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Abstract

Although shallow ( < 1.5 m) soil water storage has been extensively studied, the signif-
icance of deeper unsaturated zone water storage to flow generation is poorly docu-
mented. However, a limited but growing body of empirical work shows that the
weathered bedrock vadose zone, not soil, stores the majority of plant available water
in many seasonally dry and semi-arid landscapes. Moreover, this storage dynamic
mediates recharge to hillslope groundwater systems that generate stream discharge
and support ecologically significant baseflows. Explicit representations of bedrock
vadose zone processes are rarely incorporated into runoff models, due in part to a
paucity of observations that can constrain simulations. Here, we develop a simple
representation of the weathered bedrock vadose zone that is guided by in situ field
observations. We incorporate this representation into a rainfall-runoff model, and
calibrate it on streamflow alone, on rock moisture (i.e., weathered bedrock vadose
zone moisture) alone, and on both using the concept of Pareto optimality. We find
that the model is capable of accurately simultaneously simulating dynamics in rock
moisture and streamflow, in terms of Kling-Gupta Efficiency, when using Pareto opti-
mal parameter sets. Calibration on streamflow alone, however, is insufficient to accu-
rately simulate rock moisture dynamics. We further find that the posterior
distributions of some model parameters are sensitive to choice of calibration sce-
nario. The posterior distribution of high-performing model parameters resulting from
the streamflow only calibration scenario include physically unrealistic values that are
not yielded by the rock moisture only or Pareto calibration strategies. These results
suggest that the accuracy of some model results can be increased and parameter
uncertainty decreased via incorporation of rock moisture data in calibration, without
sacrificing streamflow simulation quality. Emerging recognition of the global signifi-
cance of weathered bedrock water storage in seasonally dry and semi-arid regions
motivates more observations of weathered bedrock moisture and integration of this
variable into earth system models.
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1 INTRODUCTION

Water storage is a key variable that governs catchment function
(e.g., Kirchner, 2009; McDonnell et al., 2018). For example, storage in
the vadose zone typically determines how much water is available for
plants and how frequently groundwater is recharged (Botter
et al., 2007; Porporato et al., 2004; Rempe & Dietrich, 2018; Salve
et al., 2012). Release from groundwater systems can drive floods and
sustain ecologically significant baseflow (e.g., Zipper et al., 2019). Yet,
compared to relatively common measurements of discharge, direct
measurements of catchment storage, especially of the vadose zone
moisture below the soil mantle, at spatial scales relevant to hydrologi-
cal modelling and management are logistically challenging to obtain
and are therefore relatively rare.

Without constraints on model parameter ranges used in calibra-
tion, models with various representations and parameterizations of
the hillslope “black box” (including both its runoff generation mecha-
nisms and storage state) can nonetheless produce adequate predic-
tions of streamflow (Bouaziz et al., 2020; Hartmann et al., 2013; Koch
et al., 2016; Koppa et al., 2019; Rakovec, Kumar, Mai, et al., 2016, as
judged through error metrics such as the Nash-Sutcliffe efficiency
(NSE; Nash and Sutcliffe (1970)) and Kling-Gupta efficiency (KGE;
Gupta et al. (2009)). However, other components of the hydrologic
system (such as state variables or internal fluxes) may not be suffi-
ciently resolved if the model is constrained on streamflow observa-
tions alone. Bouaziz et al. (2020) simulated streamflow in the Meuse
basin with 12 hydrologic models with similar performances in simulat-
ing streamflow; these models yielded very different internal states,
which cannot all simultaneously be accurate. Hartmann et al. (2013)
found that there is not enough information in streamflow to identify
relevant processes via modelling efforts in a karst system. Rakovec,
Kumar, Mai, et al. (2016) found ‘that constraining the model against
streamflow only may be necessary but not sufficient to warrant the
model fidelity for other complementary variables’. This so-called equi-
finality problem is undesirable when models are used to make predic-
tions under scenarios in which baseline drivers have shifted (non-
stationary behaviour, due to, for example, climate change or land use,
as detailed by Bouaziz et al. (2021)), and when accurate inferences of
internal parameters or state variables are important (Anderton
et al., 2002; Bouaziz et al., 2020; Heppner et al., 2007; Hrachowitz &
Clark, 2017). Multiple criteria analysis, or MCA, has emerged as a use-
ful tool which can help to reduce parameter uncertainty in hydrologic
models and potentially improve accuracy of multiple model results.
While MCA has been employed on multiple objective functions of
streamflow (Gupta et al, 1998; Pokhrel et al., 2012; Rosolem
et al., 2012), recent developments in remote sensing and the observa-
tion of hydrologically relevant fluxes and state variables (aside from
streamflow) has enabled MCA on novel components of the hydrologi-
cal system (Koppa et al., 2019; Lopez et al., 2017; Rakovec, Kumar,
Attinger, et al., 2016; Rakovec, Kumar, Mai, et al., 2016; Sadeghi
et al., 2020; Wanders et al., 2014).

In hillslopes, water storage can occur in the mobile, typically shal-
low soil, saprolite (which can be defined as a soil-like material that

nevertheless remains in situ and retains relict bedrock structures), and
within the fractures and pores of weathered bedrock, which has
undergone chemical and physical alteration relative to the fresh mate-
rial at depth 2 (e.g., Graham et al., 2010; Klos et al., 2018). The under-
lying fresh, unweathered bedrock is typically not considered as a
major contributor to streamflow or transpiration (e.g., Rempe &
Dietrich, 2014; Riebe et al., 2017). Hillslope scale field studies demon-
strate that weathered bedrock commonly routes runoff (e.g., Asano
et al, 2002; Blumstock et al., 2015; Frisbee et al., 2011; Hale
et al, 2016; Haria & Shand, 2004; Katsuyama et al., 2010;
Montgomery et al., 1997; Rademacher et al., 2005). However, water
storage within weathered bedrock is largely understood through infer-
ences made from streamflow chemistry (e.g., Soulsby et al., 2007) or
soil and groundwater observations (e.g., Appels et al., 2015; Freer
et al., 2002; Gabrielli et al., 2012; Safeeq et al, 2021; Smith
et al, 2011) and few studies quantitatively observe water storage
within weathered bedrock (e.g., Haria & Shand, 2004; Ireson
et al., 2006; Jardine et al., 1999; Salve et al., 2012). In addition to rou-
ting runoff, the weathered bedrock is thought to commonly serve as
an important plant-available water storage reservoir that mediates
recharge and runoff (Hahm, Rempe, et al. 2019; Lovill et al., 2018;
Salve et al.,, 2012), and is therefore a key control on catchment water
balance dynamics and precipitation partitioning. The role of the bed-
rock vadose zone is likely amplified in locations where long periods
without precipitation tend to increase vegetation reliance on deep
water sources (Dawson et al., 2020; Goulden & Bales, 2019; Rose
et al., 2003; Schwinning, 2010).

Using methods developed by Kirchner (2009) and Sayama
et al. (2011), Dralle et al. (2018) recently observed that seasonally
dynamic storage (i.e., seasonal gains and losses in total catchment
storage) at a seasonally dry (Mediterranean-type) catchment named
Elder Creek (in the northern California Coast Ranges) could be con-
ceptually sub-divided between two reservoirs: one reservoir that
directly drove hydraulic gradients leading to streamflow generation
(termed ‘direct storage’), and a second reservoir that was seasonally
dynamic but hydraulically disconnected from the stream (termed ‘indi-
rect storage’). Dralle et al. (2018) showed that the latter matched pre-
viously observed storage magnitudes (and temporal dynamics of
those volumes) in the unsaturated zone, which can be further divided
between storage in unsaturated soils (‘soil moisture’) and unsaturated
weathered bedrock (‘rock moisture’, which we spatially refer to as the
‘bedrock vadose zone’) (Rempe & Dietrich, 2018; Salve et al., 2012).
Surprisingly, the maximum observed dynamic storage in the indirect
storage reservoir (approximately 400 mm) far exceeded the volumes
in direct storage (approximately 100 mm), which was interpreted to
represent the deeper fractured-rock hillslope aquifer system that
feeds the stream through a network of seeps and springs (Lovill
et al., 2018). Furthermore, of the two components of indirect storage,
the seasonal rock moisture storage was found to be 4.7 times larger
than the seasonal moisture storage as soil moisture (Rempe &
Dietrich, 2018).

The observation that indirect storage can be the largest part of
seasonally dynamic storage—and that rock moisture can be the largest
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component of indirect storage—underscores how rock moisture can
play a central role in catchment hydrologic function. Consistent with
this role, rock moisture at the site has been argued to sustain dry sea-
son forest transpiration (Hahm, Rempe, et al., 2019; Oshun
et al,, 2012; Rempe & Dietrich, 2018), regulate solute export (Kim
et al., 2017), be the locus of root respiration Tune et al. (2020), deter-
mine ecosystem sensitivity to drought (Hahm, Dralle, et al., 2019), and
mediate recharge to the saturated zone (Rempe & Dietrich, 2018;
Salve et al., 2012).

How should rock moisture dynamics be incorporated into simple
catchment modelling frameworks? Does the incorporation of this
deep vadose zone storage dynamic as a modelling target reduce
uncertainty and improve accuracy in other model parameters and out-
puts? Do tradeoffs in model performance emerge when both storage
dynamics and discharge are constrained? Here, we approach these
questions by confronting a lumped catchment model with observa-
tions of both discharge and rock moisture dynamics. Rock moisture
dynamics are obtained from a unique vadose zone monitoring system
consisting of an inclined borehole with nine moisture sensors distrib-
uted throughout a 14 m thick weathered bedrock vadose zone. The
intensively monitored hillslope drains to the Elder Creek catchment in
the seasonally dry Northern California Coast Ranges. We formulate a
hydrological model based on existing conceptual understanding of
runoff generation and storage at the site. We find that when the
model is fit to discharge alone, storage parameters are poorly con-
strained and in general inaccurately describe storage dynamics. In
contrast, when the model is fit to both storage and discharge, model
error with respect to discharge remains low, yet model results
(in terms of accurately simulating rock moisture and constraining the
post calibration parameter space) are significantly improved.

2 SITE DESCRIPTION

Elder Creek, the study catchment where streamflow is measured and mod-
elled, is part of the Eel River Critical Zone Observatory (ERCZO) and lies
approximately 160 km north of San Francisco in the Northern California
Coast Ranges. Elder Creek (catchment area 16.9 km?) is a tributary to the
South Fork Eel River. Discharge has been monitored approximately 0.6 km
upstream from the catchment mouth continuously since October, 1967,
by the USGS (https : //waterdata.usgs.gov/nwis/uv?site,0 = 11475560).
Elder Creek is part of the USGS Hydrological Benchmark Network, a
collection of long-term monitoring watersheds with minimal anthro-
pogenic impact (Mast & Clow, 2000).

Rivendell, the study hillslope where rock moisture is measured, is
0.3 km upstream from the mouth of Elder Creek, and has been the site
of intensive hydrological (Oshun et al., 2016; Rempe & Dietrich, 2018;
Salve et al., 2012; Schmidt & Rempe, 2020; Vrettas & Fung, 2015),
ecological (Hahm, Rempe, et al., 2019; Link et al., 2014; Simonin
et al., 2014; Tune et al., 2020), and geochemical (Bilir et al., 2021;
Druhan et al.,, 2017; Kim et al., 2017) monitoring. Rivendell and the
lower portion of Elder Creek are situated on what is currently the Uni-
versity of California's Angelo Coast Range Reserve; the headwaters of
Elder Creek are Bureau of Land Management Wilderness area.

2.1 Climate

The study area experiences a Mediterranean climate (Peel et al., 2007)
with hot, dry summers and cool, wet winters with intense precipita-
tion. On average about 2000 mm of precipitation falls between the
months of November and May, with little to no precipitation during
the dry season (Daly et al., 2015). Snowfall is rare and melts a few days
after falling. The mean annual temperature is 12°C (Daly et al., 2008).

22 Vegetation

The plant community within the Elder Creek catchment is primarily
mixed broadleaf-needleleaf evergreen forest, with some chaparral on
south-facing, higher elevation slopes and some deciduous hardwoods
along the riparian zone. The watershed contains part of the largest
remaining old-growth Douglas fir (Pseudotsuga menziesii) forest in Cali-
fornia. Large, canopy-dominant Douglas fir tend to be concentrated
on north facing slopes and topographically convergent areas. Other
abundant trees in the watershed include madrone (Arbutus menziesii),
bay laurel (Umbellularia californica), live oaks (Quercus chrysolepis and
agrifolia), and tan oak (Notholithocarpus densiflorus) (Hahm, Rempe,
et al, 2019). Trees in the riparian zone include big leaf maple
(A. macrophyllum) and alder (Alnus).

23 Physiography

The catchment is steep, with a mean hillslope gradient of about 50%
(Lovill et al., 2018), and ranges from 385 to 1285 m above sea
level. Rivendell is a steep (approximately 62%), unchanneled, north-
facing hillslope (Lidar-derived hillshade is shown in Figure 1) (Oshun
etal., 2016).

24 Bedrock, soils

The watershed is underlain by steeply dipping deformed turbidite
sequences of the Coastal Belt of the Franciscan Complex (Ernst &
MclLaughlin, 2012; Jayko et al., 1989), consisting of interbedded argil-
lite (mudstone) and greywacke (sandstone), with minor conglomerate
(Hahm, Rempe, et al., 2019; Lovill et al., 2018). Hillslopes tend to be
soil-mantled, with some exposed rock outcrops on ridges, especially
those underlain by sandstone (Lovill et al., 2018; Oshun et al., 2016;
Rempe & Dietrich, 2018). Soil thickness is locally variable but typically
thin (0.5 m). Beneath the mobile soil lies an oxidized, highly fractured
saprolite (up to 4 m thick) that retains relict bedrock structure
(e.g., bedding planes), that transitions with depth to a progressively
less oxidized, fractured bedrock (Salve et al., 2012). Deep drilling has
revealed that the thickness of the weathered bedrock zone increases
from channel to the hillslope divide (Oshun et al., 2016; Rempe &
Dietrich, 2014; Salve et al., 2012). In the channel, fresh bedrock is
exposed in the bed, whereas at the ridgetop it can be 25-30 m deep
(see Figure 2).
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FIGURE 1 The Rivendell experimental hillslope (left) with coordinates in NAD83/UTM zone 10 N (EPSG:26910). Located at approximately
455 m elevation, the vadose zone monitoring system (VMS) is illustrated with a neon purple line. Blue dots are well locations where rock moisture
is surveyed via neutron probe. The Elder Creek catchment boundary (right) outlined in green with channel network in blue, based on Lovill

et al. (2018). The Rivendell hillslope location is denoted with an orange point

FIGURE 2 Conceptual cross-section
of the Rivendell hillslope, illustrating
subsurface weathering profile and
hydrologic zones and fluxes. Soil moisture
occurs within the thin mobile soil; rock
moisture occurs within the saprolite and
weathered bedrock. Seasonal
groundwater (blue shades) occurs within
the weathered bedrock above Z,, which
marks the boundary between weathered
' and fresh bedrock. Inverted triangles
Weathered > ; ! ::f-:note water table positions.
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25 Conventional hydrologic modelling data

The United States Geological Survey (USGS) Elder Creek gaging sta-
tion (gauge ID: 11475560) provides estimates of stream discharge
and is located about 200 m upstream from the instrumented hillslope.
Hydroclimatic forcing data for the model is derived from a weather
station approximately 0.5 km from the USGS gauge; this weather sta-
tion also provides air temperature. Precipitation is derived from a
Campbell Scientific Model TB4 tipping bucket rain gague. A correction
factor is applied to the rainfall time series to account for wind-induced
undercatch (Yang et al., 1998).

Potential evapotranspiration values are obtained with the Har-
greaves equation (Hargreaves & Samani, 1985):

PET =0.0023- (Tmean +17.8) - (Tmax — Trmin)*> -0.408 -Rext (1)

Here, PET is potential evapotranspiration (mm/d), Tmean is the
mean daily temperature (°C), Tmax and Tmin are respectively the maxi-
mum and minimum daily temperatures (°C), and Rey; is the extraterres-
trial solar radiation (W/m?), calculated using latitude and the day of
year via the procedure used by Allen et al. (1998). After the daily PET
is calculated, it is resampled to the hourly time step, such that the PET
is the same for each hour of a given day. Finally, all data are available
at the 15 min or smaller temporal resolution; after PET is calculated,
all forcing or calibration data are resampled to the hourly time step.
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The Hargreaves formulation is capable of giving PET values with-
out considering interception. However, because the Elder Creek
catchment contains significant vegetation, a procedure for estimating
interception should be implemented. To achieve this, the procedure
employed by Dralle et al. (2018) is used, where a value of 4 mm/d is
subtracted from all precipitation intensities (unless doing so would
reduce the precipitation intensity to a value less than O mm/d, in
which case the precipitation intensity is set to 0 mm/d). Because we
employ the hourly temporal resolution for forcing data, we subtract
up to 0.1667 mm/h from each step of the hourly undercatch
corrected precipitation data. All forcing or calibration time series are
shown for the entire modelling period in Figure 3.

2.6 Rock moisture data

Two unique observational capabilities at the Elder Creek watershed
exist to capture the dynamics of rock moisture storage. First, bore-
holes that span the unsaturated zone from channel to ridgetop enable
direct quantification of gains and losses in unsaturated weathered
bedrock (rock moisture) storage via monthly neutron probe surveys
(Rempe & Dietrich, 2018; Salve et al., 2012) and nuclear magnetic res-
onance campaigns (Schmidt & Rempe, 2020). Second, an inclined
borehole that spans the weathered bedrock unsaturated zone is out-
fitted with distributed time domain transmission (TDT) sensors for
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FIGURE 3 Hourly forcing and calibration data from the Elder Creek catchment used by the model. The entire modelling period is shown,
including the 0.8 year spin up period (beginning on 15 December 2015), the calibration period (water year 2017), and the validation period (water
year 2018). Upper left: Precipitation data, corrected for interception and undercatch. Upper right: Potential evapotranspiration data, calculated
with the Hargreaves equation. Lower left: Streamflow data. Lower right: Catchment average dynamic rock moisture data
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continuous monitoring of rock moisture dynamics as part of a
Vadose-zone Monitoring System (VMS) (Tune et al., 2020). The loca-
tion of the VMS is shown in Figure 1. The hillslope where the moni-
toring boreholes and VMS are located (named Rivendell) is broadly
representative of the Elder Creek catchment as a whole, which is simi-
larly composed of steep hillslopes bounded by debris-flow incised
channels, overlain by a dense old-growth plant community cover and
underlain by steely dipping turbidites (Hahm, Rempe, et al., 2019;
Lovill et al., 2018; Seidl et al., 1992). Here, we combine the quantita-
tive storage estimates from neutron probe surveys with the continu-
ous time series from the TDT sensors to arrive at a representative
rock moisture storage time series for the Elder Creek catchment. To
accomplish this, we first averaged the TDT time series for sensors
located in the unsaturated zone year-round (1.95, 3.64 and 5.22 m
depth) to capture the temporal pattern of storage accumulation and
depletion. We then normalized this relative time series using the
range of storage representative of the Rivendell hillslope (0-400 mm
annual storage) (Schmidt & Rempe, 2020), which is measured via neu-
tron probe in boreholes.

3 METHODS

For some catchments, the apparent importance of rock moisture's role
in providing water for plants and mediating recharge to groundwater
(and therefore generating streamflow) motivates inclusion of rock
moisture in hydrologic models. We develop a model that adheres to
observed dynamics within Elder Creek, and enables multi-criteria
comparison of model outputs to unique datasets available within the
Elder Creek watershed, including rock moisture and streamflow obser-
vations. In light of the hydrologic relevance of rock moisture, MCA on
both streamflow and rock moisture is a promising technique which
might reduce parameter uncertainty and improve accuracy beyond
streamflow in modelling efforts.

31 Pertinent hydrologic observations from
previous studies that guide model development

Previous studies have documented subsurface weathering profile
structure and associated water storage and runoff dynamics at the
Elder Creek watershed (Dralle et al., 2018; Hahm, Rempe, et al., 2019;
Lovill et al., 2018; Oshun et al., 2016; Rempe & Dietrich, 2014, 2018;
Salve et al., 2012). Based on detailed measurements (see Figure 1,
Rempe & Dietrich, 2018), Figure 2 depicts what we propose to be a
representative hillslope profile, with a relatively thin soil (typically
<1 m), underlain by a weathered bedrock layer that increases in thick-
ness from channel (approximately 0-2 m thick) to ridge (up to 30m
thick). Plant water use throughout the long, dry growing season
(May-October) generates large storage deficits in the (unsaturated)
root zone, at which point early wet season rainfall (October-
December) wets thin soils but also penetrates into the underlying sap-
rolite (Salve et al., 2012). Eventually in the wet season the soil mois-
ture climbs to an annual consistent maximum value of about 100 mm

of unsaturated storage (Rempe & Dietrich, 2018). Rainfall that infil-
trates beyond the soil wets up into unsaturated weathered bedrock
(which includes the upper most saprolite), which (much like the soils)
consistently wets to a seasonal maximum. However, maximum
observed dynamic water storage in the bedrock vadose zone ranges
from 100 mm near the channel to upwards of 600 mm near the ridge,
due to the great depth of the weathered bedrock. Following the sea-
sonal wetting of the unsaturated zone, primarily vertical flow
recharges the end of dry season groundwater developed in the
weathered bedrock above the fresh bedrock. Successive rainfall
events then leads to rapid rise of the groundwater by many meters.
This drives lateral transport through a network of fractures that
release water to channels primarily through discrete seeps and
springs. Although the weathered bedrock vadose zone is thick,
groundwater—and thus streamflow—response to precipitation is rapid
(on the order of hours) (Salve et al., 2012). Notably, changes in satu-
rated storage in the catchment directly impact streamflow (Dralle
et al., 2018), and overland flow is rare on hillslopes and has only been
observed as local saturation overland flow in some unchanneled val-

leys during exceptional rainfall events. at Elder Creek.

3.2 Model description

We constructed a lumped rainfall-runoff model which captures many
of the relevant hydrological processes described in Sections 2 and 3.1.
Given forcing data and state variables for a time step, the model
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FIGURE 4 Elder Creek model wiring diagram
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simulates its state variables for the next time step via calculating the
flux in each state variable for the given time step. All state variables,
fluxes, and individual components of fluxes are recorded. A detailed
description of the model can be found in Figure 4, Tables 1-3, and
Equations (2)-(14).

The model is forced by precipitation and potential evapotranspi-
ration. It has four state variables, all with units of mm: S, the soil
moisture storage; S;, the rock moisture storage (which is located in
the bedrock vadose zone); Sg)in, the linear groundwater reservoir stor-
age, and Sgnoniin, the nonlinear groundwater reservoir storage. Precipi-
tation first enters the soil moisture storage, which then leaks water to
the bedrock vadose zone as a power law, conceptually similar to
gravity-driven leakage controlled by hydraulic conductivity as a func-
tion of relative soil moisture (see Equation (4)). If soil moisture would
exceed its maximum value, all excess (overflow) water is directly sent
to the bedrock vadose zone (see Equation (5)). Note that this formula-
tion allows for a seasonal maximum in soil moisture, as well as for
small amounts of leakage to the bedrock vadose zone before the soil
moisture is at its seasonal maximum. Similarly, drainage from rock

moisture to the groundwater occurs in two ways: gravity drainage and

TABLE 1 Elder Creek model state variables. All state variables
have units of mm
State variable Description
S Soil moisture storage
S, Rock moisture storage
Sgin Linear groundwater reservoir storage
Sgnonlin Nonlinear groundwater reservoir storage
TABLE 2 Elder Creek model fluxes. All fluxes have units of mm/h
Flux Description Type
P Precipitation External
ETP Total potential evapotranspiration External
ETA Actual evapotranspiration from the soil External
ETA, Actual evapotranspiration from the bedrock External
vadose zone
iin Discharge from the linear groundwater External
reservoir
Qnonlin Discharge from the nonlinear groundwater External
reservoir
fsr Gravity drainage from soil to bedrock Internal
vadose zone
for Overflow leakage from soil to bedrock Internal
vadose zone
frg Gravity drainage from rock moisture to Internal
groundwater
fog Overflow drainage from rock moisture to Internal
groundwater
fg Flow from linear to nonlinear groundwater Internal
reservoir

overflow drainage. Gravity drainage is simulated as a power law, using
the parameters ksq, as the saturated hydraulic conductivity of the
fractured rock, and by, the power to which the relative rock moisture
Sr/Srmax is raised in order to determine unsaturated hydraulic conduc-
tivity as a fraction of saturated hydraulic conductivity. Overflow drain-
age from the rock moisture drains all water that would cause the rock
moisture to exceed a given threshold S, max (see Equation (9)). Because
the vadose zone is thick year-round (and increases in thickness during
summer groundwater drainage to streams), we assume that roots do
not reach the groundwater and so evapotranspiration only comes
from the two vadose state variables over the majority of the catch-
ment. The potential evapotranspiration that the soil and bedrock
vadoze zone experience is controlled by the root weighting parameter
r, where a value of 1 indicates that all roots (and therefore all
evapotranspirative demand) are in the soil, a value of 0.5 indicates
equal root distribution between the soil and bedrock vadose zone,
and a value of O indicates that all roots are in the bedrock vadose
zone. Potential evapotranspiration is further corrected to actual
evapotranspiration for each vadose state variable, as a function of
how full each vadose state variable is above the wilting point parame-
ter (see Equations (3) and (7)).

Two groundwater reservoirs are used to simulate saturated stor-
age; discharge to the stream is only possible from these reservoirs,
consistent with the observation that streamflow only comes from sat-
urated storage in Elder Creek (Dralle et al., 2018; Lovill et al., 2018;
Rempe & Dietrich, 2018; Salve et al., 2012). We found the inclusion
of two reservoirs to be necessary to adequately represent recession
limbs; when a single groundwater reservoir was used, KGEs in
streamflow rarely exceeded 0.7. Although it was not explicitly our
intention, the inclusion of two groundwater reservoirs can be concep-
tualized as a form of semi distribution (Harman et al., 2009). Drainage
from the vadose zone first enters the linear groundwater reservoir,
which can directly produce discharge or send water to the nonlinear
reservoir. The nonlinear reservoir is also capable of contributing to
discharge.

ASg

A =PETA—fur—fo 2)
ETA, = max (o, % ~Ssmoc St 1. ETP) (3)
Ss.max 1—Swi

fsr = ks,sat : (ss/ss,max)bs (4)

(Ss -+ (P—ETAs —fir) - At — Somax) /At
if S+ (P — ETAs — fsr) - At > S max
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if S+ (P— ETAs —fsr) - At < Sy max
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g = for for —frg —fog —ETA, 6)

Sr — Srmax - Switt 1
ETA; =max| O, ’ S
' ( Sr,max 1- Swilt

-(1-r)- ETP> (7)
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TABLE 3 Elder creek model parameters. Parameters ranges were chosen to exceed physically realistic values, such that a physically realistic
parameter space can be covered in calibration. The exception is S ma, Which is constrained to a value of 100 mm and is therefore not included in

Calibration range

0.001-1

100

500-20 000

0-0.5

1-30

0.01-1000

1-40

4-1000

5.107°-0.125

0.5-3
5.107°-0.125

5.107°-0.125

The model functions via calculating the flux for each state variable for
a given time step. Therefore, this model is composed of a system of
four ordinary nonlinear differential equations (one equation describing
the net flux in each state variable; see Equations (2), (6), (10), and
(13)). This coupled system of nonlinear equations cannot be solved
analytically, so we must rely on a numerical method which approxi-
mates the exact solutions of these equations. We employ the explicit
adaptive midpoint (second-order) method to do this. Explicit adaptive
second-order methods have been shown to be robust choices in the
context of lumped rainfall-runoff models (Clark & Kavetski, 2010;
Kavetski & Clark, 2010; La Follette et al., 2021; Schoups et al., 2010).
This method has an adaptive time step: numerical error is automati-
cally controlled by shortening the time step when numerical error is
too large, and the time step is relaxed when numerical error is small
for faster computation. Details on this algorithm can be found in

calibration
Parameter Units Description
r -- Relative fraction of roots in soil layer; controls
distribution of ET between soil and bedrock vadose
zone
Ssmax mm Maximum soil water storage; controls threshold at
which soil leakage begins, as well as correction of ET
St max mm Maximum rock moisture storage; controls threshold at
which overflow drainage to groundwater begins, rate
of gravity drainage from rock moisture to
groundwater, and correction of ET
Swilt - Relative moisture of S, max and Ssmax below which no
actual evapotranspiration occurs
bs - Power controlling shape of gravity drainage from soil
moisture to rock moisture
Ks,sat mm h~1 Hydraulic conductivity of soil when soil moisture is at
its seasonal maximum
b, - Power controlling shape of gravity drainage from rock
moisture to groundwater
Krsat mm h~?! Saturated hydraulic conductivity of fractured rock,
which controls rate of gravity drainage to
groundwater
a (mm)l-b ht Coefficient for nonlinear groundwater reservoir
b = Exponent for nonlinear groundwater reservoir
k1 h1! Coefficient which controls the discharge of the linear
groundwater reservoir
k1o ht Linear groundwater reservoir coefficient which
controls the rate at which water flows from the
linear saturated store to the nonlinear saturated
store
, 33 Numerical method
frg = kr,sat : (sr/sr,max) " (8)
(Sr+ (fsr + for —ETA: —frg) - At — Sy max ) /At
if Sy + (fsr +for —ETA — frg) - At > Sy max
fos=1 5 ©)
if Sy + (fsr + for — ETA; —fig) - At < S/ max
ASg )i
%=fog +frg —Qin — fg (10)
Giin =K1 - Sgjin (11)
fg = k12 . sg,Iin (12)
ASg nonli
%2% — Unonlin (13)
b
Anonlin =a- (sg,nonlin) (14) Appendix A.
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34 Description of analysis

Nearly 3 years of data are used (from 15 December 2015 to 1 October
2018). The first 0.8 years (from 15 December 2015 to 30 September
2016) are used as a spin up period. Water year 2017 is used as a cali-
bration period, and then water year 2018 is used for validation
(to provide further confidence that the optimal parameter sets gener-
ated for water year 2017 are appropriate for the catchment rather
than fit to the calibration period in particular). At the start of the spin
up period, initial conditions in soil moisture (Oshun et al., 2016) and
rock moisture are set using observed values at the beginning of the
spin up period. Note that the soil moisture datum is the average nor-
malized value given by two TDR moisture probes located at 15 and
35 cm depth in the soil at the ridgetop near well 15, at the start of
15 December 2015, and soil moisture data are not used aside from
setting initial conditions here. Specifically, soil moisture was observed
to be at 51% of its maximum value at the first time step, and rock
moisture to be 372.7 mm below its maximum value; therefore, the ini-
tial condition in soil moisture is set to 51% of Ssmax and the initial rock
moisture is set to S;max — 372.7 mm. Initial conditions in the saturated
state variables are arbitrary and work their way out of the system
quickly because the catchment is flashy and discharge comes solely
from saturated storage.

Parameters sets are generated via a Latin hypercube approach. In
total, 10 000 parameter sets are generated. We determine that this is
a sufficient number of parameter sets due to the fact that the results
of our study do not change when repeated with a different selection
of 10 000 parameter sets. Note that the model has, in total, 12 param-
eters, and of these, 11 are included in calibration. The parameter Sg max
is fixed to a value of 100mm and is not included in calibration. This
value is selected to reflect observations which show that the maxi-
mum soil moisture of the catchment tends to be 100 mm (Rempe &
Dietrich, 2018). Each parameter set is used to make a prediction of
streamflow and rock moisture over the entire time period. While the
model calculates total rock moisture, the observations of rock mois-
ture are dynamic rather than total—that is, observations in rock mois-
ture are equal to the amount of moisture above some minimum value
during the total modelling period. Therefore, the model calculates
dynamic rock moisture by subtracting the minimum simulated rock
moisture during the total simulation period from the simulated rock
moisture time series.

Next, the Kling-Gupta efficiency, or KGE (Gupta et al., 2009) is cal-
culated for both the streamflow and the dynamic rock moisture resulting
from each parameter set during the calibration period. The KGE is a way
to assess how closely one time series matches another, equally
weighting components of bias, variance, and correlation. Note that KGE
values above —0.41 represent simulations that perform better than the
mean value in observed data (Knoben et al., 2019) and a KGE value of
1 indicates a perfect simulation. For each parameter set, the KGE in sim-
ulated dynamic rock moisture is plotted against the KGE in simulated
streamflow. This forms a 2D KGE scatterplot, which allows us to exam-
ine the trade-off in model performance in rock moisture and streamflow.
Then, to determine the sensitivity of optimal parameters to calibration
strategy, three calibration scenarios are considered: optimized results in

streamflow only, optimized results in rock moisture only, and Pareto
optimized results in both streamflow and rock moisture. Optimal param-
eter sets for each calibration scenario are considered to be the sets
which yield performance within the top 1% of all parameter sets for the
given optimization metric. Performance in streamflow or dynamic rock
moisture alone is simply calculated via KGE in either variable. The
\/(KGErw — 1)? + (KGE, — 1)?; therefore
Pareto optimality is achieved as this score is minimized, or in other

Pareto score is defined as

words when the KGEs in dynamic rock moisture and streamflow both
approach 1. The Pareto score in this manuscript is equivalent to the
distance from a perfect simulation in Pareto space; achieving Pareto
optimality via minimizing Euclidean distance from an optimal point has
seen previous use in hydrologic modelling (Gupta et al., 2009; Koppa
et al., 2019). Distributions in parameters within optimal parameter
sets were compared between the three calibration scenarios, in order
to determine to what extent calibration scenario affects optimal
parameter values. Average performance metrics for the three differ-
ent calibration scenarios are reported for the calibration and validation
periods, in order to assess the extent to which optimal parameters
represent the catchment itself (as opposed to overfitting to a certain
time period). Splitting data into calibration and validation periods has
been shown to be beneficial in other modelling efforts which simulate
more hydrologically relevant variables than just streamflow (Feyen
et al., 2000; Refsgaard, 1997).

4 RESULTS

Figure 5 shows, in the left-hand column, storage states for soil, rock
moisture, and groundwater reservoirs, and in the right-hand column,
fluxes out of these reservoirs for the top 1% performing parameter
sets calibrated on both dynamic rock moisture and streamflow.
Dynamic rock moisture has the highest seasonal dynamic range
(> 500 mm), followed by soil moisture (< 100 mm), with the combined
groundwater reservoirs exhibiting a relatively small (< 150 mm) range
in the 2017 water year. Modelled soil moisture rises quickly, then pla-
teaus for most of the wet season, with high magnitude drainage
pulses that correspond to incoming precipitation events (although
some drainage occurs when soil moisture is below its maximum value).
Modelled rock moisture rises more slowly, and exhibits larger reces-
sions and rises within the wet season. Increases in modelled ground-
water lag behind soil and rock moisture, and are relatively muted. All
modelled drainage fluxes from these reservoirs, when they occur, are
much larger in magnitude (and more comparable to precipitation
intensities) than modelled ET, which is constrained by PET, which is
shown in Figure 6. Figure 6 also shows how modelled ET can be pref-
erentially drawn from soil moisture in the wet season, but has an
increasing (and eventually larger) rock moisture component over the
course of the dry season.

From Figure 7, it is apparent that some parameter sets used by
the model are capable of providing relatively high accuracy results in
streamflow or dynamic rock moisture, where the maximum KGE
obtained in streamflow simulation is equal to 0.91 and the maximum
KGE obtained in dynamic rock moisture simulation is equal to 0.92. It



10 of 19 Wl LEY

LA FOLLETTE ET AL.

Storage states (mm) Out-fluxes
750 n 10.0 T ni |
—— Drainage, fs + for (mm/h)
s 75411 || [l -4+ ETAs (mm/d)
¢ 500
gua“ 5.0 A
5 2501 2.5
W N
0 T T T T T T 0.0 - - “’l s 1 =
= 10.0 A
%S 7501 —— Drainage, frg + fog (mm/h)
3 c 7519 | ETA, (mm/d)
o2 500 1
ERS 5.0 -
o c
23S 250 2.5 1 _
g9 . gt ' o
g 0 T T T T T T 0.0 e r.'I.‘“u = T — I‘ T T T
a | 10.0 -
5 750 — Combined drainage, qjin + Groniin (MmM/h)
5 3 7.5 -
8 €500 1
%‘{ 5.0 A
25 2207 2.5
3 R AR
G 0 T T T T T 0.0 T T T T T
SO N \C R - R A B A Y L L Ll L
6> (A0 107 1 A RN I BN RN e b
A9 48 a8 0% 0 b A0 28 g8 0% 0 b

FIGURE 5 Modelled storage states (left-hand column) and out-fluxes (right-hand column) of the soil, rock moisture, and groundwater
reservoirs (first, second, and third rows, respectively), for the 2017 water year. The soil and groundwater reservoir storages are expressed in
terms of their actual magnitude, whereas the rock moisture reservoir storage is expressed in terms of its dynamic range (i.e., relative to its lowest
achieved value). All lines represent the mean of the top 1% performing models simultaneously calibrated on both rock moisture and streamflow.
Shaded intervals for storage states cover the 10th to 90th percentiles of the top 1% performing parameter sets. Solid out-flux lines denote
drainage fluxes (in mm/h, from the soil reservoir to rock moisture, from rock moisture to groundwater, and from both groundwater reservoirs to
streamflow across rows, respectively), and dotted lines denote ET fluxes (in mm/d)

is also apparent that some parameter sets are capable of simulta-
neously simulating both streamflow and dynamic rock moisture accu-
rately, where the parameter set with the highest Pareto optimality
yields KGEs in streamflow and dynamic rock moisture simulations of
0.87 and 0.81, respectively. Meanwhile, calibrating on streamflow
only can yield good results in simulated streamflow but poor results in
simulated rock moisture, where the parameter set that yielded optimal
performance in streamflow simulation yielded a KGE of 0.53 in
dynamic rock moisture simulation. More generally, it is clear that the
top 1% optimal parameter sets in streamflow simulation (blue points
in Figure 7) do not necessarily yield high KGEs in simulated dynamic
rock moisture. Similarly, the top 1% optimal parameter sets in dynamic
rock moisture simulation (green points in Figure 7) do not necessarily
yield high KGEs in simulated streamflow. Therefore, Pareto optimiza-
tion on both dynamic rock moisture and streamflow offers improved
model results in terms of simultaneously simulating rock moisture and
streamflow when compared to calibration scenarios which optimize
on a single variable, with minimal sacrifice in simulation quality for
streamflow or dynamic rock moisture individually. Figure 8 provides
visual perspective on how simulations compare to observations for
the 2017 water year.

Next, we examined the distributions of parameters resulting from
the top 1% of each calibration scenario to determine to what extent
optimal parameter values are impacted by choice of calibration sce-
nario. We found that optimal parameter distributions were usually
insensitive to calibration scenario, indicated by the fact that parameter
distributions after calibration either spanned the entire calibration
range for all calibration scenarios, the average calibrated parameter
values changed very little between different calibration scenarios, or
calibrated parameter ranges were very similar between different cali-
bration scenarios. These observations suggest heavy equifinality
within the model. Notably, however, two parameters did not exhibit
this behaviour: r and k. Distributions of these parameters are
shown in Figure 9, demonstrating potential effects of calibration sce-
nario on optimal parameter values.

From Figure 9, left, it is apparent that the parameter r, which con-
trols the relative distribution of roots (and therefore
evapotranspirative demand) between the soil and bedrock vadose
zone, can nearly span its entire possible range and still yield a high
quality simulation in streamflow. In contrast, optimal r values in the
dynamic rock moisture-only calibration scenario are restricted to a

smaller subset of the parameter space or r, where this restriction
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FIGURE 7 2D KGE scatterplot, showing the KGEs in streamflow
and dynamic rock moisture simulations resulting from 10 000
parameter sets. Blue points indicate parameter sets which performed
within the top 1% in terms of KGE in streamflow simulation, green
points indicate parameter sets which performed within the top 1% in
terms of KGE in dynamic rock moisture simulation, and purple points
indicate parameter sets which performed within the top 1% in terms
of Pareto optimality. Note that if a parameter set achieves
performance within the top 1% of dynamic rock moisture or
streamflow simulations individually but also performed within the top
1% in terms of Pareto optimality, it will appear as purple

relaxes somewhat in case of Pareto optimization. Because previous
work in Elder Creek has shown that roots are distributed between
both the soil and bedrock vadose zone (Hahm, Rempe, et al., 2019;

2017-01 2017-03 2017-05 2017-07 2017-09

Rempe & Dietrich, 2018; Schmidt & Rempe, 2020; Tune et al., 2020),
it is clear that calibration on streamflow alone can yield values in r that
are very close to 1, which we believe to be physically unrealistic.

In the right plot of Figure 9, distributions in the parameter kst
can be seen. As a broad variety of saturated hydraulic conductivites
can be found throughout the soils of the catchment, we do not com-
ment on the physical realism of these optima; rather, we merely report
that ks, is clearly sensitive to choice of calibration target.

For the top 1% of all parameter sets resulting from each calibra-
tion scenario, KGEs were evaluated for both the calibration and vali-
dation periods. Specifically, we calculated KGEs in streamflow during
calibration and validation of parameter sets that achieve within the
top 1% performance of KGE in streamflow in the calibration period,
KGEs in dynamic rock moisture during calibration and validation of
parameter sets that achieve within the top 1% performance of KGE in
dynamic rock moisture in the calibration period, and both KGEs in
streamflow and dynamic rock moisture during calibration and valida-
tion of parameter sets that achieve within the top 1% performance of
Pareto optimality during the calibration period. Mean values of these
KGEs, and the difference in means between calibration and validation
periods, are reported here. The decrease in KGE mean values for
streamflow in the streamflow calibration scenario, between calibration
and validation periods, is 0.10 (from 0.843 to 0.739); the decrease in
KGE mean values for rock moisture in the rock moisture calibration
scenario, between calibration and validation periods, is 0.03 (from
0.844 to 0.813); the decrease in KGE mean values for streamflow in
the Pareto calibration scenario, between calibration and validation
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FIGURE 8 Ensemble mean simulation of streamflow (left) and dynamic rock moisture (right) resulting from the top 1% of all parameter sets in
terms of Pareto optimality; results shown here focus on the 2017 water year. Shading around the ensemble means extend to the 10% and 90t
percentiles. Note that model performance in streamflow improves as the wet season progresses, and that the simulation of rock moisture is
generally more dynamic than the observed time series (see potential reasoning in section 5.2). The y-axis of the left plot is restricted for easier
viewing of observed and modelled streamflow dynamics (the wet season 2017 peak in simulated streamflow was approximately 5 mm/h)
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FIGURE 9 Distributions in optimal parameter values of r and ks su, resulting from three calibration scenarios: Calibration scenario Pareto
(CSP), calibration scenario rock moisture (CSRM), and calibration scenario streamflow (CSq). Each violin plot contains parameter values from the
parameter sets yielding performance within the top 1% of all parameter sets for each calibration scenario. Note that values for k.t have been

logarithmically spaced for clarity

periods, is 0.12 (from 0.770 to 0.653); and the in KGE mean values for
rock moisture in the Pareto calibration scenario, between calibration
and validation periods, actually increases by 0.02 (from 0.764 to
0.785). Due to the small changes in mean KGE between the calibra-
tion and validation periods, we can conclude that the optimal parame-
ter sets are likely to be representative of the catchment (at least when
considering the climates of the 2017 and 2018 water years).

5 DISCUSSION

51 Relevance of increased physical realism and
restricted parameter space via Pareto optimization

The key results of our modelling study are:

e optimizing on both streamflow and dynamic rock moisture can

yield parameter sets which are able to simulate both variables

accurately, in terms of KGE. In contrast, calibration on streamflow
alone does not reliably yield an accurate simulation of rock mois-
ture dynamics. Therefore, calibrating on both dynamic rock mois-
ture and streamflow yields an increase in the accuracy of modelled
streamflow and rock moisture when compared to calibration on
streamflow alone.

e optimal parameter values can be influenced by the choice of which
variables to include in calibration, where the optimal parameter
space can be restricted via calibrating on multiple targets. Specifi-
cally, Pareto optimization is shown to eliminate some physically
unrealistic optima in r, whereas calibration on streamflow alone
can yield unrealistic optima in this parameter. The parameter ki ¢
is also highly sensitive to choice of calibration strategy.

These findings have multiple implications. First, having models that
can simultaneously predict multiple hydrologically relevant variables
to a good degree of accuracy has clear relevance in decision making
or water management when multiple sources of water must be taken
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into account. Given the ecological relevance of dynamic rock moisture
in semi-arid environments (Dawson et al., 2020; Hahm, Rempe,
et al,, 2019), earth system modellers and water managers may be
interested in predicting this variable, along with streamflow. It is also
clear from this study that calibration on streamflow alone is insuffi-
cient to provide accurate results in other fluxes or state variables; if a
model calibrated solely on streamflow was used to make a prediction
of rock moisture, it would likely be inaccurate. While our simulations
of dynamic rock moisture resulting from Pareto optimization are
clearly more dynamic than observations (as in Figure 8), these are at
least more accurate than simulations of rock moisture obtained via
calibrating on streamflow alone, as evidenced by the relatively high
KGE of the rock moisture simulations calibrated on Pareto optimality.
When dynamic rock moisture simulations were calibrated on dynamic
rock moisture alone, the overly extreme dynamic began to attenuate
(not shown), although we offer further potential avenues for accurate
rock moisture modelling in the Discussion.

Second, the restriction of the parameter space (at least in some
cases to physically realistic values) has promising implications for cli-
mate change studies conducted with hydrological models. While cali-
bration in streamflow only is able to yield the highest KGE in
streamflow predictions for our given modelling period, this calibration
strategy yields state variables and parameters that could be unrealistic
(for example, an r value of 1). Physically misrepresentative parameter
sets may yield misguided projections for water availability under novel
forcing regimes expected under climate change scenarios (or, con-
versely, as Bathurst et al. (2004) demonstrate, MCA can enable
models to appropriately model the effect of a changing climate on the
hydrologic system). Further, knowing the limits of the optimal parame-
ter space can restrict the parameter search space in subsequent
modelling efforts. This could lead to quicker calibration times, and
depending on calibration method, more accurate model results.

5.2 Future opportunities for physically realistic or
more conceptually advanced hydrologic modelling of
the Elder Creek watershed

While we can claim that Pareto optimization on dynamic rock mois-
ture and streamflow has increased the accuracy of some model
results, we cannot claim that the model's overall accuracy has been
increased. It is possible that while we have made part of the simula-
tion more accurate, other fluxes or state variables for which we do
not presently incorporate detailed observations (e.g., groundwater
storage, actual evapotranspiration, or soil moisture) could have been
made less accurate. Further, we would like to indicate that this model,
while based on observations from Elder Creek and corresponding flow
generation mechanisms, is a conceptual lumped model. Therefore it
should not be considered to be a physics-based model, and could be
physically (or even conceptually) more advanced.

Accordingly, there are several opportunities for improvement.
First, we use the Hargreaves equation to simulate potential evapo-
transpiration. This equation, while easy to use, does not have the

sophistication of other ET formulations, such as Priestly-Taylor or
Penman-Montieth (Sumner & Jacobs, 2005), and the extent to which
soil evaporation applies to the bedrock vadose zone has not been
quantified. Further, the Elder Creek experimental catchment has data
on sap flow in trees which in theory could be used to accurately esti-
mate actual ET and describe spatial heterogeneity in transpirative
demand (Bilir et al., 2021; Link et al., 2014). Therefore, a more
advanced description of PET and plant water use is in theory possible.
Second, while our approach to modelling interception has been previ-
ously used (Dralle et al., 2018), this method could be further devel-
oped as well (Allen et al., 2017; Carlyle-Moses & Gash, 2011; Junior
et al., 2019; Muzylo et al., 2009). Relatedly, the vegetation cover and
its impact on plant water use (Miyata et al., 2019) is not incorporated
in a detailed way. Third, the focus of this model is not on hydrologic
representations of soil, and accordingly the simple power law used for
soils in this model is an oversimplification of the physical reality of the
modelled catchment. Specifically, preferential flow paths in the soils
near Elder Creek (Dietrich et al., 2013b; Langston et al., 2011) and the
effect of capillarity on flow through the vadose zone are unaccounted
for here. Further, the effect of slope aspect variation on various
hydrologic feedbacks in the critical zone (Pelletier et al., 2018) remains
unexplored. Fourth, baseflow recession can be more accurately simu-
lated when the saturated zone is represented with a distribution of
reservoir behaviours, rather than a discrete number of conventional
groundwater reservoirs (Dralle et al., 2021). Fifth, while we use a
power law to simulate gravity drainage from soil moisture to ground-
water, and this should be a more or less plausible explanation of flow
through unsaturated porous media (Clapp & Hornberger, 1978), this
relatively unsophisticated method might cause some of the overly
dynamic behaviour in rock moisture simulations. Alternative formula-
tions for drainage to groundwater which specifically take into account
the physics or hydrologic representation of fractured unsaturated rock
can be formulated or incorporated (this topic has received prior atten-
tion; see Ebel et al. (2010); Ebel et al. (2008); Guo et al. (2019); Le
Bourgeois et al. (2016); Nimmo (2007); Vrettas and Fung (2015,
2017)). In an earlier stage of the present model, we included a prefer-
ential bypass flux directly from soil to groundwater, whose magnitude
was dependent on the relative rock moisture. Such a formulation can
be seen as a form of semi-distribution; if one assumes that rock mois-
ture drains to the groundwater only above a given threshold of its rel-
ative value and does so very suddenly (i.e., a large value of b, is used),
and not all of the bedrock vadose zone throughout the catchment
reaches this relative moisture content at the same time, then prefer-
ential bypass effectively simulates part of the bedrock vadose zone
draining to the groundwater. The limitation of this approach is that it
does not allow for direct flow from the soil to the bedrock vadose
zone, which is observed.

The most straightforward (and we believe, most impactful)
improvement to this model in terms of increasing physical realism or
accuracy would be making the model spatially distributed; this would
likely have the effect of a less dynamic simulated rock moisture signal,
as well as better streamflow simulations early in the wet season. The
highly spatially

Elder Creek catchment is in many ways



14 of 19 Wl LEY

LA FOLLETTE ET AL.

heterogeneous. This is especially true with respect to the thickness of
the bedrock vadose zone, which increases with distance from river
channels (Rempe & Dietrich, 2014), and approaches 0 m next to Elder
Creek. Relatedly, the dynamic range of rock moisture is dependent on
distance to the stream. Because the thickness of the bedrock vadose
zone and its dynamic moisture range are important in terms of gener-
ating flow via drainage to the groundwater, it could be the case that
distribution would allow a part of the catchment with a thinner bed-
rock vadose zone to become active in terms of streamflow generation
while the bedrock vadose zone in the rest of the catchment is still
below its flow generation threshold (e.g., Dietrich et al. (2013a)). For
example, and in terms of the states and fluxes in the current model, a
part of the catchment (e.g., near the creek) could have its S, state vari-
able at or very near its (relatively small) Sy max Value, such that signifi-
cant drainage to groundwater (and therefore streamflow generation)
in that particular part of the catchment could occur via f,4 (or even fy,
if the bedrock vadose zone has achieved its maximum moisture). At
the same time, another part of the catchment (e.g., near the ridgetop)
could have its S, state variable very far from its (relatively large) Sy max
value, such that there is virtually no drainage from the bedrock vadose
zone to groundwater. Currently, our model does well in predicting
most streamflow peaks but does poorly in simulating the streamflow
at the beginning of the wet season (see Figure 8), a time for which in
reality only a fraction of the bedrock vadose zone is at its flow genera-
tion threshold. While our model lumps the characteristics of the entire
catchment's bedrock vadose zone into a single state variable (which
therefore depicts a simplified, lumped representation of the threshold
of drainage generation), we expect that a distributed model would be
able to simulate these early wet season streamflow peaks more accu-
rately than our current model (again, if for example only part of the
model's spatial domain simulated enough groundwater storage for sig-
nificant streamflow). We further expect that distribution might be able
to improve our simulation of rock moisture, again due to allowing spa-
tial variability in maximum rock moisture. When part of the catchment
can obtain its maximum rock moisture while the rest does not, we
expect that simulations of rock moisture will become less dynamic
(due to the highly nonlinear power law governing drainage to ground-
water only being significantly active in a fraction of the catchment at
a time, rather than the entire catchment). Spatial distribution (specifi-
cally comparison of spatially distributed model results to observations)
can further reduce parameter uncertainty (Werner et al., 2005).
Finally, we draw special attention to the fact that simulations of
dynamic rock moisture are greater than observations for the 2 months
after the last precipitation event for a given water year. For example,
between 2017-05 and 2017-07 in Figure 8, right panel, modelled
dynamic rock moisture begins to significantly decrease soon after the
last precipitation event, whereas observations indicate that dynamic
rock moisture remains near its seasonal maximum value for approxi-
mately 6 weeks after the last rainfall event. This could be potentially
explained by the simulated plant water use from the bedrock vadose
zone being overestimated. Having a plant water use model that spe-
cifically takes into account seasonal variation in the relative amounts
of evapotranspirative demand that are satisfied from soil and the

bedrock vadose zone would likely improve this section of the simula-
tion. It is also possible that this, in turn, would improve the overly
dynamic rock moisture simulation, as it is currently possible that the
calibration procedure must yield large peaks in rock moisture in order
to optimize rock moisture recession and thereby maximize KGE.

5.3 A note on the role of equifinality in
simulating uncalibrated model components

This lumped, conceptual model, which includes 11 parameters in cali-
bration, is subject to heavy equifinality. That is, when many parameter
sets are considered, also many parameter sets will yield equally plausi-
bility via a given performance metric (e.g., KGE in streamflow, KGE in
dynamic rock moisture, or Pareto optimization on both). When many
such parameter sets exist, how are we to know which to use in future
simulations? Part of the value of this study is that calibration on an
additional data source, namely dynamic rock moisture, can reduce
equifinailty in a parameter heavy model. Calibration including this vari-
able can evidently reduce the breadth of the post calibration parameter
space, helping us to decide which parameter sets to use. Correspond-
ingly, the concept of equifinality also explains why many (uncalibrated)
components of this model may be highly inaccurate or uncertain (along
with the fact that the model structure is an oversimplification of the
reality of Elder Creek). For example, observations in soil moisture indi-
cate that the seasonal maximum of moisture storage in soils in Elder
Creek should be around 100 mm (Rempe & Dietrich, 2018). From
Figure 5, it is clear that our model does predict this accurately; how-
ever, this is because we leverage the seasonal maximum soil moisture
observations as a parameter in our model, Ssmax, removing it from cali-
bration. When the model was run with Sgmax included in calibration,
and with a range of 1-1000 mm, the seasonal maximum of the mean
of the ensemble forecast in soil moisture was roughly equal to the
middle of the parameter range of Ssmax, While simulations of
streamflow and rock moisture retained similar accuracies. Further, the
ensemble bandwidth for soil moisture simulations is evidently large
compared to its range, especially as the dry season progresses; in
essence, the equifinality problem means that soil moisture can take on
a large range of values and simulations of calibrated variables
(streamflow and dynamic rock moisture) can still be relatively accu-
rate. Similarly, groundwater storages are likely to be inaccurate;
groundwater states themselves are not calibrated, so as long as model
outputs which are compared to observations achieve a high KGE,
groundwater states can take on a variety of values. When observa-
tions of a state variable or flux are not included in calibration, model
results of such state variables or fluxes cannot generally be considered
to be accurate (although constraining the model via restricting param-
eter values via observations, as we did with S¢max, can apparently
increase accuracy). The purpose of this manuscript is not to accurately
simulate all of Elder Creek, but rather to demonstrate that, even with
a fairly generic (albeit observation guided) model, rock moisture has
value as a calibration target. This is evidenced by the simultaneous
high KGEs of dynamic rock moisture and streamflow simulations, and
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the restriction of the post calibration parameter space as a result of
Pareto optimization. In light of the utility and scarcity of rock moisture
observations, more field studies on rock moisture would be of
immense benefit to the hydrologic community.

54 On the use of KGE as an objective function
for dynamic rock moisture

The KGE performance metric enjoys wide use in hydrologic sciences.
Generally, it is used to quantify quality of streamflow simulations.
Here it is used to assess the quality of dynamic rock moisture simula-
tions. To our best knowledge, this has not been attempted before,
and invites the question: is KGE an appropriate objective function for
rock moisture? Clearly, KGEs in dynamic RM in this manuscript
exceed 0.9 and span a large range of values, implying that some rock
moisture simulations are much more accurate than others. Yet, it is
clear that high KGE values in rock moisture are possible while the
dynamic is significantly larger than observations indicate. Establishing
an appropriate objective function for rock moisture time series, or
perhaps exploring the accuracy of rock moisture time series beyond
single number metrics, are interesting topics for future research.

6 CONCLUSION

Despite the apparent importance of unsaturated weathered bedrock
as a component of the streamflow generation mechanism in many
catchments, the bedrock vadose zone is usually not implemented in
catchment scale models as a hydrologically distinct state variable, nor
is it often used as a calibration target. To our best knowledge, unsatu-
rated weathered bedrock water storage has not been explicitly incor-
porated in a catchment model and also used as a calibration target. In
this manuscript, we explore the relevance of rock moisture in the con-
text of a lumped rainfall runoff model, formulated with previously
established observations and mechanisms for the water budget of the
Elder Creek catchment. We achieve this by calibrating the model on
streamflow individually, rock moisture individually, and on both using
the concept of Pareto optimality. We find that the model is capable of
accurately simulating both streamflow and rock moisture at the same
time, in terms of KGE. In contrast, while calibrating on rock moisture
or streamflow alone yields a relatively high KGE simulation of the cali-
brated variable, calibrating on a single variable is insufficient to accu-
rately describe others. For example, calibrating on streamflow alone
does not necessarily yield accurate rock moisture simulations. There-
fore, Pareto optimization offers increased accuracy in the model
results in streamflow and dynamic rock moisture. Further, the poste-
rior distributions of two of the 11 calibrated parameters are sensitive
to choice of calibration method. We find that calibration on
streamflow alone may yield physically unrealistic optimal parameter
values. Therefore, Pareto optimization on streamflow and dynamic
rock moisture can offer increased model accuracy via the rejection of
physically unrealistic parameter values, or at least help to reduce

parameter uncertainty via constraining the calibrated parameter
space. Because of the relevance of rock moisture in the water cycle,
and due to the presented modelling benefits of including rock mois-
ture as a calibration target, we advocate for further research into bed-
rock vadose zone process representation, more field studies to collect
data on rock moisture, and further inclusion of rock moisture in earth
system models.
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APPENDIX A

A1 | A further description of numerical method
The model shown in this manuscript uses the explicit adaptive mid-
point method. This method starts by calculating the flux in each state
variable using the conditions at the start of the time step and makes a
prediction for state variables halfway to the end of the time step
(or at the midpoint). Then, the fluxes for each state variable are calcu-
lated again using the temporary midpoint state variable values, and
these fluxes are averaged with the fluxes from the first half of the
time step in order to make a prediction of the state variable values at
the end of the time step. This method is second-order accurate, mean-
ing that its numerical error is proportional to the time step to the sec-
ond power. Therefore, as the time step decreases, this method allows
for convergence to the exact solution to the system of differential
equations faster than first-order methods do.

The selected numerical method is adaptive, meaning that the time
step (and therefore numerical error) is automatically reduced when
error tolerance criteria are not met and enlarged when error tolerance

criteria are met. The midpoint method first approximates the value of

the all fluxes and state variables halfway to the end of the current
time step using only the conditions at the start of the time step; the
values of these fluxes are the same as calculated by the (first-order)
explicit Euler technique. The first-order prediction in discharge (qgg) is
compared to the midpoint (second-order) prediction in discharge
(qem). The absolute difference between the two predictions, e, is cal-
culated. Then, the model checks if

e—r,~qEM—ra<0 (Al)

where 7, is the relative error tolerance (set to a value of 0.01), and z,
is the absolute error tolerance (set to a value of 0.01 mm h™2). If e is
sufficiently small to pass the check, then the time step is enlarged up
to a maximum value of 1 h. If e is too large, then the time step is
reduced until e passes the above test. This is known as embedded
error control, due to the fact that extra flux calculations are not neces-
sary for the sake of error control (the first-order fluxes have already
been calculated in the process of calculating the second-order fluxes).
A similar method for error control is employed by Clark and
Kavetski (2010).
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