
Exploring Data Corruption Inside SZ
Ruiwen Shan and Jon C. Calhoun,

Holcombe Department of Electrical and Computer Engineering - Clemson University, Clemson, SC, USA
rshan@clemson.edu, jonccal@clemson.edu

Abstract—Due to the increasing scale of scientific research,
scientists need to collect massive amounts of data to solve
complex scientific problems. The exponential growth of data poses
significant challenges to high-performance computing (HPC)
systems in terms of their computational ability, storage capacity,
and transmission bandwidth. Data reduction techniques such
as data compression have become one of the most promising
solutions to these problems. Error-bounded lossy compression is
now commonly utilized in HPC systems to substantially reduce
data volume while precisely maintaining data accuracy. However,
the majority of research was done on improving compression
efficiency, such as compression ratio, and insufficient attention is
paid to the security of the compression process.

In this paper, we concentrate on the impact of corruption
on error-bounded lossy compressor SZ, including corruption
due to transient failures of hardware and corruption injected
by malicious users. We analyze and quantify the influence
of this corruption on compressed datasets by simulating the
corruption errors that occur in the regression coefficient values
and computation during compression using four failure models.
The results demonstrate that SZ’s prediction-based design makes
it sensitive to corruption of the regression coefficients. A single
bit-flip in the regression coefficients can result in noticeable error
propagation, in some cases, the compression ratio fluctuates up
to 0.28%, but peak signal-to-noise ratio(PSNR) drops to negative
levels.

Index Terms—High-performance computing, Lossy compres-
sion, Data security, Silent Data Corruption

I. INTRODUCTION

During the past few decades, the difficulty of conducting
scientific research solely through theory and experiment has
gradually increased. It is common for scientists to utilize
numerical algorithms to simulate the real world in order
to solve challenging problems. High-performance computing
(HPC) has become a crucial tool of scientific study due to
its robust computational capabilities. As a vital component
of science and technological innovation, HPC is widely used
in many fields including weather forecasting, high-energy
physics, life sciences, etc. However, several challenges have
emerged with the widespread adoption of HPC systems in
various fields. Scientific data generated by large-scale systems
is primarily floating-point data and can be extremely large,
sometimes exceeding petabytes in size. For example, the last
Earth System Model for the Coupled Model Intercomparison
Project Phase (CMIP) 5 collected model data from roughly
30 institutions and constructed a database of approximately
1.6 petabytes to complete the climate simulation [1]. The
newer model CMIP6 is anticipated to generate 20 to 40
petabytes of data, mainly depending on the number of the
resolution of the models [2]. Such a large dataset imposes

a non-negligible burden on the system, such as insufficient
storage space, limited I/O bandwidth, and more frequent silent
data corruptions (SDC) [3]. In fact, it is almost impossible to
store raw data directly because of restrictions associated with
bandwidth and storage capacity [4]. One typical instance is
the Linear Coherent Light Source (LCLS), a free-electron laser
light source facility at SLAC National Accelerator Laboratory.
The LCLS produces raw data at a rate of 250 GB/s and
requires thousands of discs to sustain the data rate [5].

Data compression is a promising method of data reduction
that can substantially alleviate issues related to I/O bottlenecks
and limited storage space in HPC systems. Compared to loss-
less compression, error-bounded lossy compression (EBLC) is
often preferred to manage large-scale data as it offers higher
compression ratios(CRs) and accurate error control [6]. In
fact, there is a common acceptance of information loss in
practical applications. For example, when using the Particle-in-
Cell (PIC) method to simulate particle acceleration in plasma,
scientists use numerical plasma containing heavy macroparti-
cles to reduce the amount of injected macro particles in order
to lower the complexity of the problem [7]. The cutting-edge
error-bounded lossy compressors, such as SZ [8]–[10] and
ZFP [11], are capable of achieving CRs of 10–1000× when
working with scientific datasets.

As EBLC data increasingly becomes common place, new
issues arise with respect to its reliability and security. Prior
work shows that lossy compressed data is vulnerable to tran-
sient data corruption, where a single bit-flip in a compressed
data file can make it unreadable or induce error, rendering it
unusable for scientific purposes [12]. While this study looked
are corruption in the compressed file, the computation required
to compress the data is still vulnerable [13], [14].

There are two main scenarios that may lead to corruption
while running lossy compressors: the active case and the
passive case. The active case refers to malicious attackers
intentionally injecting faults into the compressor itself by
modifying code or injecting corruption into actively used data
buffers. In the passive case, silent errors occur as a result of
hardware issues, such as unstable internal states resulting from
a cosmic ray [13]. In either case, as long as the user does
not perceive the presence of errors, the compressed dataset
deviates silently. For a prediction-based lossy compressor such
as SZ, the corruption is propagated as new values are predicted
or recovered during decompression. In the most severe case,
other researchers may use corrupted data for subsequent data
analysis and interfere with critical studies.

Although several approaches have been developed for en-

suring data integrity for SZ compressors, such as block-wise
error detection [14] and partial encryption during compres-
sion [15], these schemes limit the level of protection to key
data structures and computations. Thus, the correctness of
the compression parameters is neglected. Moreover, general
purposes methods such as ARC do not protect compressed
data while it is being generated [12].

To provide a better understanding of the sensitivity of data
lossy compressed with SZ, we explore the impact of active
and passive corruption in areas left unprotected by previous
methods. Our main contributions are summarized as follows:

• We carefully analyze the workflow of SZ and set up two
coefficient-centric failure scenarios during the compres-
sion process: system-level computation errors and code-
level corruption injection.

• We implement four fault injection schemes to simulate
coefficient-targeted bit-flip errors and malicious attacks
then quantify the impact of these corruptions on com-
pressed datasets. The results show that even a single bit-
flip in regression coefficients can compromise the correct-
ness of the entire dataset, allowing errors to dominate the
dataset and rendering the decompressed data completely
invalid for post hoc analysis.

The rest of the paper is organized as follows. In Section II,
we analyze the cause and location of the corruption in SZ.
Next, we present our fault inject methods and use cases
in Section III. Section IV evaluates our fault models and
quantifies the severity of the unprotected data regions. Finally,
we discuss related work in Section V and conclude the paper
in Section VI.

II. ANALYSIS OF SZ

A. SZ Lossy Compression

SZ is one of the most advanced error-bounded lossy com-
pressors available in the field of scientific data compression
today [8]–[10]. There are four major steps involved in SZ
compression: 1) Data prediction. SZ divides the entire dataset
into fixed-size blocks and then selects a more appropriate pre-
diction function to predict future data values within each block
in accordance with the results of the sampling method. We note
that when using certain predictors, such as liner regression,
additional data needs to be saved. In the case of linear regres-
sion, the regression coefficients are compressed separately. 2)
Linear-scale quantization. With the user-specified error bound
(eb), SZ quantifies the difference between the predicted value
and the original data point as an integer (quantization index).
3) Variable-length encoding. Encodes the quantization indices
using Huffman encoding. 4) Lossless compression. Enhance
the compression ratio(CR) by using lossless compression.

B. Corruption Cause and Timing

The robustness of SZ against corruption is limited, as it
is a prediction-based lossy compressor. In other words, if a
deviation occurs in the prediction of one value, the propagation
of this error in the subsequent compression process could lead

to catastrophic results. Generally, these initial deviations are
caused by two factors:

• Malicious attack. HPC systems process scientifically
critical data as well as privacy information [16], which
makes them vulnerable to malicious users. In this case,
users with ulterior motives can massively alter or inval-
idate correct data by injecting corruption directly into
the binary executable or running memory state, thereby
yielding inaccurate results.

• System malfunctions. A typical example is bit-flip [13].
This type of error could have a direct impact on the logic
of the program and the result of the running process if it
occurs in an important place. In the case of SZ, a bit-flip
in one value could cause deviations in the next prediction
step, ultimately leading to a reduced CR, loss in PSNR,
or errors beyond the range specified by the user. Because
the chance of multi-bit errors is low even in HPC systems,
we only consider single bit-flips [17].

SZ compresses the predictor coefficients in a separate
pipeline to increase the CR. Specifically, SZ uses the adjacent
coefficients of the same type to predict the current coefficients,
quantizing the difference before applying Huffman encoding.
Prior research develops strategies to detect and correct errors
of critical data structures and computations in SZ but claims
that errors in the coefficients have little impact on the CR
and the accuracy of the compressor, as they only occupy a
small portion of the overall memory and the same coefficients
are used for compression and decompression [14]. However,
our results show that the correctness of these parameters also
merits concern, as their accuracy directly affects the overall
lossy compressor performance. Consider the following two
scenarios regarding the timing of errors:

• Timing 1: Corruption occurs while quantizing the coeffi-
cients. SZ verifies the decompressed data remains within
a predictable range. In this case, if the decompressed data
becomes unpredictable, the coefficients are saved, and an
increasing amount of unpredictable data could degrade
the compressibility of the entire dataset. However, if
the data remain inside the predictable range, inaccurate
quantization values leads SZ to use different coefficients
for compression and decompression. As a result, the
decompressed dataset is not valid.

• Timing 2: Corruption leads to deviation in the quanti-
zation index. In this case, corruption appear after the
double-checking process has been conducted based on
the correct quantization value. Theoretically, this type
of fault does not significantly affect the CR, however,
incorrect coefficients can cause serious deviations from
the intended result during decompression.

The ramifications of corruption vary depending on when
and where it occurs. The next section provides a detailed
discussion of the significance of when and where.

III. CORRUPTION MODELING AND INJECTION METHODS

The most common technique for determining how cor-
ruption impacts a specific application is fault injection [18].

The quantization process of SZ for regression coefficients is
presented in Algorithm 1. For it, we design two scenarios
for corruption injection based on a careful study of the
compression process of SZ:

• Scenario 1: Red color in Algorithm 1. Flip one bit
in a random regression coefficient. A random value is
generated to determine which regression coefficient to
select. This scenario represents the most common method
of transient fault injection.

• Scenario 2: Orange color in Algorithm 1. Flip a particular
bit of each coefficient to simulate injecting errors that
modify code and transient errors in loop computation.

These two scenarios combined with the timing of the two
error occurrences discussed in Section II-B yield four schemes
for corruption injection:

1) S1+T1: The quantization index of a random coefficient
is flipped by one bit during the quantization process.
There is still a possibility of avoiding additional corrup-
tion after the bit is flipped, as the decompressed coeffi-
cient’s value has not yet been calculated and categorized
as predictable or not. In the case that the decompressed
value exceeds the quantization range after the bit flip,
the unpredictable coefficient is stored directly. This
injection scheme has a negligible effect on the overall
algorithm. Conversely, if the coefficient remains within
the quantization range after the flip, the accuracy of the
subsequent coefficients are compromised. Additionally,
the location of the erroneous coefficient within the
quantization array determines the extent to which it
impacts the overall compression process (further ahead
causes more corruption).

2) S1+T2: Flip one bit at a random coefficient before
storing the correct quantization index. SZ has completed
the prediction verification process at this point, therefore
it cannot detect any changes to the index. Thus, the
coefficient used during decompression differs from the
one used when compressing. As a result, the value
of the decompressed data points corresponding to this
coefficient can become unusable.

3) S2+T1: The indexes of all regression coefficients suffer a
single bit-flip during quantization. In this case, attackers
manipulates the code to modify statement(s) in the
for loop that processes the coefficients. Although some
of the coefficients may be rectified (see S1+T1), the
probability of correcting them all is negligible.

4) S2+T2: Flip one bit in all regression coefficients before
storing quantization indexes. This scenario yields the
worst outcomes. On the one hand, there is no follow-up
check or protection mechanism to remedy this situation,
which conceivably introduces substantial corruption with
the compressed data file. On the other hand, the user
may not be aware of this situation, resulting in the
decompressed dataset misleading research directions or
even interrupting the research process.

Algorithm 1: Quantization process of SZ3 [10].
Input: Regression coefficients coef , error-bound for coefficients

ebrc, predicted value from the adjacent coefficient p
Output: Quantization index array for regression coefficients
for c in coef do

diff ← c− p;
quant bin← diff/ebrc;
S1: Single bit-flip in quant bin.
if quant bin < bin capacity then

Calculate the decompressed value D
if |D − c| > ebrc then

S2: Single bit-flip in quant bin.
Save quant bin;

end
else

Save c as unpredictable;
end

end

IV. EVALUATION RESULTS

A. Experimental setup

We conduct a series of experiments to comprehensively
explore how corruptions in regression coefficients affect com-
pressed datasets. We perform various experiments on Clemson
University’s Palmetto Cluster, where each node consists of two
2.4GHz Intel Xeon Gold 6148 processors and 376GB of RAM.

For our experiments, to ensure the results are applicable to
datasets of various data types and features, we test on datasets
from SDRBench [19]. In particular, we use CLOUDf48 from
the Hurricane Isabel simulation, dark matter density (to be
called Nyx for simplicity) from Nyx [20], T from atmospheric
modeling code SCALE-LetKF [21], and diffusivity (to be
called D) from Miranda [22]. Table I details properties of each
dataset.

TABLE I: Attributes of the datasets used in experiments.
Dataset Type Dimensions Size Description

CLOUDf48 float 100×500×500 95.37MB Cloud moisture mixing ratio
Nyx float 512×512×512 527MB Dark matter density

T float 98×1200×1200 61MB Temperature
D double 256×384×384 288MB Rayleigh-Taylor simulation

We utilize SZ3 [23] with absolute error bound mode since it
is the most recent version of SZ. In the configuration file, we
select Lorenzo and Linear regression as prediction methods
and implement all four error injection methods proposed in
Section III. We compile all of our code with GCC-8.5.0.

Before presents results, we note one special case when
injecting. A bit-flip in the most significant bit of the index
value generates a negative value. The absolute value is used for
all subsequent calculations as part of the original quantization
process. Flipping this bit results in segmentation faults. We
note that all runs flipping this bit resulted in a segmentation
fault. A bit-flip in the most significant bit results in a negative
quantization index, while SZ only considers positive indexes
when compressing data. Consequently, in all of our experi-
ments, we exclude injections into this bit position. Table II
indicates the baseline CR and PSNR for each dataset during
our experiment. All data presented in Section IV are the

outcomes of 1000 rounds of random corruption injection for
each dataset.

TABLE II: Baseline CR and PSNR with eb=1E-3
Dataset CR PSNR

CLOUDf48 2824.4598 36.4495
Nyx 2.7233 147.9646

T 8.4107 107.2911
D 130.3103 79.6729

B. Method 1: S1+T1

Figure 1 summarizes the CR changes for our first method.
Error bars indicate the standard deviation. Among the four
datasets, CLOUDf48 shows the most fluctuation in the com-
pression ratio(CR). However, it still maintains a CR of greater
than 99.99%. There are also some volatile trends observed in
D’s CR, but it is considerably smaller than that of CLOUDf48.
In general, Nyx and T’s CRs are stable at 99.998% and
100.005%, respectively, of their original values. There is a
positive correlation between the original CR of the dataset
and the degree to which it is affected after fault injection.
That is, the higher the original CR, the more vulnerable it is
to corruptions. According to the result in Table II, CLOUDf48
has a high compressibility and, consequently, more regression
coefficients. On the one hand, the large number of coefficients
makes it more sensitive to the presence of corruptions in the
coefficients. On the other hand, the location of the coefficients
conduct bit-flips becomes one of the criteria that affect the CR.
To Nyx and T, which bit of which coefficient is flipped has
little impact in terms of the overall CR. For datasets where
the majority of the data points are unpredictable, such as Nyx,
a bit-flip in one coefficient can have a limited impact.

All of the datasets retain 99.99% of the corruption free
baseline PSNR, which means a single bit-flip in the quantiza-
tion of the regression coefficients, such as the occurrence of a
computational error, does not cause a degradation in image
quality. Additionally, compression against T over-preserves
the user-set eb after fault injection. Overly strict eb generally
causes a reduction in CR and results in a larger compressed
dataset. However, in our case, the CR does not decrease
significantly as the range of eb is narrowed by only 1E-5.

TABLE III: Method 1 PSNR and Max Absolute with eb=1E-3
Dataset PSNR Max Absolute error

CLOUDf48 36.4495 (100%) 1E-3
Nyx 147.9644 (99.99%) 1E-3

T 107.2910 (99.99%) 0.00099
D 79.6729 (100%) 1E-3

C. Method 2: S1+T2

In this case, we inject corruption in one random bit of a
random coefficient. Figure 2 and Figure 3 show the result
for CR and PSNR, respectively. The red line in each figure
represents the original CR and PSNR.

We conclude that Method 2 has the greatest impact on
CLOUDf48. However, even in the worst case, the CR is
reduced by only 0.28%. Nyx shows the smallest change, with

0 4 8 12 16 20 24 28
bit

99.996

99.998

100.000

100.002

100.004

Co
m

pr
es

sio
n

ra
tio

(%
)

CLOUDf48

0 4 8 12 16 20 24 28
bit

100.0185
100.0186
100.0187
100.0188
100.0189
100.0190
100.0191
100.0192

Co
m

pr
es

sio
n

ra
tio

(%
)

D

0 4 8 12 16 20 24 28
bit

100.0045
100.0046
100.0047
100.0048
100.0049
100.0050
100.0051
100.0052

Co
m

pr
es

sio
n

ra
tio

(%
)

T

0 4 8 12 16 20 24 28
bit

99.995

99.996

99.997

99.998

99.999

100.000

Co
m

pr
es

sio
n

ra
tio

(%
)

Nyx

Fig. 1: Percentage of the original Compression Ratio for
Method 1 compared to the corruption free baseline.

0 4 8 12 16 20 24 28
bit

2816
2818
2820
2822
2824
2826
2828
2830
2832

Co
m

pr
es

sio
n

Ra
tio

CLOUDf48

0 4 8 12 16 20 24 28
bit

130.30

130.31

130.32

130.33

130.34

130.35

Co
m

pr
es

sio
n

Ra
tio

D

0 4 8 12 16 20 24 28
bit

8.4106
8.4107
8.4108
8.4109
8.4110
8.4111
8.4112
8.4113

Co
m

pr
es

sio
n

Ra
tio

T

0 4 8 12 16 20 24 28
bit

2.723265
2.723270
2.723275
2.723280
2.723285
2.723290
2.723295
2.723300

Co
m

pr
es

sio
n

Ra
tio

Nyx

Fig. 2: Compression Ratio for Method 2. Red line indicates
Baseline’s compression ratio.

the CR only changing by 0.0011% in the worst case. This is
consistent with the properties of the dataset, where CLOUDf48
has a high compressibility and Nyx is hard to compress. In
terms of PSNR, an corruption in the coefficients results in a
PSNR lower than the original value. In general, the higher
the bit where a flip occurs, the greater the adverse effect on
PSNR. However, flipping which bit is not the only factor that
influences the compression result. In this scheme, we also
randomly choose the coefficients to perform bit-flipping, so
the position of this coefficient in the overall coefficient array
also needs to be taken into account. For dataset T, the PSNR
value cannot be calculated after flipping the bit above the 16th
bit. This is due to the introduction of an excessive number
of errors to the coefficients and the floating-point exceptions
yield invalid values such as NAN when calculating the offset
between the decompressed data point and the original data.

0 4 8 12 16 20 24 28
bit

120
100
80
60
40
20
0

20
40

PS
NR

CLOUDf48

0 4 8 12 16 20 24 28
bit

60
40
20
0

20
40
60
80

PS
NR

D

0 4 8 12 16 20 24 28
bit

700
600
500
400
300
200
100

0
100

PS
NR

T

0 4 8 12 16 20 24 28
bit

200

100

0

100

PS
NR

Nyx

Fig. 3: PSNR for different datasets after applying method 2.

The results indicate that CRs fluctuate up to a maximum of
0.2% while the PSNR values decrease significantly, sometimes
reaching negative levels. The user cannot determine whether
the compression is successful based on the file size if an
attacker decides to compromise the data by injecting one
corruption. Only after decompression does the user realize that
the dataset is dominated by errors and is no longer usable.

D. Method 3: S2+T1

Table IV shows the average metics obtained from 1000
corruption injection trials for each dataset. From Table IV, we
observe that among the four datasets, only Nyx still adheres
to the user-set error bound (eb=1E-3) after the coefficients are
corrupted. Nyx respects the error bound because of its own
properties. It is a dataset primarily composed of unpredictable
data, which is stored losslessly. Thus, it originally has a low
CR of 2.72×, which is far below the other three datasets.
Less predictable data reduces the total number of regression
coefficients as well as the likelihood that introducing too much
error when the coefficient changes. Dataset T is over-preserved
yielding a PSNR that is 0.294% better than the baseline.
CLOUDf48 performs better than D. However, it still decreases
to below 30 dB, exhibiting poorer image quality.Changes in
coefficients lead to a serious distortion in dataset D, which
exceeds more than 105× the original error bound, ruining the
fidelity of the decompressed dataset. We use “-” to represent
a negative PSNR here. It means that the decompressed dataset
has too much noise and is not informative with respect to the
original one. This result is consistent with the max absolute
error for each decompressed dataset.

Investigating the impact on CR, Nyx and T retain more
than 99% of the original CR, while the CR of CLOUDf48
is severely damaged. The reason is that CLOUDf48 contains
over 99% predictable data when the error bound is 1E-3.
Moreover, the efficiency of compressing coefficients is also
important. Our experiments indicate that in this case, even if

TABLE IV: Compression Ratio and PSNR of Method 3
compared to the Baseline with eb=1E-3.

Dataset CR(%) PSNR(%) Max Absolute error
CLOUDf48 6.655 76.167 0.0038

Nyx 99.041 99.998 1E-3
T 100 100.294 0.00099
D 52.492 – 120

only the least significant bit of all coefficients of CLOUDf48
is corrupted, these coefficients enter the unpredictable branch
during double-checking. It is also apparent from this result
that the original coefficients of CLOUDf48 are concentrated
at the edge of binmax, which allows for a high CR during
the subsequent encoding and lossless compression process.
As a result of Method 3, the compressor now has to save
all regression coefficients as unpredictable, resulting in a
precipitous drop in the CR.

E. Method 4: S2+T2

Table V shows the results for Method 4. While all datasets
are successfully compressed, none of them maintain accuracy
within the user-specified error-bound. Nonetheless, the CR of
all datasets is generally preserved in this case. The reason
is that we do not recalculate and correct the bin in which
the decompressed data is located. Thus, it does not affect the
coefficient quantization as no data that was predictable enters
the unpredictable range. In summary, there is no noticeable
change in the CR when utilizing this fault injection strategy.
The tiny differences in the CR result from the subsequent
processes (encoding and lossless) performed on the error-
injected index. However, the size of regression coefficients is
relatively small compared to the whole dataset and has only a
minor impact on the overall CR.

TABLE V: Compression Ratio and PSNR of Method 4 com-
pared to the Baseline with eb=1E-3.

Dataset CR(%) PSNR Max Absolute error
CLOUDf48 100.023 -54.605494 3.8

Nyx 100.001 -206.188119 1.40E+17
T 99.99 -607.718888 8.60E+34
D 100 0.526726 19

From an attackers perspective, the compression is successful
based on CR, but the data is useless. Scientists would never
know their data is corrupted until they investigate. The results
are consistent with our assumptions in Section III, as this
time we inject the error after the double-checking mechanism,
and there is no method in SZ for detecting or correcting
this type of error. In this situation, the compressor incorrectly
believes it is still processing the data correctly but in fact it
has been tampered with. This is risky due to the large number
of errors added to the data while decompressing, and the error
magnitude greatly exceeded the user’s tolerance. Besides, three
datasets exhibit negative PSNRs, whereas D’s PSNR is very
close to 0 indicating invalue decompressed data.

V. RELATED WORK

With the popularity of HPC systems and the exponential
growth of scientific data, many lossy compressors [8]–[11]
have been developed over the past few years. Despite this,
few studies have been conducted to examine how corruption
occurs during lossy compression and its repercussions.

According to Li et al., [14], lossy compressor SZ does
not exhibit resiliency to silent errors during data compression
and transmission. They analyze the possible errors that could
arise during each stage of SZ and the associated conse-
quences, then design an independent block-wise model based
on the SZ’s framework as well as a set of strategies to
detect and correct these errors. However, their paper only
accounts for computational errors when targeting the regres-
sion coefficients. They state that since the coefficients used in
compression and decompression are identical, computational
errors do not affect the validity of the decompressed data.
Besides, regression coefficients only occupy a small volume
of memory, thus no additional precautions are necessary. In
contrast, this paper concentrates on the corruptions of the valid
regression coefficients, analyzing and qualifying the impact of
employing different coefficients during the compression and
decompression process, which is one of the cases that has not
been covered in their paper.

LCFI [24] is an error injection tool designed to understand
the error propagation in lossy compressors on HPC applica-
tions, this tool can inject a fault at any given time and location.
Their experiments investigate the effect of precision loss on
various HPC benchmarks by injecting faults into the program
to simulate the errors induced by lossy compression. A series
of Data-analytic Based Fault Tolerance methods (DBFT) based
on end-to-end SDC detection methods are proposed by Li
et al. [3]. The core idea of these approaches is to compare
the predicted data and decompressed data(or snapshot data)
to check whether the latter meets the user-set error bound.
These detection methods are able to detect potential SDC
occurring at each time step. ARC [12] protects compressed
data only after it has been fully compressed which leaves the
compression/decompression operations vulnerable.

VI. CONCLUSION

The massive volume of data in HPC systems poses problems
of storage space and I/O bottlenecks. While error-bounded
lossy compression is a reliable and efficient way to reduce
the size of datasets, it is also vulnerable to faults and attack.
In this paper, the relationship between the error in regression
coefficients and the correctness of compressed datasets is
investigated by several fault injection methods. The results
demonstrate that even though the prediction coefficients oc-
cupy only a small fraction of the total data, once errors
occur, the compressor cannot accurately control the introduced
errors within user-specified error bounds, and metrics such as
compression ratio can still be dramatically affected. Malev-
olent users can invalidate compressed datasets with a minor
adjustment. Moreover, datasets can retain their compression
ratio while the accuracy is fully compromised.

ACKNOWLEDGMENTS

This research was supported by the U.S. National Science Foun-
dation under Grants SHF-1910197 and SHF-1943114.

REFERENCES

[1] M. Stockhause and M. Lautenschlager, “Cmip6 data citation of evolving
data,” Data Science Journal, vol. 16, 2017.

[2] V. Eyring, S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, R. J. Stouffer,
and K. E. Taylor, “Overview of the coupled model intercomparison
project phase 6 (cmip6) experimental design and organization,” Geo-
scientific Model Development, vol. 9, no. 5, pp. 1937–1958, 2016.

[3] S. Li, S. Di, K. Zhao, X. Liang, Z. Chen, and F. Cappello, “Towards
end-to-end sdc detection for hpc applications equipped with lossy com-
pression,” in 2020 IEEE International Conference on Cluster Computing
(CLUSTER). IEEE, 2020, pp. 326–336.

[4] F. Cappello, S. Di, S. Li, X. Liang, A. M. Gok, D. Tao, C. H. Yoon, X.-
C. Wu, Y. Alexeev, and F. T. Chong, “Use cases of lossy compression
for floating-point data in scientific data sets,” The International Journal
of High Performance Computing Applications, vol. 33, no. 6, pp. 1201–
1220, 2019.

[5] G. Marcus, Y. Ding, P. Emma, Z. Huang, J. Qiang, T. Raubenheimer,
M. Venturini, and L. Wang, “High fidelity start-to-end numerical particle
simulations and performance studies for lcls-ii,” in Proceedings, 37th
International Free Electron Laser Conference (FEL 2015): Daejeon,
Korea, August 23-28, 2015.

[6] J. Wang, T. Liu, Q. Liu, X. He, H. Luo, and W. He, “Compression ratio
modeling and estimation across error bounds for lossy compression,”
IEEE Transactions on Parallel and Distributed Systems, vol. 31, no. 7,
pp. 1621–1635, 2019.

[7] A. Pukhov, “Particle-in-cell codes for plasma-based particle accelera-
tion,” arXiv preprint arXiv:1510.01071, 2015.

[8] S. Di and F. Cappello, “Fast error-bounded lossy hpc data compression
with sz,” in 2016 ieee international parallel and distributed processing
symposium (ipdps). IEEE, 2016, pp. 730–739.

[9] D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,” in 2017 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 2017, pp.
1129–1139.

[10] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,
“Error-controlled lossy compression optimized for high compression
ratios of scientific datasets,” in 2018 IEEE International Conference
on Big Data (Big Data). IEEE, 2018, pp. 438–447.

[11] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE trans-
actions on visualization and computer graphics, vol. 20, no. 12, pp.
2674–2683, 2014.

[12] D. Fulp, A. Poulos, R. Underwood, and J. C. Calhoun, “Arc: An
automated approach to resiliency for lossy compressed data via error
correcting codes,” in Proceedings of the 30th International Symposium
on High-Performance Parallel and Distributed Computing, ser. HPDC
21. New York, NY, USA: Association for Computing Machinery, 2021,
p. 57–68. [Online]. Available: https://doi.org/10.1145/3431379.3460638

[13] M. Snir, R. W. Wisniewski, J. A. Abraham, S. V. Adve, S. Bagchi,
P. Balaji, J. Belak, P. Bose, F. Cappello, B. Carlson et al., “Addressing
failures in exascale computing,” The International Journal of High
Performance Computing Applications, vol. 28, no. 2, pp. 129–173, 2014.

[14] S. Li, S. Di, K. Zhao, X. Liang, Z. Chen, and F. Cappello, “Resilient
error-bounded lossy compressor for data transfer,” in Proceedings of the
International Conference for High Performance Computing, Networking,
Storage and Analysis, 2021, pp. 1–14.

[15] R. Shan, S. Di, J. C. Calhoun, and F. Cappello, “Exploring light-
weight cryptography for efficient and secure lossy data compression,” in
2022 IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 2022, pp. 23–34.

[16] S. Peisert, E. Dart, W. Barnett, E. Balas, J. Cuff, R. L. Grossman,
A. Berman, A. Shankar, and B. Tierney, “The medical science dmz:
a network design pattern for data-intensive medical science,” Journal
of the American Medical Informatics Association, vol. 25, no. 3, pp.
267–274, 2018.

[17] H. Schirmeier, C. Borchert, and O. Spinczyk, “Avoiding pitfalls in fault-
injection based comparison of program susceptibility to soft errors,” in
2015 45th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. IEEE, 2015, pp. 319–330.

[18] Z. Li, H. Menon, D. Maljovec, Y. Livnat, S. Liu, K. Mohror, P.-T.
Bremer, and V. Pascucci, “Spotsdc: Revealing the silent data corruption
propagation in high-performance computing systems,” IEEE Transac-
tions on Visualization and Computer Graphics, vol. 27, no. 10, pp.
3938–3952, 2020.

[19] K. Zhao, S. Di, X. Lian, S. Li, D. Tao, J. Bessac, Z. Chen, and
F. Cappello, “Sdrbench: Scientific data reduction benchmark for lossy
compressors,” in 2020 IEEE International Conference on Big Data (Big
Data). IEEE, 2020, pp. 2716–2724.

[20] L. et al., “methods: numerical, intergalactic medium, quasars: absorption
lines, large-scale structure of universe,” journal of Monthly Notices of
Royal Astronomical Society.

[21] “Scalable computing for advanced library and environment-regional
model,” https://scale.riken.jp/scale-rm.

[22] W. H. Cabot and A. W. Cook, “Reynolds number effects on rayleigh–
taylor instability with possible implications for type ia supernovae,”
Nature Physics, vol. 2, no. 8, pp. 562–568, 2006.

[23] X. Liang, K. Zhao, S. Di, S. Li, R. Underwood, A. M. Gok, J. Tian,
J. Deng, J. C. Calhoun, D. Tao et al., “Sz3: A modular framework
for composing prediction-based error-bounded lossy compressors,” IEEE
Transactions on Big Data, 2022.

[24] B. Shan, A. Shamji, J. Tian, G. Li, and D. Tao, “Lcfi: A fault injection
tool for studying lossy compression error propagation in hpc programs,”
in 2020 IEEE International Conference on Big Data (Big Data). IEEE,
2020, pp. 2708–2715.

