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Abstract

Despite the medical significance to humans and important ecological roles filled by vipers, few high-quality genomic resources
exist for these snakes outside of a fewgenera of pitvipers. Herewe sequence, assemble, and annotate the genomeof Fea’s Viper
(Azemiops feae). This taxon is distributed in East Asia and belongs to a monotypic subfamily, sister to the pitvipers. The newly
sequenced genome resulted in a 1.56 Gb assembly, a contig N50 of 1.59 Mb, with 97.6% of the genome assembly in contigs
.50 Kb, and a BUSCO completeness of 92.4%.We found thatA. feae venom is primarily composed of phospholipase A2 (PLA2)
proteins expressed by genes that likely arose from lineage-specific PLA2 gene duplications. Additionally, we show that renin, an
enzyme associated with blood pressure regulation in mammals and known from the venoms of two viper species including A.
feae, is expressed in the venomgland at comparative levels to known toxins and is present in the venomproteome. The cooption
of this gene as a toxin may bemorewidespread in viperids than currently known. To investigate the historical population demo-
graphics of A. feae, we performed coalescent-based analyses and determined that the effective population size has remained
stable over the last 100 kyr. This suggests Quaternary glacial cycles likely hadminimal influence on the demographic history ofA.
feae. This newly assembled genome will be an important resource for studying the genomic basis of phenotypic evolution and
understanding the diversification of venom toxin gene families.
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Significance
Weprovide the first de novo genome assembly for Fea’s Viper (Azemiops feae). This genomewas assembledwith PacBio
continuous long read data, polished using Illumina short-read data, and annotated with transcriptome data from nu-
merous tissues. Using venom gland transcriptomics and the venom proteome, we ascertain the expression profile of
toxins and evaluate the evolution of the phospholipase A2 gene family, one of the most abundant and functionally di-
verse toxins in Viperidae. These genomic resources will be valuable for better understanding the genomic basis of com-
plex traits, investigating the origins and diversification of the highly diverse and successful radiation of Viperids, and
exploring community-wide patterns of historical demography in East Asia throughout the Quaternary.
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Introduction
Snakes in the family, Viperidae, are a diverse group of ven-
omous snakes that have received significant investigation,
particularly in terms of life histories, systematics, and venom
composition (Lynch 2007; Hendry et al. 2014; Alencar et al.
2016). For example, this clade contains both viviparous and
oviparous species andmany taxa exhibit parental care beha-
viors (e.g., Greene et al. 2002). Body sizes of viperids span
over an order of magnitude, from a maximum body length
of 375 cm (Lachesis muta) to ≤ 28 cm (Bitis schnederi; Vitt
and Caldwell 2013). Viperids are nearly globally distributed,
span a wide latitudinal range, from 45°S latitude in
Argentina to 66.5°N above the Arctic circle in Scandinavia
(Vitt and Caldwell 2013), and they occur in habitats ranging
from sea level to high elevation montane forests and from
deserts to tropical rainforests. Finally, viperids display exten-
sive variation in venom from highly neurotoxic venoms to
hemorrhagic venoms within single genera (Mackessy
2010). The extensive ecological,morphological, and physio-
logical diversity found across viperids provides an exemplary
system for comparative analyses.

Understanding evolutionary history and the genetic basis
of species-specific traits has been accelerated by the prolif-
eration of whole genome assemblies in many taxa (Feng
et al. 2020; Kim et al. 2021). Genomic sequencing efforts
within viperids thus far have focused on the pitvipers
(Crotalinae), largely within Crotalus (five species sequenced
to date) and Protobothrops (two species sequenced), to
understand the evolution of venom and sensory biology
(Gilbert et al. 2014; Aird et al. 2015; Shibata et al. 2018;
Schield et al. 2019; Hogan et al. 2021; Margres et al.
2021). To fully understand the genetic mechanisms driving
phenotypic evolution and species diversification, additional
genomic resources are needed across the viperid tree of life.

Here, we sequence the genome of a Fea’s Viper, A. feae,
an enigmatic viperid species representative of themonotyp-
ic subfamily Azemiopinae (but see Nikolai et al. 2013; Li
et al. 2020). This taxon is sister to the Crotalinae, a success-
ful radiation of �230 species, which currently accounts for
nearly all genomic resources available for vipers. With this
first full-genome assembly of A. feae, we investigate the
origins of venom components with a focus on the phospho-
lipase A2 (PLA2) gene family and the expression of renin in
the venom gland, which has been previously identified in
Azemiops and Echis venom. Furthermore, we explore the
demographic history of A. feae and discuss this in compari-
son to codistributed species.

Results and Discussion

Genome Assembly and Structural Contents

Sequencing resulted in 4.21 million PacBio Sequel I reads
(average read length 7,631 bp, a total of 32.2 gigabases,

and �20× genome coverage) and 665 million 250 bp
PE Illumina reads (�104× genome coverage). Using
MaSurCa v3.2.8 (Zimin et al. 2013), we estimated the gen-
ome size for A. feae as 1.56 Gb, similar to other snakes
(supplementary table S1, Supplementary Material online).
The final hybrid assembly resulted in 4,303 total scaffolds,
with an N50 of 1.597 Mb, a maximum contig length of
9.67 Mb, with 97.6% of the genome assembly in contigs
.50 Kb (fig. 1A). Kraken (Wood and Salzberg 2014) iden-
tified 17 scaffolds of potential bacterial contamination,
however, BLAST results of these scaffolds identified them
as eukaryotic sequence, often as repetitive sequence from
snakes.

We recovered 3,101 (92.4%) complete and 89 (2.7%)
fragmented BUSCO loci (fig. 1B). Using MAKER v2.31.8, a
total of 13,229 protein-coding genes were annotated
throughout the genome. Repeat masking indicated that
37.8% of the assembled genome consisted of repetitive se-
quence (fig. 1C). These repetitive sequences were primarily
composed of long interspersed nuclear elements (LINEs;
14% of the total genome assembly), unclassified repetitive
sequences (10.6%), and DNA transposons (5.3%). We find
that the total repeat content of A. feae falls within the
range of other viperid genomes publicly available, where
repetitive element content ranges from 27.5% to 46.7%
(fig. 1C). Furthermore, repetitive elements within the
LINEs families are abundant and recently active in squa-
mates when compared with mammals and birds (Pasquesi
et al. 2018). An abundance of LINE repetitive elements is
also observed in A. feae where chicken repeat 1,
Bovine-B, and L2 LINEs together account for �10% of
the genome.

Venom Evolution

The venom gland transcriptome assembly and annotation
resulted in 3,020 nonredundant nontoxin and 40 nonre-
dundant toxin transcripts (fig. 2A). These annotated toxins
accounted for 69.6% of the total transcriptome
expression. Using mass spectrometry (MS), we generated
proteomic data to confirm the presence of 18 (45%) of
the toxin transcripts in the venom. Using the venom gland
transcriptome data, we identified and annotated a total of
51 genes encoding toxic proteins across 30 genomic
scaffolds (supplementary table S2, Supplementary
Material online).

The venom gland transcriptome of A. feae was domi-
nated by six PLA2s, a bradykinin-potentiating peptide
(azemiopsin; Utkin et al. 2012), and a cysteine-rich secre-
tory protein (CRISP) (fig. 2A; supplementary table S2,
Supplementary Material online). PLA2s accounted for
61.9% of toxin expression (fig. 2A). Previous studies have
found that PLA2s are the most dominant toxin in
Azemiops venom gland transcriptomes, however, the
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FIG. 1.—(A) Snail plot visualization summarizingmetrics of theAzemiops feaegenome including the length of the longest contig (�9.7 Mb; red line), N50
(1.59 Mb; dark orange), N90 (190 Kb; light orange), and base composition; (B) BUSCO completeness comparing the assembledAzemiops feae genome to all
published Viperidae genomes. Current phylogenetic relationships within Viperidae are (Viperinae [V. berus], Azemiopinae [A. feae], Crotalinae [all others]);
(C) repeat content comparison of major classes for repeat elements across all published Viperidae genomes; (D) demographic history of A. feae using
PSMC, shaded lines represent 100 bootstrap estimates demonstrating that this taxon has had a low, stable effective population size for the last 100 ka;
(E) photograph of the A. feae specimen sequenced here (photo credit to Danny Goodding).
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frequencies of other toxin components differ between our
study and published Azemiops venom gland transcrip-
tomes (Babenko et al. 2020). Variation in venom

composition within populations and between species is
commonly documented in snakes (Schenberg 1959;
Glenn and Straight 1989); additional sampling and studies
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FIG. 2.—(A) The expression of each recovered toxin transcript plotted as ln(TPM) and colored by toxin class, a ‘*’ above a toxin indicates verification via
proteomics. The pie-chart represents the proportion of toxin gene expression by class, demonstrating the large proportion of PLA2 gene expression within A.
feae. Gray and black histogram represents total toxin and nontoxin gene expression within the venom gland; (B) schematic architecture of the PLA2 gene
family in A. feae compared with members of the Crotalinae (Crotalus species and Bothrops jararaca) demonstrating the shared architecture of PLA2-gC::
gA1 across taxa. This also illustrates the numerous hypothesized independent duplications of PLA2-gCs within A. feae and gene losses in members of the
Viperidae. Toxin abbreviations: three-finger toxin (3FTx), Bradykinin-potentiating peptides (BPP), cysteine-rich secretory proteins (CRISP), C-type lectins
(CTL), ectonucleotide pyrophosphatase/phosphodiesterase 2 (ENPP2), hyaluronidase (HYAL), Kunitz-type proteinase inhibitor (KUN), L-amino acid oxidase
(LAAO), nerve growth factor (NGF), Ecto 5′ nucleotidase (NUC), phosphodiesterase (PDE), phospholipase A2 (PLA2), phospholipase B (PLB), Kazal-type serine
protease inhibitor (SPI_Kazal), snake venommetalloproteinase (SVMP), snake-venom serine protease (SVSP), uncharacterized protein (UnchProtein), and vas-
cular endothelial growth factor (VEGF).
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are necessary to fully understand the variation present in
Azemiops venom composition as well as the molecular me-
chanisms underlying this variation.

Proteomic analyses confirmed the presence of most tox-
in classes identified in the transcriptomic data. For example,
many of the SVMPs, CRISP, snake-venom nerve growth fac-
tor (NGF), vascular endothelial growth factor (VEGF), and
renin were confirmed via quantitative MS along with
most of the PLA2s (fig. 2A). Many toxins not verified had
low expression levels, but this also included the highly ex-
pressed azemiopsin and several snake-venom metallopro-
teinase III toxins. There is a high correlation between
venom gland transcriptomes and proteomes and a failure
to detect putative toxins proteomically is likely a result of
the misassignment of mRNA as toxins or because of prote-
omic detection thresholds (Rokyta et al. 2015). We suggest
the reason some highly expressed toxins in the transcrip-
tome were not verified with MS is because of posttransla-
tional modifications that reduce the active toxins to very
small peptides (e.g., note that the BPP toxin was not con-
firmed here because the ,14mers of BPPs are below the
threshold of detection using MS; Sciani and Pimenta
2017), resulting in false-negative results.

We identified six distinct toxin PLA2 genes present in the
genome, transcriptome, and confirmed five of these via MS
(PLA2-gC1a was not confirmed; fig. 2C). Each of these PLA2

genes had transcript per million values .42,000 inferred
using StringTie (supplementary table S3, Supplementary
Material online). This is in contrast to previous work that
identified several PLA2 isoforms, only a few of which
were thought to be expressed in the venom gland (Tsai
et al. 2016; Babenko et al. 2020). It is possible that differ-
ences in the number of PLA2 genes identified between
these studies and here could reflect gene copy number
polymorphism within A. feae. The proliferation of the
PLA2 gene family has gained interest because of its promin-
ent role in venom within both elapids and viperids as two
distinct expansion events (Lynch 2007). All six Azemiops
PLA2s were tandemly repeated between two nonvenom ex-
pressed PLA2 genes (PLA2-g2e and PLA2-g2f), flanked by
the OTUD3 and MUL1 genes, a conserved pattern across
tetrapods (Dowell et al. 2016). To classify the sequenced
PLA2s, we combined our data with publicly available se-
quences and reconstructed a phylogeny based on amino
acid-translated sequences (fig. 3). Five of the six
Azemiops PLA2s clustered with the PLA2-gC group. It has
been hypothesized that this group is ancestral to the pitvi-
per PLA2 gene family expansion, which many true vipers
and pitvipers possess (this gene is also present in
Ophiophagus and Python; fig. 3; Dowell et al. 2016). The
high number of PLA2-gCs likely represents Azemiops
lineage-specific gene duplications leading to novel venom
proteins. PLA2 gene duplications with subsequent neofunc-
tionalization resulting in increasingly complex venom

composition are well documented (Kini 2005; Lynch
2007). The sixth PLA2, along with a previously published
Azemiops PLA2 (Tsai et al. 2016), clustered with the
PLA2-gA1 group (fig. 3). The gC::gA1 PLA2s are the only
two genes that are shared across several pitviper taxa
(Dowell et al. 2018; Almeida et al. 2021) and this pair of
PLA2 genes would have been present in the ancestor of
Azemiops and pitvipers. Additional PLA2 genes are shared
between viperids and other tetrapods, for example, the
PLA2-2d gene in C. adamanteus and Bothrops jararaca
(PLA2GD; fig. 2B) suggests that this gene has an ancient ori-
gin. However, its absence in several other Crotalus species
and Azemiops, suggests that PLA2 genes are frequently
lost. Overall, this supports the notion that gene loss and
lineage-specific duplications together lead to a diversity of
toxins expressed in snake venoms (Rokyta et al. 2013;
Dowell et al. 2016; Mason et al. 2020).

Renin was located on a genomic scaffold with several
SVMP genes, expressed in the venom gland transcriptome,
and confirmed using proteomic analyses to be present in
the venom (fig. 2A). Previous analysis of Azemiops venom
has also identified the presence of renin in the transcrip-
tome and proteome (Babenko et al. 2020). Furthermore,
renin has been found in the venom of Echis and hypothe-
sized to have toxic properties including inducing local
hypertension in envenomated prey, thereby exacerbating
tissue disruption by other toxins in the venom (Wagstaff
and Harrison 2006). We tested whether this gene was ex-
pressed in other tissues of Azemiops and found that,
whereas renin made up to 0.22% of the total venom gland
transcriptome, it composed only 0.02% of the blood tran-
scriptome and was not detected in any other tissue. We
suggest that renin has been coopted as a venom protein
within viperids and may be found to be more widespread
taxonomically than currently recognized.

Demographic History

Climate has fluctuated greatly throughout the Quaternary,
influencing the geographic distributions and population
sizes of species globally (Hewitt 2000). However, the extent
of these climatic changes influencing population size
change in East Asia is less well known; codistributed species
have been reported as having stable population sizes,
population expansions, or declining population sizes
through time (Yan et al. 2013; Qu et al. 2015; Guo et al.
2016). The results from our PSMC analysis demonstrate
that A. feae effective population size has been relatively
stable over the past 100,000 years, suggesting glacial cycles
of the Quaternary have had little influence on the demog-
raphy of this taxon (fig. 1D). These results are consistent
with the East Asian mountains being climatically stable
throughout glacial cycles allowing for effective population
size persistence for many species (Qu et al. 2015). Future
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FIG. 3.—Maximum-likelihood protein phylogeny of PLA2g2 proteins sampled broadly across the Viperidae. Different colors represent named classes of
PLA2g2 proteins. Newly sequencedA. feae PLA2s are in bold and highlighted in yellow, five of these PLA2 proteins cluster within the PLA2-gC clade, whereas
one is nested within the PLA2-gA1 clade. Black circles represent.90% bootstrap support, gray circles represent.80% BS. All terminals include Genbank
accession numbers, those listed as “genomic translation” are from Dowell et al. (2016).
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comparative population genomic studies that take a trait-
based approach can illuminate community-level demo-
graphic processes across this region (Provost et al. 2021).

Materials and Methods

Sample Preparation

A single adult female was acquired from the pet-trade for
this study. Venom was collected, vacuum dehydrated,
and stored at −20 °C. The snake was euthanized 4 days
after venom collection with MS-222 (Beaupre et al. 2004)
and the specimen was accessioned at the Florida Museum
of Natural History (UF:Herp:192944). DNA was extracted
using a standard phenol–chloroform–isoamyl protocol.
Genomic libraries were prepared with the TruSeq DNA
PCR-Free library prep kit and two lanes of Illumina HiSeq
PE250 genomic reads were generated at Florida State
University. High molecular weight (HMW) DNA was sent
to the University of Delaware Core for PacBio library prep
and sequenced using six cells on the Sequel I. See
Supplementary Material online for details on morphology
and sample prep.

Total RNA was extracted from 12 tissues (see
Supplementary Material online) using a standard TRIzol
method (Rokyta et al. 2012). mRNA was isolated from
1,000 ng total RNA using the NEB-Next Poly(A) mRNAmag-
netic isolation kit and cDNA library preparation was per-
formed using NEB-Next Ultra RNA Library Prep Kit (New
England Biolabs) following the manufacturer’s protocols.
Libraries were sequenced on an Illumina HiSeq PE250.

Genome Assembly and Annotation

Illumina readswerefirst trimmedusing TrimGalore! (https://
github.com/FelixKrueger/TrimGalore) with default settings.
Hybrid de novo genome assembly was performed on the
PacBio continuous long reads data and Illumina short-read
data using MaSurCa v3.2.8 (Zimin et al. 2013) with default
settings. Bacterial contamination in the assembly was as-
sessed using Kraken v2.0 (Wood and Salzberg 2014).

We annotated repeat elements using RepeatModeler
and RepeatMasker (Smit et al. 2015; Flynn et al. 2020).
Using MAKER v2.31.8 (Holt and Yandell 2011), we anno-
tated coding sequences using the filtered, assembled tran-
scripts, species-specific repeat library, and published
protein-coding genes. Following this initial run, we used
BUSCO and the genome assembly to train AUGUSTUS
(Stanke et al. 2006) with three iterations. See the
Supplementary Material online for details on genome anno-
tation.We downloaded all published Viperidae genomes and
ran RepeatModeler and RepeatMasker v4.1.1 to identify the
total percent of each genome that consists of repetitive ele-
ments. For each of these viperid genomes, we ran BUSCO
v4.1.4 with the vertebrate gene set to assess completeness.

Transcriptomics and Proteomics

Reads from all transcriptomes were trimmed using Trim
Galore! and were assembled using several de novo meth-
ods then combined (Holding et al. 2018). The assembled
venom gland contigs were annotated via blastx
(v. 2.2.31+) searches against the UniProt database.
Toxins were parsed from “nontoxin” sequences and coding
regions were annotated by clustering sequences using
cd-hit-est to a known database of annotated snake toxins
(Rokyta et al. 2012, 2013, 2015, 2017). Additional toxin
contigs were manually annotated by comparing sequences
to the blastx results. After genome annotation, we used
StringTie (Pertea et al. 2015) to estimate transcript expres-
sion. See Supplementary Material online for details on tran-
scriptomic and proteomic analyses.

Venom Evolution

To investigate the evolutionary history of the PLA2 gene
family within Azemiops, we downloaded the PLA2 protein
dataset used in Dowell et al. (2016) and Tsai et al. (2016).
These amino acid sequences were aligned with the PLA2s
sequenced here and identified as toxins using muscle
(Edgar 2004). A maximum-likelihood gene-tree was in-
ferred with 1,000 bootstrap replicates to assess node sup-
port in IQtree v1.6.10 (Hoang et al. 2018).

Because reninwas present in both the venomgland tran-
scriptome and MS analysis, we tested whether this gene is
expressed elsewhere in the body. We measured relative ex-
pression of this gene across the combined venom glands
and the other tissues sequenced using RSEM v1.3.0 (Li
and Dewey 2011) with default Bowtie2 settings.

Demographic History

To assess historical changes in Ne, we used the Pairwise
Sequentially Markovian Coalescent (PSMC; Li and Durbin
2011). This method infers Ne and identifies recombination
events from a single diploid genome sequence using a hid-
den Markov model. Using coalescent theory, PSMCmodels
pairwise sequence divergence as proportional to the time
of coalescence, and where the rate of coalescence in a
time period is inversely proportional to Ne. We used sam-
tools (Li et al. 2009) following authors’ recommendations
to generate a diploid consensus sequence (https://github.
com/lh3/psmc). PSMC was run with default settings and
100 bootstrap replicates. This analysis was scaled assuming
a genome-wide mutation rate of 2× 10−8 per site per year
(Harrington et al. 2017) and a generation time of 3 years.

Supplementary Material
Supplementary data are available at Genome Biology and
Evolution online.
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