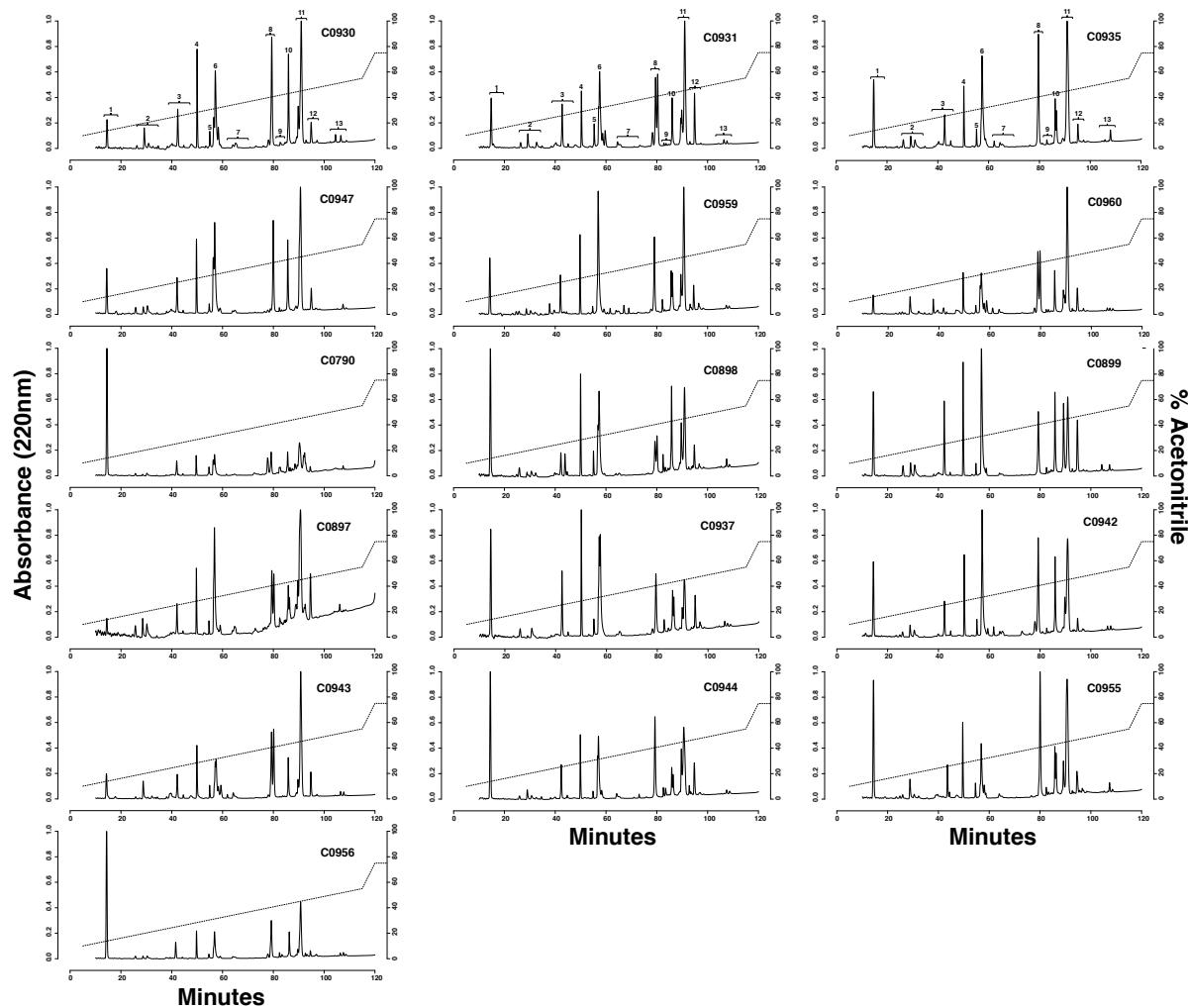


Figure 8. Principal component analysis of *C. hentzi* extracted venom samples at each regeneration time interval (*i.e.* 1, 2, 4, 10, 14 days post-initial venom extraction) does not reveal a distinct separation among regeneration intervals.

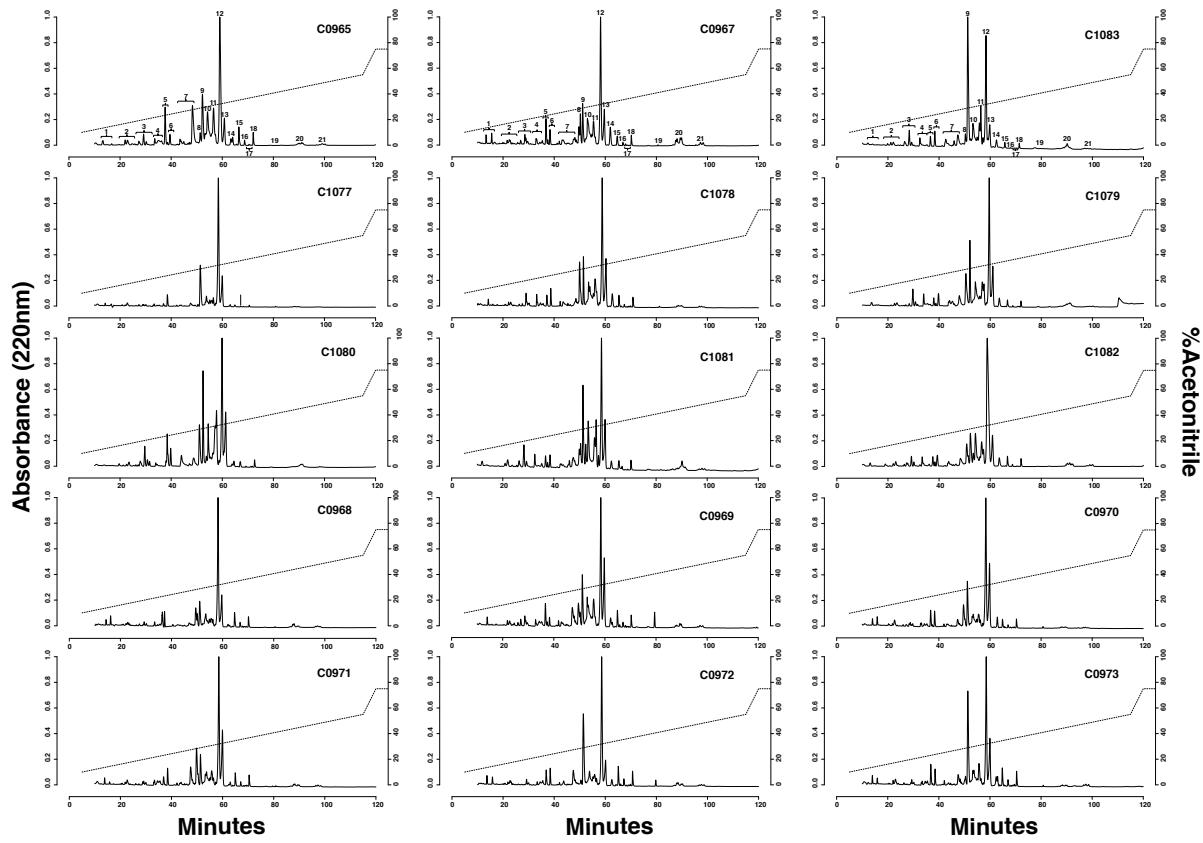


Figure 9. Regression of principal component 1 (left) and principal component 2 (right) by venom regeneration interval do not reveal any significant relationship between principal components and *C. hentzi* venom regeneration intervals.

Supplemental Figures and Supplemental Figure Legends

Figure S1. RP-HPLC profiles for all 16 *S. viridis* initial venom sample RP-HPLC profiles (labeled by specimen ID) with individual peak clusters labeled for the top profile in each column. RP-HPLC profiles are standardized to the highest peak cluster in each profile with peak cluster heights representing relative, not absolute, peak cluster abundances. Dashed lines represent the acetonitrile gradient.

Figure S2. RP-HPLC profiles all 15 *C. hentzi* initial venom samples (labeled by specimen ID) with individual peak clusters labeled for the top profile in each column. RP-HPLC profiles are standardized to the highest peak cluster in each profile and differences in peak clusters across profiles represent differences in relative, not absolute, peak cluster abundances. Dashed lines represent the acetonitrile gradient.

- Asynchronous regeneration of venom protein content in the centipede, *Scolopendra viridis*.
- Lack of asynchronous venom regeneration in the scorpion, *Centruroides hentzi*.
- Venom regeneration in *Scolopendra viridis* takes at least 10-14 days.
- Venom regeneration in *Centruroides hentzi* takes at least 14 days.
- Presence-absence differences in *Scolopendra viridis* venom components across regeneration intervals are not asynchronous.

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:

Darin R. Rokyta reports financial support was provided by National Science Foundation. Darin R. Rokyta reports a relationship with National Science Foundation that includes: funding grants.

Ethical Statement:

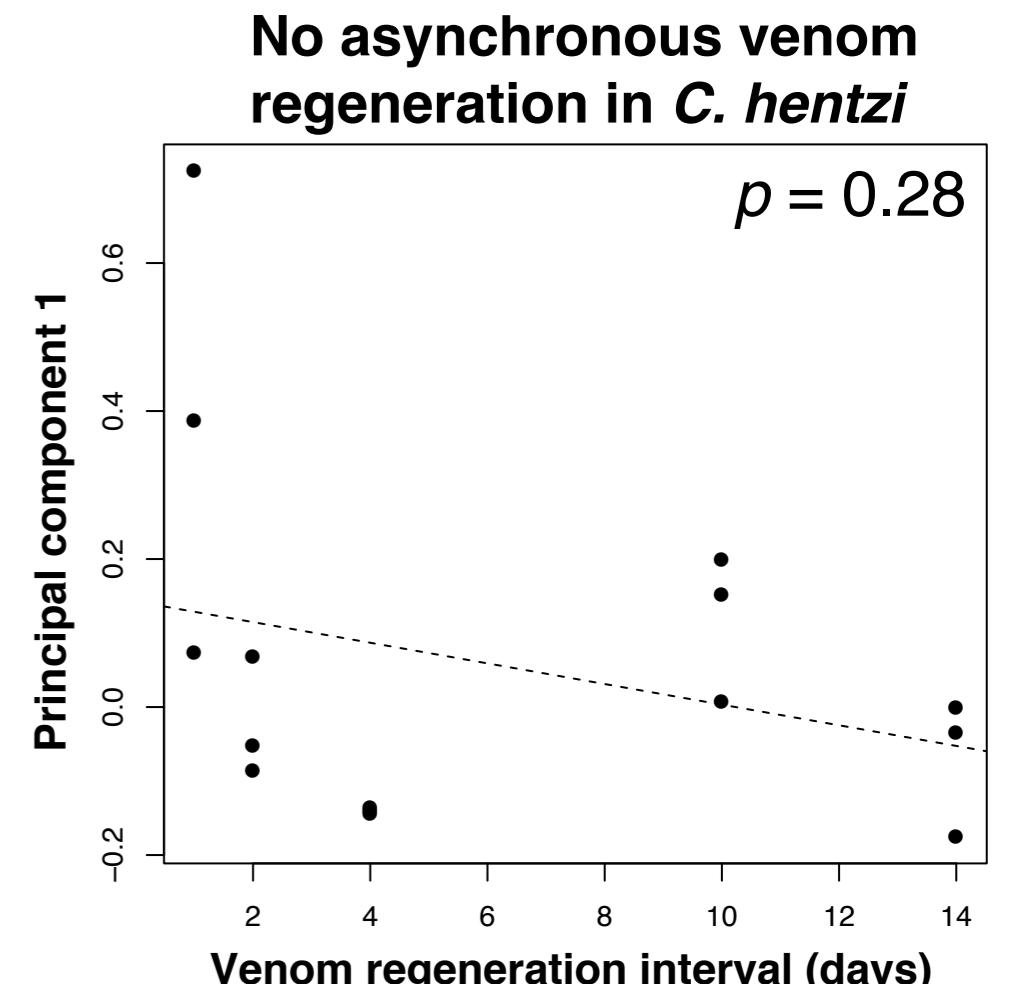
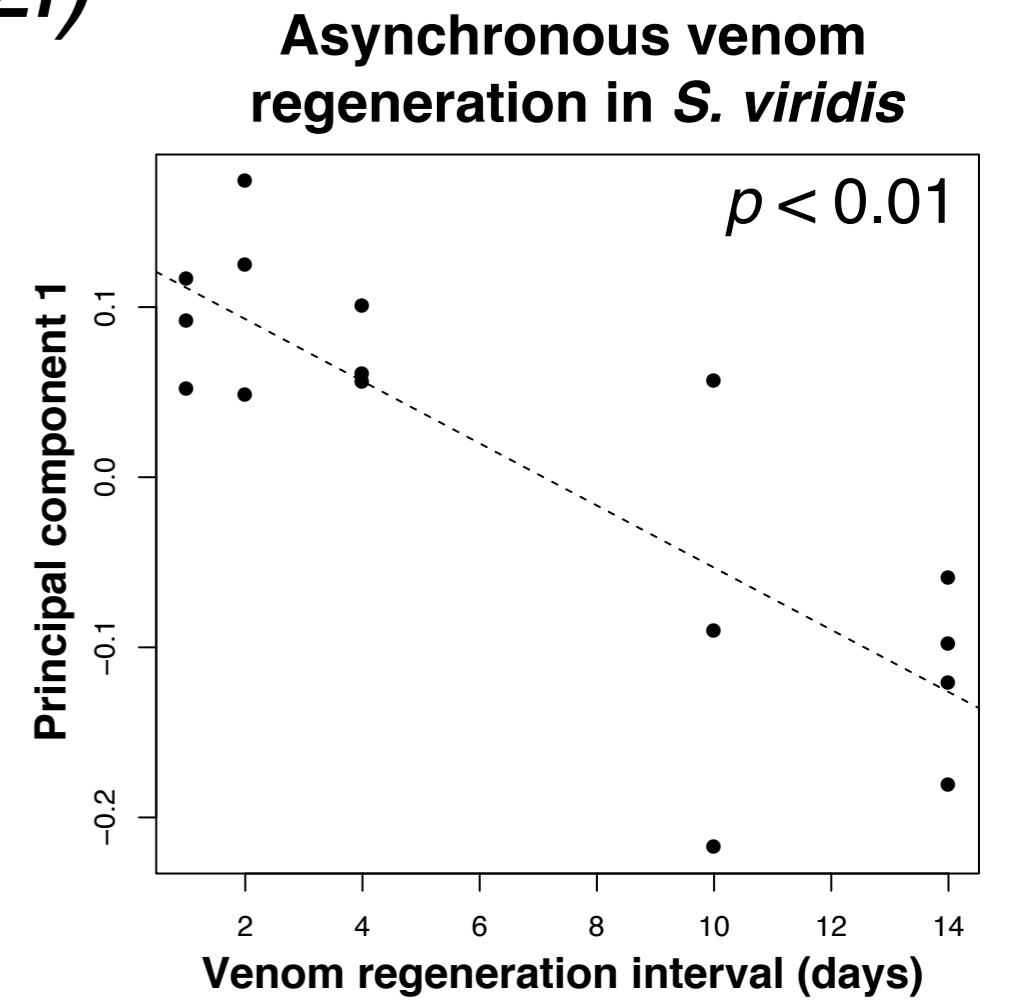
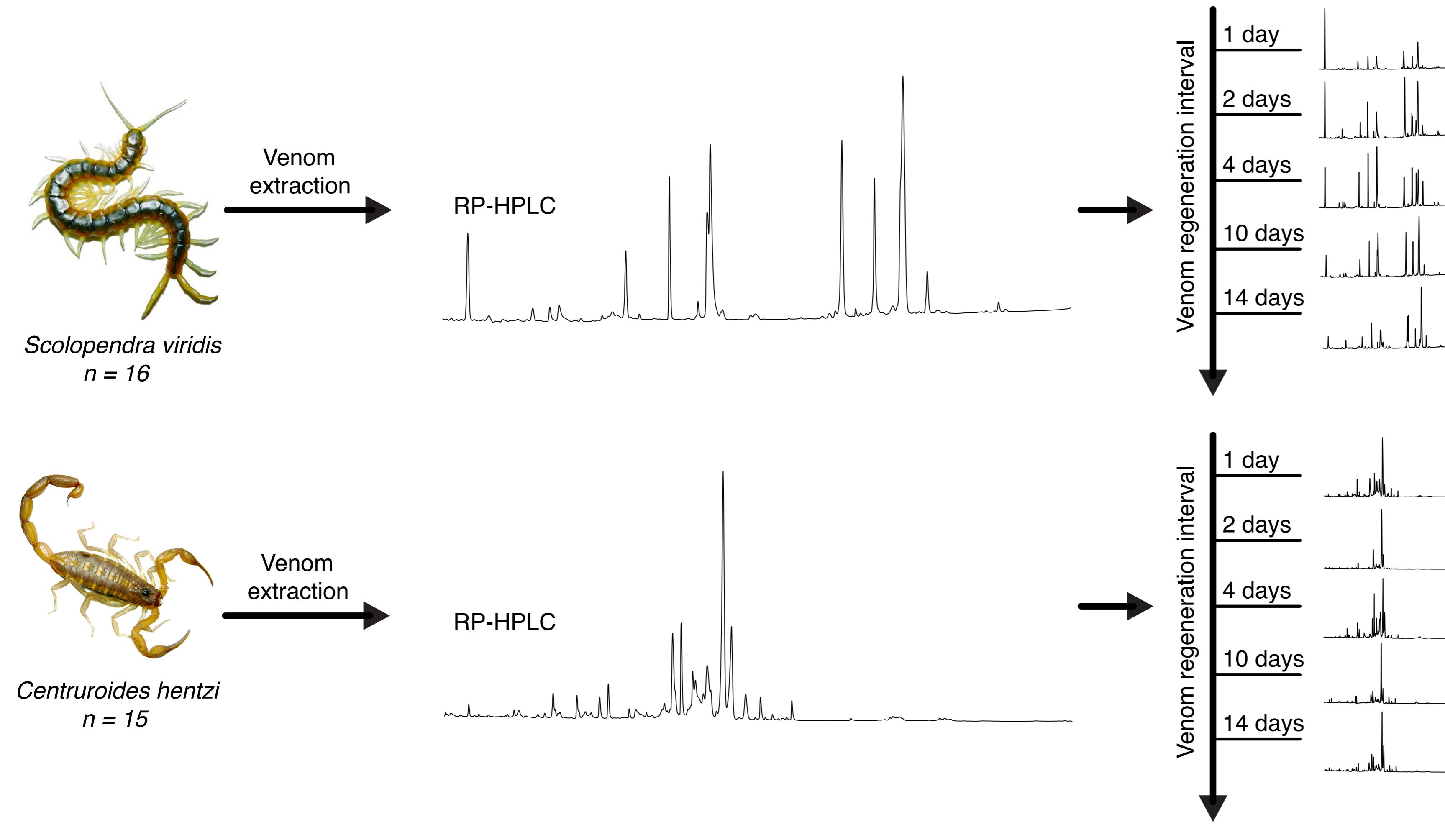
Reporting standards: The authors declare that our manuscript describes original research and every effort was made to ensure the accuracy of the results and the account.

Data Access and Retention: The authors declare that all data is reported and provided within the manuscript and that there is no additional data to make available.

Originality and Plagiarism: The authors declare that our manuscript is an original work with proper citations as needed.

Multiple, Redundant or Concurrent Publication: The authors declare that the data and work described in our manuscript has not and will not be submitted for consideration to another journal.

Acknowledgment of Sources: The authors have provided proper acknowledgment of sources to the best of their abilities.




Authorship of Paper: All authors of the manuscript made significant contributions, and no one making significant contributions was excluded from authorship. All authors have seen and read the submitted version of the manuscript and have approved submission.

Hazards and Human or Animal Subjects: This work did not involve the use of vertebrate animals.

Disclosure and Conflicts of Interest: The authors declare no conflicts of interest.

Fundamental Errors in Published Works: If a fundamental error or inaccuracy is discovered in the results described by our literature review, the authors will immediately notify the editor or publisher.

Contrasting patterns of venom regeneration in a centipede and a scorpion (*Centruroides hentzi*)

