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31University of Hawai’i Mānoa, Honolulu, HI 96822, USA
32Department of Physics, Center for Cosmology and AstroParticle Physics, Ohio State University, Columbus, OH

43210
33Department of Physics and Astronomy, University of Kansas, Lawrence, KS 66045
34Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 USA
35Department of Physics, Technical University of Munich, D-86748 Garching, Germany
36Department of Physics and Astronomy, University of Alabama, Tuscaloosa, AL 35487, USA
37Colorado School of Mines, Golden, CO 80401, USA
38International Center for Hadron Astrophysics, Chiba University, Chiba 268-8522, Japan
39Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
40Department of Physics and Astronomy, Lehman College, City University of New York, Bronx, NY 10468, USA
41School of Physics, The University of Melbourne, Victoria 3010, Australia



42Centre for Advanced Instrumentation, Department of Physics, University of Durham, South Road, Durham, DH1

3LE, UK
43Lund University, Lund, Sweden
44Fu Foundation School of Engineering and Applied Science, Columbia University in the City of New York, New York,

NY 10027, U.S.A.
45Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark DE, USA
46Dept. of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
47Vrije Universiteit Brussel (VUB), Dienst ELEM, B-1050 Brussels, Belgium
48Dept. of Physics, Enrico Fermi Institue, Kavli Institute for Cosmological Physics, University of Chicago, Chicago,

IL 60560, USA
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Abstract: Astrophysical neutrinos are excellent probes of astroparticle physics and high-energy physics.

With energies far beyond solar, supernovae, atmospheric, and accelerator neutrinos, high-energy and ultra-

high-energy neutrinos probe fundamental physics from the TeV scale to the EeV scale and beyond. They

are sensitive to physics both within and beyond the Standard Model through their production mechanisms

and in their propagation over cosmological distances. They carry unique information about their extreme

non-thermal sources by giving insight into regions that are opaque to electromagnetic radiation. This white

paper describes the opportunities astrophysical neutrino observations offer for astrophysics and high-energy

physics, today and in coming years.



Executive Summary

With the discovery of high-energy astrophysical neutrinos, we have entered a new era in astroparticle

physics. The detection of neutrinos in the TeV–PeV energy range and the expected detection at even higher

energies have far-reaching consequences. In particle physics, these neutrinos can address important open

questions: What is the nature of dark matter? Do new particles and interactions exist at the highest

energies? Are there new fundamental symmetries? Owing to their high energies and cosmological-scale

baselines, the highest energy neutrinos are uniquely positioned to address these questions. In astrophysics,

they are key to understanding the origin of the highest-energy cosmic rays and gamma rays. We are only

seeing the very beginning of what is likely to come.

This white paper describes the rich physics opportunities that high-energy (HE, TeV–100 PeV) and ultra-

high energy (UHE, ≥100 PeV) neutrino observations offer for particle physics and astrophysics, potential

which has already been acknowledged by international panels like the US Decadal Survey on Astronomy and

Astrophysics 2020 (Astro2020) [1] and the European Consortium for Astroparticle Physics (EuCAPT) [2].

The current status and future prospects are:

• Particle Physics [3–5]: In the HE range (TeV–100 PeV), there is an ongoing campaign to test

Standard-Model (SM) and beyond-Standard-Model (BSM) neutrino physics: IceCube’s discovery of as-

trophysical high-energy neutrinos has turned theory predictions into data-driven tests. At present, low

event rates limit the sensitivity of these tests, but the next generation of neutrino telescopes will over-

come this complication. In the UHE (≥ 100 PeV) range, neutrinos have been long-predicted but still

await discovery. Thanks to a host of UHE neutrino telescopes currently under planning, they are likely

to be detected within the coming years. Detecting UHE neutrinos will push neutrino physics to the

forefront of the particle physics energy frontier.

– High Energy (TeV–100 PeV): We already test the Standard Model with astrophysical neu-

trinos at TeV–PeV energies and have the sensitivity to search for relatively large BSM effects.

Existing studies include the discovery of the Glashow resonance, the first measurement of the HE

neutrino-nucleon cross section, searches for neutrinos from dark matter annihilation and decay,

and searches for new neutrino self-interactions. With steadily increasing event statistics in this

decade and beyond, more subtle effects can be tested.

– Ultra-High Energy (≥ 100 PeV): The only way to probe weak-scale physics at center-of-mass

energies above 50 TeV is with naturally occurring UHE neutrinos. Because our capacity to probe

new physics at these scales will depend on the flux of UHE neutrinos, it should be assessed together

with the flux discovery prospects.

– Neutrino Oscillation Physics: HE and UHE astrophysical neutrinos are sensitive to at least

six (νe → νe, νe → νµ, νe → ντ , νµ → νe, νµ → νµ, νµ → ντ ) out of the nine neutrino oscilla-

tion channels. Furthermore, they are sensitive to oscillations at higher energies and over longer

baselines than any other oscillation experiment, allowing for unique searches for BSM oscillations.

– New Neutrino Interactions: Neutrinos may have BSM interactions, and if the coupling

strengths are weak or if heavy mediators mediate the interactions, these interactions may only

manifest themselves in the HE and UHE neutrino sector. Possibile scenarios include BSM neutrino

interactions with dark matter—including heavy dark matter—and with sterile neutrinos.

– Synergies with the Neutrino Frontier: Measurements of high-energy prompt atmospheric

neutrinos complement existing measurements of heavy-flavor production at LHC experiments and



neutrino experiments at a future Forward Physics Facility [6]. At ultra-high energies, neutrino

interactions probe the structure of the proton in kinematic regions that cannot be explored by

accelerator experiments.

• Astrophysics [7]: IceCube has discovered a diffuse flux of astrophysical HE (TeV–100 PeV) neutrinos.

They have characterized the energy spectrum, distribution of arrival directions, and flavor composition

with increasing precision, thanks to steadily improving event statistics, analysis methods, and under-

standing of detector uncertainties. There is promising observational evidence of the first HE neutrino

source and of a connection between electromagnetic and neutrino emission from one flaring blazar event.

The next generation of neutrino experiments will firmly establish HE neutrino sources and provide high

enough event rates for precision studies. In the UHE range (≥ 100 PeV), we may finally detect long-

sought UHE neutrinos in the coming years. Detecting them will be a critical step towards finding the

origin of ultra-high-energy cosmic rays (UHECRs), the most energetic known particles in the Universe.

– High Energy (TeV–100 PeV): The discovery of HE neutrinos in the last decade opened a

new window into the Universe. We have learned that a large population of dim sources likely

explains the bulk of the HE neutrino sources and that their energy density is comparable to that

of UHECRs and gamma rays, hinting at the possibility of a common origin. With the improved

statistics, sensitivity, and sky coverage offered by upcoming experiments, we can expect to expand

our view of the neutrino sky, including firmly establishing neutrino sources. Next-generation

telescopes currently under planning or construction will allow detailed studies of HE neutrinos,

including their energy spectrum, flavor composition, and the identity of their sources.

– Ultra-High Energy (≥ 100 PeV): We do not know how the diffuse astrophysical neutrino

flux extends to higher energies. Finding out whether it cuts off or not in the 10–100 PeV range

is crucial for understanding the physics underlying UHECR accelerators and identifying source

classes. Recent advancements in UHECR physics have pushed UHE neutrino flux predictions

lower than anticipated: For experiments to probe the entire range of UHE-neutrino models they

must target a flux sensitivity of 10−10 GeV cm−2 sr−1 s−1. But current and planned experiments

with lower flux sensitivity already constrain properties of UHECRs and their sources even with

non-detections of UHE neutrinos.

– Multi-Messenger Era: Evidence of the first extragalactic HE neutrino source, TXS 0506+056,

and the transformational discovery of gravitational-wave sources kicked-off multi-messenger astro-

physics. With the advent of more sensitive neutrino experiments and dedicated follow-up facilities,

we will likely witness more multi-messenger events at higher statistical significance.

Fully opening the HE and UHE neutrino windows requires a multi-pronged approach that explores a

broad range of proposed experimental techniques. With upcoming neutrino telescopes, the goal is to improve

the sensitivity ten-fold in the HE range and hundred-fold in the UHE range. In the HE range, we are

moving into the high-statistics era, where subtle features may be resolved and multiple sources may be

discovered. In the UHE range, neutrino flux predictions and physics tests are well-motivated, but we will

likely need new techniques to enable discoveries. The ongoing efforts to develop new instruments will improve

sensitivity, increase statistics, and expand the energy range. A broad range of experimental approaches, with

complementary capabilities, must be developed and tested in the coming decades. Because it is not clear

which techniques will prevail, we advocate for a broad portfolio of experiments in the HE and UHE neutrino

sector. Owing to their potential, HE and UHE neutrinos should be at the forefront of the high-energy physics

program, as they push the boundaries for the neutrino, cosmic, energy, theory, and instrumentation frontiers.
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1 Introduction and overview

Cosmic neutrinos are unique probes of extreme environments surrounding the most energetic sources in the
Universe and a unique test beam for weak interactions at energies inaccessible through accelerators. Within
the last decade, the discovery of high-energy (HE, TeV to 100 PeV) astrophysical neutrinos by IceCube [8]
has opened a new window to learn more about cosmic accelerators and neutrino interactions at the highest
energies. With next-generation experiments pushing sensitivity and energy reach, we anticipate that the
wealth of information will expand dramatically. Ultra-high-energy (UHE, >100 PeV) neutrinos, long-sought
but not yet detected, provide the only means of directly investigating processes that occur at energy scales of
EeV (≡ 1018 eV) and above in the distant Universe. Discovering them would open new regimes of exploration
in high-energy physics, astrophysics, and cosmology. In this white paper, we describe the significant physics
opportunities offered by cosmic neutrinos and map out the experimental landscape in the coming decades.

Observations of neutrinos from different sources, across different energies and traveled distances, have led
to the fundamental-physics conclusions that neutrinos have mass and mix among flavors. These Nobel-prize
winning experimental tests include measurements of neutrinos in the sub-GeV-to-10-PeV energy range from
cosmic-ray interactions in the atmosphere [9] and of neutrinos from the Sun [10–15]. Indeed, neutrinos access
important questions in the complementary fields of high-energy physics and astrophysics. The wide range
of neutrino energies and traveled distances allow us to explore neutrino properties, their interactions, and
fundamental symmetries across a wide breadth of parameter space, as shown in Fig. 1. And because they
are neutral and weakly interacting, they carry information about the physical conditions at their points of
origin; at the highest energies, even from powerful cosmic accelerators at the edge of the observable Universe.

Recently, the discovery of a diffuse flux of HE astrophysical neutrinos, in the TeV–PeV range [8, 16]
opened a new view to the Universe. They have made possible the direct measurement of weak interactions
in a new energy regime, including the neutrino-nucleon cross section [17–19], inelasticity distribution [19],
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Figure 1. Distribution of neutrino sources in energy and distance traveled to the detector, and present and future
experiments aimed at detecting them. We focus on high-energy and ultra-high energy neutrinos. Updated from Ref. [4].

and the first Glashow resonance (ν̄ee) candidate [20, 21]. Ongoing and future observations will refine the
measurements of the astrophysical neutrino observables (energy spectrum, flavor composition, distribution
of arrival directions and arrival times) and extend them beyond 10 PeV. For particle physics, this means
gaining sensitivity to smaller predicted effects and extending the energy scale of fundamental physics that
can be tested. For astrophysics, this means probing the most energetic non-thermal sources of the Universe
indirectly through the diffuse flux, and directly through the discovery of point sources. Further, neutrinos
from transient astrophysical events, detected in spatial or temporal coincidence with cosmic rays and elec-
tromagnetic radiation [22–25], will improve our understanding of the extreme physical processes in these
environments. UHE neutrinos with energies exceeding 100 PeV, first predicted more than fifty years ago [26]
but still undiscovered, are the next frontier in probing fundamental physics and astrophysics at the ultimate
neutrino energies.

The preceding decade has ushered in a new era of astroparticle physics, including high-energy neutrino
detection. Figure 1 shows that the potential outlined above will be achieved by a rich experimental pro-
gram of detectors in the next 10–20 years that are presently in different stages of planning, design, and
construction. We anticipate that the next decade will result in the construction of multiple high-energy
neutrino detectors spanning complementary regions of the sky, with differing sensitivity to different energy
ranges between TeV and EeV, and complementary flavor-identification capabilities. While the preceding
decade was one of neutrino discovery at high energies, the coming years will be of higher-precision studies
at high energies and, plausibly, of discovery at ultra-high energies. These studies are further enhanced by
observations with all four messengers – cosmic rays, neutrinos, photons, and gravitational waves. For re-
views, see complementary Snowmass Whitepapers on each of these messengers [27–30] and the broad scope
of multi-messenger physics [31].

1.1 HE and UHE cosmic neutrinos in particle physics

There is a vast landscape of physics to explore at the highest energies, and high-energy cosmic neutrinos are
uniquely well-equipped for the task [4]. Their potential as probes of fundamental physics [3–5, 32, 33] was
identified early, but they were only discovered recently, in 2013, when the IceCube Neutrino Observatory
observed a diffuse flux of TeV–PeV cosmic neutrinos [8, 34–37]. Since then, there has been a gradual shift of
focus from proposing prospective tests of high-energy neutrino physics to performing real, data-driven tests,
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of increasing sophistication and based on progressively more and better experimental data. This, paired
with a rich present and future experimental program, provides a valuable opportunity to make significant
progress.

To seize this opportunity, the neutrino community needs a comprehensive exploration plan that maxi-
mizes the potential to probe neutrino properties and the discovery of new physics, identifies target exper-
imental sensitivities, and exploits synergies between TeV–PeV neutrino experiments and their upcoming
counterparts at lower and higher energies.

Figure 1 shows why high-energy (TeV–PeV) and ultra-high energy (≥ EeV) neutrinos are incisive probes
of new physics. Because they have the highest neutrino energies known—TeV to EeV—they can probe
physics at energy scales that are inaccessible to us in the laboratory. Because they travel unscathed for the
longest distances—up to a few Gpc, the size of the observable Universe—even tiny effects can accumulate
and become observable.

Section 2.1 outlines the current results for UHE neutrino interactions, lepton flavor mixing and on
neutrino production and propagation, including standard model and beyond the standard model (BSM)
approaches. In Sec. 3.1, we discuss the goals for the future and summarize efforts underway.

1.2 HE and UHE cosmic neutrinos in astrophysics

That neutrinos can emerge from and point back to their sources make them exceptional probes of the extreme
environments that produce ultra-high-energy cosmic rays (UHECRs). The luminosity densities of diffuse
sub-TeV gamma rays, high-energy neutrinos and UHECRs are comparable, signaling the possible connection
between cosmic acceleration and the pp and pγ interactions that would produce high-energy neutrinos and
photons [38–40]. Measurements of the diffuse high-energy neutrino spectrum and flavor composition, i.e.,
the relative contribution of νe, νµ, and ντ in the incoming flux, and a nascent multi-messenger program that
includes neutrino telescopes will help identify characteristics of source populations.

– 3 –
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physics goals dictate requirements on both physical parameters and experimental design.

The origin and acceleration mechanism of UHECRs, with energies in excess of EeV, remains a fundamen-
tal outstanding question in astroparticle physics [41]. A cut-off is observed at energies around 50 EeV [42–46].
This cut-off coincides with the predictions by Greisen, Zatsepin, and Kuzmin [47, 48] for UHE protons in-
teracting with the cosmic microwave background. Alternatively, the cut-off could be a consequence of the
maximal energy attainable by cosmic accelerators. In both cases there should be a flux of “cosmogenic neu-
trinos” produced through interactions of UHECRs with cosmic background photons [26, 49–52] which could
reach energies well above ∼ 1 EeV. Measurements or constraints on the neutrino energy spectrum would
provide much-needed insight into high-energy particle acceleration, the evolution of sources over cosmological
length scales, and the mass composition of UHECRs.

UHECRs can also interact with gas or radiation inside the sources themselves to produce UHE neutri-
nos. Because their interactions are weak, these astrophysical neutrinos can travel long distances across the
Universe, undisturbed, and point back to their sources, thus tracing a population of high-energy non-thermal
sources over Gpc length scales. Despite many measurements of UHECRs, the sources of UHECRs are still
unidentified, though they are believed to be extreme astrophysical environments where charged particles
can be accelerated up to 1021 eV. To reveal them, complementary information from the neutrinos born in
UHECR interactions may be essential. Further, because high-energy neutrinos should be copiously produced
in astrophysical environments, they are also rich probes of high-energy astrophysics [7].

The current status and future prospects for diffuse flux and neutrino point source measurements, and
of multi-messenger modeling, are described in Sec. 2.2 and Sec. 3.2. The quest for measurements of the
cosmogenic neutrino flux and potential BSM sources of neutrinos are also outlined in Secs. 2.2 and 3.2.

1.3 Detector requirements to achieve the science goals

To probe fundamental physics and astrophysics with neutrinos, we can make several measurements with
neutrinos. There are four important observables measured by neutrino telescopes that may be used, individ-
ually or jointly, to search for new physics and probe astrophysics: the energy spectrum, the distribution of
arrival directions, the flavor composition, and the arrival times. Each observable has a standard expectation:
respectively, a power law in energy [53], an isotropic diffuse flux [54, 55], a flavor composition at Earth of
νe : νµ : ντ ≈ 1 : 1 : 1 [53, 56–59], and coincident arrival of neutrinos and other messengers from transient as-
trophysical sources [60–62]. Indeed, observations of the neutrino characteristics can be made in concert with
similar observables with the other messengers — photons, cosmic rays, and gravitational waves. New physics
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can be imprinted on these observables in several ways as shown in Fig. 2, such that combined information
from several experimental parameters can enhance discovery. The flow from physics goals to experimental
parameters is shown schematically in Fig. 3.

Fundamentally, large exposures are required to achieve the required sensitivity needed to observe low
neutrino fluxes, requiring an order of magnitude improvement in flux sensitivity in the HE range and two
orders of magnitude improvement in the UHE range. As the detectors scale to larger volumes, it is critical
to maintain low backgrounds to maximize the improvement in flux sensitivity. Energy resolutions of 0.1
in log10(E/GeV) at the HE scale, and in half-decade energy binning, are sufficient to resolve bumps and
dips that may indicate new physics [63–69] while also distinguishing among models of astrophysical neutrino
production [53, 70].

Flavor and ν/ν̄ ratios provide complementary probes of new neutrino physics and neutrino production
mechanisms. Because neutrinos are predominately expected from the decays of muons and charged pions, the
nominal expectation is that only electron and muon neutrinos are generated at the sources, and that ν and
ν̄ are produced in comparable numbers. After leaving the sources, oscillations over cosmological distances
are expected to distribute the flux nearly evenly among all flavors by the time the neutrinos reach Earth. In
reality, however, different neutrino production channels become accessible at different energies and, as result,
the flavor and ν/ν̄ ratios should vary with energy; see, e.g., Refs. [58, 71–80]. As a result, the expected
flavor ratios at Earth might deviate from an equi-flavor composition, and might do so as a function of energy.
Thus, we can use the flavor ratios measured at Earth [19, 53, 56, 81], combined with information about the
values of the neutrino mixing parameters [82], to infer the flavor ratios at the sources [57, 59, 83]. However,
large deviations are possible if there are BSM effects in the oscillations. They can be significantly altered
by, for example, Lorentz invariance violation, neutrino decay, and neutrino interactions during propagation
over long propagation distances [58, 71, 83–93, 93, 94, 94, 95]. Large event statistics and complementary
flavor-specific detection techniques are needed to identify flavor-specific signals and to measure the flavor
composition statistically in a sample of collected events. In the TeV–PeV range, water Cherenkov neutrino
telescopes are sensitive to all flavors, though with different efficiency. We advocate for the exploration of
new techniques to improve flavor separation, like muon and neutron echoes [96]. In the EeV range, some
instruments will be sensitive only to certain flavors, while others will be sensitive to all flavors. We advocate
for a comprehensive approach that may allow us to combine flavor information from multiple experiments.

Sub-degree pointing resolution is needed to resolve the neutrino sky [97–101] while also reducing the
systematic uncertainties on cross section [17, 18, 102–107] and inelasticity measurements [19]. Resolving
the neutrino sky will be important to search for BSM physics that causes anisotropies. These can be due
to a variety of effects like BSM matter interactions, dark matter clumping [108–114], or Lorentz invariance
violation [62, 115].

The flux sensitivity, energy resolution, and pointing resolution are all key parameters for measuring
both the neutrino-nucleon cross section [17, 18, 102–107] and inelasticity [19], complementary probes of deep
inelastic scattering. Key to both is a large number of events [116]. In the TeV-PeV energy range, we can
expect improved precision as instruments gain in sensitivity, but at the EeV energy scale, next-generation
detectors will need tens of events to measure the cross section to within an order of magnitude.

Measuring the arrival times of neutrinos is important for both time-domain transient and multi-messenger
astrophysics, but also to search for evidence for new physics that would cause photons, neutrinos, and
gravitational waves to arrive at Earth at different times [60–62]. Being able to capture the transient behavior
of sources requires the ability for instruments to send and respond to real-time alerts. Continuous operation
is ideal for detecting transient events and improving overall flux sensitivity.

To make advances, we plan to build on existing, mature experiments while also exploring new technolo-
gies. There are several operating and planned experiments, many of which are complementary in terms of
their energy range, flavor sensitivity, and sky coverage. We describe them below and in Sec. 4.
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Figure 4. Selected present-day measurements of high-energy gamma rays by Fermi-LAT [117], high-energy neutrinos
by IceCube [21, 118, 119], and ultra-high-energy cosmic rays by the Pierre Auger Observatory [120] and the Telescope
Array (TA) [121]. The three neutrino measurements are independent and utilise different event topology: contained
cascades (solid points), partially-contained cascades (light blue diamonds) and through-going tracks (blue crosses).
Error bars and upper limits represent 68% confidence intervals. For the track sample only bins in the sensitive energy
range are shown while the fit was done from 100 GeV to 100 PeV.

1.4 Present and future experimental landscape

Figure 4 shows the present-day landscape of measurements of high-energy cosmic messengers: gamma rays,
neutrinos, and ultra-high-energy cosmic rays. A complete picture of the high-energy Universe is necessarily
multi-messenger in nature. Below, we focus on neutrinos, but point out scenarios where gamma rays and
cosmic rays offer complementary information.

IceCube, presently the largest neutrino telescope, is an in-ice Cherenkov detector in Antarctica. It
instruments 1 km3 of deep underground ice with thousands of photomultipliers that collect the light emitted
by particle showers initiated by high-energy neutrino interactions. From the amount of light collected and
its spatial and temporal profiles, IceCube infers the energy, flavor, and arrival direction of the neutrinos.
Because the bulk of their arrival directions is broadly consistent with an isotropic distribution, the diffuse
neutrino flux that IceCube sees is likely of predominant extragalactic origin, though the sources are unknown,
save for two promising source associations [22–24]. In particle physics, IceCube has measured the TeV–PeV
neutrino-nucleon cross section [17, 18, 122] and inelasticity distribution [19] for the first time, probed charm
production in neutrino interactions [19], and seen hints of the first high-energy ντ [123], and the Glashow
resonance (indicating ν̄e) [20, 21]. ANTARES, a Cherenkov detector in the Mediterranean Sea operating
until recently, nears the sensitivity to the IceCube diffuse neutrino flux [16, 124]. Three new telescopes
under construction, KM3NeT [124, 125], P-ONE [126], and Baikal-GVD [127], will improve our sensitivity to
TeV–PeV neutrinos to the Southern Sky. The next generation of IceCube, IceCube-Gen2 [128], will improve
our sensitivity across a broad energy range from the TeV scale to the EeV scale.

In the next 10–20 years, new detectors may improve our sensitivity to neutrino energies above the
energy range where that of IceCube becomes too small to detect a significant flux. There are several planned
experiments targeting the PeV energy range to determine the high-energy spectrum of the astrophysical
flux observed by IceCube. Observation of a spectral cut-off or the continuation of the power-law spectrum
would help reveal the sources of these neutrinos while also extending our observations of neutrinos into a new
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energy scale. These experiments take different approaches including radar (RET-N [129]), particle showers
in a valley (TAMBO [130]), and Earth-skimming tau neutrinos from a mountain (Trinity [131], Ashra NTA
[132], CTA [133]), balloons (EUSO-SPB [134]), and satellites (POEMMA [135]).

EeV neutrinos have long been predicted as coming from the interaction of ultra-high energy cosmic rays
with cosmic photon backgrounds [26, 47, 48] or photons inside astrophysical sources [136–141], but they have
not been discovered yet [142–146]. The flux of these neutrinos is expected to be low [136–141, 147–149].
At even higher energies, ZeV neutrinos might come from cosmic strings [150, 151]. Next-generation, multi-
purpose EeV–ZeV detectors are being planned or under construction with a variety of detection strategies:
in-water and in-ice Cherenkov (IceCube-Gen2 [128]), in-air Cherenkov, fluorescence, and particle showers
(EUSO-SPB2 [134], POEMMA [135], AugerPrime [152], GCOS [153]), and radio (GRAND [154], RNO-G
[155], PUEO [156], BEACON [157], TAROGE [158], AugerPrime [152], GCOS [153]).

Current and planned detectors are detailed in Sec. 4.

2 Current status and lessons learned

2.1 In particle physics

HE neutrino interactions: With the beam of neutrinos at TeV to PeV energies, we are already exploring
tests of neutrino interactions in a new energy regime through their cross sections [17, 18, 122], inelasticity
distributions [19], and the Glashow resonance [21, 159]. As statistics grow and new experiments come online,
more subtle BSM effects can be explored.

UHE neutrino interactions: The interactions of UHE neutrinos with nucleons have center-of-mass energies
of
√
s ∼ 30 TeV (vs. ∼1 TeV using TeV–PeV neutrinos [17, 18]), providing an excellent opportunity to probe

models of the nucleon and nuclear structure [102, 160–162], and new physics in neutrino-nucleon interactions
[17, 18, 103, 116, 161–181].

Flavor transitions at the highest energies: Both astrophysical and cosmogenic neutrinos are expected
to arrive at Earth with nearly equal fluxes of each of the three flavors, νe : νµ : ντ = 1 : 1 : 1, as a result
of the neutrino production processes at the sources and the values of the oscillation parameters measured
in terrestrial experiments. As some experiments have flavor sensitivity (particularly for ντ ), UHE neutrinos
provide a key test for flavor changing processes up to the highest energies [58, 85–94].

Tests of neutrino properties during propagation: Some of the fundamental properties of neutrinos may
have an energy dependence that manifests only at the highest energies. Notable examples that have received
attention include the breaking of known symmetries or the appearance of new ones [88, 182–193], neutrino
self-interactions [64, 65, 67, 91, 194–198], neutrino-dark matter interaction [198–216], and neutrino-dark
energy interaction [217, 218].

Below we focus on a selection of tests with high-energy neutrinos that have the potential to yield impor-
tant new physical insight.

2.1.1 Cross sections

The cross section for neutrino interactions with nucleons is a unique probe of SM and BSM physics. In SM
physics, measuring the cross section probes the parton distribution functions (PDFs) indirectly. In BSM
physics, measuring the cross section may identify dramatic deviations predicted by various models [151, 165,
167, 180]. Figure 5 shows the neutrino-nucleon interaction cross section, σνN , measured from GeV to PeV
energies, and its projected measurements at hundreds of PeV, compared to a recent SM prediction [161]. In
recent years, significant work has gone into predictions for the cross section both within and outside of the
SM, motivated by improvements in the determination of PDFs from new collider data and enhanced analysis
techniques, and anticipating the advent of next-generation neutrino experiments.
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Figure 5. Neutrino-nucleon cross section measurements, compared to deep-inelastic-scattering (DIS) cross section
predictions from Ref. [161] (BGR18). In the TeV range, FASER and FASERν have started measurements [219].
Measurements in the TeV–PeV range are based on IceCube showers [18, 122] and tracks [17]. Projected measurements
at energies above 100 PeV [106] are based on 10 years of operation of the radio component of IceCube-Gen2, assuming a
resolution in energy of 10% and a resolution in zenith angle of 2°. Since the flux at these energies remains undiscovered,
projections for the measurement of the cross section are for different flux predictions. Figure adapted from Ref. [106].

At energies above a few GeV, neutrinos primarily interact with matter via deep inelastic scattering (DIS),
where a neutrino exchanges a W (charged-current) or Z (neutral-current) boson with a parton of a nucleon,
i.e., a quark or a gluon [220–223]. The differential cross section for this process can be expressed in terms of
DIS structure functions, which describe the underlying QCD dynamics of the nuclear medium. The structure
functions depend on Bjorken-x—the fraction of nucleon momentum carried by the interacting parton—
and on Q2—the four-momentum transferred to the mediating boson. Structure functions are computed by
convoluting PDFs with coefficient functions using perturbation theory. In the last two decades, different
groups have studied high-energy neutrino cross sections [102, 160, 161, 224–228] and they have identified
several effects that play a significant role in this calculation.

Charm- and top-quark production are important in high-energy neutrino-nucleon interactions. Therefore,
heavy-quark mass effects must be calculated to provide an adequate description. At leading order, the slow-
rescaling and the modification of light cone momentum fraction in the PDFs must be included [229]. At
higher orders, different formalisms have been developed to account for this effect [230–232]. Nevertheless, the
contribution of charm or top production can be significantly different depending on the approach [233, 234].

PeV and EeV neutrinos probe the small-x and high-Q2 region of DIS, a kinematic region with very
limited data available from colliders and fixed-target experiments to perform PDF fits [235]. State-of-the-art
PDFs have significantly lowered the minimum value of x used to O(10−8) [235–238], but extrapolation must
be done if lower values are probed. Uncertainties in the extrapolation of PDFs translate into uncertainties
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in the predicted cross section, especially at the highest neutrino energies. In addition, the stability of the
perturbative expansion is spoiled in the very-small-x region, so resummation corrections must be included in
the DGLAP formalism [161, 239–241]. An efficient way to account for resummation and saturation effects is
the color dipole approach [225–228]. Depending on the formalism and input PDFs, the predictions can differ
by a factor of 3 in the ultra-high-energy regime; see, e.g., Fig. 5 and Fig. 3 in Ref. [18].

High-energy neutrinos are attenuated by interacting with matter during their passage through Earth;
the neutrino-nucleon cross section is extracted from measuring the attenuation. The flux is attenuated more
strongly the higher the neutrino energy and the longer the path traversed by the neutrino inside the Earth.
This feature can be exploited to probe the neutrino cross section at high energies. The first measurement of
the neutrino cross section from 6.3 TeV to 980 TeV was done by IceCube using up-going muon neutrinos [17].
Later, two independent measurements were carried out using starting events with energies between 60 TeV
and 10 PeV [18, 122]. The results are compatible with the SM predictions described previously. However, it
is difficult to draw conclusions beyond that due to the large uncertainties of these measurements.

The neutrino cross section measured in the TeV–PeV region using the astrophysical flux of neutrinos
discovered by IceCube has improved our understanding of the cross section since the last Snowmass study
a decade ago [242]. We can expect that in the coming decade, improved precision with IceCube, KM3NeT,
and Baikal-GVD will reduce the systematic uncertainties, but not necessarily improve the energy reach. The
cross section can be measured either by assuming a known flux and inferring the cross section from the
observed number of events [104], or by comparing the absorption in the Earth as a function of the observed
trajectories that neutrinos travel through [17, 18, 102–107, 122]. The latter requires significant absorption
of neutrinos through the Earth and therefore has an energy threshold of 5–10 TeV.

In the PeV range, W -boson production becomes relevant from two processes: electron anti-neutrino
scattering on atomic electrons, and neutrino-nucleus interactions in which the hadronic coupling is via a
virtual photon. The former produces the distinct Glashow resonance [159], which peaks at 6.3 PeV. The
latter can reach up to 5-10% of the DIS cross section in the PeV range [243–247], and it becomes increasingly
more important for heavy nuclei as it scales with Z2.

IceCube recently reported the detection of a particle shower compatible with it being due to a Glashow
resonance [21], with a deposited energy of 6.05± 0.72 PeV. The inferred neutrino energy is ∼6.3 PeV, after
correcting for the invisible energy from particles that do not radiate visible photons. Signatures of low-energy
muons were also observed in the event, with energies consistent with expectations of a W− decay, tagging
it as a hadronic cascade. Future analyses with more data could reach a 5σ detection. On the other hand,
W -boson production [243, 244, 246, 247] deserves more attention, especially in the near future as much more
data is collected. In fact, recent studies have shown that these interactions can play a significant role in the
detection of tau neutrinos from cosmic origin [248].

Going beyond standard DIS interactions, it is well known that the quark and gluon PDFs of nucleons
bound in nuclei are modified compared to free nucleons. Therefore, high-energy neutrino interactions in ice,
water, or rock are modified due to the presence of nuclear effects. The most relevant effect for the calculation of
the neutrino DIS is that of shadowing [249], namely, the depletion of nuclear structure functions as compared
to their free-nucleon counterparts. In the last years, several collaborations have produced PDF sets in the
nuclear sector [250–253]. First calculations of the neutrino cross section using nuclear PDFs find 5–15%
suppression in the PeV range, but the uncertainty of the nuclear corrections are still large [161, 234, 254].
Future Electron-Ion Collider (EIC) measurements of nuclear structure functions will reduce the uncertainties
in the neutrino cross section due to nuclear corrections [255].

2.1.2 Inelasticity

Inelasticity is the measure of the fraction of neutrino energy transferred to a hadronic target in deep inelastic
scattering. The cross section and inelasticity are complementary probes of new physics since a new interaction
should have an inelasticity distribution distinct from that expected from conventional charged current deep
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inelastic scattering, which is modeled well in the Standard Model [256]. Recent results from IceCube made
the first measurement of the νµ inelasticity distribution above 1 TeV by tracking both muons from a charged-
current interaction and the shower deposited in the detector [19]. This inelasticity data was also used to
constrain the atmospheric ν : ν ratio. With more data and good atmospheric neutrino rejection, it may be
possible to apply this calculation also to astrophysical neutrinos.

2.1.3 Neutrino decay

Because neutrinos have mass, they decay. In the Standard Model, they can decay radiatively, e.g., νj → νi+γ
[257, 258], where νj and νi are different neutrino mass eigenstates. However, the associated lifetimes are
longer than the age of the Universe. Yet, if neutrinos couple to a new light or massless mediator, then the
decay rate could be enhanced. This can be tested in a variety of environments. In general, terrestrial and
solar constraints are not very strong. The strongest existing constraints come from the cosmic microwave
background [259–262], although the bounds may be significantly relaxed [263, 264] and there may even
be hints of neutrino decay [260]. In addition, these constraints are somewhat more model-dependent than
the others. A measurement of the diffuse supernova neutrino background would provide the next most
sensitive probe of neutrino decay [265, 266], followed by a Galactic supernova, although lifetime bounds from
SN1987A [267] can be evaded depending on the flavor structure. The existing constraints from terrestrial
and astrophysical experiments as well as projected sensitivities are shown in Fig. 6.

After that, the next most relevant constraint comes from high-energy astrophysical neutrinos observed
at IceCube [93, 268–273]. Both the fact that neutrinos have been detected as well as the detailed spectral
and flavor information have been used to probe neutrino decay. A weak hint for neutrino decay was identified
by comparing the spectra of different flavors of neutrinos which makes certain predictions, in particular for
the tau neutrino flux [268, 269].

2.1.4 Dark matter

Weakly interacting massive particles (WIMPs) are the primary candidates for particle dark matter (DM).
The WIMP hypothesis yields a thermally average cross-section rate, 〈σv〉 ' 3 × 10−26 cm3 s−1, which can
explain the observed relic abundance after the freeze-out and is independent of the annihilation products.
Meanwhile, thermal production of WIMPs in the early Universe implies possible ongoing annihilation of DM
to Standard Model (SM) particles. This possibility has facilitated the indirect search for dark matter. There
is a distinct possibility that neutrinos might be the principal portal to the dark sector. Such possibility is
motivated by the scotogenic models where the neutrinos mass is achieved via interaction with DM, see, e.g.,
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Ref. [274]. Furthermore, the upper limit on the DM annihilation cross-section to neutrinos serves as an upper
bound on DM annihilation to SM particles, as the latter is larger [275, 276].

In principle, DM could annihilate to all SM particles. Annihilation to most SM particles results in the
production of gamma rays and neutrinos. While the most constraining limits on DM annihilation cross-
section for sub-PeV DM are obtained from the absence of signal in multi-wavelength observations, especially
from the Milky Way and its satellite galaxies, neutrino observations are shown to be providing stronger
probes of very heavy DM with masses > PeV [277]. Moreover, there is a distinct possibility for DM directly
annihilating to neutrinos, which makes indirect search via neutrinos important.

Remarkably, for energies & 0.1 MeV, there exists an interrupted coverage of the neutrino flux from the
Universe. An extraordinary amount of data has been collected in this range for measuring neutrino fluxes
which can be utilized to search for DM annihilation to neutrinos which have been largely used to impose
constraints on DM annihilation to neutrinos. While for the low-mass regime (mDM < TeV), the limits are
already approaching the thermal relic density values (see [216] for details), the current and upcoming neutrino
telescopes aiming at very high energies are opening a new avenue for the indirect search of DM.

Figure 7 shows the upper limits on DM annihilation cross section for DM particles heavier than 1 TeV.
Currently, the upper limit on DM annihilation cross section is obtained from the observations of ANTARES
and IceCube neutrino observatories. For DM in the mass range of 1–100 TeV, ANTARES dominates the
upper limit landscape, thanks to its optimal location to observe the Galactic center. For heavier masses, the
best constraints are given by IceCube observation of high-energy cosmic neutrinos, as well as IceCube’s search
for extremely-high-energy (EHE) neutrinos. The ability of neutrino telescopes to probe DM annihilation will
be significantly improved with the upcoming and planned neutrino experiments.
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2.1.5 Secret neutrino interactions

While the SM allows for interactions among neutrinos, these interactions are all highly suppressed by the
electroweak scale – any interaction cross section involving only neutrinos scales as the square of the Fermi
constant, G2

F . It is still unknown whether there are additional BSM interactions solely among neutrinos that
are stronger than this, with some effective interaction scale Geff. � GF . In a UV-complete BSM model, this
implies the existence of some new electrically-neutral mediator that couples to neutrinos, significantly lighter
than the Z0 boson.

New interactions of this type can significantly modify the character of the HE and UHE neutrino flux
arriving at the Earth by the scattering of the HE/UHE neutrinos off of nearly-at-rest cosmic neutrino back-
ground (CνB) neutrinos. The main feature of this effect is the absorption of neutrinos with a characteristic
energy E ≈ m2

φ/(2mν), where mφ is the mass of the new neutrinophilic mediator and mν is the mass of one
of the light neutrino eigenstates. The spectral distortion features may appear at PeV-EeV region, depending
on the absolute mass of neutrinos. This model is independently motivated by the neutrino mass generation
mechanism [195], muon g − 2 anomaly [279], small-scale problems in dark matter substructures [280, 281],
and apparent Hubble tension [282–285]. A standard model example of a sharp resonance structure in the
mean free path of neutrinos scattering in the CνB field via Z0 boson production is shown in Fig. 8.

If we assume mν = 0.1 eV and mφ = 10 MeV, this predicts absorption of HE, 500 TeV neutrinos.
This effect has been explored in, for instance, Refs. [63–65, 67, 68, 194, 195, 197, 198, 286–289]. Beyond
the absorption of a characteristic energy of HE/UHE neutrinos, additional effects can be detected, including
additional neutrino flux below this energy from a cascade effect [64, 65] and a delayed arrival of post-scattering
neutrinos relative to the ones that do not scatter [198].

Constraints on such interactions using current IceCube data have been derived in Refs. [67, 69]. De-
pending on the flavor structure of the interaction between this new mediator and neutrinos of flavor α and
β, these searches can place the most stringent constraints on the interactions for mediator masses between
roughly 4 and 40 MeV, even stronger than some laboratory and cosmology constraints [284, 290, 291]. In
general, the measurement of astrophysical HE/UHE neutrinos constrains Geff . 1010GF given current data.
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2.1.6 Prompt neutrinos

Prompt neutrinos come from decays of heavy-flavor hadrons, predominantly from charm mesons. In nature,
prompt neutrinos can be produced through cosmic-ray interactions with nuclei in the Earth’s atmosphere.
Due to very short lifetimes of heavy-flavor hadrons, the energy dependence of the flux of prompt atmospheric
neutrinos scales roughly according to the cosmic-ray flux, while the energy dependence of conventional
atmospheric neutrinos that come from pion and kaon decays falls with an additional power of 1/Eν . At
energies of Eν & 100 TeV–1 PeV, the prompt atmospheric neutrino flux dominates over the conventional
neutrino flux and becomes the main component of the flux of atmospheric neutrinos. Meanwhile, high-energy
neutrino telescopes such as IceCube and KM3NeT search for astrophysical neutrinos at TeV–10 PeV energies
[34–36, 118, 292]. Probing the prompt atmospheric neutrinos is not only interesting for detection itself, but
also important in that they are the primary background to astrophysical neutrinos.

Prompt atmospheric neutrinos have not yet been experimentally detected, and the theoretical prediction
of their flux has large uncertainties that depend on various factors such as the cosmic-ray spectrum and mass
composition, the model for heavy-flavor production, and the parton distribution functions [295–298]. One of
most significant contributions to large uncertainties in the prompt neutrino flux originates from the limited
knowledge of relevant kinematic regions of heavy-flavor production cross sections in hadron collisions. In
evaluating the prompt neutrino flux, models for heavy-flavor production for the charm meson production
cross section are compared with the data collected by the LHCb Collaboration [299], which provides data in
the most forward region so far, for charm meson rapidities of 2.0 < y < 4.5. To illustrate the charm meson
rapidities relevant to the prompt atmospheric neutrino flux as a function of neutrino energy, Fig. 9 shows the
prompt atmospheric neutrino fluxes for νµ+ ν̄µ from the charm produced at different collider rapidity ranges
in pp collisions [294]. These results are evaluated with one of the modern cosmic-ray spectra analyzed taking
into account cosmic-ray composition, H3a [293]. The result with the traditional broken power law (BPL)
spectrum is presented for comparison. In the figure, one can see that for the energies of Eν & 105 − 106

GeV, where the prompt neutrinos are most important, the flux depends on charm produced in the equivalent
collider rapidity range of y & 4.5.

As noted, current experimental data for charm production are available for y < 4.5 from LHCb mea-
surements. Recently, two experiments at the LHC, FASERν [300] and SND@LHC [301], were approved.

– 13 –



0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2020 (proj.): IC 8 yr (99.7% C.R.)

2015 (99.7% C.L.)

2040 (proj.): IC 15 yr + Gen2 10 yr (99.7% C.R.)

2015 (99.7% C.L.)

2040 (proj.): Combined ν telescopes (99.7% C.R.)

2015 (99.7% C.L.)

Standard oscillations, NO
All regions 99.7% C.R.

2020: NuFit 5.0
2040: JUNO

+ DUNE
+ HK

π decay: (1 : 2 : 0)S

µ-damped: (0 : 1 : 0)S

n decay: (1 : 0 : 0)S

Fr
ac

tio
n

of
ν τ

, f
τ,
⊕

Fraction
of

ν
µ , fµ,⊕

Fraction of νe, fe,⊕

Figure 10. Expected measurements of the flavor compo-
sition measured at Earth in both 2020 and 2040. Lines
show the 99.7% credibility regions of using the astrophysi-
cal neutrino flux assuming a composition at Earth of 0.3νe :
0.36νµ : 0.34ντ . These can be compared to predictions from
different assumed source compositions (π decay, µ-damped
π decay, and n decay dominated scenarios), unitarity, and
standard oscillations. These predictions will improve over
time as oscillation parameters are further refined with new
experiments. Figure reproduced from Ref. [83].

Figure 11. Expected flavor ratios observed at Earth
under a generic class of new physics assumptions, which
can include Lorentz invariance and CPT violation, viola-
tion of the equivalence principle, cosmic torsion, and non-
standard interactions, among others. The colors repre-
sent different assumed flavor compositions at the sources.
Figure reproduced from Ref. [90].

They are in preparation to probe more forward regions, y & 7.2, during Run 3 of the LHC. Already in
2018, a pilot detector for FASERν collected data from 12.2 fb−1 of pp collisions at the LHC, from which
candidate neutrino interaction events were observed [302]. Combined, the Run 3 measurements by FASERν
and SND@LHC will allow for tests of theoretical approaches to forward charm production, for example as
reviewed in Refs. [6, 303], to refine theoretical predictions of the prompt atmospheric neutrino flux.

2.1.7 Fundamental symmetries

The Standard Model rests on two fundamental symmetries: the Lorentz and CPT symmetries. According
to the CPT theorem, any Lorentz-invariant local quantum field theory with a Hermitian Hamiltonian, like
the Standard Model, must respect CPT symmetry. So far, all attempts to find experimental evidence for
Lorentz-invariance breaking have failed.

However, because the Standard Model is regarded to be an effective field theory, the Lorentz symmetry
upon which it rests might not be truly fundamental, but might be broken at high energies. The full theory of
which the Standard Model is an effective one is presently known, but effective-theory extensions of the Stan-
dard Model exist that, while not ultraviolet-complete, contain additional Lorentz-violating interactions. The
Standard Model Extension (SME) is the best-developed effective field theory of this kind. In it, the coupling
strength of the Lorentz-invariance-violating (LIV) interactions, i.e., their Wilson coefficients, have a priori
undetermined values. The SME is regularly used to systematically test Lorentz invariance, by constrain-
ing the values of the couplings. For neutrinos, the presence of LIV modifies flavor-transition probabilities,
possibly significantly. For high-energy neutrinos, the presence of LIV may manifest as deviations in flavor
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composition of the neutrino flux that reaches Earth, i.e., of the relative amount of νe, νµ, and ντ in the flux.

In the standard case, i.e., if Lorentz symmetry holds, the Hamiltonian that drives flavor transitions in
vacuum, is

Hstd =
1

2E
Udiag(0,∆m2

21,∆m2
31)U† , (2.1)

where Eν is the neutrino energy, ∆m2
21 ≡ m2

2 −m2
1 and ∆m2

31 ≡ m2
3 −m2

1 are the mass-squared differences
between neutrino mass eigenstates, and U is the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) mixing matrix
that connects the neutrino mass and flavor bases. The PMNS matrix is conventionally parametrized via four
mixing parameters: three mixing angles, θ12, θ23, and θ13, and one CP-violation phase, δCP, whose values
are known from oscillation experiments. For high-energy cosmic neutrinos, the flavor-transition probability
derived from the above Hamiltonian oscillates rapidly. Because of limited precision in the knowledge of the
distance traveled from its source, and in the measurement of neutrino energy, in practice neutrino telescopes
are sensitive only to the average flavor-transition probability. For the transition να → νβ (α, β = e, µ, τ),
this is

P std
αβ =

3∑
i=1

|Uαi|2|Uβi|2 , (2.2)

where Uαi and Uβi arec components of the PMNS matrix. Thus, the standard average flavor-transition
probability is energy-independent, and depends only on the standard mixing parameters.

If neutrinos are produced with a flavor composition of fS ≡ (fe,S, fµ,S, fτ,S), then due to oscillations, the
flavor composition at Earth will be fα,⊕ =

∑
β=e,µ,τ P

std
βα fβ,S, for α = e, µ, τ . Figure 10 shows the expected

flavor ratios at Earth for three benchmark neutrino production scenarios, and accounting for the uncertainties
in the neutrino mixing parameters.

The LIV operators in the SME introduce additional terms to the Hamiltonian, i.e.,

HLIV =
∑
n

(
Eν
Λn

)n
Ũndiag(On,1, On,2, On,3)Ũ †n , (2.3)

where On,i are the eigenstates of the n-dimensional Lorentz-violating SME operator, Ũn is a PMNS-like
mixing matrix, but parametrized by new mixing parameters, ξi, and Λn is the energy scale characteristic
of the n-dimensional operator. For instance, n = −1 corresponds to neutrino decay; n = 0, to CPT-odd
LIV; and n ≥ 1 to CPT-even LIV. Equation (2.3) reveals the advantage of using high-energy neutrinos to
look for LIV: because HLIV ∝ Enν , with n ≥ 0, its relative importance compared to Hstd grows with energy.
Therefore, even if the values of the LIV parameters are tiny, the LIV effects may become apparent at high
energies. Below, we show how this would manifest.

The total Hamiltonian is Htot = Hstd +HLIV. Unlike Hstd or HLIV by themselves, the total Hamiltonian
Htot is no longer diagonalized by the PMNS matrix U or by a group of Un matrices, but rather by a new
matrix, V , that depends on both the standard and LIV mixing parameters. Because of HLIV, the average
flavor-transition probability depends not only on the standard mixing parameters, but also on the LIV
parameters and the neutrino energy, i.e.,

PLIV
αβ =

3∑
i=1

|Vαi|2|Vβi|2 , (2.4)

where Vαi ≡ Vαi(θ12, θ23, θ13, δCP, ξi, Eν) and similarly for Vβi.

Analogously to the standard-oscillation scenario, the flavor composition at Earth with LIV is fα,⊕ =∑
β=e,µ,τ P

LIV
βα fβ,S. Figure 11 shows the flavor ratios at Earth in the presence of LIV, for the same benchmark

production scenarios. Because the values of the LIV parameters are unknown, when they are allowed to
vary large deviations from the standard flavor-composition expectation are possible. Therefore, detecting a
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large deviation away from the standard (fe,⊕, fµ,⊕, fτ,⊕) = (1/3, 1/3, 1/3) could be interpreted as being due
Lorentz-invariance violation.

Another possible test of fundamental symmetries comes from augmenting the Standard Model with a
new U(1)′ gauge symmetry [304–306]. Such an extension results in a new gauge boson Z ′ responsible for a
new interaction between neutrinos and other elementary massive particles. In the ultra-light limit of the Z ′

mass, the resulting interaction is long-range in nature, which would affect the propagation of high-energy
astrophysical neutrinos. If the Z ′ exists, neutrinos will in addition interact with matter particles while
propagating through the Universe, thus modifying the standard flavor composition f⊕ at Earth [307].

Some well explored BSM extensions are U(1)′ models with Lα − Lβ (α, β = e, µ, τ ) symmetries, where
Lα is the α-flavor lepton number. For Le − Lβ (β = µ, τ), neutrinos would interact with electrons via the
Z ′ vector boson subject to the potential Veβ = αeβ

Ne
R , where αeβ = g′2/4π is the fine structure constant for

Le − Lβ symmetries. However, for Lµ − Lτ , since muons and tauons are short-lived and, therefore, rarely
encountered by astrophysical neutrinos, the interaction between neutrinos and electrons is only possible via
Z − Z ′ mixing, where Z is the SM-boson of the weak interaction. The effective potential is then given by
Vµτ = ±g′(ξ − swχ) e

4swcw
Nn
4πR where (ξ − swχ) is due to the Z − Z ′ mixing [308].

In the presence of the new interaction potential, the neutrino propagation Hamiltonian is described by
the matrix H = Hvac + Vmat + Vαβ , where Hvac is the vacuum neutrino propagation Hamiltonian in the
flavor basis, and Vmat is the standard neutrino-matter charged-current interaction term. The new interaction
matrix Vαβ is the flavor-diagonal matrix having non-zero αα and ββ elements as strength of the respective
potential with opposite sign.

Astrophysical neutrinos are ideal probes because they travel cosmological distances over which any minute
extension to the SM can potentially accumulate to a measurable effect. Any measured deviation from the
standard flavor composition could, therefore, be translated into measurements of the parameters of U(1)′

models. Several of the operating neutrino telescopes like IceCube [309], KM3NeT [125], Baikal [310] with
sensitivity to >TeV astrophysical neutrinos and their flavors are able to test for f⊕ deviations.

2.1.8 ANITA anomalous events

ANITA has observed a handful of anomalous events; these are events whose observational properties are,
at least at first sight, compatible with them being neutrinos. ANITA is a balloon-borne Antarctic UHE
particle detector sensitive to the radio emission from neutrino interactions in the ice and air showers that
can be generated by both cosmic rays and Earth-skimming neutrinos. The ANITA anomalies come in two
types: steeply upcoming air shower and near-horizon air shower events. Air-shower events in ANITA are
observed both directly pointed at the payload and reflected off the ice; they can be distinguished with their
observed arrival direction and polarity (or phase) inversion due to the reflection off of the ice in the later
case. Two events—one each in both the first [311] and third ANITA flights [312]—were observed that were
consistent with the geomagnetic signal from an air shower in terms of their polarization and spectrum, but
their steep arrival direction (roughly 30◦ below the horizon) were inconsistent with their observed polarity.
In the fourth flight of ANITA, four events near, but below the horizon were observed with an inconsistent
polarity indicating that the air shower signal had not been reflected with a significance of 2–3σ level when
considering possible anthropogenic backgrounds and pointing and polarity reconstruction errors.

Several analyses considered the possibility that the steeply upcoming anomalies are due to a possible
Earth-skimming tau neutrino origin and find that that they are in strong tension with predictions from
Standard Model cross sections and experimental limits at UHE (including the in-ice neutrino channel within
the ANITA) [311, 313–319]. This is true for both the diffuse [317, 318] and point-source neutrino hypothe-
ses [318, 320]. Limits from the Pierre Auger Observatory consider the aperture to both generic upgoing air
showers [315] and tau lepton induced air showers [314].

The near-horizon ANITA anomalies are more consistent with an Earth-skimming neutrino origin than the
steep events in terms of the distributions of their arrival direction and spectral characteristics, but the fluence
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implied by the detection of four events in one flight is in strong tension with the Pierre Auger Observatory
across all energies and is also in tension with ANITA’s own in-ice neutrino limits above 1019.3 eV [319].

Several explanations have been proposed to explain the steeply upcoming anomalous events. Mundane
effects such as transition radiation of cosmic ray air showers piercing the Antarctic ice sheet [321, 322] and
subsurface reflections due to anomalous ice features [323] may be possible, although the later is disfavored by
the observed waveforms of the events [324]. Beyond-the-Standard Model explanations predict the expected
signature of new particles exiting the Earth [325–333]. As of this white paper, the origin of both sets of
anomalous events remains unclear; follow-up observations of these unusual events are well-motivated [315].

2.2 In astrophysics

Particle acceleration in extreme environments: The origin of cosmic rays and the associated par-
ticle acceleration mechanisms are among the biggest open questions in the astroparticle physics. Possible
mechanisms including shock acceleration [334], one-shot/shear acceleration [335, 336], and magnetic recon-
nection [337]. In most cases, the accelerated cosmic rays will interact with surrounding matter (pp) [338, 339]
and light (pγ) [49] inside their sources, and produce high-energy neutrinos as a result. Thus, high-energy
neutrinos provide a unique probe of acceleration mechanisms in astrophysical environments.

Inside astrophysical sources, pp and pγ interactions make charged pions that, upon decaying, make high-
energy neutrinos: π+ → µ+ + νµ, followed by µ+ → e+ + νe + ν̄µ, and the charge-conjugated processes. (The
beta-decay of neutrons from in pp and pγ interactions makes additional ν̄e, but those neutrinos have an energy
approximately a hundred times smaller than neutrinos from pion decay.) The final-state neutrinos typically
carry ∼ 3 − 5% of the parent proton energy, given that energy losses of pions and muons are negligibly
small. (The exception is when magnetic fields are intense and synchrotron losses of charged particles are
significant; see, e.g., Refs. [340, 341].) Thus, the detection of PeV neutrinos enables us to study the sources
of cosmic rays around ∼ 100 PeV, i.e., around the second knee of the cosmic-ray spectrum, possibly probing
the Galactic-to-extragalactic transition in cosmic rays. Higher-energy neutrinos, especially UHE neutrinos
in the EeV range, will be crucial to investigate the accelerators of UHECRs. UHE gamma rays would not
be directly observed except for nearby UHECR accelerators within 10–100 Mpc, while UHE neutrinos can
be used to study distant sources located in the cosmological distance. Gamma-ray bursts (GRBs), tidal
disruption events (TDEs), and blazars are among the candidate accelerators of UHECRs. However, models
that may explain the observed neutrinos and UHECRs often require a large baryonic loading, i.e., a large
fraction of the available energy imparted to cosmic rays, which may be theoretically challenging.

Neutrinos are also important as a probe of dense environments that are not visible with photons. Cosmic
rays can be accelerated in the vicinity of a black hole [342–344], a jet inside a star [345], and dense circumstellar
material [346]. There has been significant progress in numerical simulations of particle acceleration in shocks
and accretion flows [347–349], and in spark gaps [350, 351]. Non-jetted AGN [352–355], TDEs [356–358],
choked jets [359–362], and interacting supernovae [363, 364] are actively discussed as promising targets for
high-energy neutrino detection.

Flavor physics at sources: From the full pion decay chain, we nominally expect the flavor composition
leaving the neutrino sources to be fe,S : fµ,S : fτ,S = 1 : 2 : 0, where fα,S is the fraction of να + ν̄α
(α = e, µ, τ) at production. However, because neutrinos oscillate, the flavor composition that reaches Earth
is different. In particular, for high-energy neutrinos traveling over cosmological-scale distances, the flavor-
transition probabilities are averaged [365]. As a result, the nominal expectation is for the flavor composition
at Earth to be the same for all flavors, i.e., fe,⊕ : fµ,⊕ : fτ,⊕ ≈ 1 : 1 : 1 [85, 366]. There are relatively small
variations around this prediction due to uncertainties in the values of the neutrino mixing parameters [58, 83].
However, in highly magnetized sources such as GRBs, pions and muons cool via synchrotron so strongly that
the flavor composition at Earth can be modified to fe,⊕ : fµ,⊕ : fτ,⊕ ≈ 1 : 1.8 : 1.8 at high energies [58, 73, 83].
Alternately, in high-gradient sources (more than 1.65 keV cm−1), muons from pion decay will be significantly
accelerated before they decay, leading to an equal flux of νe and νµ, and a harder neutrino spectrum [367]. In
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choked jets associated with supernovae and double neutron star mergers, where the neutrino production region
is embedded in the progenitor star and merger ejecta respectively, the flavor ratios can further be affected
by matter effects [368–372]. Measuring the flavor composition of high-energy neutrinos is challenging, since
signals from νe and ντ are easy to confuse; see, however, Ref. [96]. Nevertheless, IceCube has performed
several measurements of the flavor composition [19, 53, 81, 373]; most recently, they have singled out the
first ντ candidates [81]. We can use these measurements, combined with information on the values of the
neutrino mixing parameters [82], to infer the flavor composition at the sources and, in turn, constrain their
identity [57, 59, 83, 374, 375].

Multi-messenger connection and improved source modeling: Neutrinos are produced by hadronu-
clear and/or photomeson production processes, in which the neutrino–gamma-ray connection is naturally
expected. In particular, the Fermi gamma-ray data give us stringent constraints on the candidate sources
of IceCube neutrinos. For a simple power-law (SPL) spectrum, the spectral index of the neutrino sources
is constrained to be γSPL < 2.1–2.2 [38]. On the other hand, recent shower [118], HESE [70], and track
data [119] suggest that the best-fit spectral indices are all softer, and the fact that the all-sky neutrino flux
at 10 TeV is larger hints at the existence of hidden neutrino sources that are opaque to GeV–TeV gamma
rays [376–378].

Because the energy generation rate densities of UHECRs, TeV–PeV neutrinos, and sub-TeV gamma
rays are comparable [40], it is natural that, at least in some cases, they are produced in the same network
of processes in the same sources. This can be done by cosmic-ray reservoirs, where cosmic rays confined
in magnetized environments produce neutrinos and gamma rays while escaping cosmic rays contribute to
the observed UHECR flux [97, 138]. The candidate source classes include galaxy clusters/groups [138, 379–
381] and starburst galaxies [382–386]. In pγ scenarios, gamma rays are more likely to be obscured, but the
connection between UHECRs and sub-PeV neutrinos is still possible in some source models [387].

Cosmogenic neutrinos: While predictions and modeling of the flux of cosmogenic neutrinos [147–149] have
been steadily improving in recent years due to more information from UHECR experiments [44, 45, 388], the
uncertainty is still about an order of magnitude. A measurement of the cosmogenic neutrino spectrum will
provide valuable inputs to constrain UHECR source properties [389–397].

UHE neutrinos from point sources: Predictions of the flux of cosmogenic neutrinos are rather uncertain
due to not only the composition but also the cosmic-ray maximum energy and redshift evolution of the
sources. The first detected UHE astrophysical neutrinos may predominantly come from powerful point
sources. First, there are source models that predict diffuse neutrino fluxes overwhelming the cosmogenic
neutrino flux especially if the UHECR composition is dominated by intermediate or heavy nuclei. Second,
the UHECR acceleration requires sufficiently powerful sources that may be rare in the Universe. This would
make the source identification easier especially at extremely high energies, where atmospheric backgrounds
are negligible [99, 398]. Candidate UHECR accelerators that can also be powerful UHE neutrino emitters
include GRBs and hypernovae [399–406], magnetar/pulsar-driven supernovae [136, 407–409], TDEs [410–412],
and blazars [137, 140, 413–415].

2.2.1 Diffuse flux of TeV–100 PeV astrophysical neutrinos

There are two ways to disentangle the diffuse flux of astrophysical neutrinos from the atmospheric neutrino
flux. The first is based on our knowledge of their distinct energy spectrum. The second is based on the
expectation that down-going atmospheric neutrinos can be tagged if accompanied by muons produced in
the same air shower [416–418]. Combining both approaches has led to the discovery of an astrophysical
flux at the TeV-to-PeV energies with a significance well above 5σ. However, above roughly 10 PeV, the
picture remains unclear and likely requires next-generation detectors, possibly in combination [419], for a
high-significance measurement of the cosmic neutrino flux. Further exploring this energy regime, as well
as refining our current knowledge of the diffuse astrophysical flux will help shed light on source production
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Figure 12. Overview of astrophysical diffuse flux measurements to date. The green point and contours shows
the most recent best-fit and uncertainties using a sample of predominantly up-going tracks in IceCube with 9.5 years
of data taking [119]. It is overlaid with IceCube results using high-energy starting tracks and cascades (red) [70],
predominantly contained cascades (blue) [118], and a sample of predominantly starting tracks (orange) [19]. A recent
ANTARES result (gray) using both cascades and tracks with 9 years of data is included for comparison [420].

mechanisms. It also opens an avenue to probe fundamental neutrino physics and BSM physics at an energy
scale that would be unreachable otherwise.

The global picture of our current knowledge of the diffuse astrophysical neutrino flux is shown in Fig. 12
assuming a single-power-law spectrum. It summarizes spectral constraints derived from the analysis of
various IceCube event samples, as well as ANTARES data [420]. Specifically, the IceCube data sets are a
sample of high-energy neutrinos which includes both tracks and cascades with interaction vertices within the
instrumented volume [70], a sample of up-going tracks (mostly muon neutrinos) [119], a sample of cascade-like
events (mostly electron and tau neutrinos) [118], and a sample of tracks that start within the instrumented
volume [19]. An apparent slight tension between the different measurements could be due to differences in
flavor composition, energy range, the accounting of atmospheric backgrounds and the spectral model used.
The combination of individual samples in a multi-sample analysis [421], improved calibration and simulations
will lead to improvements of the accuracy of the measurement and a reduction of systematic uncertainties.

The measurement of the flavor composition of astrophysical neutrinos provides important clues about
their origin, production mechanisms and physical properties of their sources. The canonical production of
neutrinos in astrophysical sources with flavor ratios fe,S : fµ,S : fτ,S = 1 : 2 : 0 from the decay of charged
pions, can be altered by energy losses of pions and muons in the vicinity of the sources, e.g., due to the
presence of strong magnetic fields [71, 73–75, 89, 340, 341]. Several measurements of the flavor composition
have been performed with IceCube [19, 53, 81, 373]. Figure 13 summarizes the constraints derived. An
important milestone was the recent identification of two ντ candidate events [81]. Current constraints are
compatible with several astrophysical production scenarios [57–59, 83, 374, 375, 422–425] and standard
neutrino oscillations on their propagation to Earth [59, 83], while high-energy neutrino production from the
beta-decay of neutrons is strongly disfavored [59, 83].

The Glashow resonance is an enhancement of the s-channel neutrino charged-lepton cross section over
the DIS cross section. Due to the preponderance of electrons in matter, it peaks for electron-antineutrinos
at 6.3 PeV in the electron rest frame. Sixty years after its initial proposal [159], IceCube detected an
astrophysical neutrino interacting at the resonance energy for the first time [21]. As the resonance occurs on
Earth only for electron-antineutrinos, it opens an additional identification channel of both the neutrino flavor
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Figure 13. Flavor constraints on the cosmic neutrino flux from various analyses of IceCube data. The constraints
from an IceCube analysis identifying first tau neutrino candidates [81] is shown as black contours. Constraints from
earlier measurements, a fit encompassing several IceCube data sets [53] and an analysis of the inelasticity distribution
of IceCube high-energy events [19] are shown as shaded regions. They are compared to different scenarios of neutrino
production in astrophysical sources and the full range of possible flavor compositions assuming Standard Model flavor
mixing (gray dotted region). Figure reproduced from Ref. [81].

and charge. As a result, sources of high-energy astrophysical neutrinos can be expected to produce both
neutrinos and antineutrinos. Even with only one event detected thus far, the diffuse flux is now expected to
extend above the resonance energy, and constraints on cutoff models can be placed. With additional statistics
in the future, we should expect more precise constraints on all fronts including the flux, flavor composition,
and production mechanisms; see, e.g., Ref. [78, 79, 426].

2.2.2 Diffuse flux of ultra-high energy neutrinos: cosmogenic and from sources

UHECRs with energies reaching ∼ 1011 GeV are expected to produce UHE neutrinos of energies well above
the PeV scale. UHECR nucleons colliding with the cosmic microwave background (CMB) and extragalactic
background light (EBL) produce secondary pions via the photomeson production in extragalactic space.
The subsequent decays of pions generated by these interactions, also known as the Greisen-Zatsepin-Kuzmin
(GZK) process [47, 48], generates the a flux of UHE neutrinos [26]. The GZK process is effective when the
energies of UHECR nucleons are higher than ∼ 5×1010 GeV, because of the threshold effect on the photopion
production process. As approximately ∼ 5 % of the parent nucleon energy goes into secondary neutrinos,
these cosmogenic neutrinos see their main flux around and below ∼ 109 GeV [51, 148, 389, 391, 427].
In the case of UHECR nuclei with energies below the threshold for photomeson production, beta-decays
of unstable cosmic-ray nuclei produced during the photodisintegration chain can also produce cosmogenic
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neutrinos [428, 429]. In the absence of a significant proton component above ∼ 50 EeV, this is the dominant
mechanism for cosmogenic neutrino production.

Because the CMB field evolves with redshift following the history of Big Bang cosmology, the neutrino
production yield highly depends on the cosmic time at which UHECR nucleons collide with CMB photons.
Consequently, the cosmogenic neutrino intensity is a good probe for understanding UHECR source evolution
with redshift, i.e., the cosmological evolution of UHECR sources [430]. The present upper limits on the
cosmogenic neutrino fluxes obtained by IceCube [144], the Pierre Auger Observatory [431], and ANITA [146]
have placed constraints on the source evolution parameter space, putting highly evolved astronomical objects
such as FSRQs and GRBs into question as UHECR origins [316].

UHECR sources themselves may yield UHE neutrinos via photonuclear or photohadronic processes, as
many of the sources are expected to sit in neighborhood of interstellar gas or photon radiation field [136–
141]. The fact that the UHECR luminosity density is comparable to that of sub-PeV neutrinos measured by
IceCube and that of sub-TeV gamma rays measured by Fermi may also indicate that the three messenger
particles share the same origin [40]. This astroparticle “Grand-Unification” theory has been extensively
discussed in the literature. UHECR sources are indeed expected to produce neutrinos and cascaded gamma
rays in this scenario, with energies even reaching to 100 PeV and beyond [38, 97, 138, 141]. The generic
requirements for being both UHECR accelerators and UHE neutrinos emitters in the unification framework
have been extensively discussed for the photohadronic scenario [387].

2.2.3 Neutrino sources

The TeV–PeV astrophysical neutrino flux that IceCube has measured is approximately isotropic, and there-
fore is likely produced mainly by extragalactic sources [70]. The sources are still almost entirely unresolved
and pose a compelling mystery. Two categories of analyses are used to search for the origins of the astro-
physical neutrino signal: neutrino-only analyses and multi-messenger analyses. The neutrino-only analyses
search for clustering of neutrinos in direction and/or time. They are generally model-independent, but a large
trials factor is incurred by searching many directions (and times, for time-dependent studies), which degrades
the sensitivity compared to correlation searches with modest numbers of multi-messenger source candidates.
Multi-messenger analyses search for correlation between neutrinos and known sources of other messengers,
or at least with the directions of those messengers, including electromagnetic radiation, gravitational waves,
and cosmic rays. These analyses sometimes search for temporal as well as directional correlation.

Neutrino-only analyses (clustering searches) have established strong upper limits on the flux from point-
like sources across the entire (4π) sky [432]. Dividing the total neutrino flux by these upper limits provides
a lower limit on the number of sources (regardless of their distance): there must be at least O(103) sources.
Although the sources are very likely extragalactic, their distance distribution, and even their distance scale,
is unknown.

There is evidence that at least one gamma-ray blazar, TXS 0506+056, contributes to the neutrino signal
(and is therefore also a cosmic-ray source) [22, 433]. However, the neutrino sky is remarkably different
from the gamma-ray sky. In particular, while gamma rays are an essential component of the evidence that
TXS 0506+056 is a neutrino source, the relationship between gamma rays and neutrinos from this and
other sources is not simple: the brightest gamma-ray sources are not the brightest neutrino sources [7, 97,
434]. Nevertheless, the neutrino sources could all be GeV and/or TeV gamma-ray sources, but without
simple correlation between the neutrino and gamma-ray fluxes: a subset of the ∼ 5 × 103 known &GeV
gamma-ray sources could be sufficient to explain the entire neutrino signal. The lack of simple correlation
between neutrino and gamma-ray fluxes underlines how complementary the two messengers are. The lack
of correlation could be explained by a combination of (1) the gamma-ray fluxes include leptonic as well as
hadronic contributions, (2) the neutrino sources are more distant than the gamma-ray sources, and/or (3)
the gamma-ray signals from neutrino sources are attenuated within or near the sources (though in this case
gamma rays may be reprocessed to lower energies [376]).
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In addition to cross-correlation with gamma-ray sources [435–437], analyses have searched for neutrino
emission from known sources across the electromagnetic spectrum, including X-ray, UV/optical/IR, and
radio sources. These include blazars as well as the cores of active galactic nuclei (AGN), ultra luminous
infrared galaxies (ULIRGs), and radio galaxies [438]. Time-domain (variable or transient) searches have also
been performed for neutrino emission from known sources including blazars, gamma-ray bursts (GRBs), fast
radio bursts (FRBs), tidal disruption events (TDEs), supernovae, and novae [23, 439–443]. In addition to
the electromagnetic spectrum, analyses have searched for coincidence between neutrinos and gravitational
waves or cosmic rays [444, 445].

In addition to the predominant extragalactic signal, there could be a significant Galactic neutrino
flux [446, 447]. Models predict both a diffuse Galactic signal (from cosmic-ray interactions producing pions)
and emission by discrete sources [448, 449]. Discrete source candidates include the highest-energy gamma-ray
sources identified by IACTs as well as wide-field instruments including HAWC and LHAASO, including those
that have been detected above 100 TeV [450, 451]. As in the case of extragalactic sources, detecting neutrino
emission from Galactic sources would identify them as cosmic-ray sources. Detecting diffuse Galactic emis-
sion would also provide essential insight into cosmic-ray propagation and interaction. Current upper limits
on the diffuse Galactic flux are comparable to model predictions based on the related gamma-ray signal,
which is well measured but at lower energies [54, 452, 453].

Although limits on the spatial clustering of the neutrino signal indicate that there must be at least O(103)
sources, the actual number may be close to this or arbitrarily larger. A more sophisticated analysis than the
simple comparison of the total flux to the point-source limits accounts for the source-to-source variation not
only in flux but also in redshift and luminosity. Observational constraints can be set in a 2D phase space
(source luminosity, source number density) and compared to known source classes characterized with other
messengers. As has been established for other messengers and wavebands, there are likely multiple diverse
source classes, and they likely vary substantially in contribution to the total flux, such that one or two source
classes dominate the total astrophysical neutrino flux.

2.2.4 Multi-messenger modeling of point sources

The coincident observations of a high-energy neutrino event, IceCube-170922A, with X-rays and γ-rays from
a blazar TXS 0506+056 [22, 433] demonstrated the power of the multi-messenger approach. Nevertheless,
there are still open questions in this case as we still lack a concordance picture of the multi-messenger data.
Neutrino production must be accompanied by the production of gamma rays, which, after cascading to
lower energies due to interactions on the CMB and EBL, eventually appear in the X-ray and/or gamma-
ray energy range. The resulting flux is predicted to be comparable to the neutrino flux. For the 2017
multi-messenger flare from TXS 0506+056, the electromagnetic spectrum was observed all the way from
radio, optical, and X-ray bands to the gamma-ray band, and it showed a valley in X-rays observed by Swift
and NuSTAR [454] that is especially constraining. The cascade constraints lead to upper limits on the
neutrino flux which are in tension with the observation of IceCube-170922A [454–457]. The situation is more
challenging for the 2014-2015 neutrino flare from TXS 0506+056 [458–461], for which various possibilities
have been discussed to explain the missing electromagnetic energy [462, 463]. That these results are not
sensitive to details of the modeling challenges the single-zone model approach for neutrino and gamma-ray
emission. Other coincidences with flares from supermassive black holes have been reported [464–468]. In
particular, coincidences with optically-detected tidal disruption events [23] with radio and X-ray counterparts
are of special interest [469, 470]. The connection among different messengers remains clouded.

Multi-messenger analyses have begun to help our understanding of the astrophysical environments where
cosmic rays are accelerated. The ten-year point-source searches with IceCube have indicated that NGC 1068
is the most significant steady source of neutrinos at a significance of ∼ 3σ [432]. Intriguingly, NGC 1068 is
known to be not only a type-II Seyfert galaxy but also a starburst galaxy. In the starburst model, NGC
1068 has been considered to be one of the most promising sources [97, 471] in the Northern sky (given that
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M82 may not be ideal for confining cosmic rays with ∼ 10− 100 PeV). However, gamma-ray limits provided
by MAGIC and HESS observations clearly show that it has to be a hidden neutrino source in the sense that
sub-TeV gamma-rays are attenuated or cascaded down to lower energies [472]. High-energy neutrinos may
be produced in the vicinity of the supermassive black hole, and particles may be accelerated in hot coronae
around the accretion disk [354, 473] or by disk-driven winds [384, 474, 475]. In particular, given that NGC
1068 is among the brightest sources in intrinsic X-rays, the AGN corona model predicts that NGC 1068 is
the most promising neutrino source in the Northern sky [354, 476]. The IceCube flux can be explained if a
fraction of the accretion power goes to protons, and gamma rays are predicted to appear in the MeV range
without violating the observational data by Fermi, MAGIC, and HESS.

2.2.5 Multi-messenger alerts

The conclusive identification of astrophysical neutrino sources and their electromagnetic counterparts will
not only enable the study of hadronic processes in cosmic-ray accelerators but also determine the baselines
over which cosmic neutrinos propagate, a critical ingredient in many of the already-mentioned studies of
fundamental physics.

The hunt for neutrino sources is typically performed by searching for an excess of neutrinos in space and
time (see Sec. 2.2.3) with respect to the dominant atmospheric background. However, at energies above ∼
100 TeV, the atmospheric background becomes subdominant with respect to the diffuse astrophysical neutrino
flux discovered by IceCube [8], which allows to search for sources by correlating in space and time individual
neutrino events with a high probability of being astrophysical in origin with other multi-messenger signals.
This concept has been realized in current-generation neutrino telescopes such as IceCube and ANTARES,
where the detection of single high-energy neutrinos is promptly communicated to the astronomical community
so that targeted observations can be collected to identify an electromagnetic (EM) counterpart [477–479]. The
blazar TXS 0506+056 was identified as a candidate neutrino using this technique as it was observed in a flaring
state in gamma rays in coincidence with the detection of the high-energy neutrino IceCube-170922A [433].
The prompt alert streams maintained by current-generation neutrino observatories have mostly focused on
the selection of muon-track events as their positional uncertainty regions (of order 1◦ radius or better) can be
covered by pointed EM telescopes, although more recently particle shower events (or “cascades”) have been
added which have a higher astrophysical purity given the lower atmospheric backgrounds for this selection
although at the cost of a poorer angular resolution (median error radius of ∼ 7◦ for IceCube) [480]. These
neutrino alerts are currently communicated via prompt Gamma-ray Coordination Network (GCN) notices,
circulars and Astronomer’s Telegrams and include the information required to facilitate their follow-up, such
as sky position (with uncertainty), energy, and false alert rate for each event. The all-sky coverage of neutrino
telescopes can also be used to search for correlated emission with multi-messenger alerts of interest, such as
gravitational-wave events or the observation of a transient or variable EM sources that are potential neutrino
emitters. Real-time programs such as AMON follow up on these external triggers and alert the community
if a coincidence of interest is identified [481].

3 Goals for the next decade

3.1 In particle physics

The landscape of new-physics models: New physics may affect various features of high-energy cos-
mic neutrinos: their energy spectrum, arrival directions, flavor composition, and arrival times, as Fig. 2
illustrates for a representative part of the landscape of BSM models. Some of the outstanding questions
to address today and in coming years are: How do neutrino cross sections behave at high energies? [17–
19, 103, 105–107, 116, 122, 161–181, 246, 247, 482, 483] How do flavors mix at high energies? [58, 59, 83, 85–
94, 366, 484–487] What are the fundamental symmetries of Nature? [62, 182–185, 187–192, 256, 488–495]
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Are neutrinos stable? [91, 268–270, 272, 273, 426, 496, 497] Is there evidence of dark matter in the flux of
high-energy neutrinos? [108, 199, 200, 202, 204–208, 212–215, 447, 498–509] Are there hidden interactions
with cosmic backgrounds? [63–65, 67–69, 91, 194, 195, 197, 198, 212, 217, 218, 286–289, 307, 510–519] What
is the origin of the anomalous EeV events seen by ANITA? [311, 312, 321, 323, 325, 326, 328–333, 520–526]
Neutrino telescopes may also probe new neutrino interactions and hypothesized particles, such as magnetic
monopoles [527–531], by looking for exotic signatures [3].

Synergies with sub-TeV neutrino experiments: Upcoming sub-TeV experiments will reduce uncer-
tainties that limit the sensitivity of fundamental-physics searches using high-energy cosmic neutrinos. First,
the IceCube Upgrade [532], though geared towards low-energy neutrinos, will reduce systematic errors that
affect the detection of high-energy neutrinos. Second, oscillation experiments—DUNE [533], JUNO [534],
Hyper-Kamiokande [535], the IceCube Upgrade [532], KM3NeT/ORCA [125]—will reduce the uncertainties
on lepton mixing parameters [536], permitting more precise tests of new physics via the flavor composition
of high-energy cosmic neutrinos [58, 83]. Third, FASERν will reduce systematic uncertainties in charm pro-
duction at parton momentum fraction x close to 1 by measuring the high-energy neutrino flux from the LHC
in the forward direction [6, 300, 303, 537]. This will improve predictions of the undiscovered background of
prompt atmospheric neutrinos that muddle searches of new physics with high-energy cosmic neutrinos.

Given the unique potential and rich experimental outlook of high-energy cosmic neutrinos to extend
our view of fundamental physics, this topic should feature prominently in the high-energy physics program,
as it pushes the boundaries for the neutrino, cosmic, energy, theory, and instrumentation frontiers. Com-
panion Snowmass Whitepapers study in detail dark matter physics [538–541], Beyond-the-Standard Model
physics [542], the Forward Physics Facility [303], prompt neutrinos facilities [543], tau neutrinos [28], multi-
messenger facilities and capabilities [27, 29–31].

3.1.1 Cross sections

The last decade yielded the first measurements of the deep-inelastic neutrino nucleon interaction (DIS)
cross section in the HE range. Future experiments, both at accelerators and with cosmic neutrinos, aim
to significantly increase event rates and study neutrino interactions in a new energy region. In particular,
both astrophysical and cosmogenic neutrinos provide neutrino beams at energies far beyond the reach of
human-made accelerators, which allows us to explore particle physics in the phase space we could not access
to otherwise.

Improvements in cross section measurements by neutrino telescopes at the HE scale will largely be due
to increased statistics, as future optical experiments increase their sensitivities and exposures. This means
that they will not expand their energy reach by a large amount. At the lower energy threshold, systematic
uncertainties will dominate how well small absorption features can be resolved and at the higher energy the
cross section measurement will be limited by the low cosmic neutrino flux.

To access the higher energies, UHE experiments plan to instrument much larger volumes. Indeed,
detector volumes of 100 km3 of Antarctic ice are required to detect a large enough sample of UHE neutrino
interactions to probe PDFs with Bjorken−x below 10−4. Other experiments that rely on Earth-skimming
tau neutrinos have larger effective volumes and are sensitive to even higher energy neutrinos, in part through
neutrino flux attenuation in the Earth. Much progress has been made in recent years in the modeling of
neutrino propagation in the Earth [234, 544–546]. These simulation codes will be useful tools to test the
standard model and BSM neutrino cross sections inputs.

Beyond DIS cross sections, the first detection of W -boson production via the Glashow resonance [21] is
promising. Improved experimental sensitivity in the PeV band with IceCube-Gen2 will further enhance the
science gains in this regard. The ν̄e+e Glashow resonant production of real W -bosons mainly yields showers
in the high-energy neutrino detectors, so Glashow resonant events could be detected via the shower spectrum.
Ref. [247] shows that, on top of the shower events from neutrino deep-inelastic scattering with nuclei, W -
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boson production can be identified with 1σ and 3σ in the conservative and optimistic cases, respectively,
with ten years of current IceCube data or with one year of IceCube-Gen2 data.

Through higher-order electroweak processes [234, 243, 244, 246, 247], νµ induced W -boson production
can produce dimuon events [247, 547]. One muon comes from the leptonic vertex while the other from
the W muonic decay. In Ref. [547], the authors proposed that dimuons can be detected using the small
vertical spacing between the digital optical modules of high-energy neutrino telescopes like IceCube and
IceCube-Gen2.

Another source of dimuon events are neutrino charged-current scattering with nuclei that produces a
charm hadron. One muon comes from the charged-current scattering, and the second muon comes from the
semi-leptonic charm hadron decay. This source of dimuons (DIS dimuons) typically has associated showers.
With realistic shower cuts, the DIS dimuons produced in the detector can be almost completely removed,
leaving the yield of dimuons from νµ-induced W -bosons produced in the detector largely background free
[547]. IceCube-Gen2 could detect > 6 such W -boson dimuons in ten years [547], and other signatures can
be used for detection ν induced W -boson production, including pure electromagnetic showers and showerless
single tracks [247]. DIS dimuons event analyses have the potential to measure the strange-quark PDF. In
the optimistic case, it is predicted that IceCube can detect ' 130 DIS dimuons and IceCube-Gen2 can detect
' 620 DIS dimuons, most from atmospheric neutrinos [547] (see also Ref. [548]).

UHE measurements of the cross section can constrain several proposed models of BSM physics involving
the virtual exchange of the Kaluza-Klein graviton [549], microscopic black hole production [172], or neutrino-
induced sphaleron transition [179]. At these energies, again the neutrino-nucleon cross section can be mea-
sured by exploiting the attenuation of the flux as neutrinos cross the Earth, particularly because most events
occur near the horizon. These experiments can constrain the cross section using the angular distribution of
the events if the UHE flux is high, such that more than one event per year is detected [102, 103, 105–107].
Since the event rate of UHE neutrinos by large neutrino telescopes is essentially a product of neutrino flux
and the neutrino-nucleon interaction cross section, the upper limit of UHE neutrino fluxes are turned into
constraints on these BSM physics, assuming the cosmogenic neutrino flux from proton-dominated UHE-
CRs [550]. Any new interactions enhancing the cross section by more than 100 are disfavored under this flux
assumption [102].

3.1.2 Inelasticity

Future HE neutrino detectors, particularly optical Cherenkov detectors, are expected to enhance their flux
sensitivity – and therefore statistics – by factors of two to four over the current measurements [19, 128]. This
will improve precision substantially in that energy range.

At UHE energies, inelasticity measurements are yet to come, but may be possible with future radio-
detection experiments [180]. Detectors must be able to detect and separate outgoing leptons and the hadronic
cascade produced by neutrino interactions. At energies above about 1019−20 eV, the Landau-Pomeranchuk-
Migdal (LPM) effect lengthens electromagnetic showers, giving them a longer distance scale than hadronic
showers [551]. At still higher energies, the LPM effect will break electromagnetic showers into multiple
subshowers, from a single charge-current induced electron. It may be possible to separate the hadronic and
electromagnetic cascades on the basis of this length scale, which leads to different radio-emission spectra,
allowing for inelasticity measurements in νe charged current interactions. Alternately, if multiple subshowers
are detected as separate showers, this would also allow for inelasticity measurements. This measurement is
most straightforward at extremely high energies (1020 eV), promising recent results suggest that hadronic and
electromagnetic cascades may be separated on the basis of their different radio-emission spectra [552, 553].

3.1.3 Neutrino decay

Neutrino decay constraints in the future may evolve with measurements of the diffuse supernova neutrino
background, cosmological measurements, and possibly with a measurement of the cosmic neutrino back-
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ground. At shorter lifetimes, high-energy astrophysical neutrino constraints will continue to improve. These
probes also have a benefit over the others in that it is easier to discover neutrino decay given astrophysical
uncertainties due to the fact that all three flavors can be differentiated at high energies but not at low ener-
gies. The best improvement will come from IceCube augmented by KM3NeT and Baikal-GVD. Experiments
sensitive to higher energy neutrinos are less sensitive to neutrino decay since the neutrinos are more boosted
and experience less proper time. The increased statistics of events collected by IceCube-Gen2 will help, as
well as the presumably increased ντ data set which is a key data set for neutrino decay.

3.1.4 Dark matter

IceCube and ANTARES have provided the principal constraints on DM annihilation to neutrinos for DM
with a mass larger than a TeV. Future experiments will boost the sensitivity of the neutrino telescope in
the search for very heavy dark matter. The sensitivity of the future experiments to probe very-heavy DM
are shown in Fig. 7. For masses between 1–100 TeV, KM3NeT will provide the leading constraints on the
annihilation cross section, closing in on the parameter space near the thermal relic abundance. Above 1 PeV,
improved constraints will be provided by IceCube-Gen2, radio arrays like RNO-G and GRAND, and other
planned experiments. Experiments operating in the mid-range between 1 PeV to 1 EeV, such as TAMBO,
Trinity, or RET-N, can provide a crucial overlap between the PeV scale and the EeV scale experiments.
Beyond the EeV scale, POEMMA’s fluorescence observation mode could probe DM masses beyond 1011 GeV
[554].

Interactions of ultra-light dark matter with neutrinos can also impact the observed flavor ratios. The
nearly even expectation for the flavor ratio at the Earth is very robust against varying the condition at the
source and even invoking new physics [58]. In fact, Lorentz symmetry implies that neutrinos arrive at the
Earth as incoherent combinations of different neutrino mass eigenstates. However, as shown in [5, 90, 514],
in the presence of Lorentz violation, the standard expectation of even flavor ratios can be relaxed because
the flavor state arriving at the Earth can remain as a coherent combination of the mass eigenstates. In
the background of ultralight dark matter, φ, neutrinos can obtain a Lorentz violating effective mass of form
(meff )αβν

†
ανβ originating from vector vector interaction of the following form with ultra light complex dark

matter denoted by φ [516, 555, 556]

gαβ
Λ2

(φ∗∂µφ− φ∂µφ∗)(ν̄αγµνβ). (3.1)

Then, (meff )αβ = (ρDM/mDM )(gαβ/Λ
2). In the halo of dark matter where the dark matter density, ρDM , is

relatively large, (meff )αβ may dominate over (∆m2/Eν). As a result, the energy eigenstates will correspond
to the eigenvectors of (meff )αβ rather than the mass eigenstates in vacuum. Since the DM density variation
across the route of neutrinos is smooth, the transition will be adiabatic.

As shown in [516], interaction of form (3.1) can be obtained in a UV complete model based on gauging
the Lµ − Lτ symmetry. In this case, gαβ will be diagonal with a remarkable result that the original flavor
ratio at the source located in a dark matter halo will be maintained up to the Earth. That is, if at the source
F 0
ντ � F 0

νµ , F
0
νe , the ντ flux at the Earth will remain negligible. The observation of two ντ events by IceCube

[81] already puts an upper bound on gα/Λ
2. However, as discussed in [555], it is still possible that higher

energy neutrinos (Eν > 10 PeV) originating from sources located inside DM halos maintain their original
flavor ratio. This implies that while detectors designed to detect air showers from Earth-skimming ντ may
report null results, the radio telescopes designed to detect the Askaryan radiation from all neutrino flavors
may report a significant flux [555]. Cosmogenic neutrinos, having originated typically outside DM halos will
still have the canonical democratic flavor ratios [555].
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3.1.5 Secret neutrino interactions

Neutrinos may interact with the cosmic neutrino background through non-standard neutrino interactions [64,
65, 195, 557]. Upcoming experiments will allow for precision measurements of the energy spectrum of high-
energy astrophysical neutrinos. The most salient feature imprinted by secret interactions on the high-energy
neutrino spectrum are the dips around the resonance energy of the neutrino-neutrino cross section. Thus,
previous searches and forecasts have centered predominantly on looking for evidence of spectral dips.

There are two main limitations to these searches; future detectors may try to improve on them. First, in
optical Cherenkov neutrino telescopes, the energy E of a neutrino-initiated event is typically reconstructed to
within, roughly, 10% in log10(E/GeV). The limitation stems from uncertainties in the medium properties, in
the position of the interaction vertex, and other detector characteristics. The detector energy resolution sets
the size of the smallest dip feature that we can expect to detect: if the energy width of the dip is smaller than
the energy resolution, the dip will not be detected. Second, when looking for the presence of the dips in the
energy spectrum—or other unusual features—searches use samples of contained events, where the neutrino
interaction occurs inside the detector volume. In contained events, most or all of the neutrino energy can be
inferred from the event energy, and so the shape of the energy spectrum can be inferred with relatively little
bias. Unfortunately, contained events are rare; after ten years, IceCube has observed only approximately one
hundred of them. Future optical detectors, with better knowledge of the properties of the detector medium,
and of larger size, should overcome both of the above limitations.

Further, the couplings to the new mediator need not be flavor-universal: different neutrino flavors expe-
rience secret interactions with different strengths. This expands the available parameter space where effects
may be present and require searches. Specifically, couplings to ντ are the least constrained. By including the
capability to identify neutrino flavor, future searches could start probing flavor-dependent couplings. How-
ever, when doing so, the significant uncertainties in the flavor composition with which neutrinos are produced
need to be factored in, and will weaken the probing power. Refs. [69, 91] explored future prospects in detail,
highlighting the capability of IceCube-Gen2 to improve constraints on ντ -coupled mediators by over two
orders of magnitude with ten years of data collection, for mediator masses up to 100 MeV. Ultra-high-energy
neutrino telescopes could extend the range to tens of GeV [558].

Additionally, measuring neutrinos from identified sources with multi-messenger observations will allow
for further constraints on secret neutrino interactions by constraining their mean free path and any possible
neutrino echoes or halos [198, 289].

3.1.6 Prompt neutrinos

The extension of IceCube, the proposed IceCube-Gen2, will be able to enhance the detectability of prompt
atmospheric neutrinos with higher statistics [128]. It will additionally provide a unique laboratory to study
PeV prompt muons as produced in air showers, which are strongly linked to the production of prompt
neutrinos using an approach that is complementary to accelerator studies of prompt neutrinos [559]. In the
meantime, upcoming forward experiments at the LHC, FASERν [300] and SND@LHC [301], will measure the
prompt neutrinos and reduce the uncertainties in heavy flavor production. In addition, further developing
experiments with upgrades of FASERν and SND@LHC, and additional experiments for the next stage, the
so-called Forward Physics Facility (FPF) are under study [6, 303]. The FPF will be designed to cover rapidity
ranges beyond those probed by LHCb and by forward experiments deployed during Run 3 of the LHC. The
FPF will play a crucial role through measurements of high energy neutrinos from the decays of the charm
mesons produced in pp collisions at the LHC at

√
s = 14 TeV. These FPF measurements will then be related

to improved theoretical predictions of prompt atmospheric neutrino fluxes [6]. Likewise, measurements of
the prompt atmospheric neutrino flux may lead to a better understanding of structure of the proton through
the parton distribution functions and, for example, the role of intrinsic charm [560–564].
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Figure 14. Neutrino flavor ratio at Earth as a function of long-range potential Vαβ associated with Le − Lµ (left),
Le − Lτ (middle), and Lµ − Lτ (right) for the three choices of the flavor ratio at the sources (fe,S :fµ,S :fτ,S) =( 1

3 : 23 :0),
(0:1:0), and (1:0:0). Equal contribution from neutrino and antineutrino is considered. All the oscillation parameters
are varied in 1σ allowed range under the normal mass ordering (NMO) scenario as given in Ref. [565]. Neutrino energy
is fixed at Eν = 100 TeV. Dashed blue and dot-dashed red contours respectively show projected IceCube flavor ratios
for 8 years runtime and 35 years runtime (15 years IceCube and 10 years IceCube +Gen2). Left and middle ternary
diagrams are adapted from Ref. [307].

3.1.7 Fundamental symmetries

U(1)′ extensions to the Standard Model By measuring the flavor composition of astrophysical neutri-
nos, next generation flavor-sensitive experiments will significantly improve our sensitivity to possible U(1)′

extensions in the Standard Model. Fig. 14, shows the expected neutrino flavor composition at Earth in the
SM and in the presence of Lα−Lβ interactions [307]. Dashed-blue and dot-dashed-red contours, respectively,
show projected IceCube-measured flavor ratios for an 8-year runtime and a 35-year runtime (15 years IceCube
and 10 years IceCube +Gen2). Three benchmark scenarios for flux compositions at the source, namely, full
pion decay (1:2:0), muon damping (0:1:0), and neutron decay (1:0:0) are considered. The respective flavor
composition at Earth is shown by grey blobs in the standard mixing scenario and by yellow-orange strips in
the presence of Le−Lβ long-range force. For all the assumed flavor ratios at source, the flavor ratio at Earth
deviates from SM predictions. For (Vαβ >> (Hvac)ee), the original flavor ratio is preserved and not modified
during propagation. Therefore, using the IceCube flavor ratio data, it is possible to constrain the mass and
the coupling of the new interactions associated with Lα − Lβ symmetries. With upcoming experiments like
IceCube-Gen2 and the IceCube Upgrade, the flavor composition will be measured with high precision, which
will allow for tighter constraints on the coupling and mediator mass of these new interactions.

3.2 In astrophysics

3.2.1 Diffuse flux of TeV–100 PeV astrophysical neutrinos

IceCube has measured, for the first time, the spectrum and flavor composition of cosmic neutrinos over
three orders of magnitude in energy (10 TeV – 10 PeV). The apparent isotropic distribution of the observed
neutrinos on the sky points to an extragalactic origin. This is also corroborated by the first observational
evidence for a neutrino source, the blazar TXS 0506+056.

Over the next decade, IceCube’s measurement will be complemented by new neutrino observatories
currently under construction in the Northern Hemisphere: the KM3NeT ( [125], see also Sec. 4.2.2) neutrino
telescope in the Mediterranean Sea, and the Gigaton Volume Detector (GVD) ([566], see also Sec. 4.2.3) in
Lake Baikal. The sky coverage of these telescopes is complimentary to that of IceCube, due to their geographic
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Figure 15. A comparison of the IceCube measurements of the diffuse astrophysical neutrino flux with projections for
the future IceCube-Gen2 detector. The IceCube measurements shown are from high-energy cascades ([118], squares),
tracks ([119], circles), a Glashow resonance event ([21], +), and a search for EHE events ([144], line with arrows).
The predicted unfolded diffuse spectrum assuming 10 years of IceCube-Gen2 data is shown in blue with error bands
representing 68% confidence intervals up to 10 PeV. The upper panel assumes a single power law model with a spectral
index of -2.5. The lower panel assumes a two component spectrum, consisting of a power law with an exponential cutoff
at approximately 100 TeV, and a component reflecting a model of the pγ emission of BLLac which peaks at tens of
PeV. Both models are based on fits to the cascade data [118]. With current data from IceCube, it is not statistically
significant to reject either hypothesis. IceCube-Gen2 will provide key measurements to reveal spectral features in the
astrophysical neutrino component. Above 10 PeV, the expected differential 90% C.L. sensitivities for the combined
optical and radio instrumentation for IceCube-Gen2 are shown in solid blue line.

locations. Comparable in size and sensitivity to the latter, they will enhance the precision of the current
measurements, and, more importantly, should be able to probe the existence of a Galactic component in the
diffuse neutrino flux. The observation of such a diffuse Galactic component, originating from the interactions
of TeV-PeV cosmic rays with interstellar gas, and the measurement of its spectrum would be a unique input
for understanding the production and propagation of the highest-energy cosmic rays in the Milky Way (e.g.,
[567]). Joint spectral and flavor measurements combining complementary data from all operating neutrino
telescopes will be feasible, and may even be necessary to solve the apparent slight tensions currently seen in
IceCube data.

A major step forward in measurement precision for spectrum and flavor composition at TeV and PeV
energies will arise from the proposed IceCube-Gen2 observatory ([128], see also section 4.2.5). Figure 15 shows
a comparison of current IceCube measurements and projections for 10 years of IceCube-Gen2 data. The
IceCube-Gen2 projections [128], with an updated astrophysical flux model and improved characterizations
of the surface and radio array efficiencies, give an impression of the expected unprecedented precision and
energy coverage of the measurement of the diffuse neutrino spectrum. Together with significantly stronger

– 29 –



constraints of the flavor composition of the cosmic neutrinos (cf. Fig. 14), these data can be used to study
the properties of the source populations that dominate the cosmic neutrino flux. Spectral features allow for
study of cosmic-ray interaction processes and maximum acceleration energies. Investigations of the resonant
production of neutrinos at the Glashow resonance [159] can be used to study the ν/ν̄ ratio of cosmic neutrinos,
and derive constraints on the production environments and targets [79]. Differential measurements of the
flavor composition in various energy ranges can probe magnetic field conditions in the neutrino production
regions around the sources [128]. For flavor measurements, tau neutrino identification capabilities are of
particular importance. See Ref. [28] for a detailed discussion of tau neutrino identification prospects with
IceCube-Gen2, KM3NeT, and Baikal-GVD.

3.2.2 Diffuse flux of ultra-high-energy neutrinos: cosmogenic and from sources

The flux of cosmogenic neutrinos is expected to encode complimentary and unique information about the
nature and flux of UHECR accelerators, including their redshift evolution, their chemical composition, and
maximum accelerating energy. The cosmogenic neutrino flux measurements can also be used for probing the
Galactic-to-extragalatic transition [389]. Interestingly, there is a “sweet spot” [397] near 1 EeV where the
flux of UHE neutrinos is predicted to depend mostly on two parameters: the redshift evolution of sources
and the chemical composition of the cosmic rays, in particular the fraction of protons above ∼ 40 EeV. For
example, a source’s redshift evolution is often parameterized as being distributed in z according to (1 + z)m;
IceCube data already disfavors m ≥ 3.5 [316] for purely power law sources, constraining otherwise promising
sources such as radio-loud FR-II AGN. With regards to composition, there is a long standing discrepancy
between two measurements of the UHECR composition, with the Telescope Array experiment favoring a
“light” (proton-dominated) composition [568], while the Pierre Auger observatory favors a “heavy” (iron-
rich) composition [569]. Despite these different interpretations, the results are approximately compatible to
each other within uncertainties [570, 571]. These two scenarios have markedly different signatures in the
cosmogenic neutrino flux however, with a light proton-dominated UHECR flux giving rise to a much higher
cosmogenic neutrino flux than a heavy iron-rich one. The cosmogenic neutrino intensity, therefore, is a
completely orthogonal probe of the UHECR composition [390, 397] with different systematic uncertainties.

The IceCube, Auger, and ANITA experiments already constrain the cosmogenic neutrino parameter
space, and a major goal for the next generation of observatories is to definitively detect this flux, or improve
the constraints by at least two orders of magnitude, reaching a flux sensitivity near 10−10 GeV cm−2 s−1 sr−1

at 1 EeV. Such sensitivity will probe even “pessimistic” cosmogenic models where the UHECR flux is rel-
atively heavy [148, 572], as suggested by the Pierre Auger Observatory. A cosmic-ray composition of even
10-20% protons will lead to a few detected neutrinos per year for typical source evolution models [397]. If
the flux is in fact even lighter, as suggested by the Telescope Array, experiments with this level of sensitivity
could detect dozens or hundreds of events events per year.

3.2.3 Neutrino point sources

IceCube has found the first compelling evidence for an extragalactic neutrino source, and several more
hints that point to a rich extragalactic neutrino sky that may be composed of various source populations
contributing to the cosmic neutrino flux (cf. Sec.s 2.2.3 and 2.2.4). Ultimately, complementary and more
sensitive instruments are needed for revealing the “dominant” population for the observed diffuse neutrino
flux (among various source populations) and a comprehensive study of the neutrino sky.

To date, IceCube has found no evidence for Galactic neutrino sources nor, therefore, Galactic cosmic-ray
accelerators. Northern Hemisphere observatories (such as the under-construction Baikal-GVD and KM3NeT)
will have a much better sensitivity of the inner galactic plane and the Galactic center region, where the non-
thermal emission from the Milky Way is brightest and several candidate cosmic-ray accelerators are located,
in particular some of the recently established Galactic Pevatrons (sources with observed gamma ray emission
at O(100 TeV)) [573–576]. The detection of neutrinos is an unambiguous signature of the acceleration of
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Figure 16. Left: Comparison of the effective local density and luminosity density of extragalactic neutrino source
populations to the discovery potential of IceCube and IceCube-Gen2 (optical array only). We indicate several candidate
populations by the required neutrino luminosity density to account for the full diffuse flux [97] observed by IceCube.
The orange band indicates the luminosity / density range that is compatible with the total observed diffuse neutrino
flux. The lower (upper) edge of the band assumes rapid (no) redshift evolution. The lines indicate the parameter space
(above the lines) for which IceCube and IceCube-Gen2 are able to discover one or more sources of the population.
Right: Same comparison for transient neutrino sources parametrized by their local rate density [40].

protons or nuclei. Therefore, the combined data of IceCube and the new generation of Northern Hemisphere
detectors may finally resolve the puzzle of where the highest-energy cosmic rays in the Milky Way originate.

An order of magnitude improvement in detector volume, corresponding to a five-fold increase in sen-
sitivity, will be critical for testing the dominant origin of the extragalactic diffuse TeV-PeV neutrinos and
investigating the properties of their primary populations with reasonable statistics [97]. Next-generation
detectors such as IceCube-Gen2 will be able to identify the brightest sources and transients of populations
currently considered as potential cosmic-ray accelerators. This is the case for both cosmic-ray reservoirs
that allow the production escape of UHECRs and cosmic-ray accelerators in which cosmic rays are con-
fined and/or depleted [97] (see Fig. 16). It will also enable high-significance observations of the brightest
sources and flares similar to the one observed for TXS+0506+056 [128], allowing a precise measurement of
the spectral properties of such sources/transients.

The energy generation rate density of 10-100 TeV neutrinos, indicated by the IceCube shower data [118],
is surprisingly large. The neutrino flux seems to violate the Waxman-Bahcall bound and the corresponding
gamma-ray flux violates the IGRB in the transparent limit [376]. Revealing the sources in the 10 TeV
range is important especially if the diffuse flux consists of multiple source populations. This will also enable
investigation of particle acceleration and related plasma processes in dense environments that cannot be
directly observed by electromagnetic observations, and successful detection will also be useful for probing
new physics beyond the Standard Model. The candidate sources include the vicinity of supermassive black
holes of AGN [353, 354, 577] and choked jets [359, 361, 362, 372]. For this purpose, neutrino detectors that
are sensitive to 10 TeV energies or lower are important. KM3NeT and Baikal-GVD, which has good angular
resolutions even for shower topographies, will also help to identify bright sources in the southern sky [476].

For the purpose of identifying UHECR sources, it is important to reveal the origin of neutrinos &
10 − 100 PeV. Here, novel detector concepts that will be able detect neutrino-induced showers in Earth’s
natural ice shields or in the atmosphere with effective volumes of hundreds to thousands of km3 (see Sec. 4
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Figure 17. The sensitivity to short (1000 s) burst all-flavor neutrino plus antineutrino spectral fluence for some
current and future detectors. The ANTARES, IceCube and Auger limits are 90% confidence level limits in a ± 500 s
window around the gravitational wave event from GW170817 [25]. The dashed blue histogram shows IceCube-Gen2’s
projected sensitivity for such an event [128], including IceCube-Gen2 radio [578] (shown for a range of declination with
cyan). The blue shaded band comes from IceCube’s all-sky point-source effective area values tabulated for 2012 with 86
strings [579, 580]. The ANITA-4 NH limit is shown with the solid purple curves, and projected all-flavor sensitivities for
PUEO [581] from ντ -sourced and Askaryan signals are shown with purple and magenta dashed curves, for POEMMA
(orange)[582] and for GRAND200K (red) [154] updated according to [583]. The Kimura et al. [584] extended emission
short gamma ray burst fluence for on-axis viewing (θ = 0◦)[584] from 50 Mpc is shown with the solid black curve.

for an overview) will play key roles. Having such large effective volumes, these detectors will be able to
identify astrophysical sources and transients that are directly linked to UHECR production in a wide range
of scenarios.

3.2.4 Multi-messenger astronomy

The combination of neutrinos with multi-wavelength observations across the electromagnetic spectrum is key
for the identification of astrophysical neutrino sources, as well as for the modeling of the physical processes,
conditions and environments that enable particle acceleration in such sources (cf. Sec. 2.2.4 and Ref. [31]).

One of the most important results from the multi-messenger observations is that energy generation
densities (or luminosity densities) of high-energy neutrinos, sub-TeV gamma rays, and UHECRs are all
comparable [38–40]. This may indicate that all three messengers are physically connected. The simplest
scenario is that all three messengers come from a single source class. While such a grand-unification scenario
is appealing [138], the multi-messenger analysis has indicated other populations, particularly below 100 TeV
energies [376]. Even if the physical connection exists, it may be clouded by different source components
and/or different emission regions. Indeed, luminosity densities of various sources including AGN and stellar
deaths such as supernovae are not much different [40], and dissipation at multi-scales has been observed
in these sources. Detailed information from electromagnetic observations from radio, optical, X-ray, and
gamma-ray bands will be crucial, and next-generation gamma-ray detectors such as the Cherenkov Telescope
Array will provide critical tests for the unification picture.

One of the most successful strategies of multi-messenger astronomy has been the real-time distribution
of neutrino alerts (cf. Sec. 2.2.5). Over the coming decade, the quality and quantity of neutrino alerts will
improve significantly thanks to the construction and operation of additional gigaton-scale neutrino telescopes
such as KM3NeT, Baikal-GVD, and the recently-proposed P-ONE. Their distribution around the world
enables a constant monitoring of the entire sky with good sensitivity in the TeV–PeV range. The distribution
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mechanisms for these alerts will also benefit from current efforts to upgrade the communication infrastructure
between astrophysical facilities to prepare for the massive alert rate expected from Rubin observatory and
other time-domain instruments.

After completion, the proposed IceCube-Gen2 detector will increase the rate of individual high-energy
neutrinos by a factor of five that in combination with improved pointing, and more sensitive follow-up
instruments will boost the number of observed correlations with candidate sources [128] by an order of
magnitude and enhance their significance. For example, Fig. 17 gives an illustration of the sensitivities
to short (1000 s) bursts of neutrinos currently achieved for the gravitational wave event GW170817 from
IceCube, ANTARES and Auger [25], and short burst sensitivities of IceCube [579, 580] and ANITA-4 NH, as
projected sensitivities from IceCube-Gen2 [128], including IceCube-Gen2 radio [578], PUEO [581], POEMMA
[582], and GRAND200K [154].

The construction of neutrino observatories operating in the extremely-high-energy range (beyond PeV)
will also provide a new source of neutrino alerts that is yet largely unexplored, but would be of interest given
the very low backgrounds expected in this energy range.

4 Experimental landscape

4.1 Overview

In this section, we give a brief overview of the experimental landscape, neutrino detection strategies at the
highest energies, and current and planned experiments.

4.1.1 The broad experimental landscape

Because the neutrino-nucleon cross section grows with energy, the Earth is opaque to high-energy neutrinos,
reducing the angular coverage for experiments to well below 4π. Charged-current interactions (CC, νl+N →
l + X, where l = e, µ, τ and X are final-state hadrons) remove neutrinos from the flux. Neutral-current
interactions (NC, νl +N → νl +X) redistribute high-energy neutrinos to lower energies.

In the TeV–PeV range, the opacity is high [116, 165, 170, 173–176], but some neutrinos still traverse
up to thousands of km inside the Earth before interacting [17, 18, 122]. HE neutrinos are detected by
instrumenting a cubic-kilometer of water or ice with photon detectors, which capture the optical Cherenkov
light from the particle shower following a neutrino interaction. The in-ice optical Cherenkov technique is
mature and led to the discovery of HE astrophysical neutrinos. In the near term, we anticipate broader sky
coverage as IceCube continues to monitor the Northern sky, while KM3NeT, Baikal-GVD, and P-ONE will
open the Southern HE-neutrino sky.

For UHE neutrinos, the interaction length is so short [102, 234, 590, 591] that instruments must either be
sensitive to neutrinos interacting in the atmosphere or to neutrinos interacting in rock, ice, or water outside
of the detector volume [482, 582, 592]. A variety of suitable UHE-neutrino detection techniques have been
developed and are currently being implemented. These techniques include detecting neutrino interactions
in dense media (ice or the lunar regolith) and detecting Earth-skimming tau neutrinos from the air showers
they generate; we describe them below. While some UHE experiments are sensitive to all neutrino flavors,
other are sensitive predominantly or only to tau neutrinos.

The sensitivity of proposed experiments is shown in Fig. 18. In the TeV–PeV energy range, large optical
Cherenkov detectors (IceCube [593, 594], KM3NeT [125], Baikal-GVD [127], P-ONE [126]) are expected
to survey the full HE neutrino sky with improved statistics in the coming decade. In the 1–100 PeV en-
ergy range, IceCube and several proposed experiments (IceCube-Gen2 [128], RET-N [129],TAMBO [130],
Trinity [595]) may observe neutrinos from astrophysical sources and study the spectral shape of the diffuse
astrophysical neutrinos by extending measurements to higher energies or constraining a spectral cutoff. At
even higher energies, we eventually expect a transition from astrophysical neutrinos to cosmogenic neutrinos
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Figure 18. The expected differential 90% C.L. sensitivities for a variety of experiments to an all-flavor diffuse neu-
trino flux computed in decade-wide energy bins and assuming a ten-year integration (unless otherwise noted in the
legend). The measurements and sensitivities are compared with a range of cosmogenic neutrino models [141, 397] and
astrophysical neutrino models [138, 141, 411]. The blue bordered bands show the astrophysical neutrino flux measured
by IceCube using tracks (νµ [119]) in hatch and using cascade-like events (νe and ντ [118]) in solid band. The solid
lines show experimental upper limits at higher energies from the Pierre Auger Observatory [431], ARA [585], ARI-
ANNA [586], ANITA I-IV [146], and IceCube [587]. The dashed lines show the sensitivities of a selection of proposed
experiments currently in various design and prototyping stages (GRAND with 200,000 stations [154], BEACON with
1000 stations [157], TAMBO with 22,000 detectors [130], Trinity with 18 telescopes (updated from [588]), RET-N with
10 stations each with a 100 kW transmitter [129], POEMMA30 [558]) and under construction (RNO-G [155, 589],
PUEO [581]). Experiments using the same detection technique are grouped into similar colors (orange, Earth-skimming
radio (GRAND, BEACON); dark teal, particle showers (TAMBO); light green, Earth-skimming optical Cherenkov and
fluorescence (Trinity, POEMMA30); pink, in-ice radio (ARIANNA, ARA, PUEO, RNO-G, RET-N (radar); blue, in-ice
optical Cherenkov (IceCube)). Sensitivity to UHE neutrinos from IceCube-Gen2 (dashed purple) is computed using
radio and optical for 10 years (see Fig. 15), and PUEO (dashed orange) uses both in-ice and Earth-skimming radio
techniques (shown here for 3 flights, 100 days). Auger (teal) uses particle showers and fluorescence and its upgrade,
AugerPrime, will employ radio. The grey downward-pointing arrow is a reminder that experimental sensitivities im-
prove not only as exposure increases with time, but also as new experimental techniques and analysis methods are both
demonstrated and scaled to larger detection volumes.

(or a combination of cosmogenic and astrophysical neutrinos). Several experiments are sensitive to these
energies (IceCube [593, 594], the Pierre Auger Observatory [431], ARIANNA [596], ARA [585, 597, 598]) or
are under construction (RNO-G [155, 589], PUEO [581]). The most constraining limits on UHE neutrinos
come from IceCube (in-ice optical), Pierre Auger Observatory (particle showers and fluorescence) [431], and
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ANITA experiments (in-ice radio [146]).

Several mid-scale UHE experiments currently operating (ARA [585, 597], ARIANNA [596], TAROGE-
M [158]) or under construction (PUEO [581], RNO-G [155, 589], EUSO-SPB2 [599]) have the sensitivity
to constrain the proton fraction in UHECR sources [397]. Still other experiments in the design or proto-
typing phase have promising projected sensitivities (BEACON [157], GRANDProto300 [600], RET [601],
POEMMA [558]). The full array of experiments inform our understanding of fundamental physics and
cosmic ray sources, but individual instruments also serve as prototypes for larger experiments targeting
flux sensitivities consistent with the lowest expectations from UHE neutrino flux models (Trinity-18 [131],
BEACON-1K [157], GRAND-200k [154], IceCube-Gen2 [128]) or broad-sky coverage and transient phenom-
ena (POEMMA30 [558]) planned in the coming decades.

4.1.2 Detection strategies

Neutrino detection in ice and in water: Signatures of HE and UHE neutrinos can be detected via optical
Cherenkov emission in ice and water. UHE neutrinos can also be detected using their radio signatures.

• Optical detection in ice and water: IceCube [593, 594] and, until very recently, ANTARES [602]
search for the optical Cherenkov emission from neutrino-induced showers and tracks from all flavors of
neutrinos. Optical Cherenkov experiments are sensitive to HE and UHE neutrinos that interact near
or inside the detector volume [316]. Experiments of this type typically look for tracks of secondary
leptons produced by charged-current neutrino interactions or cascades produced by neutral-current
and charged-current neutrino interactions. Track events have excellent angular resolution due to the
long lever arm left by a final-state muon track, while cascade events have superior energy resolution.
Typically, astrophysical purity increases with energy as the backgrounds from atmospheric neutrinos
and muons fall more steeply with energy than the astrophysical neutrino flux. At UHE energies, these
detectors are also sensitive to neutrinos that cascaded from EeV ντ to PeV energies [603]. In the future,
IceCube-Gen2 [128] will have a much improved HE sensitivity and a broader energy coverage. Broader
HE sky coverage is achieved by expanding the detector volumes of optical arrays in the Northern
Hemisphere, e.g., KM3NeT [125], Baikal-GVD [127], and P-ONE [126].

• Radio detection in ice: In dense media like ice, compact electromagnetic showers generated af-
ter UHE neutrino interactions emit coherent Askaryan radiation at the Cherenkov angle. Askaryan
radiation—fast, coherent radio-frequency impulses—is due to the excess negative charge in the shower [604].
The long attenuation length at radio frequencies allows the signal to propagate over kilometer-long dis-
tances. In-ice radio experiments are sensitive to all three flavors [135, 605], and may have the power
to discriminate flavors based on different event topologies [605, 606], such as the stretching of elec-
tromagnetic showers due to the Landau-Pomeranchuk-Migdal (LPM) effect [551]. In ARA [598, 607]
and ARIANNA [596, 608], radio antennas are buried in the Antarctic ice. RNO-G, based on a similar
concept, is a radio detector under construction in Greenland [155]. The experience gained in these ex-
periments will directly feed into the design of the expansive, sparse radio array of IceCube-Gen2 [128].
Radar signals reflecting off in-ice showers is also being explored as a detection method [129, 609, 610].

• Radio detection from the upper atmosphere or in space: ANITA is a balloon-borne radio
detector that searches for in-ice UHE neutrino interactions via the Askaryan radio emission that refracts
out of the ice [611]. The high altitude provides ANITA with a large effective area at the highest
energies [146]. PUEO [156, 581] is an upgrade to ANITA currently under construction. NuMoon
searches for radio emission from neutrino interactions in the lunar regolith [612].

Neutrino detection via acoustic signals generated by UHE neutrino interactions in water or solids [613, 614]
have also been pursued (see e.g., [615, 616] and references therein).
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Air-shower detection techniques of UHE ντ : The lifetime of the tau and ντ regeneration [603, 617–
620] allow for unique detection techniques. The CC interaction of a ντ produces a tau lepton that, at
UHE energies, typically decays over a distance of tens to hundreds of kilometers. If the geometry of the
experimental setting is right, the neutrino interacts inside the Earth and the tau emerges and decays in the
atmosphere. The decay initiates an extensive air shower, which can be detected with particle, air-shower
imaging, or radio detectors [621]. But even in cases where a ντ interacts deep underground and the tau decays
before reaching the surface, a new ντ is produced in the decay which can again interact in the Earth and
generate a tau emerging from the surface. This “ντ regeneration” increases the chances of Earth-skimming
ντ reaching the detector. Although with a lower probability, Earth-emerging muons from tau neutrinos and
muon neutrinos (and electron antineutrinos in the PeV energy range due to Glashow Resonance) can undergo
catastrophic energy losses in air, initiating deeply penetrating cascades that can increase the sensitivity to
neutrinos with energies below 10 PeV for optical experiments [622]. For νe, the final-state electrons showers
immediately after the CC interaction, i.e., before reaching the surface.) Earth-skimming neutrino fluxes have
the added advantage of being unaffected by atmospheric neutrinos and only mildly affected by atmospheric
muons [605].

• Air-shower particle detection: The Pierre Auger Observatory (Auger) is a long-running large-scale
array of surface water tanks that detect the Cherenkov light from air-shower particles passing through
them. Auger is designed to detect UHECRs, but it has been used to search for horizontal showers
initiated by UHE neutrinos in the atmosphere [431]. Planned experiments using particle detectors
combined with radio detectors include the upgrade to Auger, AugerPrime [152], and GCOS [153]. The
Telescope Array (TA) [623] and HAWC [450] experiments have used a similar detection strategy, but
have a more limited sensitivity. TAMBO is a planned array of water tanks to be located on one side of
an Andean canyon, designed to detect the showers initiated by UHE taus emerging from the opposite
side [130].

• Air-shower radio detection: Radio-detection of Earth-skimming tau neutrinos is a promising
method due to the long attenuation lengths of radio waves in air. As with in-ice radio detection,
sparse arrays can be used to instrument large areas. Radio emission is generated in air showers initi-
ated by tau decays, via the geomagnetic effect, due to charge separation in the magnetic field of Earth as
the air showers progress through the atmosphere. Moreover, the narrow Cherenkov cone and fast radio
imaging enables sub-degree angular resolution. BEACON [157], in its prototype phase, TAROGE [624],
and TAROGE-M [158] are compact antenna arrays in elevated locations that aim to detect UHE ντ
emerging upwards via the radio emission of the air showers that they trigger. ANITA [156] and
PUEO [156, 581] are also sensitive to upgoing ντ , from a higher elevation. GRAND [154] is a planned
experiment that will cover large areas with a sparse antenna array to detect the radio emission from
air showers triggered by UHE ντ , cosmic rays, and gamma rays.

• Air-shower imaging: Several air-shower imaging instruments, although optimized for cosmic-ray
and gamma-ray detection, have demonstrated that the imaging of air showers via the Cherenkov and
fluorescence light radiated by shower particles is a viable detection method of UHE ντ [133, 625–
627, 627, 628]. Air-shower imaging allows the reconstruction of the air-shower arrival direction with
arcminute resolution and the shower energy within a few tens of percent of uncertainty. These excellent
reconstruction characteristics are why the very-high-energy gamma-ray and UHECR communities have
been using air-shower imaging for quite some time [629]. Two planned instruments optimized for the
detection of UHE neutrinos from the ground are Trinity [630] and Ashra NTA [132]. POEMMA is
designed to detect the Cherenkov light of UHE ντ -initiated showers from a satellite. A unique feature
of POEMMA is its ability to rapidly reposition to target transient multi-messenger events [558, 582].
EUSO-SPB2 is a telescope mounted on a super-pressure balloon which will fly at high altitudes and
serve as a pathfinder for POEMMA [134].
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Figure 19. Left: The IceCube detector, showing the three subdetectors described in 4.2.1. The IceCube array
is sensitive to interactions above a few hundred GeV. DeepCore lowers the detection threshold to around 5 GeV.
The IceTop surface array allows for vetoing of down-going events and for study of atmospheric air showers. Figure
reproduced from Ref. [587]. Right: The effective area for various charged-current muon neutrino data sets used by
IceCube [642], including the “ELowEn” data set for sub-GeV transients [643], the “GRECO Online” data set for sub-
TeV transients [642], and the gamma-ray follow-up data set (GFU) used for real-time follow-up analyses [477]. Figure
reproduced from Ref. [642].

UHE neutrino detection in lunar regolith: The Moon, with its radio-transparent lunar regolith, pro-
vides a 19 million km2 target for observing UHE neutrinos with Earth-based radio telescopes [631]. The
radio emission generated by showers following a neutrino interaction in the rim of the Moon, are searched
for by forming beams on various regions on the moon [632]. The technical requirements on radio tele-
scopes are access to full time-domain voltages of the receiver and multiple beams on- and off-Moon, making
not all telescopes suitable for these studies. Past observations have been performed most notably by the
Parkes [633] and Westerbork telescopes [634] and the EVLA [635], with past and on-going work being per-
formed with LOFAR [636, 637]. The next step in sensitivity will be obtainable with the Square-Kilometre
Array (SKA) [632, 638–640]. While have being able to observe huge target volumes, the technique suffers
from an intrinsically high energy threshold beyond 1020 eV [641], thus targeting more exotic models beyond
the Standard Model. It is complimentary to the energy range of dedicated neutrino experiments and uses
existing radio telescope infrastructure without much additional effort.

4.2 High-energy range

4.2.1 IceCube

The IceCube Neutrino Observatory [594], shown in Fig. 19, is the first gigaton neutrino detector. Situated
at the geographic South Pole, it consists of the IceTop surface array used for cosmic-ray physics and the
IceCube detector, an in-ice Cherenkov detector deployed between 1450 and 2450 meters below the surface of
the Antarctic glacier. The IceCube detector contains 5160 Digital Optical Modules (DOMs) arranged in 86
strings. Each DOM contains a single 10-inch-diameter PMT, LEDs used for calibration measurements, and
associated electronics housed in a pressure sphere. Seventy-eight strings are arranged in a regular hexagonal
grid with strings 125 m apart and DOMs separated by 17 m along each string. Using this configuration,
IceCube has measured neutrino fluxes from 100 GeV to several PeV, although its sensitivity to high-energy
neutrinos extends beyond 1 EeV [21, 144]. The remaining eight strings are deployed as an infill array at the
center of the detector, exploiting the clear ice below 1750 m to lower the IceCube threshold to 10 GeV and to
study neutrino oscillations and sub-TeV dark matter. Using specialized studies of detector-wide noise rates,
IceCube is also capable of studying nearby MeV scale core-collapse supernova neutrinos.
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Figure 20. IceCube expected 90% sensitivity for an E−2 (left) and E−3 (right) spectrum [644]. Sensitivities are shown
for 10 years of IceCube tracks [432] (grey), IceCube cascades (10 years [644], red; 7 years [480], blue), and for 11 years
of ANTARES data [653] (teal). The IceCube track sensitivity dominates the Northern sky while cascade events allow
IceCube to remain competitive in the Southern sky for soft spectra. Figures reproduced from Ref. [644]

.

Able to reconstruct muon tracks in the detector to 0.25◦ at 1 PeV [432] and shower events to about 7◦

at 1 PeV [644], IceCube has provided continuous full-sky coverage since detector completion in 2010. The
unique location of IceCube at the geographic South Pole results in a clean sample of TeV neutrinos from the
Northern sky with world-leading sensitivity to astrophysical neutrino sources, as shown in Fig. 20. These
events have been used to test for emission from many source populations, including blazars [645], diffuse
Galactic emission [54, 509], gamma ray bursts [442], fast radio bursts [441, 646], and more. IceCube tracks
from the Northern sky are also used in broader physics analyses ranging from dark matter searches, flavor
physics [81], Lorentz invariance [647], neutrino cross sections [17, 18, 122], and sterile neutrinos [648–651].

IceCube’s view of the Southern sky is dominated by muons produced in atmospheric air showers. The
harsh cuts necessary to remove atmospheric muons lead to a large reduction in effective area, shown in Fig. 19,
limiting the Southern sky sensitivity with tracks. To mitigate the impact of atmospheric backgrounds, the
highest-energy tracks, cascades and starting events may be used to perform searches. In 2013, using a
sample of these high-energy events starting inside of the detector [35], IceCube reported the first evidence of
unresolved flux of astrophysical neutrinos, opening a new window into high-energy physics in the Universe.
While no individual sources have yet been identified in the high energy data set [507], characterization of the
observed diffuse flux continues with improvements to data selections and analysis methods [53].

IceCube releases information on events likely to be of astrophysical origin to the community in real time.
as described in Sec. 2.2.5, allowing partners to search for potential sources of neutrinos within minutes [477].
IceCube also regularly performs follow-up searches for neutrino emission in spatial and temporal coincidence
with flares observed with both electromagnetic observatories and gravitational-wave detectors [444]. In 2017,
a neutrino released through the IceCube real-time event program, IceCube-170922A, was found to be in
coincidence with a gamma-ray flare from blazar TXS 0506+056 [433]. A follow-up analysis unearthed a
previously unobserved neutrino excess between September 2014 and March 2015, with 3.5σ evidence of high-
energy astrophysical neutrino emission [22] from the direction of TXS 0506+056. Following the observation
of neutrinos from the direction of TXS 0506+056, new analysis tools have been constructed to search the
sky for similar emission across 10 years of data [652].
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The long operation of IceCube provides more than a decade’s worth of data. New data can provide
additional sensitivity to TeV physics, but improvements based solely on accumulating data slow the pace of
discovery. Instead, significant improvements must come also from progress in selection, reconstruction, and
analysis. New studies using starting tracks and shower events reject atmospheric muons better, lowering the
energy threshold for observations and dramatically improving the sensitivity in the Southern sky, as shown in
Fig. 20, enabling IceCube to continue to perform analyses competitive with planned Northern observatories
[644, 654]. Lower-energy data sets targeting astrophysical transients with all-flavor full-sky coverage have
recently given new limits on sub-TeV astrophysical phenomena [643, 655] and an expanded data set, shown in
Fig. 19, will soon open a new channel for multi-messenger analyses [642]. New event reconstructions relying
on updated likelihood constructions [656] or advanced convolutional neural networks [657] show promise in
improving the angular and energy resolution necessary for precise characterization of astrophysical fluxes.
Recent updates in the point-source likelihood used by IceCube searches aim to improve modeling by utilizing
a fuller description of its point spread function [658]. With these updates and future development of machine
learning tools, IceCube will continue to be a leader in neutrino astronomy.

4.2.2 KM3NeT

KM3NeT [125] is a multi-purpose cubic-kilometer water Cherenkov neutrino telescope currently being de-
ployed at the bottom of the Mediterranean Sea. It consists of two sub-detectors: ARCA (for Astroparticle
Research with Cosmics in the Abyss), located offshore from Capo Passero (Italy) at a depth of 3500 m,
and ORCA (for Oscillation Research with Cosmics in the Abyss), placed 2450 m deep offshore from Toulon
(France). A KM3NeT string, or Detection Unit (DU), holds 18 Digital Optical Modules (DOMs), each a
17-inch-diameter pressure-resistant glass sphere housing 31 PMTs together with the associated electronics.
An array of 115 DUs will constitute a detector building block. Two blocks will be deployed at the ARCA site
and one at the ORCA site. Besides the number of building blocks, a different granularity distinguishes ARCA
and ORCA. With the DOMs being vertically spaced by 36 m and with a horizontal spacing of 90 m between
DUs, ARCA will instrument a total volume of 1 km3 with the primary goal of detecting astrophysical neutri-
nos in the 100–108 GeV energy range. ORCA, with 9 m (20 m) spacing between DOMs (DUs), is optimized
for the study of fundamental neutrino properties using 1–100-GeV atmospheric neutrinos. The combination
of these two detectors allows KM3NeT to exploit the full potential of neutrino astronomy, accessing a wide
energy range, from MeV-scale core-collapse supernova neutrinos (CCSNs) to astrophysical neutrinos up to
several PeV.

ARCA will have an excellent angular resolution: 0.1◦ at 1 PeV for muon neutrinos, as shown in Fig. 21,
and around 1◦ for showers. It will be a powerful tool for identifying the sources of high-energy cosmic
neutrinos. Being located in the Northern Hemisphere, ARCA will have a sensitivity to point-like sources on
the Southern sky that will be over one order of magnitude better than the current detectors (see Fig. 21) [659].
Moreover, its geographical location will allow ARCA to test predictions of neutrino production in Galactic
sources in the 1–10 TeV energy range, which are based on gamma-ray measurements. As shown in Fig. 21,
ARCA will reach the sensitivity to probe the predicted fluxes for several Galactic sources after less than four
years of data taking, assuming the observed gamma rays from these sources originate from the interactions
of hadrons [659].

The IceCube observation of the diffuse astrophysical flux in 2013 set a milestone in the field of neutrino
astronomy. As depicted in Fig. 21, ARCA will quickly confirm the cosmic diffuse neutrino flux with an
expected significance of 5σ reached in 1 (0.5) year of operation with one (two) building blocks [125, 660].
It will provide valuable constraints on the neutrino spectrum and flavor composition [659] and its superior
angular resolution will enhance the power of multi-messenger follow-up studies for the detected neutrinos,
reducing chance coincidences with potential counterpart sources.

ARCA will have a unique sensitivity to detect the diffuse high-energy neutrino emission from the Galactic
Plane, especially from the vicinity of the Galactic Center. For certain cosmic-ray propagation models predict-
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Figure 21. Top left: ARCA angular resolutions as a function of the neutrino energy for νµ CC events [659]. Top
right: Sensitivity, defined as the median upper limit at 90% CL, of the complete ARCA detector to point-like sources
emitting with a E−2 spectrum as a function of the source declination after three and seven years of data taking [659].
For comparison, the ANTARES and IceCube sensitivities are also shown. Bottom left: Ratio between the 90% CL
sensitivity and the expected neutrino flux normalization for different Galactic sources as a function of the data taking
time of the complete ARCA detector [659]. Bottom right: Expected significance in the detection of the cosmic neutrino
flux reached by ARCA as a function of the data taking time in either half or full configuration [125, 660].

ing a harder cosmic-ray spectrum in the inner Galaxy, the resulting neutrino flux (the KRAγ models [661])
is expected to be detected with 5σ significance in four years with the complete detector [660]. Similarly, only
three years of data taken by one ARCA building block would be needed to observe the expected neutrino
flux from the region of the Fermi Bubbles, in case their gamma-ray emission originates from the decay of
pions, and assuming a cutoff in the neutrino energy spectrum at 100 TeV [662].

The world-leading angular resolution, wide energy range, full-sky coverage and 100% duty cycle will make
KM3NeT a key player in the field of real-time multi-messenger astronomy, performing fast follow-up-studies
of transient phenomena and distributing real-time alerts of interesting neutrino detection [663].

4.2.3 Baikal-GVD

The Baikal Gigaton Volume Detector (Baikal-GVD) [566] is currently the largest operating water Cherenkov
neutrino telescope in the Northern Hemisphere, designed to search for high-energy neutrinos of astrophysical
origin, whose sources are not yet reliably known. The telescope has a modular structure and consists of
clusters. Each cluster is a fully functional detector equipped with detection, triggering, calibration, posi-
tioning, and data acquisition systems. The first cluster of Baikal-GVD was deployed on Lake Baikal at a
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Figure 22. Top left: Integral distributions of reconstructed events selected by quality cuts versus energy (crosses)
and expected events from atmospheric muons (brown histogram) and from a diffuse flux of astrophysical neutrinos
(green histogram) [664]. Top right: Accuracy of the angular reconstruction of events in cascade mode for a neutrino
energy of 100 TeV. Bottom left: Effective areas of the Baikal-GVD telescope with the 7 clusters deployed as of 2020
in the cascade reconstruction mode for electron neutrino interactions for different ranges of cos(zenith angle) [665].
Bottom right: Preliminary estimates for the single-cluster angular resolution of muon tracks produced in CC neutrino
interactions [666].

depth of 1360 meters, 4 km from the shore, starting in 2016. In subsequent seasons, the effective volume
of Baikal-GVD was gradually increased by adding one or two functionally independent clusters per season.
Further volume expansion to one cubic kilometer by 2025 is ongoing.

Each cluster consists of eight strings 525 m long with optical modules (OM) placed on them to register
the Cherenkov radiation in the lake water. The distance between the strings in a cluster is 60 m, where
one string is in the center and seven are arranged in a circle around it. The distance between the clusters
is 300 m. The OM [667] is a borosilicate glass sphere 42 cm in diameter that houses a PMT of 25.5 cm
in diameter. The electronics of the OM are mounted directly on the base of the PMT and include a LED
calibration system. Eight GVD clusters have been successfully operating since April 2021 and receiving data
from 2304 OMs placed on 64 strings.

The modular structure of the telescope allowed the study of muons and neutrinos in the early stages of
detector deployment. Ten (3+7) cascade events have been selected from data collected between 2018 and 2020
with energies above 60 TeV as the first astrophysical neutrino candidates [664]. The energy distributions are
shown in the upper left of Fig. 22 for the season 2019-2020 in comparison with expectations from atmospheric
muon and diffuse astrophysical neutrino fluxes.

The effective area of the Baikal-GVD telescope with 7 clusters for events from νe-induced cascades in
the lake water is shown in the lower left of Fig. 22 [665]. At energies above 100 TeV, there is a significant

– 41 –



Figure 23. Left: Design of the Pacific Ocean Neutrino Experiment (P-ONE) showing the strings of photomultipliers,
and the light pattern of a 50-TeV neutrino. Right: Charged-current effective areas of νµ + ν̄µ for different arrival
directions. Figures reproduced from Ref. [126].

decrease in the effective area, due to neutrino absorption in the Earth.
The angular resolution for cascade events is shown in the upper right of Fig. 22. The median value

is 2–4 degrees, depending also on neutrino energy and zenith angle. Preliminary estimates of the angular
resolution of muon tracks produced in CC neutrino interactions for single GVD cluster are displayed in the
bottom right of Fig. 22, along with the its dependence on neutrino energy and the visible track length [666].
An accuracy of better than 1◦ is achieved for energies above 10 TeV and track lengths greater than 300 m.
This precision will allow for significant contributions to multi-messenger searches for neutrino sources via the
transmission of neutrino alerts. GVD already participates in follow-up analyses [668]. Presently, the delay in
issuing an alert takes on average 3–5 hours [669]. However, a fast mode has been recently implemented [670]
that promises low latency alerts on the order of several minutes, which will be useful for multi-messenger
alerts.

4.2.4 P-ONE

The vision behind the Pacific Ocean Neutrino Experiment (P-ONE) [126, 671], shown schematically in Fig.
23, is to base a neutrino telescope within a pre-existing large-scale oceanographic infrastructure. As of 2018,
the P-ONE collaboration, consisting of researchers in Germany, Canada, and United States, has obtained
evidence that the NEPTUNE observatory, operated by Ocean Networks Canada (ONC) since 2009, is an
ideal instrumented site to operate a large-volume neutrino telescope.

The 800-km loop of fibre-optic telecommunications cables comprising NEPTUNE provides a high-speed
(up to 4 Gbit s−1) and high-power (of 8 kW per node) data link to five nodes that serve as the local hub for
the main observations and experiments. A total of 17 primary junction boxes are already wired to the nodes
and used to connect hundreds of instruments. The connections are based on underwater mating connectors
with field-proven reliability (less than 2% failure in connector pairs deployed over ten years). The ONC
success rate of offshore maintenance cruises has been of the order of 95% over several years.
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Figure 4: Top view of the IceCube-Gen2 optical in-ice arrays. Left: The IceCube-Gen2 strings in the high-energy
array “sunflower” layout (orange). In the initial design studies, 120 new strings are spaced 240 m apart and nominally
instrumented with 80 IceCube-type optical modules over a vertical length of 1.25 km. The total instrumented volume
in this design is 7.9 km3, approaching an order of magnitude larger than IceCube alone. Center: The current IceCube
detector array (blue), including the DeepCore array with reduced spacing in the center. Above each IceCube string
location are two IceTop tanks that operate together as a large-scale cosmic-ray air shower detector and partial atmo-
spheric muon veto for the in-ice array. Right: The seven IceCube Upgrade strings (red) relative to existing IceCube
and DeepCore strings.

Decadal Vision: The IceCube-Gen2 Observatory
A second generation observatory, IceCube-Gen2, addresses the two main limiting factors in the
current IceCube instrument: event rate and angular resolution. It does so by improving the event
rate by a factor of 4-10, depending on channel, and angular resolution by a factor of approximately
three. Together, this results in sensitivity to sources five times fainter than visible today. Further,
through the addition of an ultra-high-energy radio array, IceCube-Gen2 will expand the accessible
energy range of cosmic neutrinos by several orders of magnitude compared to IceCube.
In-ice optical array (OA): The basic concept for the Gen2 design starts with the idea that the
primary science goals will target higher energies (from approximately 10 TeV to 10 EeV) than
those for which IceCube was designed, while, through advanced calibration techniques, continuing
to enhance the knowledge of the the natural ice medium and of the detector response to provide
a direct evolution of the near-real-time multimessenger alert system for the low-background high-
energy regime. IceCube has demonstrated that the diffuse cosmic neutrino flux dominates the
atmospheric background above 100TeV and that the majority of IceCube’s detection significance
for hard-spectrum sources comes from events above 10 TeV. Fully exploring these higher energies,
where fluxes are lower, requires increasing the active effective area of the detector array. The Gen2
design achieves this by roughly doubling the spacing between each string and by deploying more
sensitive photon detection modules deeper into the ice, resulting in an increase of 25% in effective
area. These extensions in the dimensions rooted in the knowledge gained in operating IceCube,
which has significantly altered our understanding of the deep glacial ice sheet. Overall, the initial
design of the complete array consists of 120 strings (see Fig. 4), where each string is instrumented
with optical sensors with similar sensor spacing to that in IceCube.

All planned major instrumentation in Gen2 is based on IceCube experience, yet there are dif-
ferences. A new generation of sensors are being developed for the IceCube Upgrade that have

5

Figure 24. Top view of the IceCube optical detector arrays. Left: the IceCube-Gen2 optical array, in the reference
“sunflower” design instrumenting 7.9 km3. Center: the current km3 IceCube array. Right: the low-energy IceCube
Upgrade infill, focusing on neutrino oscillation properties [532]. The IceCube-Gen2 radio component (not shown)
sparsely instruments an additional 500 km2 and is discussed in Sec. 4.3.4. Figure reproduced from Ref. [128].

Two pathfinder missions deployed in 2018 and 2020 by the P-ONE collaboration monitored continuously
the optical properties of the 2.6 km deep instrumented site of Cascadia Basin in the Pacific Ocean over three
years. The in-situ data delivered the baseline of ambient bioluminescence and 40K and an attenuation length
of about 30 meters at 450 nm [672, 673]. The successful pathfinder mission phase triggered a prototype phase
in 2021 envisioning the deployment of at least three fully instrumented lines by 2026. The prototyping phase
will lay the scientific groundwork and feasibility for an eventual 70-line multi-cubic kilometer telescope. The
scientific goal of P-ONE is to extend IceCube’s sky coverage in neutrinos at energies above TeV, explore
the central region of the Galaxy and operate in real time in a complementary way to KM3NeT and GVD.
Together, the four telescopes mentioned above can cover the entire sky, optimising possible reciprocal follow-
ups and improving the sensitivity compared to that achieved by IceCube by up to three orders of magnitude
as recently calculated by the PLEνM group [419].

4.2.5 IceCube-Gen2 optical

IceCube-Gen2 [128, 674] is a planned next-generation expansion of the IceCube Neutrino Observatory at the
South Pole. IceCube-Gen2 will observe the neutrino sky from TeV to EeV energies and consists of three
sub-components: an optical Cherenkov detector focusing on the HE-neutrino energy regime; a large, sparse
radio array extending neutrino detection to the UHE regime; and a hybrid surface detector for cosmic-ray
air-shower detection and veto. We focus in this section on the design and capabilities of the optical array;
the radio array is described in Sec. 4.3.4.

The IceCube-Gen2 optical array will instrument 8 km3 of ultra-clear ice near the geographic South
Pole and include the existing IceCube optical array (Fig. 24). DOMs detect the Cherenkov light emitted
from secondary charged particles created in neutrino interactions in the ice and bedrock. The IceCube-Gen2
DOMs will be deployed along 120 cables or “strings”, with 80 DOMs on each string deployed between 1344 m
and 2689 m below the surface. The string spacing, increased to 240 m from IceCube’s 125 m, balances the
increase in instrumented volume with the associated increase in energy threshold, while ensuring that angular
resolution and calibration accuracy satisfy design requirements. The strings are arranged in a “sunflower”
pattern to improve azimuthal homogeneity (removing lower-detection-efficiency corridors between straight
rows of strings). Each IceCube-Gen2 DOM has approximately three times the photon collection of the
original IceCube DOM, by employing a multi-photomultiplier-tube design.

IceCube-Gen2 will map the neutrino sky by observing an order of magnitude more neutrino events per
year as IceCube, and with a sensitivity to individual neutrino sources at least 5 times better [128]. The
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Figure 25. Left: Earth-skimming technique. The Trinity telescope images the air-shower, which develops in the
atmosphere after the interaction of an Earth-skimming tau neutrino inside Earth. Right: The integral sensitivity of
Trinity to diffuse neutrino fluxes for the prototype telescope in five years and 18 telescopes in ten years, respectively.
Updated from Ref. [588].

angular resolution of the optical array for track-like events is approximately 10 arcmin at PeV energies.
IceCube-Gen2 can detect neutrino transients from over two times larger distances than IceCube, leading
to a factor of 10 source detection volume increase for transient sources. Multi-messenger observations are
an ongoing key science goal and will greatly profit from the up to five times higher neutrino alert rate and
improved angular resolution when compared to IceCube. IceCube-Gen2’s observation of the sky is energy-
dependent, shifting from the Northern Hemisphere for energies below 100 TeV to the celestial equator and
the Southern Hemisphere for PeV and higher energies.

4.2.6 Trinity

Trinity is a proposed system of 18 air-shower Cherenkov telescopes optimized for detecting Earth-skimming
neutrinos with energies between 10 PeV and 1000 PeV [675, 676]. Trinity is an evolution of the original
Earth-skimming concept, which proposed monitoring nearby mountains with Cherenkov telescopes [677–679]
and has been tested and validated by several groups, for example, by NTA [680] and MAGIC [628].

Trinity’s energy range overlaps with IceCube’s due to Trinity’s PeV threshold. The overlap enables
studies of the astrophysical neutrino spectrum in regions of the sky not accessible with in-ice or atmospheric
radio experiments (declinations from −75◦ to 55◦ [676]). That is because atmospheric radio becomes sensitive
at ∼ 108 GeV, and in-ice radio experiments, while sensitive down to ∼ 107 GeV, have a limited sky acceptance
due to their locations close to the poles. Trinity closes an important observational gap.

Trinity’s telescopes will be located on mountains 2-3 km above the surrounding ground and point at the
horizon. At these altitudes, the telescopes can detect air-showers developing as far away as 200 km [630].
The possibility of detecting these very distant showers compensates for the low 20% duty cycle and therefore
boosts Trinity’s acceptance below 108 GeV when compared to other instruments.

Trinity’s telescopes are optimized to deliver the best possible detection sensitivity per cost [595]. A key
feature of the instrument is the extreme and unique 60-degree wide-field optics (see Fig. 25) [681]. The tele-
scopes use demonstrated technologies lowering costs and improving performance. The mirror technology, for
example, has been demonstrated by the Cherenkov Telescope Array Consortium. High efficient, mechanical,
and optical robust silicon PMTs populate the focal plane outperforming classical PMTs. The digitizer system
has been developed for high-energy physics experiments focusing on low cost and high-channel density. These
technologies make it possible to build a high-performance system for a fraction of the cost of a conventional
Cherenkov telescope.
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Figure 26. Left: The RET-CR concept. The signal from an in-ice transmitter is reflected from the dense in-ice cascade
produced by a cosmic ray air shower, and detected by a receiving antenna. Right: The plasma frequency fp (a proxy
for cascade ionization density) versus height for air showers of various energy. Here the 2.4 km surface height is shown
at 50 m on the y axis, for clarity. The frequency range of interest to RET-CR is indicated by the vertical red line.

Trinity’s sensitivity improves inverse-proportionally with the number of telescopes. One telescope alone
can detect astrophysical neutrinos within five years if the spectrum extrapolates from IceCube energies
without a cut-off (see Fig. 25).

Trinity is currently in its demonstrator phase [675], which constitutes building a 1 m2 air-shower Cherenkov
telescope that will be deployed on Frisco Peak, UT in 2022. The demonstrator will demonstrate the concept
and camera technologies planned for a full Trinity telescope.

4.2.7 RET

The Radar Echo Telescope (RET) is a forthcoming observatory for detecting neutrinos with energies above
1016 eV using the radar echo method, where radio waves are reflected from ionization deposits left in the wake
of high-energy particle cascades in dense material, such as ice. The concept has recently been demonstrated
in the laboratory during experiment T576 at SLAC [129], where a dense beam of high energy electrons was
directed into a plastic target, to simulate a high-energy neutrino interaction in ice. The next step, testing
the method in the field, is imminent, and will be discussed below.

RET is an umbrella project for two instruments. One, the Radar Echo Telescope for Cosmic Rays (RET-
CR) [601] is a prototype system designed to test the radar echo method in nature, shown diagrammatically
in Fig. 26. To do this, RET-CR will use the ionized core of a cosmic ray shower—after it has impacted the
ice—as a proxy for a neutrino-induced cascade. On a high-elevation ice sheet, 10% or more of the energy of
a primary cosmic ray will remain as the cascade impacts the ice. This energy is tightly collimated around
the cascade axis, and produces a dense cascade just beneath the surface of the ice. RET-CR will deploy a
phased transmitter and several phased receivers (see Refs. [682, 683] for more information on in-ice phased
arrays) to detect the ionization left in the wake of these englacial cascades. A detected event rate of roughly
1 event per day with a primary energy at or above approximately 1017 eV is expected. RET-CR is under
construction at time of writing.

The second system under the RET umbrella is the Radar Echo Telescope for Neutrinos (RET-N), a
large-scale, in-ice neutrino detector capable of detecting neutrinos just above the reach of IceCube optical.
A RET-N station is comprised of a central transmitter and an array of receivers on baselines of hundreds
of meters, all buried ∼1.5 km deep in the polar ice. RET-N is projected to have good sensitivity down to
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Figure 27. Detector concept schematic for TAMBO. A tau neutrino propagates through rock in the mountain. If a
charged current interaction occurs, a tau is produced with a range of 50 m–5 km before it decays to produce an air
shower. The electromagnetic component of the air shower extends 3–10 km , with a diameter of about 200 m. Such an
air shower is detectable by an array of water-Cherenkov tanks, each a m3 in volume, with 100 m separation. Figure
reproduced from Ref. [130]

1016 eV. RET-N is particularly well-suited to flavor studies of UHE neutrinos. Because of the wide angular
acceptance of the radar signal, so-called double-bang ντ events [366] are easily detected—even by a single
receiving antenna—leading to an increase in acceptance for such events, providing a promising handle on
flavor identification. Furthermore, as the only active method for detecting UHE neutrinos, it provides a
different method of measuring properties of the cascade, such as direction, energy, and topology. As such,
RET-N is complementary to the other radio- and optical-based techniques being explored to bring neutrino
astronomy to the UHE regime.

4.2.8 TAMBO

TAMBO (Tau Air-Shower Mountain-Based Observatory) is a proposed detector in the Colca Valley in Peru
to measure Earth-skimming astrophysical tau neutrinos in the 1 PeV to 100 PeV energy range (see Fig. 27).
Tau neutrinos in that energy range can propagate through Earth with an interaction length of hundreds
kilometers [591], which can produce tau particles via charged-current interactions. The produced charged
leptons decay within the range of 50 m to 5 km. If the tau neutrino interaction occurs within this distance
from the valley, the tau is likely to exit into the air, where it decays producing an air shower with a range of
3–10 km, and a diameter of around 200 m. The air shower can then be detected by water Cherenkov tanks,
plastic scintillator panels, or air-Cherenkov telescopes. The preliminary design of TAMBO is based on water
Cherenkov detectors, but plastic scintillators are also being studied as a complementary detection medium.

The geographical structure of the Colca valley makes it an ideal place for high-energy tau-neutrino
detectors, such as TAMBO. The separation between the slopes of the valley has a length comparable to the
decay length scale of a tau. This provides sufficient time for the tau particle to decay to form an extensive
air-shower particles, which can eventually be detected by placing a ground array of small water-Cherenkov
detectors, each of approximately of volume 1 m3 and separated by ∼ 100 m. With this configuration and
deploying 22,000 tanks, we expect that TAMBO will have an effective area ten times larger than IceCube’s
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Figure 28. Schematic of ARIANNA stations at the Ross Ice Shelf. Figure reproduced from Ref. [596]

.

current tau neutrino effective area at ∼ 3 PeV. Compared to ongoing Earth-skimming experiments [684], the
deep-valley topography also provides a significant increase to the geometric acceptance compared to a flat
ground array. Similarly, the detector location is in the Southern hemisphere, allowing for observation of the
Galactic Center and a wide variety of standard astrophysical sources [54, 685] which also holds the prospect
of detecting neutrinos from dark matter annihilation [216]. Additionally, the smaller tank-to-tank distance
significantly lowers the energy threshold, thereby increasing the rate of detected events. For an E−2.5 spectra
with the current IceCube best-fit normalization, we expect to detect 7 tau-neutrino events per year over a
small background predominantly due to coincident cosmic-ray air showers.

TAMBO will characterize the flux of astrophysical 1–10 PeV neutrinos by measuring the contribution
from the tau neutrino component. This would allow a better understanding of high-energy neutrino pro-
duction [7, 59] and to more precisely test high-energy neutrino physics [5, 58, 90, 93, 686, 687]. Similarly,
it would also help determine whether high-energy neutrino sources continue to accelerate particles above
10 PeV, testing some studies [688] that question whether sources of high-energy neutrinos have a cutoff at
∼ 6 PeV.

4.3 Ultra-high-energy range (> 100 PeV)

Several experiments search for radio emission from neutrino interactions using embedded radio arrays. Taken
together, they serve as complementary test benches for the future radio array of the planned IceCube-Gen2.

4.3.1 ARIANNA

The ARIANNA experiment uses the in-ice radio technique to search for UHE neutrinos [596]. In a uniquely
radio quiet area on the Ross Ice Shelf in Antarctica, a hexagonal array of pilot-stations has been taking
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Figure 29. Schematic and map ARA stations at the South Pole. Figure reproduced from Ref. [703]

.

data for several years. In addition, two detector stations have been installed at the South Pole. The station
design is shown schematically in Fig. 28. It deployed its first prototype station in 2009 [689] and has been
operating a demonstration array since 2014 [596]. Each station uses high gain antennas in both a cosmic
ray and veto mode (upward pointing) and in neutrino mode (downward pointing) a few meters below the
ice surface. Limits on the UHE neutrino flux from ARIANNA demonstrate the feasibility of the in-ice radio
detection technique [690]. The stations provide a continuous test bench for optimization of future larger
arrays like IceCube-Gen2 [690, 691] as well as reconstruction and veto methods [552, 692–702].

4.3.2 ARA

The Askaryan Radio Array (ARA) targets the UHE neutrino flux using the in-ice radio technique [597].
An overview of the experiment is provided in Fig. 29. Located near the South Pole in Antarctica, it takes
advantage of the deep glacial ice there and the long radio attenuation lengths to search for Askaryan emission
from neutrino showers.

In ARA, clusters of radio antennas are deployed 200 m deep below the surface of the ice to access the
larger volume of ice visible as the antennas are embedded in denser, glacial ice. Each of five ARA stations
uses 16 cylindrical antennas to form an interferometer. The deep antenna deployments at 200 m give the
array a wide field of view, stretching from ∼ 5° below the horizon to ∼ 45° above it. Powered by a DC electric
grid, ARA continuously monitors almost one fourth of the sky. One station includes a novel trigger that has
been demonstrated to lower the trigger threshold of in-ice Askaryan detectors, thereby lowering the energy
threshold and the overall sensitivity of in-ice radio detectors by up to a factor of 2 near 30 PeV [683, 703].
A series of experimental neutrino searches and resultant flux upper limits demonstrate the scalability of
the in-ice radio technique [585, 607, 703, 704], and the ability of the detector to both trigger and analyze
with high efficiency (> 50%) very low signal to noise ratio data (SNR∼ 2), which is essential to achieve the
proposed sensitivity of next generation arrays like IceCube-Gen2. ARA anticipates world leading sensitivity
to the UHE neutrino flux above 1 EeV by 2023 [585].

Besides searching for neutrinos, ARA has also made a series of measurements which demonstrate the
feasibility of the deep technology and the suitability of the South Pole experimental site. Both of these are
critical for next generation instruments like IceCube-Gen2. By measuring pulsers deployed on the bottom
of IceCube, ARA made the longest horizontal-baseline measurement of the South Pole ice attenuation,
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Figure 30. Schematic and map of RNO-G stations being installed at Summit Station in Greenland. Figure reproduced
from Ref. [589].

.

confirming the exceptional clarity (> 1 km attenuation length) of the ice [705]. Using the same pulsers, ARA
demonstrated the vertex reconstruction capability of the deep technology, confirming that when a station
observes both a direct and reflected pulse, a neutrino vertex can be located to within 1° in zenith and azimuth,
and within ∼ 30% in range [706]. This reconstruction capability is essential to the energy resolution of ARA
and future radio instruments. ARA data has also revealed potentially novel properties of the Antarctic ice
such as birefringence, which mixes the polarization states of a propagating radio signal [706]. Understanding
such properties of the medium are critical to neutrino directional reconstruction [707].

4.3.3 RNO-G

The Radio Neutrino Observatory in Greenland (RNO-G) is an in-ice detector that measures neutrinos through
the Askaryan emission generated by in-ice showers [155, 589]. The 3 km deep ice sheet above central Green-
land with attenuation length of approximately 1 km at the relevant frequencies of 100 MHz to 1 GHz provides
a good target material for achieving large effective volumes. The ice will be instrumented with a sparse array
of 35 autonomous radio detector stations with a separation of 1.5 km. A schematic and map of the RNO-G
stations are shown in Fig. 30. The stations are solar-powered with additional wind generators under devel-
opment to power the stations during the dark winter months. The stations are connected through an LTE
network to Summit station. The first three stations have been installed in 2021, the remaining stations will
be installed over the next three years.

Each station is equipped with total of 24 antennas. An interferometric phased array provides a low-
threshold trigger, consisting of 4 bicone antennas installed in close proximity vertically above each other
at a depth of approximately 100 m [683]. Additional bicone (vertical signal polarization) and quad-slot
(horizontal signal polarization) antennas above the phased array and horizontally displaced on two additional
strings provide additional information to reconstruct the properties of the neutrino [708]. LPDA antennas
are installed close to the surface providing additional neutrino sensitivity to neutrinos with complementary
uncertainties. Each station also comprises three upward facing LPDAs to veto and measure radio emission
of air showers which provide in-situ calibration signals [702].
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Figure 31. Rendering of the proposed IceCube-Gen2 neutrino observatory combining an optical, surface and radio
array.

Due to its relatively low latitude of 72◦ North, RNO-G observes the majority of the Northern sky within
24 hours adding UHE neutrino information to multi-messenger observations. Its diffuse flux sensitivity is
large enough to start probing the parameter space of GZK neutrino production (see Fig. 18). Furthermore,
RNO-G will be a technical testbed and pave the way for the much larger radio detector array foreseen for
IceCube-Gen2.

4.3.4 IceCube-Gen2 radio

To extend the energy reach to EeV energies, IceCube-Gen2 will include a sparse array of radio detector
stations next to its optical component [128] (see Fig. 31). The radio technique allows for a cost-efficient
instrumentation of the large volumes required to measure the low flux of UHE neutrinos. The ice at the
South Pole provides an optimal target material for radio detection with attenuation lengths of more than
2 km close to the surface where the ice is coldest. The radio array will cover an area of approximately
500 km2. The proposed array consists of two types of radio detector stations that measure and reconstruct
neutrino properties with complementary uncertainties to maximize the discovery potential by mitigating risks
and adding multiple handles for rare background rejection [578]. Hybrid stations combine omni-directional
cylindrical antennas (both vertical and horizontal polarization) lowered 150 m below the surface of the ice
with high-gain antennas near the surface. The hybrid stations build on the heritage of the deep stations
explored by ARA, the shallow stations being explored by ARIANNA, and the hybrid stations currently being
deployed for RNO-G. The array design also uses additional shallow-only stations that use LPDA antennas
close to the surface with one additional dipole antenna at 15 m to aid event reconstruction. All shallow
components are also equipped with upward facing LPDA antennas which provide sensitivity to cosmic rays
to veto air-shower induced background [605, 709], as well as to monitor the detector performance (see, e.g.,
Ref. [702]).

The IceCube-Gen2 radio array will provide sufficient sensitivity to probe GZK neutrino production. The
Gen2 sensitivity would reach the current best-fit models to UHECR data measured by the Pierre Auger
Observatory, assuming sources identical in UHECR luminosity, spectrum and composition, as well as a
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Figure 32. BEACON observes up-going tau neutrinos from a high-elevation mountain. The detection concept is
shown on the left while the sensitivity to an all-flavor flux (assuming a 1:1:1 flavor ratio, half-decade energy bins, and
a three-year exposure) is shown on the right. The expected 90% confidence upper limit on the differential flux for
100 stations and 1000 stations of both the low- and high-frequency reference designs are compared with models of the
cosmogenic flux [147, 391, 710] and upper limits from Auger [431], IceCube [144], and the proposed GRAND-200k
experiment [154]. Reproduced from Ref. [157].

rigidity-dependent cut-off and thereby essentially no protons at the highest-energies [148, 149]. In an only
slightly more favorable scenario of 10% protons, IceCube-Gen2 will detect at least 2 events per year above
∼100 PeV [578].

For an unbroken astrophysical neutrino spectrum that follows E−2.28, as the one shown in Fig. 18, the
radio detector of Gen2 will measure close to ten neutrinos per year where most detected neutrinos will have
energies between 1017 eV and 1018 eV [578]. Due to its location at the South Pole, the instrument continuously
observes the same part of the sky with most sensitivity between δ ≈ −40° and δ ≈ 0° as the Earth is opaque
to neutrinos at ultra-high energies. The instantaneous sensitivity will allow to explore neutrino production
in transient events such as neutron-star mergers.

The large sensitivity to neutrinos arriving from and slightly below the horizon enables the measurement of
the neutrino-nucleon cross section at extremely high energies [102, 103, 105–107]. Also a measurement of the
inelasticity seems possible through the detection of high-quality electron neutrino charge-current interaction
where the energy of the hadronic shower induced by the breakup of the nucleus can be measured separately
from the electromagnetic shower induced by the electron. Furthermore, the production of high-energy muons
in air showers with energy above a PeV can be probed through a coincident measurement of the air shower
via the in-air radio emission and a muon induced particle shower in the ice via the Askaryan emission.

4.3.5 BEACON

The Beamforming Elevated Array for COsmic Neutrinos (BEACON) is a detector concept that targets
Earth-skimming tau neutrinos. BEACON uses the radio technique to search for air showers induced by tau
lepton decay, and will be deployed at several sites around the world for a full sky coverage [157]. Because
the BEACON concept relies on low power (< 50 W), inexpensive, low channel-count instrumentation, the
technique is scalable to many stations that can be deployed at one or at many locations around the world.

BEACON is an efficient design that builds a large neutrino volume by fully exploiting the mountain
geometry and by using interferometric phased arrays [157]. The design, shown schematically in Fig. 32,
uses the high-elevation of a mountain to monitor a large area of the ground for up-going tau neutrinos fully
exploits the topography at a site to maximize the neutrino interaction volume with sparse instrumentation.
Stations consist of a clustered phased array used for triggering and antennas placed at longer baselines for
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improved pointing resolution (sub-degree). Phased arrays are advantageous in this geometry, because they
both improve sensitivity and can be tuned to focus in on the horizon where most of the tau neutrinos are
expected. Air showers are expected to be observable up to 100 km away from the detector, making mountains
with 2–3 km prominence ideal sites to search for up-going tau neutrinos.

Within 3 years of observations with a full-scale instrument consisting of 1000 stations, BEACON is
expected to achieve a sensitivity comparable to pessimistic models of cosmogenic neutrinos, but even with
a smaller array of 100 stations, the large effective area will improve upon existing limits within 3 years of
observations [157] The sensitivity to a diffuse flux is shown on the right in Fig. 32. The chosen frequency band
is 30–80 MHz, but sensitivity studies have shown that a higher frequency band, for instance 200− 1200 MHz
could also be suitable [157]. This leaves the possibility to deploy hybrid frequency-band arrays in order to
combine them to improve the pointing and the reconstructions capabilities.

The BEACON experiment is currently in the demonstration phase, with a prototype deployed at the
White Mountain Research Station of California. The prototype array consists of 4 dual-polarized electrically-
short-dipole antennas and a two stages of amplification. The trigger system is based on a low-power phased
array trigger implemented on an FPGA. While the prototype electronics were originally developed for the
ARA experiment [683], custom modular electronics are under design for future stations.

While the prototype is too small to search for tau neutrinos, the technique can be tested thoroughly
through searches for cosmic rays at high zenith angles [711]. A cosmic-ray search is underway currently [712],
and with the observed flux, the projected neutrino sensitivity will be trained on the measured trigger threshold
in situ. With this validation of instrument sensitivity, the experiment can be readily expanded to the full
array making it competitive to detect UHE neutrinos [148].

4.3.6 GRAND

The Giant Radio Array for Neutrino Detection (GRAND) is a planned observatory for UHE particles,
including neutrinos, cosmic rays, and gamma rays. The instrument is a large-scale radio array sensitive to
the geomagnetic radio emission air showers in the atmosphere. In particular, GRAND targets UHE neutrinos
by searching for very inclined showers, i.e., showers coming from directions close to the horizon, expected
from Earth-skimming UHE tau neutrinos [154]. Figure 33 shows the GRAND concept and the differential
and integrated neutrino sensitivity limits for several antenna configurations. The design targets diffuse flux
sensitivities predicted by pessimistic models of UHE neutrino flux down to ∼ 10−10 GeV cm−2 s−1 sr−1.

To reach this target sensitivity, GRAND will instrument a large 200000 km2 area with clusters of radio
antennas. Each of the 20 clusters will use 10000 radio antennas to monitor the horizon for emerging tau neu-
trinos. Each antenna operates in the 50–200 MHz band and the local topology will be analyzed to determine
the optimal locations of the antennas within the clusters and the array [713] both for improved sensitivity
and to enable sub-degree angular resolution [154, 714]. With such precision angular resolution, GRAND will
be able to to distinguish between neutrinos and the more prevalent cosmic rays, as the neutrino showers are
horizontal or slightly upward-going while cosmic-ray showers are more downward-going. Moreover, GRAND
will be an important instrument in transient time-domain radio astronomy, because of its large number of
antennas and field of view.

The radio-detection of extensive air showers [715] has been demonstrated by prior experiments and
GRAND builds on this heritage. However, scaling to a large array requires a staged approach to further
refine the design. The first prototype array, GRANDProto300, will use 300 antennas to validate autonomous
radio detection and reconstruction of extensive air showers. This large array will also enable studies of other
UHE particles including cosmic rays and photons as well as radio astronomy [600]. The second prototype
stage will scale up to 1000 antennas with GRAND10k, building on the design from the 300-antenna array
and will explore the feasibility of the radio detection with large-scale and sparse arrays. GRAND10k is
expected to reach a diffuse flux sensitivity of 8 × 10−9 GeV cm−2 s−1 sr−1 after 3 years [154], constraining
or discovering UHE neutrinos expected from optimistic models [140, 148]. With this staged approach, the
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Giant Radio Array for Neutrino Detection

• Antenna optimized tor horizontal showers

• Bow-tie design, 3 perpendicular arms

• Frequency range: 50-200 MHz

• Inter-antenna spacing: 1 km

Radio emission Extensive air shower

5m

10 km

Cosmic ray   

Figure 1. GRAND detection principle for cosmic rays or gammas (detection of the EAS induced by
the direct interaction of the cosmic particles in the atmosphere) and neutrinos (underground interaction
with subsequent decay of the tau lepton in the atmosphere)

When it enters the Earth atmosphere, a cosmic particle may interact with air particles to
induce an extensive air shower (EAS), which in turn, generates electromagnetic radiations
mainly through the deflection by the Earth magnetic field of the charged particles compos-
ing the shower [4]. This so-called geomagnetic e↵ect is coherent in the tens of MHz fre-
quency range, generating short (<1 µs), transient electromagnetic pulses, with amplitudes
large enough to allow for the detection of the EAS [5–7] if the primary particle’s energy is
above 1017 eV typically.

Cosmic neutrinos however have a very small probability of being detected through this
process because of their tiny interaction cross-section with air particles. Yet, a tau neutrino
can produce a tau lepton under the Earth surface through charged-current interactions. Thanks
to its large range in rock and short lifetime, it may emerge in the Earth atmosphere and even-
tually decay to induce a detectable EAS [8]. The Earth opacity to neutrinos of energies above
1017 eV however implies that only Earth-skimming trajectories allow for such a scenario.

This peculiarity, which can first be seen as a handicap for detection, turns out to be an
asset for radiodetection: because of relativistic e↵ects, the radio emission is indeed strongly
beamed forward in a cone which opening is given by the Cerenkov angle ✓C ⇠ 1�. For
air shower trajectories close to the zenith, this induces a radio footprint at ground of few
hundred meters diameter, requiring a large density of antennas at ground for a good sampling
of the signal. For very inclined trajectories however, the larger distance of the antennas to
the emission zone and the projection e↵ect of the signal on ground combine to generate a
much larger footprint [1]. Targeting air showers with very inclined trajectories —either up-
going for Earth-skimming neutrinos, or down-going for cosmic rays and gammas— make it
possible to detect them with a sparse array (typically one antenna per km2). This is a key
feature of the GRAND detector.

Another driver in GRAND is to aim at mountainous areas with favorable topographies as
deployment sites. An ideal topography consists of two opposing mountain ranges, separated
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Figure 1: Left: Di�erential and integrated neutrino sensitivity limits calculated from the 10, 000 anten-
nas simulation ("GRAND10k", pink area) and the extrapolation for the 20-times larger GRAND array
("GRAND200k", maroon line). The gray region represents the all-flavor cosmogenic neutrinos flux expecta-
tions derived from the results of the Pierre Auger Observatory [5]. Adapted from [1]. Right: GRAND point
source sensitivity limits [1]. Short-duration transients (short GRBs, GRB afterglows) are compared to the
GRAND200k instantaneous sensitivity at zenith angle \ = 90� (solid black line). Long-duration transients
(e.g., TDE) are compared to declination-averaged sensitivity (gray-shaded band). The stacked fluence from
10 six-month-long blazar flares in the declination range 40� < |X | < 45� is compared to the GRAND200k
sensitivity for a fixed X = 45� (dashed black line). The GRAND limits assume that the 200k antennas are
deployed at a single location.

of tau leptons generated by ag interactions underground (DANTON [6]), a semi-analytical radio-
signal fast computation tool (Radio-Morphing [7, 8]), and an antenna response module (NEC4 [9]).
The final step is the detector trigger simulation. Our trigger condition requires � 5 units in one
9-antenna square cell to be triggered, and the peak-to-peak amplitude of the voltage signal at the
output of the antennas to be � 30[75]`V (twice the expected stationary background noise in the
50 � 200MHz frequency range) in the aggressive [conservative] scenario.

This simulation chain was run over a 10, 000 km2 area, with 10, 000 antennas deployed along a
square grid of 1 km step size in a basin surrounded by high peaks of the TianShan mountain range
in China. The 10-year 90% C.L. GRAND sensitivity limit (Fig. 1, left) is scaled from the simulated
region to 200, 000 km2 (GRAND200k). The integrated limits correspond to the Feldman-Cousins
upper limit per decade in energy at 90% C.L., assuming a power-law neutrino spectrum / ⇢�2

a ,
for no candidate events and null background. The 10-year GRAND integrated sensitivity limit is
⇠ 10�10 GeV cm�2 s�1 sr�1 above 5 ⇥ 1017 eV [1].

For UHECR detection, GRAND will be fully e�cient above 1018 eV and sensitive to cosmic
rays in a zenith-angle range of 65� � 85�. The geometrical aperture of the experiment will be
107, 000 km2 sr. However, when including events with shower cores outside the instrumented area
and when taking trigger conditions into account, UHECR air-shower simulations indicate that
GRAND would have a 4 � 5 times higher exposure. Figure 2 (left) presents an example of the

3

Figure 33. Left: The GRAND detection principle relies on the observation of EAS induced by both the direct
interaction of the cosmic particles in the atmosphere (e.g., cosmic rays and gamma rays), and neutrino underground
interaction with subsequent decay of the tau lepton in the atmosphere. The GRAND concept takes advantage of the
detector topography in order to increase the detection efficiency [713], and the reconstruction performances [714]. Right:
The differential and integrated neutrino sensitivity limits derived from the 10, 000 antennas simulation (GRAND10k,
pink area) and its extrapolation to the 20-times larger GRAND array (GRAND200k, maroon line). The gray region
represents the expectations for the all-flavor cosmogenic neutrinos flux obtained from the results of the Pierre Auger
Observatory [148]. Taken from [154].

design can be refined as the instrument scales up to the full 200000 antennas while simultaneously addressing
key science questions in physics and astrophysics.

4.3.7 POEMMA

The Probe Of Extreme Multi-Messenger Astrophysics (POEMMA) is a NASA Astrophysics Probe-class,
space-based mission designed to perform definitive measurements of Ultra-High Energy Cosmic Rays (UHE-
CRs) and searches for cosmic neutrinos. POEMMA was developed as one of the examples of NASA-funded
missions to support the definition of the NASA Probe-class, and it is a potential candidate for a future NASA
Probe Announcement of Opportunity. POEMMA utilizes the vast amount of atmosphere and Earth viewed
using wide Field-of-View (FoV) as neutrino targets and measures the optical signals from the extensive air
showers (EAS) from the products of the neutrino interactions [558]. Over a five-year period, POEMMA is
anticipated to measure ∼ 1, 400 UHECRs above 40 EeV and either detect the first neutrino with Eν > 20 PeV
for tau neutrinos and Eν > 20 EeV for any flavor of neutrinos or set limits on the diffuse flux and stringent
limits on transient source models with significant neutrino flux above 20 PeV.

The POEMMA mission consists of two identical spacecraft that fly in a loose formation at 525 km
altitude, 28.5◦ inclination orbits, separated by a nominal lateral distance of 300 km. Each POEMMA
spacecraft contains a Schmidt telescope with 6 m2 optical collecting area and a 45◦ full FoV. The focal plane
of each telescope is segmented into two sections, each optimized for different EAS optical measurements,
and with each section comprised of pixels with 0.086◦ FoV. The POEMMA Fluorescence Camera occupies
80% of each focal surface and is optimized to record the fluorescence light from EAS initiated by UHECR in
the atmosphere. The POEMMA Cherenkov Camera occupies the remaining 20% of the focal surface and is
oriented to observe near the Earth’s limb, when the POEMMA telescopes are appropriately tilted, to record
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Figure 34. Top: POEMMA observing modes: POEMMA-Stereo for UHECRs and UHE ν-induced extensive air
showers, and POEMMA-Limb for ντ → τ -sourced up-going extensive air showers. Figure reproduced from Ref. [558].
Bottom left: POEMMA 90% CL per decade, 5-year sensitivity to EAS showers arising from neutrino interactions
in the atmosphere and detected via the stereo fluorescence measurements from charged-current and neutral-current
interactions from all three neutrino flavors. The solid (dashed) curve is calculated using cross sections from Ref. 591
(Ref. 716). Predictions for strongly coupled string moduli (maroon band) [150] are also shown along with upper limits
from ANITA I-IV (blue line) [146] and Westerbork Synthesis Radio Telescope (WSRT; red line with tan band) [717],
and the projected sensitivity for LORD (green band) [718]. Bottom right: POEMMA 90% CL per-decade tau neutrino
sensitivity assuming the binary neutron star merger (BNS) model of Fang and Metzger [719] for a source at a distance
of 10 Mpc. The sky-location sensitivity range for IceCube is shown in the blue band while that for GRAND is in the
area defined by the red dash. The black lines show the measured limits to neutrinos from GW170817 set by IceCube
and Auger [25]. Figure reproduced from Ref. [558].

the beamed, Cherenkov emission produced by EAS sourced from Earth-skimming neutrino interactions above
20 PeV. The POEMMA telescopes can slew in both azimuth (90◦ in ∼ 8 minutes) and zenith, allowing for
unprecedented follow-up on transient astrophysical events by tracking sources as they move across the sky as
viewed below the limb of the Earth [582]. The separation of the POEMMA spacecraft can also be decreased
to ∼25 km to put both telescopes in the upward-moving EAS light pool for each event, thus reducing the
neutrino detection energy threshold. The period of the POEMMA spacecraft orbit is 95 minutes. Due to
this and the POEMMA telescopes viewing orientation, one of the main advantages of the POEMMA mission
is being able to achieve full-sky coverage for both UHECR and UHE neutrino sources. A schematic of the
fluorescence telescope configuration viewing down and the Cherenkov telescope viewing towards the limb in
the upper panel of Fig. 34 shows POEMMA’s two distinct science modes.

The first science operating mode is a precision UHECR and UHE neutrino stereo mode where the
telescopes are oriented to co-measure the EAS air fluorescence signal in a common volume corresponding
to nearly 1013 tons of atmosphere. Due to the high accuracy of the EAS reconstruction from the stereo
fluorescence technique when viewing the entire EAS development using the large FoV from low-Earth orbit,
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POEMMA can accurately reconstruct the development of the EAS with . 20◦ angular resolution, . 20%
energy resolution, and . 30 g/cm2 Xmax resolution [135]. This performance yields excellent sensitivity for
all neutrino flavors for UHE EAS that begin deeper in the atmosphere, well-separated from the dominant
UHECR flux.

At neutrino energies above EeV, in both charged-current and neutral-current interactions, ∼80% of the
neutrino energy is carried by the emergent lepton and ∼ 20% goes into a hadronic cascade [591]. Thus,
the properties of the composite EAS are determined by the emergent UHE lepton for both charged- and
neutral-current interactions in the atmosphere. The wide FoV for POEMMA allows the measurement of
long, more horizontal EAS generated by neutrino interactions deep in the atmosphere, providing strong
rejection of UHECR-induced EAS [135]. Fig. 34 shows the 90% CL per-decade all-flavor limits for 5-years of
POEMMA fluorescence UHE measurements assuming two different neutrino cross sections [591, 716] at the
highest energies. Comparison to the published limits from ANITA [146] and WSRT [717] observations are
shown as well as theoretical predictions of the neutrino flux from strongly coupled string moduli generated
early in the formation of the Universe [150].

The second POEMMA science mode has the telescopes pointed to view slightly below the limb of
the Earth to be sensitive to the beamed, optical Cherenkov signal sourced by tau-neutrino interactions in
the Earth. Tau leptons produced by neutrinos in the Earth can emerge and decay to produce up-moving
EAS. This ντ → τ detection channel allows POEMMA to have a sensitivity to energies Eν & 20 PeV.
POEMMA’s FoV constrains viewing to an azimuth band of ∼ 30◦; however, for an idealized 2π azimuth
telescope configuration with POEMMA’s optical Cherenkov performance, the limits on the diffuse neutrino
flux set by IceCube could be improved by roughly an order of magnitude for Eν >100 PeV [592, 622]. In
principle, POEMMA is also sensitive to Earth-emergent neutrinos through the νµ → µ and ντ → τ → µ
interaction channels. These channels improve POEMMA’s sensitivity for Eν < 10 PeV due to the relatively
long interaction lengths of the muon around 1 PeV, and in the case of the primary νµ, increased Earth-
emergence probabilities.

The capability of the POEMMA satellites to quickly slew to the direction of an astrophysical transient
neutrino source and follow the source give POEMMA unique observational capabilities using the Cherenkov
telescopes. As shown in Fig. 34, it is expected that, compared to ground-based experiments, POEMMA will
improve upon the sensitivity to long-burst transient events (duration of 105−6 s from, e.g., binary neutron
star mergers and tidal disruption events) for Eν > 100 PeV by nearly an order of magnitude. Additionally,
POEMMA will improve on the sensitivity to short-burst (duration of ∼ 103 s from, e.g, short gamma ray
bursts with extended emission) by at least an order of magnitude [582], as illustrated in Fig. 17.

4.3.8 EUSO-SPB2

The Extreme Universe Space Observatory aboard a Super Pressure Balloon 2 (EUSO-SPB2) is the follow-up
mission to the EUSO-Balloon and EUSO-SPB1 missions, flown in 2014, and 2017, respectively. EUSO-SPB2
will implement the technologies utilized during past EUSO missions in a near-space environment to validate
the detection strategy of POEMMA and future space-based observatories by measuring cosmic rays via both
fluorescence and optical Cherenkov emission [599, 720].

The EUSO-SPB2 instrument contains two telescopes, each with a different science target: the Fluores-
cence Telescope (FT) points downward and will measure the microsecond-scale fluorescence tracks of EAS
induced by UHECR interactions in the atmosphere, while the Cherenkov Telescope (CT) points towards
the limb to measure the nanosecond-scale Cherenkov emission produced by EAS induced by above-the-limb
cosmic rays and Earth-skimming neutrinos. The Field of View (FoV) of the EUSO-SPB2 FT is 11◦ × 35◦,
while that of the CT is 4◦ × 12.8◦. The EUSO-SPB2 flight train will include an azimuth rotator configured
for day and night pointing and an elevation angle tilting mechanism on the CT. EUSO-SPB2 will launch
from Wanaka, NZ in Spring of 2023, and aims for a 100-day flight at an altitude of 33 km.
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In addition to quantifying the night-sky airglow background near the Earth limb for the optimization of
future space and near-space missions, the EUSO-SPB2 CT is expected to observe hundreds of direct cosmic
rays per hour of operational live time during its flight [721]. These events share many characteristics with
the signals generated from neutrino sourced events and are a prime candidate for event reconstruction and
evaluation of detector optics, electronics, and triggering algorithms. A larger data set of these above-the-
limb events will help to quantify refraction near the Earth limb, and may help evaluate similar events that
have been observed by ANITA, and are likely to be observed by PUEO. Due to its relatively short flight
duration and small azimuth FoV, EUSO-SPB2 is not competitive with existing ground-based experiments in
regards to setting limits on the diffuse neutrino flux [622]. However, by having the ability to slew in azimuth
and zenith, EUSO-SPB2 can perform “target of opportunity” observations, where it will search for neutrino
sources following alerts of astrophysical transients [722, 723].

4.3.9 ANITA

The Antarctic Impulsive Transient Antenna (ANITA) is a NASA mission that searched for ultra-high energy
particles from a long-duration balloon in Antarctica [724]. Originally designed to search for neutrino-induced
Askaryan radiation that refracts out of the ice, successive flights and studies demonstrated its capability of
detecting geomagnetic radiation from cosmic rays [311, 312, 725–727] and its sensitivity to Earth-skimming
tau neutrinos [317, 319]. The upper limits from ANITA’s Askaryan channel remain the strongest in the energy
range above 30 EeV [146, 611, 728, 729]. In three of the flights, its trigger was sensitive to the geomagnetic
radiation from air showers and in each of these flights it reported anomalies that remain outstanding questions
in the field [311, 312, 727]. It has additionally set constraints on the search for magnetic monopoles [730]
and Lorentz-invariance violation [491].

The great advantage of the sub-orbital platform is that the high float altitude enables the largest in-
stantaneous effective areas in the 10 EeV–ZeV energy range and a unique observing geometry. The ANITA
payloads consisted of broadband quad-ridged horn antennas with a maximum bandwidth of 180–1200 MHz
with improved trigger sensitivities, lower noise temperatures, and extensions with each subsequent flight.
While the trigger used a combinatoric trigger, interferometric analysis of the signal enabled ANITA to re-
construct the radio-signal to within 0.1◦-0.2◦ [731], which translates to an elongated ellipse in the Askaryan
channel with a maximum extent of a few degrees and to ∼1◦ for the in-air tau neutrino channel. This beam-
forming technique is carried forward and implemented at the trigger level for PUEO, dramatically lowering
its trigger and energy threshold [581].

4.3.10 PUEO

The Payload for Ultrahigh Energy Observations (PUEO) (Fig. 35) is a long-duration Antarctic balloon
experiment designed to have world-leading sensitivity to UHE neutrinos at energies above 1 EeV. The
direct successor to the ANITA experiment, it expects more than an order of magnitude more sensitivity
than its predecessor below 30 EeV [156, 581]. A multi-purpose instrument for detecting ultra-high-energy
particles, PUEO can search for radio emission from neutrinos both from when they interact in the ice and
from Earth-skimming tau neutrinos. PUEO is also sensitive to geomagnetic radio emission from UHECRs,
including showers that evolve in the stratosphere. The sensitivity of PUEO allows it to probe a host of diffuse
cosmogenic and astrophysical neutrino flux models, with multiple neutrinos expected during the nominal
30 day flight under the most optimistic flux models allowed by current limits [581]. PUEO’s very large
instantaneous aperture makes it well-suited to measuring UHE neutrino fluences from transient astrophysical
sources, if they occur in PUEO’s field-of-view during the flight.

The main PUEO instrument, seen in Fig. 35, follows the same overall design of ANITA but with sig-
nificant changes to the internal electronics and improvements to the signal chain to significantly increase
the sensitivity in all of its four detection channels (in-ice Askaryan, above-horizon stratospheric UHECR, re-
flected UHECR, and Earth-skimming τ -induced EAS). Like the ANITA experiment, PUEO will be sensitive
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sensitivity to extensive air shower-like signals from τ -lepton-decays in the air, and UHECRs. From Ref. [581]. right
PUEO is designed to search for UHE neutrino interactions in the Antarctic ice via the Askaryan effect, and will have
world-leading sensitivity to UHE neutrinos with energies above 1 EeV [156, 581].

to tau neutrinos through the radio emission from both in-ice (Askaryan) events and in-air τ -decay-induced
showers.

Unlike ANITA, PUEO is composed of two instruments, each dedicated to different detection channels.
The “main instrument” consists of 96 triggered quad-ridged horn antennas (compared to the 48 used in the
last flight of ANITA), with an additional ring of downward-canted antennas that increase PUEO’s sensitivity
to the anomalous steeply upcoming cosmic-ray-like events observed in past ANITA flights [312, 732]. The
main instrument targets the 300 MHz to 1200 MHz frequency band, similar to the ANITA instrument, but
with a slightly higher low-frequency limit. The multi-channel “low-frequency instrument” targets the 50–
300 MHz band designed to detect EAS signals, from UHECRs or τ -lepton decays, extending the frequency
range and allowing for an independent measure of polarity for events due to air showers. PUEO will also
deploy an improved radio-frequency signal chain and more accurate attitude determination systems, when
compared to ANITA-IV.

Despite deploying more than twice the number of antennas as the last flight of ANITA, the biggest
improvement in PUEO’s sensitivity comes from the real-time interferometric beamforming used in the trigger
subsystem. This beamforming trigger computes highly directional beams on the sky, in real-time during the
flight, by coherently summing waveforms with different time delays, allowing PUEO to have a 50% trigger
efficiency level at a signal-to-noise ratio (SNR) of ∼1 [581]. PUEO’s beamforming trigger system, with
extensive heritage from the phased-array trigger of the Askaryan Radio Array [683], is built on the Xilinx
RFSoC (Radio-Frequency System-on-Chip) platform which combines high-bandwidth digitizers, large field-
programmable gate-arrays (FPGAs), and digital signal processing (DSP) cores onto a single die.

4.3.11 AugerPrime

With the present Surface Detector (SD) of the Pierre Auger Observatory—an array of ∼ 1600 Water-
Cherenkov Detectors (WCD) spread over a surface of ∼ 3000 km2 in an hexagonal grid with 1.5 km
separation—UHE neutrinos can be efficiently discriminated in the much larger background of cosmic ray-
induced EAS. The neutrino search capabilities are enhanced at EeV energies for EAS developing in the
inclined directions with respect to the vertical to ground, at zenith angles θ ∈ (60◦, 95◦), by looking for pen-
etrating showers with a significant amount of electromagnetic component, characteristic of neutrino-induced
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top are the fraction of the signal due to the electromagnetic component of the shower. The gray dots represent stations
of the array without signal. A large fraction of electromagnetic signal in inclined events such as this one, concentrated
in the earliest part of the shower, constitute a signature of neutrino-induced showers.

EAS close to the ground [431].

AugerPrime is the upgrade of the Pierre Auger Observatory [152]. It is fully funded, under construction,
and foreseen to take data until 2030. A complementary measurement of the shower particles will be provided
by an array of plane plastic scintillators (SSD) [733] above the existing WCD (Fig. 36). This allows sampling
the shower particles simultaneously with two detectors that have different responses to the muonic and
electromagnetic components of the shower, potentially improving the identification of neutrino-induced EAS.
The geometrical acceptance of the flat scintillators is reduced for very inclined showers θ > 75◦ where neutrino
identification is currently performed with the highest efficiency [431]. However, for moderate inclination
angles θ ∈ (∼ 60◦, ∼ 75◦) the expectation is that the SSD can improve neutrino selection in an angular range
where the current search algorithms reach efficiencies typically below 75%, and even extend it to θ < 60◦,
where searches for neutrinos are not performed due to the large cosmic-ray background not reducible in an
efficient manner with current algorithms.

Besides more than doubling the current statistics, AugerPrime will have superior cosmic-ray composition
measurement capabilities compared to the WCD array [733]. Two of the major objectives of AugerPrime
are to elucidate the mass composition and the origin of the flux suppression at the highest energies as well
as search for a flux contribution of protons up to the highest energies as low as 10%. The proton fraction
is known to have a large effect on the intensity of the cosmogenic neutrino flux [397], constituting a decisive
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ingredient for estimating the physics potential and design of future detectors searching for UHE neutrinos.

An integral part of the AugerPrime detector is the Radio Detector (RD) [734]. Built on the experience
gained with the construction and operation of the Auger Engineering Radio Array [735], the goal is to install
an antenna on top of each WCD to detect the radio signal induced in EAS by geomagnetic charge separation
in the shower [736] and the Askaryan effect [604]. The RD is most efficient for the detection of inclined
showers [737], and the radio footprint at ground is known to contain information on Xmax [738], the depth
at which the shower reaches the maximum in its development. The RD will provide a clean measurement of
the electromagnetic shower component, ideal to separate neutrino-induced cascades from hadronic showers.
These two facts open up the possibility of using the radio detector in the search for penetrating inclined
showers induced by UHE neutrinos, complementing and aiding in current searches.

The surface detector stations will be upgraded with faster, better timing accuracy and increased dynamic
range electronics [739]. The new electronics has the resources to implement further trigger algorithms on
top of the existing ones, targeted to physics tasks such as searches for photons and neutrinos at sub-EeV
energies, including the possibility of incorporating the WCD, SSD, and RD to the trigger providing a wealth
of information on a single event. This is only starting now to be exploited in Auger [740].

4.3.12 GCOS

The Global Cosmic Ray Observatory (GCOS) is presently in the design phase, with the final detection
concept and setup being worked out. More detailed considerations can be found in Ref. [153] and references
therein. With the goal of reaching an exposure of at least 2× 105 km2 yr in a period of 10 years and full-sky
coverage a set of surface arrays with a total area of about 40000 km2 is anticipated as shown in Fig. 37.

GCOS will be designed as a multi-messenger observatory, aiming to register charged cosmic rays, gamma
rays, and neutrinos with energies above 1019 eV. Different detection concepts are at hand. They need to
be optimized to reach the targeted physics case. The design will include a surface detector array with
segmented/nested water Cherenkov detectors and radio antennas. Similarly to AugerPrime, as described
above, but with a much bigger area/acceptance, the surface detector array of GCOS will be able to search for
neutrinos by identifying electron-rich horizontal air showers and distinguish them from hadronic cascades.
The radio detector will provide a clean measurement of the electromagnetic component, ideal to identify
neutrino-induced cascades. Nested water-Cherenkov detectors will also provide enhanced mass and neutrino
sensitivity for horizontal air showers. Identification of the sources of UHE particles will require a good angular
resolution. Assuming a detector spacing of the order of 1.6 − 2 km, an angular resolution < 0.5◦ is realistic.
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GCOS is at present in the phase of developing its science case and studies are being conducted to optimize
a suitable detector design. The performance of existing detector systems, in particular AugerPrime, gives
concrete and proven design examples to achieve the needed sensitivity for UHE neutrinos. The final design of
GCOS will depend on the results that will be obtained with the Auger Observatory and the Telescope Array
in the coming decade. New findings will influence the science case and, thus, the design of the observatory.
A promising approach towards a full-scale GCOS could be to gradually increase the aperture of the existing
arrays. For example, discoveries brought about by increasing the aperture of present-day Auger a few
times will improve the understanding about the highest-energy particles and will clarify the neutrino-related
design goals for an even larger observatory. Prototype detectors are expected to be built after 2025. The
construction of GCOS at multiple sites is expected to start after 2030, with an anticipated operation time
of at least twenty years.
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[514] P. de Salas, R. Lineros and M. Tórtola, “Neutrino propagation in the galactic dark matter halo”, Phys. Rev. D
94 (2016) 123001 [1601.05798].

[515] M. M. Reynoso and O. A. Sampayo, “Propagation of high-energy neutrinos in a background of ultralight scalar
dark matter”, Astropart. Phys. 82 (2016) 10 [1605.09671].

[516] Y. Farzan and S. Palomares-Ruiz, “Flavor of cosmic neutrinos preserved by ultralight dark matter”, Phys. Rev.
D 99 (2019) 051702 [1810.00892].

[517] J. Alvey and M. Fairbairn, “Linking Scalar Dark Matter and Neutrino Masses with IceCube 170922A”, JCAP
07 (2019) 041 [1902.01450].

[518] K.-Y. Choi, J. Kim and C. Rott, “Constraining dark matter-neutrino interactions with IceCube-170922A”,
Phys. Rev. D 99 (2019) 083018 [1903.03302].

[519] S. Koren, “Neutrino – Dark Matter Scattering and Coincident Detections of UHE Neutrinos with EM Sources”,
JCAP 09 (2019) 013 [1903.05096].

[520] J. F. Cherry and I. M. Shoemaker, “Sterile neutrino origin for the upward directed cosmic ray showers detected
by ANITA”, Phys. Rev. D 99 (2019) 063016 [1802.01611].

[521] L. A. Anchordoqui, V. Barger, J. G. Learned, D. Marfatia and T. J. Weiler, “Upgoing ANITA events as
evidence of the CPT symmetric universe”, LHEP 1 (2018) 13 [1803.11554].

[522] G.-y. Huang, “Sterile neutrinos as a possible explanation for the upward air shower events at ANITA”, Phys.
Rev. D 98 (2018) 043019 [1804.05362].

[523] L. A. Anchordoqui and I. Antoniadis, “Supersymmetric sphaleron configurations as the origin of the perplexing
ANITA events”, Phys. Lett. B 790 (2019) 578 [1812.01520].

– 83 –



[524] J. M. Cline, C. Gross and W. Xue, “Can the ANITA anomalous events be due to new physics?”, Phys. Rev. D
100 (2019) 015031 [1904.13396].

[525] S. Chipman, R. Diesing, M. H. Reno and I. Sarcevic, “Anomalous ANITA air shower events and tau decays”,
Phys. Rev. D 100 (2019) 063011 [1906.11736].

[526] M. Abdullah, B. Dutta, S. Ghosh and T. Li, “(g − 2)µ,e and the ANITA anomalous events in a three-loop
neutrino mass model”, Phys. Rev. D 100 (2019) 115006 [1907.08109].

[527] P. A. M. Dirac, “Quantised singularities in the electromagnetic field,”, Proc. Roy. Soc. Lond. A A133 (1931)
60.

[528] IceCube Collaboration, “Search for Relativistic Magnetic Monopoles with IceCube”, Phys. Rev. D 87 (2013)
022001 [1208.4861].

[529] IceCube Collaboration, “Search for non-relativistic Magnetic Monopoles with IceCube”, Eur. Phys. J. C 74
(2014) 2938 [1402.3460].

[530] IceCube Collaboration, “Searches for Relativistic Magnetic Monopoles in IceCube”, Eur. Phys. J. C 76 (2016)
133 [1511.01350].

[531] ANTARES Collaboration, “Search for relativistic magnetic monopoles with five years of the ANTARES
detector data”, JHEP 07 (2017) 054 [1703.00424].

[532] IceCube Collaboration, “The IceCube Upgrade – Design and Science Goals”, PoS ICRC2019 (2020) 1031
[1908.09441].

[533] DUNE Collaboration, “Long-baseline neutrino oscillation physics potential of the DUNE experiment”, Eur.
Phys. J. C 80 (2020) 978 [2006.16043].

[534] JUNO Collaboration, “Neutrino oscillation studies in JUNO”, PoS NuFact2019 (2019) 030.

[535] Hyper-Kamiokande Collaboration, “Physics potential of Hyper-Kamiokande for neutrino oscillation
measurements”, PoS NuFact2019 (2019) 040.

[536] S. A. R. Ellis, K. J. Kelly and S. W. Li, “Current and Future Neutrino Oscillation Constraints on Leptonic
Unitarity”, JHEP 12 (2020) 068 [2008.01088].

[537] FASER Collaboration, “Detecting and Studying High-Energy Collider Neutrinos with FASER at the LHC”,
Eur. Phys. J. C 80 (2020) 61 [1908.02310].

[538] D. Carney et al., “Snowmass2021 Cosmic Frontier White Paper: Ultraheavy particle dark matter”, 2203.06508.

[539] T. Aramaki et al., “Snowmass2021 Cosmic Frontier: The landscape of cosmic-ray and high-energy photon
probes of particle dark matter”, 2203.06894.

[540] E. Berti et al., “Dark Matter In Extreme Astrophysical Environments”, in 2022 Snowmass Summer Study, 3,
2022, 2203.07984.

[541] S. Chakrabarti et al., “Snowmass2021 Cosmic Frontier White Paper: Observational Facilities to Study Dark
Matter”, in 2022 Snowmass Summer Study, 3, 2022, 2203.06200.
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