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Abstract

Data centers are increasingly equipped with RDMAs. These
network interfaces mark the advent of a new distributed
system model where a node can directly access the remote
memory of another. They have enabled microsecond-scale
replicated services. The underlying replication protocols of
these systems execute all operations under strong consis-
tency. However, strong consistency can hinder response time
and availability, and recent replication models have turned
to a hybrid of strong and relaxed consistency. This paper
presents RDMA well-coordinated replicated data types, the
first hybrid replicated data types for the RDMA network
model. It presents a novel operational semantics for these
data types that considers three distinct categories of meth-
ods and captures their required coordination, and formally
proves that they preserve convergence and integrity. It im-
plements these semantics in a system called Hamband that
leverages direct remote accesses to efficiently implement the
required coordination protocols. The empirical evaluation
shows that Hamband outperforms the throughput of exist-
ing message-based and strongly consistent implementations
by more than 17x and 2.7x respectively.

CCSConcepts: · Software and its engineering→ Formal

language definitions; Correctness; Semantics; Consis-
tency; · Computer systems organization → Reliability;
Availability.
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1 Introduction

Data centers equipped with RDMA network interfaces are
pervasive. These network interfaces support Remote Direct
Memory Access (RDMA) [2, 46] from one node to another
without going through the network and operating system
stack or requiring CPU cycles from the other node. RDMAs
mark the advent of a new model for distributed computing
that combines the traditionally separate models of shared
memory and message-passing, and have motivated new pro-
tocol designs [5, 6, 78]. This technology has been used to en-
able microsecond-scale [14] replicated services whose avail-
ability and low-latency are critical in applications such as
finance and control.

RDMAs have been utilized to accelerate key-value stores
[32, 45] and transactions [47, 87, 88]. In particular, they have
been used to implement State Machine Replication (SMR)
[79]. At its core, an SMR is a consensus or atomic broad-
cast protocol that executes requests in the same total order
across replicas, and provides strong consistency. From the
long-lasting class of SMR protocols and systems, RDMA-
accelerated SMRs have gained recent attention in projects
such as DARE [74], APUS [86], Derecho [41], HovercRaft
[49], Mu [7], Hermes [48] and Kite [35]. In contrast to tradi-
tional message-passing SMRs whose latencies are hundreds
of microseconds, RDMA SMRs exhibit latencies that are less
than a dozen microseconds. To maintain the low latency, it
is crucial to avoid overloading the system. Therefore, the
throughput of RDMA replicated systems is an important
factor for their responsiveness as well [34].
In the message-passing model, SMR protocols such as

Viewstamp [69], Paxos [52], Raft [70] and Spanner [29] pro-
vide strong consistency and have been the de facto stan-
dard for replication. However, practitioners [3, 28, 51, 72, 84]
soon realized that SMR does not provide enough through-
put, responsiveness and availability [4, 19, 20] for indus-
trial applications, and opted for relaxed notations of con-
sistency. In fact, deployments of SMR are often limited to
small cluster sizes [25, 29, 40]. The large class of relaxed
consistency notions [80] can be more efficiently provided
[53, 73]. However, these notions forgo the total order of op-
erations across replicas. Therefore, an immediate question
is the safety of these notions for replication. Convergent
and Commutative Replicated Data Types (CRDTs) [81, 82]
and similar notions [8, 77] formally define replicated data
types that converge under relaxed consistency. In addition
to convergence, RA-linearizability [85] and ACC [59] define
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specifications for the functional correctness of these types.
The definition of these types and their specifications led to
projects on their composition [27, 61, 89, 89], and verification
[18, 24, 33, 36, 60, 65, 91]. They were later followed by more
expressive convergent types such as cloud, mergeable and
reactive types [22, 23, 44, 64]. Convergence might be enough
for simple objects such as counters. However, relaxed consis-
tency can further violate the integrity [10] of objects (such
as maintaining a non-negative balance for a bank account).
Thus, replicated data types that preserve integrity under
relaxed consistency [9, 67, 90] followed.
However, not all operations can preserve convergence

and integrity under relaxed consistency. Some operations
do need strong consistency. Therefore, several projects con-
sidered hybrid models where each operation is executed
under either relaxed or strong consistency based on its se-
mantics. These projects include IPA [11], Sieve [55ś57], In-
digo [12, 13], CISE [37], Quelea [83], Carol [54] Hamsaz
[39] and ECRO [30]. Hamsaz analyzes the given object to
find the conflicting and dependent pairs of methods. It then
synthesizes well-coordinated replicated objects that synchro-
nize for conflicting, and preserve dependencies for depen-
dent method calls. Well-coordinated replicated data types
(WRDTs) guarantee convergence and integrity. Hampa [58]
later added recency guarantees. Other projects tested and
verified [15, 17, 21, 43, 66, 75], and repaired [76] replicated
objects in hybrid models. Yet, others [38, 50, 62] considered
the flow between relaxed and strong consistency.
However, the distributed system model that was consid-

ered for CRDTs and WRDTs was always the traditional
message-passing network model. What is the semantics of
CRDTs and WRDTs in the RDMA network model? What
are the efficient coordination protocols that can leverage
RDMAs to implement CRDTs and WRDTs?
RDMA offers two classes of communication primitives:

two-sided and one-sided. Two-sided communication has sim-
ilar semantics to the traditional message-passing model. A
node can execute a send operation to communicate amessage
to another node. The other node should execute an explicit
receive operation to deliver and process the message. On the
other hand, one-sided communication has similar semantics
to the traditional shared memory model. A node directly per-
forms a write or read operation on the memory of another
node. The access is performed without involving the CPU
of the other node. The new class, one-sided communication,
tends to deliver lower response time since it bypasses the
network and operating system stack and does not interrupt
the CPU of the other node. How can well-coordination be
efficiently implemented by one-sided communication?
This paper presents a novel operational semantics for

RDMAWRDTs. The semantics divides methods of a given
object into three categories, reducible, irreducible conflict-
free, and conflicting, and declares distinct coordination re-
quirements for each. The semantics does not perform any

message-passing. In particular, reducible method calls can
be performed with a single one-sided write operation that
can be executed in parallel on the replicas. Similarly, the co-
ordination for the other two categories is a sequence of local
operations followed by one-sided remote operations. Further,
we define an abstract operational semantics for WRDTs that
captures well-coordination conditions. We prove that the
concrete semantics of RDMA WRDTs refines the abstract
semantics of WRDTs. Therefore, any execution of an RDMA
WRDT is well-coordinated. Since (op-based) CRDTs are a
special instance of WRDTs, each of the above two WRDT
semantics subsume the semantics of CRDTs.
The operational semantics of RDMAWRDTs serves as a

specification for their implementation and runtime system.
We implement RDMAWRDT on top of consensus and reli-
able broadcast abstractions for the RDMA network model.
We adopted and implemented several CRDTs, and WRDTs.
We evaluated our implementations by comparing them to
both message-based and SMR-based implementations. The
results show that on average, WRDTs exhibit more than 17x
and 2.7x higher throughput respectively with almost the
same response time.

In summary, this paper makes the following contributions:

• It introduces RDMAWRDTs, the first hybrid replicated
data types for the RDMA network model.

• It presents a novel operational semantics for RDMA
WRDTs that is based solely on one-sided communica-
tion. It divides methods to three categories and defines
the required coordination for each.

• It captures the notion of well-coordination as the
abstract WRDT operational semantics, and formally
proves that the RDMA WRDT semantics refine the
abstract WRDT semantics, and preserve integrity and
convergence.

• It efficiently implements the coordination protocols for
RDMA WRDTs using only one-sided communication.

• It empirically shows that the RDMAWRDTs outper-
form the throughput of the existing message-based
and SMR-based implementations.

2 Overview

We now illustrate RDMA replication with the familiar bank
account example.

Example. As Figure 1.(a) shows, an object of the Account
class stores the balance state 𝑏, with the integrity prop-
erty (or invariant) I that requires the balance to stay non-
negative. The class exposes the two update methods deposit
and withdraw, which return the updated balance state, and
the query method balance that returns the current balance.
The goal is to replicate an object on the given set of host

processes such that the processes can issue requests to call
update and query methods on the object. The processes
should coordinate the calls so that the integrity property
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class Account

𝑏 : Int

I ≔ 𝜆𝑏. 𝑏 ≥ 0

update deposit (𝑎)

𝑏 + 𝑎

update withdraw (𝑎)

𝑏 − 𝑎

query balance ()

𝑏

(a)

(b)

(c)

Figure 1. Bank Account. (a) The user specification, (b) The
conflict graph, and (c) The dependency graph

is always preserved, and the states of the processes eventu-
ally converge.
Well-coordination. A withdraw call issued at a pro-

cess should be locally permissible: it should not overdraft the
account, i.e., not violate the invariant. Further, preserving
integrity and convergence requires enforcing certain orders
between calls across processes. For example, consider two
withdraw calls, that each zeros the balance, are concurrently
executed at two processes, and are propagated and applied to
the other process in the opposite order. The secondwithdraw
call in each process overdrafts the account and violates the
integrity property. Although it was locally permissible in
its issuing process, it becomes impermissible in the other
process. We say that two withdraw calls permissible-conflict.
Further, consider awithdraw call that zeros the balance is ex-
ecuted right after a deposit call in a process. If the withdraw
call is propagated and applied to other processes before the
deposit call, then the withdraw call overdraft the account in
the other processes. We say that the withdraw call is depen-
dent on the deposit call. Similarly, for a set object, if an add

and a remove call on the same element concurrently execute
on two processes, and are applied to the other process in the
opposite order, the state of the set object diverges. We say
that the two calls add and remove state-conflict.

A replicated execution is well-coordinated if it is (1) locally
permissible: every call should be permissible in the issuing
process, (2) conflict-synchronizing: any pair of conflicting
calls should have the same order across processes, and (3)
dependency-preserving: a received call should be applied
locally only if all the calls that it succeeded in the issuing
process and is dependent on are already applied.
RDMA Coordination. RDMA allows a process to di-

rectly access the memory of other processes. Direct reads
and writes are considerably faster than reading and writing
by message-passing through the network stack. How can
RDMA-enabled processes provide well-coordinated repli-
cated objects? How can direct memory accesses accelerate
the required coordination? Coordination mechanisms that
can be captured as local accesses and then a sequence of in-

dependent remote accesses can execute efficiently. In these

mechanisms, an access does not need to wait for a round-
trip to receive the result of the previous access. In Figure 2,
we showcase the coordination of RDMA replicated objects
for our account example with three processes. Each process
stores the state 𝜎 of the object: in our example, the balance
for the account. It further stores other pieces of state that
we visit in turn.

Conflicting methods. The conflict relation between
the methods of an object induces the conflict graph. As Fig-
ure 1.(b) shows, in our account example, the conflict graph
has a loop on the withdrawmethod, and the depositmethod
is conflict-free. Every pair of calls on adjacent methods of
the conflict graph need to be synchronized to have the same
order in all the processes. We call a connected component of
the conflict graph a synchronization group. Each synchroniza-
tion group will have a leader process. Every other process in
the group is a follower. Each follower process stores a buffer
𝐿 for each synchronization group that stores pending calls
on the methods of that group. In the account example, there
is a group for withdraw method calls. In Figure 2, the leader
for this group is 𝑝1 and each follower process keeps a buffer
𝐿 for the withdraw calls. The leader checks local permissi-
bility, orders and locally applies calls on the methods of the
group, and remotely appends the ordered calls to the buffers
of the followers. A follower process periodically traverses
its buffer and applies the pending calls to the state 𝜎 .

Follower processes receive updates without actively listen-
ing for and receiving messages through the network stack.
The buffer for a group at each follower process is written by
only the leader of the group and is read by only that local
process. Therefore, the leader itself maintains the tail pointer
of the buffer, and the coordination operation of the leader
is locally reading and updating the tail pointer, and then
remotely writing the call. We will see more details about
how the buffers are managed in section 4.
Dependencies. As we saw above, the dependencies of

calls should be respected. Therefore, each process keeps a
mapping𝐴 from each process 𝑝 and method 𝑢 to the number
of calls on 𝑢 from 𝑝 that are locally applied. When a call is
shipped to be appended to a remote buffer, it is shipped with
an account of its dependencies. The dependency map 𝐷 of
a call on a method 𝑢 is the projection of the applied map 𝐴

of the issuing process over the methods that 𝑢 is dependent
on. To respect the dependencies, when a process traverses a
buffer, it applies a call only if the local applied map𝐴 is point-
wise greater than the dependency map 𝐷 that accompanies
the call. When a call is applied, the local applied map 𝐴 is
advanced for the issuing process. As Figure 1.(c) shows, in our
account example, the dependencies of the withdraw method
is the singleton set containing the deposit method. On the
other hand, the depositmethod is dependence-free. Thus, the
applied and dependency maps are reduced to arrays indexed
by process identifiers that store the number of deposit calls
issued by each process.
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Figure 2. RDMA Replicated Bank Account

Conflict-free methods. Calls to conflict-free methods
such as the deposit method can avoid synchronization. Each
process can autonomously propagate its conflict-free meth-
ods to other processes. Each process stores a buffer 𝐹 for
conflict-free calls from each other process. A process 𝑝 that
issues a conflict-free call checks that it is locally permissi-
ble, applies it locally, and remotely appends it to the buffers
that other processes store for 𝑝 . For example, in Figure 2,
the buffer 𝐹2 in process 𝑝1 stores the deposit calls issued by
the process 𝑝2. Similarly, the process 𝑝3 stores a buffer 𝐹2
for deposit calls issued by 𝑝2. Similar to a conflicting call, a
conflict-free call is accompanied by its dependency map 𝐷
and is applied only if the local applied map 𝐴 is ahead of its
dependency map.
A process stores a buffer of conflict-free calls for each

other process. The other process is the only writer of the
buffer and the local process is the only reader. Therefore,
the other process can perform the update by locally read-
ing and writing the buffer tail, and then remotely writing
the call (and its dependencies). Sharing buffers would re-
quire synchronization across processes. RDMA does provide
compare-and-swap operations; however, they are more ex-
pensive than reads and writes and we avoid them with a
single-writer design.
Reducible methods. We saw that conflict-free calls

can avoid synchronization. The issuing process can simply
propagate them to other processes by remote writes. An im-
portant observation is that for some conflict-free calls, even
processing the calls can be done at the issuing process, and
the other processes can receive the updates with no effort. In
our account example, two deposit calls can be summarized

to a single deposit with an amount equal to the sum of the
two amounts. Therefore, the issuing process can summarize
its deposit calls into a single deposit call, and remotely write
only that call. As Figure 2 shows, each buffer of conflict-
free calls 𝐹 can be replaced with a single summary call 𝑆 .
Each process stores a summary call for itself and each other

process. When a process issues a new deposit call, it first
calculates the summary of its current summary and the new
call. It then overwrites the summary locally for itself and
remotely for each other process. It further advances the ap-
plied map for the current process both locally and remotely.
In contrast to buffers, each process keeps its own summary
since the process needs its own summary to recalculate it.

Up to this point, the query method balance would simply
return the stored state 𝜎 . However, in the presence of sum-
marized calls, it should apply all the locally stored summary
calls to 𝜎 to calculate the current state. In our example, it
should apply the calls 𝑆1, 𝑆2 and 𝑆3 to 𝜎 . Since the summary
calls are conflict-free, they can be applied in any order. In
a more elaborate object, it might be possible to summarize
only separate subsets of methods which we call summariza-

tion groups. Each process stores a summary call from each
process per summarization group.
Method categories. Summarization can accelerate the

propagation and processing of calls. The summary is locally
recalculated and is propagated by a single remote write. The
caveat is that not all summarizable methods can be propa-
gated as above. The method needs to be not only conflict-free
but also dependence-free. If a method call has dependencies
and it is summarized and remotely written for another pro-
cess, the other process might not have applied the dependen-
cies yet. Therefore, we consider three categories of methods.
We say that a method is reducible as described above only
if it is conflict-free, dependence-free and summarizable. We
call a method irreducible conflict-free if it is conflict-free
but either not summarizable or not dependence-free. For
example, in a grow-only set that has a contains and an add

method (to add an element but not a set), the method add

is conflict-free but is not summarizable. On the other hand,
if the set object has an add method to add a set, then the
add method is summarizable. As another example, consider
a bank that is represented as a map that associates accounts
to their balances, and in addition to deposit and withdraw,
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𝜎 : Σ State
I Invariant (Integrity)
𝑣 : 𝑉 Value
𝑢 : 𝑈 Update Method
𝑞 : 𝑄 Query Method
𝑑 : 𝜆𝑥, 𝜎. 𝑒 Definition
𝑒 Expression

𝑜 ≔ ⟨Σ,I, 𝑢 ≔ 𝑑, 𝑞 ≔ 𝑑⟩ Object
𝑝 : 𝑃 Process
𝑟 : 𝑅 Request Identifier

𝑐 : 𝐶 ≔ 𝑢 (𝑣)𝑝,𝑟 Update Method Call
𝑎 ≔ 𝑞(𝑣) Query Method Call
ℓ ≔ (𝑝,𝑢 (𝑣)𝑟 ) | (𝑝, 𝑞(𝑣)) Label
𝜏 ≔ ℓ∗ Trace

Figure 3. Basic Syntax

exposes the open method to open accounts. The deposit

method is conflict-free but is dependent on the openmethod.
Irreducible conflict-free methods use the conflict-free buffers
that we saw above. Finally, conflicting calls use the conflict-
ing buffers. We will consider these categories in more detail
and the semantics of RDMA replicated objects in the next
section.

3 Replicated Data Types

In this section, we first present how the high-level spec-
ifications of object data types can be captured. We then
present a core operational semantics for well-coordinated
replicated data types (WRDTs), and prove that it guaran-
tees integrity and convergence. This abstract semantics will
serve as the specification for replicated data types. We then
present the semantics of RDMA replicated data types. It di-
vides the methods of an object into three categories, and
declares separate coordination requirements for each. We
prove that this concrete semantics refines the earlier abstract
semantics of WRDTs, and therefore, guarantees integrity
and convergence.

3.1 Object Data Types

As Figure 3 shows, a class of objects is a tuple

⟨Σ,I, 𝑢 ≔ 𝑑, 𝑞 ≔ 𝑑⟩ that defines the state type Σ, the invari-
ant (or integrity property) I on the state, and the definitions
of update methods 𝑢 and query methods 𝑞. The invariant
(or integrity) I is a predicate on the state. The definition
of an update method is a function from the parameter and
the pre-state 𝜎 to the post-state. Similarly, the definition of
a query method is a function from the parameter and the
pre-state 𝜎 to the return value. The object is replicated on
the set of processes 𝑃 . Any process 𝑝 can accept and issue
update calls 𝑢 (𝑣) or query calls 𝑞(𝑣). The calls have unique
request identifiers 𝑟 . An update call is decorated with the
issuing process 𝑝 and the request identifier 𝑟 . We elide these

ss : 𝑃 ↦→ Σ Replicated State
xs : 𝑃 ↦→ List(𝐶) Replicated Execution
𝑊 ≔ ⟨ss, xs⟩ World

𝑊0 ≔ ⟨[𝑝 ↦→ 𝜎0]𝑝∈𝑃 , [𝑝 ↦→ ∅]𝑝∈𝑃 ⟩ Initial World

Figure 4.WRDT State

decorations when they are not needed or are evident from
the context.

Clients can request method calls at every process, and the
processes coordinate these calls. A label for a call request
is the pair of the issuing process and a call, and a trace is a
sequence of labels.

3.2 Semantics of Well-Coordinated Replicated Data

Types

We now present the operational semantics for well-
coordinated replicated data types (WRDTs). We first see
the replicated state and the coordination conditions that the
transition rules use.
Replicated State. The state of the given object is repli-

cated across processes. The replicated state ss is a mapping
from each process 𝑝 to its states 𝜎 . The execution history 𝑥 of
a process is modeled as a permutation of a set of calls. Since
query calls do not mutate the state, an execution history only
keeps update calls. We write 𝑐 ∈ 𝑥 to denote that the call 𝑐 is
in the history 𝑥 . An execution history x defines a total order
on its calls: we write 𝑐 ≺x 𝑐

′ iff the call 𝑐 precedes the call
𝑐 ′ in the execution history x. A replicated execution xs is a
function from each process to its execution history. The state
𝑊 of our operational semantics is the pair of the replicated
state ss and the replicated execution xs. In the initial state𝑊0,
the state of each process is the same state 𝜎0 that satisfies
the invariant I, and the history of each process is an empty
list.
Coordination Conditions. We now define the coordi-

nation conditions in steps. For the sake of brevity, we elide
separate definition environments.
State-conflict. A replicated execution is convergent if

the state of the processes is the same after all the calls are
propagated to all processes. Out of order delivery of calls at
different processes can lead to divergence of their states. For
example, for the set data type, according to the execution
order of the two calls add and remove of the same element,
there are two possible resulting states. Therefore, they should
synchronize. Twomethod calls 𝑐1 and 𝑐2 S-commute, written
as 𝑐1⊳⊲S𝑐2, iff 𝑐 ◦𝑐

′
= 𝑐 ′ ◦𝑐 (where ◦ is function composition).

Otherwise, they S-conflict, written as 𝑐1 ⊲⊳S 𝑐2.
Integrity and Permissibility. In the execution history of a

process, the post-state of a call is the pre-state of the next
call. The body of each method can assume and rely on the
invariant in the pre-state; it should then preserve it in the
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post-state for the next call. The notion of permissibility re-
quires the invariant to hold in the post-state. A method call 𝑐
is permissible in a state 𝜎 , written as P(𝜎, 𝑐), iffI(𝑐 (𝜎)). The
initial state is assumed to satisfy the invariant. Therefore,
if it is ensured that every call is permissible in its pre-state,
then by induction, every call enjoys integrity in its pre-state.
Permissibility leads to integrity.
Invariant-sufficiency. There are calls (e.g., deposit on a

bank account) that are always permissible (i.e., a deposit

never overdrafts) as far as they are applied to a state that has
integrity. Thus, when they are broadcast and executed on
another process, in order to be permissible, they only need
the pre-state to have integrity. A call 𝑐 is invariant-sufficient
iff for every state 𝜎 , if I(𝜎) then P(𝜎, 𝑐).
Permissible-Right-Commutativity. However, not all calls

are invariant-sufficient. For example, a withdraw call may
be permissible in a process but may become impermissible
in another where it is executed after a racing withdraw call.
A call 𝑐1 P-R-commutes with another 𝑐2, written as 𝑐1 ⊲P
𝑐2, iff for every state 𝜎 , if P(𝜎, 𝑐1) then P(𝑐2 (𝜎), 𝑐1). i.e.,
permissibility holds even after 𝑐1 is pushed right after 𝑐2.
Permissible-conflict. We say that 𝑐1 P-concurs with a

call 𝑐2, if 𝑐1 is invariant-sufficient or 𝑐1 ⊲P 𝑐2. Otherwise, 𝑐1
P-conflicts with 𝑐2 and needs to synchronize with it.
Conflict. We say that two calls 𝑐1 and 𝑐2 concur iff they

both S-commute and P-concur with each other. Otherwise,
we say they conflict written as 𝑐1 ⊲⊳ 𝑐2. Conflicting calls need
synchronization. A call is conflict-free if it does not conflict
with any other call.

Permissible-Left-Commutativity. We saw above that
invariant-sufficient calls always preserve the invariant. How-
ever, there are calls whose preservation of the invariant is
dependent on the calls that precede them. For example, a
withdraw call may be dependent on the money deposited by
a preceding deposit call in the issuing process; after prop-
agation to another process, if the withdraw moves to the
left of the deposit, the withdraw call can overdraft. A call
𝑐2 P-L-commutes a call 𝑐1, written as 𝑐2 ⊳P 𝑐1 iff for every
state 𝜎 , if 𝑐2 is permissible in the post-state of the call 𝑐1 on
𝜎 , i.e., P(𝑐1 (𝜎), 𝑐2), then 𝑐2 is permissible in 𝜎 , i.e., P(𝜎, 𝑐2),
as well.
Dependency. A call 𝑐2 is independent of 𝑐1, written as

𝑐2 ⊥⊥ 𝑐1, if 𝑐2 is invariant-sufficient or 𝑐2 ⊳P 𝑐1. Otherwise,
𝑐2 is dependent on 𝑐1, written as 𝑐2 ⊥̸⊥ 𝑐1. If 𝑐1 is executed
before 𝑐2 in the issuing process of 𝑐2, and 𝑐2 ⊥̸⊥ 𝑐1, then 𝑐2 can
be applied to another process only if 𝑐1 is already applied.

Given the integrity properties, the representation and au-
tomated checking and inference of conflict and dependency
relations [12, 37, 39, 67] is a topic of active research.
Transitions Rules. The transition rules of the opera-

tional semantics are presented in Figure 5. The rule Call
accepts and executes an update method call 𝑐 at the process
𝑝 . It first checks that the call is locally permissible P(𝜎, 𝑐).
It then checks that if the new call 𝑐 conflicts with a call 𝑐 ′

that another process 𝑝 ′ has executed, then 𝑐 ′ should have
been already executed at the current process 𝑝 . Thus, exe-
cuting the call keeps the execution conflict-synchronizing. A
replicated execution is conflict-synchronizing if every pair
of conflicting calls have the same order across processes.
The rule Prop propagates a call 𝑐 from another process

𝑝 ′ to the current process 𝑝 . Similar to the previous rule, this
rule makes sure that executing 𝑐 keeps the execution conflict-
synchronizing. It checks that if a call 𝑐 ′ that conflicts with
the new call 𝑐 is executed before 𝑐 in any other process, then
𝑐 ′ is already executed at the current process 𝑝 . The rule also
makes sure that executing 𝑐 keeps the execution dependency-
preserving. A replicated execution is dependency-preserving
if for every call, its preceding dependencies in its issuing
process precede it in the other processes as well. The rule
checks that if a call 𝑐 ′ is executed before 𝑐 in 𝑝 ′, and 𝑐 is
dependent on 𝑐 ′, then 𝑐 ′ is already executed at the current
process 𝑝 .
The rule Query executes a query call 𝑞(𝑣) at a process 𝑝 .

The return value 𝑣 ′ is the result of applying the call to the
current state 𝜎 of 𝑝 .
We note that (op-based) CRDTs (Convergent and Com-

mutative Replicated Data Types) [81] are a special case of
WRDTs where it is assumed that all method calls state-
commute with each other, and the integrity predicate is
simply the assertion true. The conflict-synchronization and
dependency-preservation conditions in the above transition
rules are trivially satisfied. Therefore, the rules are always
enabled and calls can propagate without coordination.

We also note that linearizable data types are a special case
of WRDTs where the conflict relation is complete. The exe-
cutions of WRDTs are conflict-synchronizing. Therefore, all
the calls are totally ordered across processes. The execution
histories xs(𝑝) of processes 𝑝 are the prefixes of the total
order. Further, the real-time preservation property is main-
tained by theCall rule as (1) a call 𝑐 in process 𝑝 returns only
after adding 𝑐 to xs(𝑝), and (2) the condition CallConfSync

ensures that a process 𝑝 ′ executes a call 𝑐 ′ only after every
call 𝑐 that is in xs(𝑝) is also in xs(𝑝 ′).
Guarantees. Every well-coordinated execution enjoys

integrity and convergence.
Integrity is the safety property that the invariant predicate

holds for all reachable states of a process.

Lemma 1 (Integrity). For all ss and 𝑝 , if𝑊0 →
∗ ⟨ss, _⟩ then

I(ss(𝑝)).

Convergence is the safety property that states that pro-
cesses which have applied the same set of calls have the
same state. We say that two histories 𝑥 and 𝑥 ′ are equivalent
𝑥 ∼ 𝑥 ′ if they have the same set of calls.

Lemma 2 (Convergence). For all ss, xs, 𝑝 and 𝑝 ′, if𝑊0 →
∗

⟨ss, xs⟩ and xs(𝑝) ∼ xs(𝑝 ′) then ss(𝑝) = ss(𝑝 ′).
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Call
𝑐 = 𝑢 (𝑣)𝑝,𝑟 P(𝜎, 𝑐)

CallConfSync(xs, 𝑝, 𝑐)

xs′ = xs [𝑝 ↦→ (xs(𝑝) ::: 𝑐)]

𝜎 ′ = 𝑢 (𝑣) (𝜎)

⟨ss[𝑝 ↦→ 𝜎], xs⟩
𝑝, 𝑢 (𝑣)𝑟
−−−−−−−→

⟨ss[𝑝 ↦→ 𝜎 ′], xs′⟩

Prop
𝑐 = 𝑢 (𝑣)𝑝′,𝑟 𝑐 ∈ xs(𝑝 ′) \ xs(𝑝)

PropConfSync(xs, 𝑝, 𝑐)

PropDepPres(xs, 𝑝 ′, 𝑝, 𝑐)

xs′ = xs [𝑝 ↦→ (xs(𝑝) ::: 𝑐)]

𝜎 ′ = 𝑢 (𝑣) (𝜎)

⟨ss[𝑝 ↦→ 𝜎], xs⟩ −→

⟨ss[𝑝 ↦→ 𝜎 ′], xs′⟩

Query

𝑣 ′ = 𝑞(𝑣) (𝜎)

⟨ss[𝑝 ↦→ 𝜎], _⟩
𝑝, 𝑞 (𝑣) :𝑣′

−−−−−−−−→

⟨ss[𝑝 ↦→ 𝜎], _⟩

CallConfSync (xs, 𝑝, 𝑐) ≔ ∀𝑐 ′, 𝑝 ′.

𝑐 ′ ∈ xs(𝑝 ′) ∧ 𝑐 ⊲⊳ 𝑐 ′ → 𝑐 ′ ∈ xs(𝑝)

PropConfSync (xs, 𝑝, 𝑐) ≔ ∀𝑐 ′, 𝑝 ′.

𝑐 ′ ≺xs(𝑝′) 𝑐 ∧ 𝑐 ⊲⊳ 𝑐 ′ → 𝑐 ′ ∈ xs(𝑝)

PropDepPres (xs, 𝑝 ′, 𝑝, 𝑐) ≔ ∀𝑐 ′.

𝑐 ′ ≺xs(𝑝′) 𝑐 ∧ 𝑐 ⊥̸⊥ 𝑐 ′ → 𝑐 ′ ∈ xs(𝑝)

Figure 5.WRDTs Semantics

3.3 RDMA Replicated Data Types

We now present the operational semantics of RDMA repli-
cated data types. The semantics divides methods into three
categories, reducible, irreducible conflict-free, and conflict-
ing, and presents dedicated coordination requirements for
each. We prove that this concrete semantics refines the ab-
stract semantics of WRDTs that we saw in the previous
subsection. This concrete semantics captures the core of our
runtime system that we will see in section 4.

Method Categories. A pair of methods 𝑢 and 𝑢 ′ conflict
if there are arguments 𝑣 and 𝑣 ′ such that the calls 𝑢 (𝑣) and
𝑢 ′(𝑣 ′) conflict. We say that a method is conflicting if there
is a method that it conflicts with, and say that it is conflict-
free otherwise. Similarly a method is dependent on another
method if there is a call on the former that is dependent
on a call on the latter. We write the set of methods that a
method 𝑢 is dependent on as Dep(𝑢). We say that a method
is dependence-free if its set of dependencies is empty.
As we saw in the semantics of WRDTs, calls to a pair of

conflicting methods should preserve the same order across
processes. The conflict relation on methods induces an undi-
rected graph that we call the conflict graph. The synchro-
nization group SyncGroup(𝑢) of a method𝑢 is the connected
component of the method in the conflict graph. Methods of
a synchronization group synchronize with each other.
The summary of two calls 𝑐 and 𝑐 ′, written as

Summarize(𝑐, 𝑐 ′), is a call 𝑐 ′′ iff for all states 𝜎 , 𝑐 ◦

𝑐 ′(𝜎) = 𝑐 ′′(𝜎). For example, the summary of deposit(3) and
deposit(4) is deposit(7). We say that a set of methods 𝑔 are
a summarization group if calls on 𝑔 are closed under summa-
rization. A sequence of calls from a summarization group can
be successively summarized into a single call. We say that a
method 𝑢 is summarizable if it is a member of a summariza-
tion group, that we write as SumGroup(𝑢). Otherwise, it is
not summarizable, that we write as SumGroup(𝑢) = ⊥. We
say that amethod is reducible if it is conflict-free, dependence-
free and summarizable. Otherwise, we say that it is irre-
ducible.

The semantics utilizes the remote write feature of RDMAs
to directly communicate updates from one process to another.
In order to tolerate faults and also have low latency for query
methods, each process keeps a local replica of the state, and
performs remote writes but no remote reads. The semantics

distinguishes between three categories of methods: (1) con-
flicting methods, (2) irreducible conflict-free methods, i.e.,
methods that are conflict-free but are either not dependence-
free or not summarizable, and (3) reducible methods. We
consider the coordination for each category in turn.
For conflicting methods, each synchronization group is

assigned a leader process, and each process replicates a buffer
of calls for each group. As we will see in the transition rules,
the leader process of the group orders the calls on the group
and then remotely appends them to the buffer of each other
process. The other processes periodically traverse their own
buffers and locally apply the calls. The leader is the single
remote writer of all buffers, and each process is the single
reader of its own local buffer.
Conflict-free methods do not need synchronization and

processes autonomously issue and propagate them. Each
process replicates a buffer of calls for all the irreducible
conflict-free calls of each other process. When a process 𝑝
issues an irreducible conflict-free call, it remotely appends it
to the buffers that each other process stores for 𝑝 . The other
processes periodically traverse their buffer, locally apply
the calls and then discard them. The process 𝑝 is the single
remote writer of these buffers, and each process is the single
reader of its own local buffer.
Reducible methods are remarkable: the issuing process

can reduce them together locally and then remotely write
them for other processes (i.e., using RDMA one-sided com-
munication). Therefore, for each pair of a summarization
group of methods and a process, each process replicates a
single call rather than a buffer of calls. This not only saves
space but also time as it eliminates the buffer traversals by
the target processes. Thanks to direct RDMA writes, other
processes obliviously receive updates without receiving and
traversing messages. Similar to the above buffers, each sum-
marization call is written by only a single remote process
and is only read by the local process.
Replicated State. Figure 6 shows the state of the op-

erational semantics. A configuration 𝐾 is a mapping from
processes 𝑝 to tuples ⟨𝜎,𝐴, 𝑆, 𝐹, 𝐿⟩. The stored state 𝜎 rep-
resents the result of applying calls at process 𝑝 . These calls
are either conflicting or irreducible conflict-free. The applied
calls 𝐴 is a mapping that maps a process 𝑝 ′ and an update
method𝑢 to the number of calls on𝑢 from 𝑝 ′ that are applied
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𝑔 : 𝐺 = Set(𝑈 ) Method Group
𝐴 : A = 𝑃 → 𝑈 → Nat Applied calls
𝐷 : D = 𝑃 → 𝑈 → Nat Dependencies
𝑆 : S = 𝐺 → 𝑃 → 𝐶 Summarized calls
𝐹 : F = 𝑃 → List (𝐶 × D) Conflict-free buffers
𝐿 : L = 𝐺 → List (𝐶 × D) Conflicting buffers
𝐾 : K = 𝑃 → Σ × A × S × F × L Configuration

Figure 6. WRDT RDMA State

in the current process. The summarized calls 𝑆 is a mapping
that maps a summarization group 𝑔 of update methods and
a process 𝑝 ′ to a call 𝑐 that summarizes calls on methods in
𝑔 from 𝑝 ′. The conflict-free calls 𝐹 is a mapping that maps a
process 𝑝 ′ to the list of irreducible conflict-free calls received
from 𝑝 ′; each call 𝑐 is coupled with its dependencies 𝐷 . The
conflicting calls 𝐿 is a mapping that maps a synchronization
group 𝑔 of update methods to the list of calls on methods of
𝑔; as before, each call 𝑐 comes with its dependencies 𝐷 .

Given a summarized map of calls 𝑆 , the state Apply(𝑆) (𝜎)
is the result of applying the calls in the range of 𝑆 to 𝜎 .
Since the calls in the summarized map are conflict-free, they
can be applied in any order. An applied map 𝐴 satisfies a
dependency map 𝐷 , written as 𝐷 ≤ 𝐴, iff for all 𝑝 and 𝑢,
𝐷 (𝑝,𝑢) ≤ 𝐴(𝑝,𝑢).
We note that the semantics explicitly models the leader

of each synchronization group that orders the calls on that
group. The map 𝐿 stores a copy of the total order at each
process. The leader updates the orders stored at other pro-
cesses by remote writes. Since these orders are the same, this
model is a refinement of an abstract leaderless model where
a configuration stores a single copy of the order.
Transition rules. The rule Reduce presents the transi-

tion for a reducible method call 𝑢 (𝑣) by a process 𝑝 𝑗 . If 𝑢 is
conflict-free (i.e., SyncGroup(𝑢) =⊥), is dependence-free (i.e.,
Dep(𝑢) = ∅), and is summarizable (i.e., SumGroup(𝑢) = 𝑔),
then the call 𝑢 (𝑣) can be reduced. The rule first checks that
the call is locally permissible. The current state 𝜎 of this
process 𝑝 𝑗 is calculated by applying the summarized calls
that it has received 𝑆 𝑗 to its stored state 𝜎 𝑗 . The post-state
that results from applying 𝑢 (𝑣) to 𝜎 should preserve the in-
tegrity property I. The current summarizing call 𝑢 ′(𝑣 ′) for
the group 𝑔 and the new call 𝑢 (𝑣) are summarized as the call
𝑢 ′′(𝑣 ′′). The new summary call is stored at all the processes
𝑝𝑖 , both locally at the current process 𝑝 𝑗 and remotely at
other processes. Consequently, the number of applied calls
on method 𝑢 from 𝑝 𝑗 is incremented locally and stored both
locally and remotely. The two remote writes are independent
and can be issued concurrently.

The rule Free presents the transition for a conflict-free but
irreducible (i.e., dependent or not summarizable) method call
𝑢 (𝑣) by a process 𝑝 𝑗 . If 𝑢 is conflict-free (i.e, SyncGroup(𝑢)

Reduce
SyncGroup(𝑢) = ⊥ Dep(𝑢) = ∅

SumGroup(𝑢) = 𝑔 𝜎 = Apply(𝑆 𝑗 ) (𝜎 𝑗 ) I(𝑢 (𝑣) (𝜎))

𝑆 𝑗 (𝑔, 𝑝 𝑗 ) = 𝑢
′(𝑣 ′) Summarize(𝑢 ′(𝑣 ′), 𝑢 (𝑣)) = 𝑢 ′′(𝑣 ′′)

𝑆 ′
𝑖
= 𝑆𝑖 [(𝑔, 𝑝𝑖 ) ↦→ 𝑢 ′′(𝑣 ′′)]

𝑖∈{1.. |𝑃 | }

𝑛 = 𝐴 𝑗 (𝑝 𝑗 , 𝑢) + 1 𝐴′
𝑖
= 𝐴𝑖 [(𝑝𝑖 , 𝑢) ↦→ 𝑛]

𝑖∈{1.. |𝑃 | }

[𝑝𝑖 ↦→ 𝜎𝑖 , 𝐴𝑖 , 𝑆𝑖 , _, _]𝑖∈{1.. |𝑃 | }
𝑝 𝑗 , 𝑢 (𝑣)
−−−−−−−→

[𝑝𝑖 ↦→ 𝜎𝑖 , 𝐴
′
𝑖
, 𝑆 ′

𝑖
, _, _]

𝑖∈{1.. |𝑃 | }

Free
SyncGroup(𝑢) = ⊥ Dep(𝑢) ≠ ∅ ∨ SumGroup(𝑢) = ⊥

𝜎 ′𝑗 = 𝑢 (𝑣) (𝜎 𝑗 ) 𝜎 ′ = Apply(𝑆 𝑗 ) (𝜎
′
𝑗 ) I(𝜎 ′)

𝐴′
𝑗 = 𝐴 𝑗 [(𝑝 𝑗 , 𝑢) ↦→ 𝐴 𝑗 (𝑝 𝑗 , 𝑢) + 1] Dep(𝑢) = {𝑢 ′}

𝐹 ′
𝑖
= 𝐹𝑖 [𝑝 𝑗 ↦→ 𝐹𝑖 (𝑝 𝑗 ) ::: ⟨𝑢 (𝑣), 𝐴 𝑗 |{𝑢 ′}⟩]𝑖∈{1.. |𝑃 | }\{ 𝑗 }

[𝑝 𝑗 ↦→ 𝜎 𝑗 , 𝐴 𝑗 , _, _, _] [𝑝𝑖 ↦→ _, _, _, 𝐹𝑖 , _]𝑖∈{1.. |𝑃 | }\{ 𝑗 }
𝑝 𝑗 , 𝑢 (𝑣)
−−−−−−−→

[𝑝 𝑗 ↦→ 𝜎 ′𝑗 , 𝐴
′
𝑗 , _, _, _] [𝑝𝑖 ↦→ _, _, _, 𝐹 ′

𝑖
, _]

𝑖∈{1.. |𝑃 | }\{ 𝑗 }

Conf
SyncGroup(𝑢) = 𝑔 Leader(𝑔) = 𝑝 𝑗

𝜎 ′𝑗 = 𝑢 (𝑣) (𝜎 𝑗 ) 𝜎 ′ = Apply(𝑆 𝑗 ) (𝜎
′
𝑗 ) I(𝜎 ′)

𝐴′
𝑗 = 𝐴 𝑗 [(𝑝 𝑗 , 𝑢) ↦→ 𝐴 𝑗 (𝑝 𝑗 , 𝑢) + 1] Dep(𝑢) = {𝑢 ′}

𝐿′
𝑖
= 𝐿𝑖 [𝑔 ↦→ 𝐿𝑖 (𝑔) ::: ⟨𝑢 (𝑣), 𝐴 𝑗 |{𝑢 ′}⟩]𝑖∈{1.. |𝑃 | }\{ 𝑗 }

[𝑝 𝑗 ↦→ 𝜎 𝑗 , 𝐴 𝑗 , _, _, _] [𝑝𝑖 ↦→ _, _, _, _, 𝐿𝑖 ]𝑖∈{1.. |𝑃 | }\{ 𝑗 }
𝑝 𝑗 , 𝑢 (𝑣)
−−−−−−−→

[𝑝 𝑗 ↦→ 𝜎 ′𝑗 , 𝐴
′
𝑗 , _, _, _] [𝑝𝑖 ↦→ _, _, _, _, 𝐿′

𝑖
]
𝑖∈{1.. |𝑃 | }\{ 𝑗 }

Free-App
𝐷 ≤ 𝐴 𝜎 ′ = 𝑢 (𝑣) (𝜎) 𝐴′

= 𝐴[(𝑝 ′, 𝑢) ↦→ 𝐴(𝑝 ′, 𝑢) + 1]

𝐾 [𝑝 ↦→ 𝜎,𝐴, _, 𝐹 [𝑝 ′ ↦→ ⟨𝑢 (𝑣), 𝐷⟩ :: 𝑙], _] −→
𝐾 [𝑝 ↦→ 𝜎 ′, 𝐴′, _, 𝐹 [𝑝 ′ ↦→ 𝑙], _]

Conf-App
𝐷 ≤ 𝐴 𝜎 ′ = 𝑢 (𝑣) (𝜎)

Leader(𝑔) = 𝑝 ′ 𝐴′
= 𝐴[(𝑝 ′, 𝑢) ↦→ 𝐴(𝑝 ′, 𝑢) + 1]

𝐾 [𝑝 ↦→ 𝜎,𝐴, _, _, 𝐿[𝑔 ↦→ ⟨𝑢 (𝑣), 𝐷⟩ :: 𝑙]] −→

𝐾 [𝑝 ↦→ 𝜎 ′, 𝐴′, _, _, 𝐿[𝑔 ↦→ 𝑙]]

Query

𝜎 ′ = Apply(𝑆) (𝜎) 𝑣 ′ = 𝑞(𝑣) (𝜎 ′)

𝐾 [𝑝 ↦→ 𝜎, _, 𝑆, _, _]
𝑝, 𝑞 (𝑣) :𝑣′

−−−−−−−−→ 𝐾 [𝑝 ↦→ 𝜎, _, 𝑆, _, _]

Figure 7. RDMAWRDTs Semantics

= ⊥), but either dependent (i.e., Dep(𝑢) ≠ ∅) or not summa-
rizable (i.e., SumGroup(𝑢) = ⊥), then the call 𝑢 (𝑣) cannot be
reduced but can avoid synchronization. As before, the call is
first checked to be locally permissible. Then, the call is locally
applied and the number of applied calls on 𝑢 is incremented.
It is then remotely written for each other process 𝑝𝑖 : it is
appended to the list 𝐹𝑖 (𝑝 𝑗 ) that stores at 𝑝𝑖 the conflict-free
calls issued from 𝑝 𝑗 . Let the dependencies Dep(𝑢) of 𝑢 be
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the set of methods {𝑢 ′}. The call 𝑢 (𝑣) is accompanied with a
record of applied calls that𝑢 (𝑣) is dependent on, i.e.,𝐴 𝑗 |{𝑢 ′}.
The rule Conf presents the transition for a conflicting

method call𝑢 (𝑣) by a process 𝑝 𝑗 . The process 𝑝 𝑗 is the leader
for the method 𝑢. As before, the call is first checked to be
locally permissible. Then, the call is locally applied and the
number of applied calls is advanced. Let the synchronization
group of 𝑢 be 𝑔 (i.e., SyncGroup(𝑢) = 𝑔). The call is remotely
written for each other process 𝑝𝑖 : the call is appended to the
list 𝐿𝑖 (𝑔) that stores at 𝑝𝑖 the calls from the synchronization
group 𝑔. As before, the call is accompanied with a record of
its dependencies. The function Leader uniquely maps each
synchronization group to a process. As we will see in the
next section, changing the leader of a synchronization group
from one process to another preserves this uniqueness.
The rule Free-App presents an internal transition by a

process 𝑝 to apply a call from its conflict-free buffers 𝐹 . A
call from the buffer can be applied only if the record of the
already applied calls 𝐴 at 𝑝 is ahead of the dependencies 𝐷
of the call. The stored state 𝜎 is updated and the record of
applied calls 𝐴 is advanced. The rule Conf-App is similar
except that it applies a call from the conflicting buffers 𝐿.

Finally, the rule Query presents the transition of a query
𝑞(𝑣) by a process 𝑝 . The return value 𝑣 ′ results from applying
𝑞(𝑣) to the current state 𝜎 ′, which is calculated by applying
the summarized calls 𝑆 to the stored state 𝜎 .
We will see an implementation of this semantics in the

next section.
Correctness. The RDMA WRDT semantics (Figure 7)

refines the WRDT semantics (Figure 5): any trace that is
observed from the former can be observed from the latter.

Lemma 3 (Refinement). For all 𝐾 and 𝜏 , if 𝐾0

𝜏
−→ 𝐾 , then

there exists𝑊 , such that𝑊0

𝜏
−→𝑊 .

The refinement relation and the proof are available in the
supplemental material.
The immediate corollaries are that executions of RDMA

WRDTs enjoy integrity and convergence.
All the reachable states of each process satisfy the integrity

property. The state of a process is the result of applying the
summarized calls 𝑆 to the stored state 𝜎 .

Corollary 1 (Integrity). For all 𝑖 ∈ {1..|𝑃 |},

if 𝐾0 →
∗ [𝑝𝑖 ↦→ 𝜎𝑖 , _, 𝑆𝑖 , _, _]𝑖∈{1.. |𝑃 | } then I(Apply(𝑆𝑖 ) (𝜎𝑖 )).

When all the buffers 𝐹 and 𝐿 are applied, the states of the
processes converge.

Corollary 2 (Convergence). For all 𝑖, 𝑗 ∈ {1..|𝑃 |},

if 𝐾0 →∗ [𝑝𝑖 ↦→ 𝜎𝑖 , _, 𝑆𝑖 , 𝐹𝑖 , 𝐿𝑖 ]𝑖∈{1.. |𝑃 | } and 𝐹𝑖 = 𝐹 𝑗 = ∅ and

𝐿𝑖 = 𝐿 𝑗 = ∅ then Apply(𝑆𝑖 ) (𝜎𝑖 ) = Apply(𝑆 𝑗 ) (𝜎 𝑗 ).

4 Implementation

Hamband1 is implemented on top of RDMA’s Reliable Con-
nection (RC) model using ibverbs library over Infiniband [1]
in 1430 lines of code. First, we briefly explain the metadata
stored at each node and then describe how Hamband propa-
gates calls. In particular, we describe the reliable broadcast
protocol that we use to broadcast conflict-free calls.

Meta-data. As we saw in the semantics, each node stores
a location 𝑆 for each reduction group, and two separate
set of buffers: conflicting calls 𝐿, and irreducible conflict-
free calls 𝐹 . Each buffer has a head that is locally stored
at the host node and a tail that is remotely stored at the
single writer node. The buffers store pairs of calls 𝑐 and
their dependencies 𝐷 . The dependency map that we saw
in the semantics is efficiently represented as an array per
node where each cell represents the number of calls on a
method. Since the number of dependencies of methods is not
necessarily the same, the dependency arrays are variable-
sized. When the pairs of a buffer are traversed, the size of
dependency arrays in the second element is decided based on
the identifier of the method in the first element. Each node
also keeps the number of applied calls𝐴 from each node as an
integer array that is indexed by method identifiers. Further,
each node keeps the following coordination analysis results:
the list of synchronization groups, and a mapping from each
method to the set of methods that it is dependent on.

Processing requests. Upon receiving a call request from
the client, there are four possibilities based on the category
of the method. First, if the call is a query, it is executed lo-
cally and the result is returned back to the client. Second, if
the call is reducible, it is reduced with the local summary,
and the result is remotely overwritten to the remote sum-
mary locations. Third, if the call is irreducible conflict-free,
it is executed locally and written to the remote buffers 𝐹 . To
guarantee convergence, the above two propagations are done
using the reliable broadcast abstraction. Before propagation,
a call is assigned a unique id, paired with its dependency
arrays and is serialized into a byte stream. Fourth, we instan-
tiate a Mu [7] consensus instance for each synchronization
group. If the call belongs to a synchronization group, it is
sent to the corresponding consensus instance to be ordered
in the 𝐿 buffers.
In each node, two threads traverse and process the calls

of 𝐹 and 𝐿 buffers if their dependencies are already satisfied.
Each buffer has a head that is locally stored at the receiver
node, and a tail that is remotely stored at the single writer
node. Each call in the buffer contains a canary bit as the last
bit. To check whether the buffer is not empty and the call
is not concurrently being written, the receiver checks the
canary bit. If the check fails, then the periodical traversal of
the buffer will retry later. Even if a call is missed in a traversal,
it will be processed in the next one. After a successful read,

1https://github.com/fhoushmand/Hamband.git
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the head pointer is advanced to the next location. The calls
at locations before the head are already executed. To avoid
memory overflow, these locations are reused.

RDMA Reliable Broadcast. The reliable broadcast ab-
straction guarantees the following agreement property: if
a message𝑚 is delivered by some correct node, then𝑚 is
eventually delivered by every correct node. The best-effort
broadcast abstraction on RDMAs can simply write the mes-
sage remotely for all nodes. However, the source node may
crash in the middle of the remote writes and violate the
agreement property. To provide agreement, the source node
keeps a shared memory location, and gives other nodes read
access to the location. The source locally writes in the shared
location before remotely writing it for others. It clears the lo-
cation afterwards. The shared location acts as a backup. Each
node has a heartbeat thread that periodically updates a local
counter. This counter is periodically read by other nodes to
determine whether that node is still alive or not. If other
nodes detect that the source has failed, they remotely read
the shared location, obtain any pending message, and check
if they have received it. If not, they deliver the message.
Synchronization. We adopt Mu consensus protocol

[7] to serialize calls in the 𝐿 buffers. Under normal execu-
tion, only a designated leader has the permission to write to
the follower buffers. As we described above, nodes have a
heartbeat mechanism to let others detect when they fail. If a
follower suspects that the leader has failed, it requests others
to accept it as the leader and waits for a majority of them to
acknowledge. At any time, each node recognizes only one
node as the leader and grants it the write permission. A node
revokes permission from the previous leader before granting
it to the next. Therefore, only one node can be recognized as
the leader by a majority and write to 𝐿 buffers.

5 Experimental Results

We now evaluate the RDMA WRDTs of Hamband; we com-
pare them with message-passing CRDTs and RDMA-enabled
SMRs. We observe that Hamband outperforms message-
passing CRDTs by 17.7× and 23× in terms of throughput and
response time respectively. Further, it provides 2.7× higher
throughput than the state-of-the-art SMR system, Mu, with
almost the same response time.

Mu [7] is a low-latency leader-based SMR system, such as
ZAB [40] that is used in the industry. However, we note that
RDMA WRTDs are independent of any leader-based SMR
protocol. They modularly use an SMR system (i.e., consen-
sus) for the conflicting category of methods. On the other
hand, for the two conflict-free categories of methods, they
avoid the synchronization cost and use more efficient broad-
cast protocols or just single RDMA writes. Therefore, they
improve performance over the SMR baseline.

Questions. In our experiments, we aim to answer the fol-
lowing questions in terms of both throughput and response

time: (1) How do RDMA CRDTs compare to message-passing
CRDTs? (2) How do RDMAWRDTs compare to RDMA-based
SMRs? We further investigate the following more detailed
questions for RDMAWRDTs. (1)What is the effect of summa-
rization and remote writing for reducible methods? (2) What
is the effect of remote buffering for conflict-free methods?
(3) What is the effect of separate synchronization groups for
conflicting methods? (4) What is the impact of failures?

Platform and setup. We performed the experiments on
a 7-node cluster, each with 8 AMD opteron 6376 cores and
50GB memory. The nodes are connected via 40Gbps Infini-
band network, and run CentOS 7.4 Linux x86_64 kernel ver-
sion 3.10. All programs are compiled with gcc-7.4.0.
All the experiments are done with 4M operations unless

stated otherwise. We randomly generate method calls and
uniformly distribute update calls between updated methods.
The calls on conflicting methods are automatically redirected
to the corresponding leader node(s). All the other calls includ-
ing conflict-free and query calls are divided equally between
the nodes.

The throughput is calculated by dividing the total number
of calls by the time that it takes for all the update calls to be
replicated on all the nodes. The response time is calculated
as the average response time over all the calls. We repeat
each experiment 3 times and report the average.
Experiments and findings. We perform separate ex-

periments for each of three categories of methods: reducible,
irreducible conflict-free, and conflicting.We then experiment
on the RDMAWRDT of a database schema that has all the
three categories of methods. The results indicate that when
there is no conflict, Hamband delivers on average 17.7×

and 3.7× higher throughput than message-passing CRDTs
and Mu SMR respectively. Even when there are conflicting
calls, it delivers 1.7× higher throughput than Mu SMR. It
improves the throughput of the database schema by up to
21% compared to the Mu SMR.
When there is no conflict, Hamband shows 23× lower

average response time than message-passing CRDTs and
almost the same response time for Mu SMR. When there
are conflicting calls, the response time has an overhead of
as little as 8% w.r.t Mu SMR. Further, we inject failures into
the RDMA WRDT of a database schema. The experiment
shows that it is able to tolerate leader or follower failure with
minimum overhead for both throughput and response time
of conflict-free operations.
Use-cases and benchmarks.We adopt [81] and experi-

ment on the following five CRDTs: Counter, Last-writer-wins
register (LWW), Grow-only set (GSet), Observed-Remove Set
(ORSet), and Shopping cart. Moreover, we adopted [39, 71]
three relational schemata: project management, courseware,
and movie. The project management class has five methods,
namely, addProject, deleteProject, worksOn, addEmployee,
and query. The methods addProject, deleteProject, andwork-
sOn belong to a synchronization group and the worksOn
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Figure 8. Effect of summarization and remote writes for reducible methods
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Figure 9. Effect of remote buffering for irreducible conflict-free methods

method depends on addProject and addEmployee due to the
foreign-key constraint. The movie class has four methods
addCustomer, deleteCustomer, addMovie, and deleteMovie

operating on two separate relations; therefore, forming two
synchronization groups. There is no dependency in this class.
The Courseware class has five methods, namely, addCourse,
deleteCourse, enroll, registerStudent, and query. Conflict
analysis shows that there is one synchronization group that
includes addCourse, deleteCourse and enroll. The enroll

method depends on both addCourse and registerStudent.
Effect of reduction. RDMAWRDTs summarize and re-

motely write reducible calls. We study the effect of reduction
on throughput and response time for three CRDTs with re-
ducible operations: Counter, LWW and GSet. We consider
three workloads that consist of 25, 15 and 5% update call ra-
tios. Figure 8(a) and (b) compare the throughput and response
time for Mu, message-passing CRDTs (MSG) and Hamband

implementations. Figure 8(a) shows the scalability of Ham-
band’s throughput. As the number of nodes increases or the
ratio of updates decreases, the throughput of Hamband ex-
hibits an increasing trend.Hamband delivers 18.4× and 4.1×
higher throughput than MSG and Mu respectively. It delivers
a throughput of up to 25 ops/𝜇s. Figure 8(b) shows average
response time for the three implementations on four nodes.
(A larger graph is available in the appendix.) We observe
that the response time of Hamband is on average 21× lower
than MSG and almost the same as Mu. Decreasing the up-
date ratios results in lower response times across the board.
Mu serializes the calls. The MSG implementation avoids
synchronization and simply sends messages. In addition to

synchronization avoidance, Hamband benefits from sum-
marization and remote writes. Therefore, it exhibits higher
throughput and lower response time than MSG and Mu.
Previous work has shown the benefits of both one-sided

[32, 63] and two-sides [45] communication in different con-
texts. Our replicated data types can benefit from one-sided
verbs to perform one of our three method categories in one
shot and improve performance.

Effect of remote buffering. There are methods that are
simply not reducible, either because they have conflicts or
dependencies, or because they are not summarizable. Fig-
ure 9(a) and (b) compare the throughput and response time
of Mu, MSG and Hamband for three CRDTs with irreducible
conflict-free operations: ORSet, GSet and Shopping Cart.
(The methods of GSet are reducible; however, here, we use
an implementation that uses buffers instead of summaries.)
Hamband exhibits 17× and 3× higher throughput than MSG
and Mu respectively. It delivers a throughput of up to 23

ops/𝜇s. Similarly, we observe an average of 24.3× lower re-
sponse times compared to MSG and almost the same re-
sponse times as Mu. Similar to the previous experiment for
reducible methods, this experiment shows that coordina-
tion avoidance and direct accesses for propagation lead to
higher throughput and lower response time for irreducible
conflict-free methods. However, the gains for reducible meth-
ods were higher since they do not need remote iteration and
application of the buffered calls.

Effect of synchronization groups. To study the effect
of synchronization groups, we compared Hamband and Mu
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on the movie use-case whose methods form two distinct syn-
chronization groups. We perform experiments that execute
2, 4, and 8M update operations on four nodes. Figure 10(a)
and (b) show the throughput and response time respectively.
We observe that the Hamband exhibits 1.4× to 1.8× higher
throughput than Mu. This is due to the fact that Hamband
is able to utilize two separate leaders to order requests while
Mu uses a single leader. Hamband’s throughput gain is close
to the theoretical limit of 2×. The difference in the response
times is statistically negligible because the synchronization
operations that a leader performs for a call is independent
of the number of leaders.
Mix of categories. In this subsection we experiment

with the project management database scheme that has meth-
ods in all the three categories. Figure 11(a) compares the
throughput of Hamband and Mu with 50%, 25%, and 10% up-
date calls on four nodes.Hamband provides up to 21% higher
throughput than Mu. Figure 11(b) compares the response
times for each method. The response times for all methods
except WorksOn stay almost the same. The response time
for WorksOn calls is higher since they are dependent on
addProject and addEmployee calls and have to wait for them
to be delivered.
Fault tolerance. We now study the effect of failure on

throughput and response time. All the failure experiments
are done on 4 nodes. We first experiment on two CRDTs
in Figure 12 to study the effect of failure where there is no
conflicting method. The methods of these use-cases are all
in the two conflict-free categories. Therefore they use the
reliable broadcast protocol or the single RDMA writes and
do not use Mu. Moreover, we report results for the more
elaborate courseware WRDT that has methods in all the
three categories in Figure 13. We inject failures into a node
by suspending its heartbeat thread which make other nodes
suspect that node. After a failure, all the requests of the failed
node are redirected to the next available node. In the case
of leader failure, the conflicting calls have to wait until the
leader-change protocol elects the new leader.

Figure 12(a) and (b) show the throughput and the response
time of the Counter and ORSet respectively with different
update ratios. We observe that the throughput of the Counter
and ORSet decrease by only an average of 5% and 5%, while
the average response time increases by 15% and 5% respec-
tively. Therefore, Hamband can smoothly withstand failures
for conflict-free use-cases.
Figure 13(a) and (b) show the throughput and average

response time of the courseware use-case for three scenarios:
the normal execution without failures as the baseline, failure
of a follower, and finally, failure of the leader. Figure 13(a)
shows that Hamband can gracefully tolerate follower failure
with only 6% impact on the throughput. However, since the
leader change protocol is involved, when the leader of the
synchronization group fails, the decrease in throughput is
53%. Figure 13(b) shows the response time per method. The

response time of the conflict-free registerStudent method
experiences little to no change even in the leader failure
scenario. This is because calls on this method do not need
to be synchronized by the leader; therefore, they can be
easily redirected to follower nodes without much impact
on their response time. However, the response time of the
conflicting methods such as addCourse, deleteCourse, and
enroll almost doubles when the leader fails. They need to
wait for the leader-change protocol to install the next leader.

6 Related Works

RDMA and hardware-aided replication. A few repli-
cation systems have been recently designed for RDMA
[7, 41, 48, 74, 86] but they all implement an SMR and pro-
vide strong consistency. In contrast, this paper considers
the semantics of methods, and avoids synchronization when
possible.

DARE [74], the first RDMA-based SMR, presented a wait-
free protocol that uses RDMA direct accesses and permis-
sions, and applies it to implement a strongly consistent key-
value store. Subsequently, APUS [86] improved the through-
put of the SMR protocol. However, it showed higher response
times, since the protocol requires the followers assist the
leader during replication. Derecho [41], supports both an
in-memory and a persistent SMR with high throughput. It
uses an RDMA multicast protocol (RDMC) to move the data
in high-rate flows, and uses a distributed shared memory
(SST) to exchange control messages that determine when it
is safe to deliver the data. Mu [7] reaches consensus with a
single one-sided RDMA operation in the common case. It
uses remote reads to detect failures and uses permissions to
prevent concurrent leaders in the case of failure. Our syn-
chronization mechanism for conflicting methods is similar.
Hermes [48] uses logical timestamps to decentralize write
operations, and locally establish a total order for a key-value
store. Therefore, it is similar to the last-write-wins register
CRDT that we implemented as well. In contrast, this pa-
per offers general semantics and protocols for WRDTs that
subsume CRDTs. Odyssey [34] presents a taxonomy and a
comparison of these replicated systems.

Kite [35] adopts the release consistency (RC) model from
shared-memory concurrency where threads use release and
acquire synchronization primitives, and offers these primi-
tives in a high throughput key-value store abstraction (sim-
ilar to a distributed shared memory). The key value store
is implemented on top of eventually and strongly consis-
tent protocols that benefit from RDMA acceleration, and
provides the well-understood SC for DRF guarantee. On the
other hand, Hamband takes a high-level data type with no
distribution details together with integrity properties. The
convergence and integrity requirements lead to the infer-
ence of conflict and dependency relations between methods.
According to these relations, Hamband categorizes methods
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Figure 11. Project management use-case
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Figure 13. The effect of failure on the courseware use-case.

into three classes based on their coordination requirements
that are separately and efficiently implemented on top of
reliable and total-order broadcast protocols on RDMA. In
particular, conflict-free methods calls can be executed under
eventual instead of sequential consistency. Further, the re-
ducible class of method calls can be implemented as single
RDMA remote writes.

NetChain [42] uses programmable switches to store data
and process queries in the network data plane. This elimi-
nates the query processing at coordination servers and re-
duces the response time. HovercRaft [49] extends the Raft
protocol to separate request replication from ordering, and

integrates it with a transport protocol on a P4 [31] ASIC that
supports load-balancing by updating the destination IP of
RPC requests.
Hybrid replication models. Several projects have re-

cently considered hybrid consistency models. However, all
of them assumed the traditional message-passing network
model; none addressed replication on the RDMA network
model and its one-sided communication mechanism.

IPA [11] presents a static analysis the identifies the conflict-
ing operations that can violate the integrity properties, and
modifies them such that the invariants are maintained. Sieve
[55ś57] applies static and dynamic analysis to determine
whether an operation can be executed under causal consis-
tency (blue class) or needs strong consistency (red class) in
order to preserve the invariants. Quelea [83] and similarly
the follow-up works [16, 26] define axiomatic semantics
for consistency notions based on primitive consistency re-
lations such as visibility and session orders. They capture
user-defined consistency contracts for methods using the
same primitives. They then automatically map a contract to
the weakest consistency notion that satisfies the contract.
Indigo [12, 13] captures invariants and post-conditions of
methods in terms of user-defined predicates. It then identifies
conflicting methods and either prevents or repairs their con-
current executions. CISE [37, 68] allows the user associate
tags with methods and define conflicts between tags, and

360



PLDI ’22, June 13ś17, 2022, San Diego, CA, USA Farzin Houshmand, Javad Saberlatibari, and Mohsen Lesani

presents a rely-guarantee style proof technique for invariant
preservation. Hamsaz [39] presents an axiomatic definition
of well-coordination; in contrast, this paper presents an ab-
stract operational semantics for general WRDTs, and further
a concrete operational semantics for RDMA WRDTs, and
proves a refinement between them. Carol [54] lets users de-
clare required guard predicates on the current and remote
view of the data, and automatically infers the required coordi-
nation. In order to reduce coordination, ECRO [30] reorders
conflicting operations locally when possible.

7 Conclusion

We saw well-coordinated replicated data types (WRDTs) for
the RDMA network model. We saw operational semantics
for both abstract WRDTs and concrete RDMA WRDTs. The
abstract semantics captures the well-coordination conditions
and serves as a specification for the concrete semantics. The
concrete semantics of RDMA WRDTs divides methods into
three categories based on their conflict, dependency and
summarization properties, and captures their coordination
requirements based on one-sided communication. It is for-
mally proved that the concrete semantics refines the abstract
semantics and preserves convergence and integrity. We saw
the protocols that efficiently implement the semantics, and
the empirical evaluation that shows their high throughput.

We hope that this project motivates research for analysis
and synthesis of distributed programs for the new RDMA
network model.
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