


exerting e�ort. We want a scoring rule that maximizes the di�erence in expected scores for the

posterior distribution and prior distribution. For (b), we impose the ex post constraint that the

score is in a bounded range, i.e., without loss, between zero and one.

Results. We solve for the optimal scoring rule for reporting the expectation in single-dimensional

space. As we expect for single-dimensional mechanism design problems for an agent with linear

utility, the optimal scoring rule �xing any realized state is a step function. To implement this scoring

rule, it is su�cient for the designer to know the prior mean instead of the details on the distribution

over posteriors. The optimal scoring rule is the same as asking a binary choice question: whether

the belief is higher or lower than the mean of the prior. We also demonstrate a �rst result for

prior-independent analysis of scoring rules. Among prior-independent scoring rules for reporting

the expectation, the quadratic scoring rule is within a constant factor of optimal.

For multi-dimensional forecasting when the distribution over posterior means and the state space

are given explicitly, we provide a polynomial time algorithm that computes the optimal scoring rule.

For multi-dimensional forecasting with symmetric distributions, we give an analytical characteriza-

tion of the optimal scoring rule. For multi-dimensional forecasting without a symmetry assumption,

we identify a scoring rule that gives an 8-approximation. This scoring rule can be interpreted as

scoring the dimension for which the agent’s posterior in the optimal single-dimensional scoring

rule gives the highest utility. Equivalently, it can be implemented by letting the agent select which

dimension to score and only scoring that dimension (after exerting e�ort to learn the posterior

mean of all dimensions). While optimal mechanisms generally depend on the distribution over

posteriors, our approximation bounds are proved for simple mechanismsthat depend only on the

prior mean, and do not require detailed knowledge of the distribution over posteriors. For the peer

grading example, e.g., it is su�cient to know that the mean grade is 0.8 ∈ [0, 1]. In addition, due

to the simple form of the approximately optimal scoring rule, even when the designer is ignorant

of the prior mean, the designer can estimate it using samples and the expected incentive loss for

using the sample estimate is negligible. Finally, we show that the ad-hoc approach of averaging the

score of each dimension may have an multiplicative loss in incentives for e�ort that is linear in the

size of the dimension.

Application to Peer Grading. Optimization of scoring rules is a mechanism design problem. A

signi�cant challenge for algorithmic methods in mechanism design is a lack of applications to which

researchers can readily apply mechanism design results. Optimization of scoring rules, however,

has application to peer grading and can be deployed in classrooms where algorithms researchers

teach. The questions of this paper were in fact motivated by the failure of classical approaches to

scoring rules in this context.

While peer grading may be employed to reduce e�ort of course sta�, a primary concern is in

improving learning outcomes. For peers to learn from peer reviewing they must be incentivized to

put in e�ort, i.e., the peer reviews themselves must be graded. One way to algorithmically grade

peer reviews is to compare the peer’s marks to ground truth marks provided by the teaching sta�.

Speci�cally, a peer can be asked to review the submission and forecast the true marks.

If the grading rubric has multiple elements (denoted by Ĥ), the natural approach from the

literature would be to score each dimension separately and then take the sum. In contrast, the

optimal multi-dimensional rule is not the sum over separate rules but the maximum over separate

scoring rules. For a prior such that independently for each dimension, the signal reveals the state

with probability 1

Ĥ
, these two are signi�cantly di�erent. Speci�cally, the incentives for e�ort for

the separate scoring rule is ċ ( 1
Ĥ
) while the incentives for e�ort for optimal scoring rule is ċ (1).

Thus optimal scoring rule can be unboundedly better than separate scoring rule.
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