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A B S T R A C T

Human gaze estimation plays a major role in many applications in human–computer interaction and computer
vision by identifying the users’ point-of-interest. Revolutionary developments of deep learning have captured
significant attention in gaze estimation literature. Gaze estimation techniques have progressed from single-
user constrained environments to multi-user unconstrained environments with the applicability of deep
learning techniques in complex unconstrained environments with extensive variations. This paper presents
a comprehensive survey of the single-user and multi-user gaze estimation approaches with deep learning.
State-of-the-art approaches are analyzed based on deep learning model architectures, coordinate systems,
environmental constraints, datasets and performance evaluation metrics. A key outcome from this survey
realizes the limitations, challenges and future directions of multi-user gaze estimation techniques. Furthermore,
this paper serves as a reference point and a guideline for future multi-user gaze estimation research.

1. Introduction

Eye gaze plays an important role in identifying the users’ point
of interest in terms of the direction, location, attention, emotions
and interactions. Generally, human gaze estimation is a frequently
used approach to gain a better understanding of human cognition and
behavior. Many studies have addressed the approaches to trace the
position and direction of eye gaze, which is required for different
domains like cognitive (Chong et al., 2020), social behavior (Kodama
et al., 2018; Sugano et al., 2016), medical health (De Silva et al., 2021,
2019), commercial (Bermejo et al., 2020; Sugano et al., 2016) and other
human–computer interaction applications (Zhang et al., 2015). Addi-
tionally, gaze estimation environments can be classified as constrained
(controlled) or unconstrained (wild). Constrained environments are
those that have a fixed set of parameters, such as illumination, subject
count and head-angle variation. On the other hand, unconstrained envi-
ronments are those with a considerable measure of parameter variation.
It is clear that with the widespread use of gaze estimating technology
across many application domains, gaze estimation has progressed more
into unconstrained environments, surpassing constrained environment
settings.

Although several eye gaze estimation solutions are available, some
of them incur aspects such as expensiveness, requirement of manual
interventions, unreliability and inaccuracy in practical deployments.
Also, the performance of some traditional approaches is limited by
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factors such as low image quality and light conditions. In such scenar-
ios, Deep Learning (DL) based eye gaze estimation approaches come
into play due to the inherited benefits, such as learning from existing
data, automation, flexible process, high accuracies and better decision
making. These prevalence DL based approaches have shown success in
performance improvements in eye gaze applications.

Human gaze estimation approaches fall into two broad categories:
model-based techniques and appearance-based techniques. Model-
based methods fundamentally require dedicated devices such as near-
infrared (NIR) cameras to manually regress the eye features and build
a geometric model (Cheng et al., 2021; Kar & Corcoran, 2017). This
method is person-specific and restricted to constrained environments
(Akinyelu & Blignaut, 2020; Cheng et al., 2021). In comparison,
appearance-based techniques do not necessitate dedicated devices and
are not limited to constrained environments. These methods can be
subdivided into two categories, namely conventional appearance-based
methods and appearance-based methods with DL.

Over the last decade, there has been a surge of interest in eye-
tracking literature related to gaze estimating methods based on DL
techniques due to their applicability and robustness in unconstrained
environments. In contrast to conventional appearance-based methods,
DL-based methods exhibit many benefits, such as the ability to extract
high-level gaze features from images and the ability to learn a non-
linear mapping function directly from the image to eye gaze (Cheng
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Fig. 1. Structure of the paper.

et al., 2021; Kellnhofer et al., 2019). Deep convolutional neural net-
works (DCNN) have been utilized in almost every DL-based gaze esti-
mation approach due to their ability to map image features directly,
handle large-scale datasets, learn complex non-linear mappings when
faced with significant head-pose variations, eye occlusions and illumi-
nation conditions.

Appearance-based methods with DL, which is the main focus of
this study, can be divided further into two subcategories based on
the number of subjects, namely single-user gaze estimation and multi-
user gaze estimation. Despite the significant shift in gaze estimation
techniques towards applications in unconstrained environments, the
demand for multi-user gaze estimation approaches is on the rise. As
of the end of year 2021, a limited number of such methods have
been researched, specifically regarding time-shifting and space-shifting
single-user gaze estimation.

This survey paper explores state-of-the-art methods and techniques
used in eye gaze estimation research. We analyze the use of the latest
DL techniques, useful public datasets and different approaches used
by related studies. The lessons learned from this survey state that the
eye gaze applications are evolving with the use of DL techniques due
its the inherited benefits. Moreover, this study suggests guidance to
follow a DL based process for eye gaze estimation that can be used
as a reference. Further, we discuss the challenges and future research
directions in eye gaze estimation in several applications. Thus, we
aim to inspire the researchers and developers with useful insights to
produce effective and efficient eye gaze estimation applications using
DL techniques.

Fig. 1 states the survey structure considered for this article, which
focuses on the single and multi-user gaze estimation methods in DL.
Section 1 states the survey motivation and main contributions of this
research. Section 2 explains the scope of the survey and discusses the
background of current related studies. Section 3 provides an overview
of multi-user gaze estimation by discussing the history, progression
and applications of gaze estimation. Section 4 broadly discusses the
technical aspects of existing gaze estimation approaches, focusing on
appearance-based methods with DL. In Sections 5–7, we present the
supplementary knowledge in gaze estimation literature by reviewing
the theoretical concepts behind the coordinate systems, describing
different gaze datasets and discussing state-of-the-art performance eval-
uation metrics. Section 8 elaborates and critically analyses the existing
single-user and multi-user gaze estimation approaches by summarizing
their key outcomes and limitations. Section 9 suggests guidance to
select a given approach based on different conditions and discusses the
limitations, challenges, future direction in multi-user gaze estimation
literature. Finally, Section 10 concludes the study.

2. Background

2.1. Related work

Among many studies that have focused on eye gaze estimation
research, only a few survey studies are available that discuss growing
aspects in the literature focused on DL techniques. Table 1 summarizes
the features addressed by the existing related survey papers. Some
of the studies have discussed different gaze estimation approaches
like model-based methods, appearance-based methods, DL-based meth-
ods and convolutional neural network (CNN) based methods. For in-
stance, Kar and Corcoran (2017) have explored the methods focusing
on model-based approaches. They have presented their work under
five categories: (1) 2D regression, (2) 3D model, (3) appearance-based,
(4) cross Ratio-based and (5) shape based methods. Similarly, Cazzato
et al. (2020) have surveyed gaze estimation techniques under two
categories, (1) geometric-based and (2) appearance-based methods, by
analyzing the advancements in computer vision together with DL. In
other perspectives, Akinyelu and Blignaut (2020) and Cheng et al.
(2021) have shown different DL-based gaze estimation techniques fo-
cusing on CNNs. Many of these studies have further reviewed the
calibration techniques, performance evaluation metrics, devices and
platforms and datasets in the gaze estimation literature. However,
most of the studies have not discussed these approaches in a multi-
user gaze estimation perspective considering factors like unconstrained
environmental settings, gaze target variations and coordinate systems.

2.2. Scope of the survey

This paper provides a comprehensive survey of single and multi-
user gaze estimation methods in DL from 2015 to 2021. The related
studies are surveyed from four perspectives: (1) deep neural network
model architecture, (2) datasets, (3) environment and (4) performance
evaluation. From the deep neural network model architecture perspec-
tive, we review the DL-based approaches to include multi-task CNNs,
temporal and spatial CNNs and capsule networks. Network backbones,
inputs and outputs, optimization techniques are further discussed. From
a dataset perspective, the metadata such as the number of images,
subject variations, annotation formats and image quality are discussed.
The environment perspective describes the coordinate systems used,
head-pose variations, illumination variations and other application-
specific environmental parameters. Finally, we review and compare
the acquired performance aspects. Following are the highlights of this
survey paper.

• Present an in-depth analysis of the DL-based gaze estimation
approaches from 2015 to 2021 with a focus on multi-user gaze
estimation techniques in unconstrained settings.
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Table 1
Summary of related survey papers.

Consideration Survey

Kar and Corcoran (2017) Cheng et al. (2021) Akinyelu and Blignaut (2020) Cazzato et al. (2020) Klaib et al. (2021)

Model-based methods � �

Appearance-based methods � � � � �

DL-based methods � � � � �

Calibration techniques � �

Datasets � � �

Performance evaluation metrics � � � �

Devices and platforms � � � �

Fig. 2. Evolution of deep learning-based gaze estimation techniques.

• Provide a survey of existing state-of-the-art single-user and multi-
user large-scale gaze datasets. Requirements for a standard multi-
user gaze dataset, a summary of public and synthetic gaze datasets
and issues related to public gaze datasets are discussed and ana-
lyzed.

• Explain the theory behind coordinate systems and the possible
performance evaluation metrics that can be applied on eye gaze
estimation.

• Suggest a guidance for selecting DL-based approaches in eye gaze
estimation for researchers and developers. Discuss the open chal-
lenges and future opportunities in the field of DL-based multi-user
gaze estimation.

2.3. Evolution of the techniques

Fig. 2 shows a quantitative view of the use of the techniques in the
related literature during the years 2015–2021. We have considered the
research papers indexed in Google Scholar for each of the techniques in
the related studies. Our search strategy is based on ‘‘⟨technique name⟩’’
+ ‘‘⟨research consideration⟩’’. Although the considered data can vary
slightly due to the search query’s associated noise, we assume the flaws
are equally distributed over the search results for all the considered
techniques. Thus, the audience can get a comparative view of the usage
of the main techniques in this area.

As shown in Fig. 2, there is a similar growth in AlexNet, VGG (Visual
Geometry Group) and Inception techniques from the year 2015 to 2021.
Similarly, the residual neural network (ResNet) technique has shown a
rapid increase in popularity. However, LeNet has decreased its usage,
which may be due to the recent advancements in residual networks.
Overall, it can be seen that the interest in gaze estimation research with
deep CNNs is steadily increasing irrespective of the type of technique.

3. Overview of multi-user gaze estimation

3.1. Eye gaze

Human eye gaze is an active natural form of interaction that gathers
information from a visual scene. It provides a wealth of information

about human actions even though eye gaze is subtle and straightfor-
ward in comparison to gesture and speech. In eye gaze research, eye
movements are studied thoroughly based on their type, functionality
and characteristics. Analysis of eye movements are used to gather data
about the user’s intention, cognitive activities and attention (De Silva
et al., 2021; Goldberg & Kotval, 1999; Velichkovsky et al., 2014). These
eye movements are broadly classified as fixations, saccades, smooth
pursuit, scanpath, gaze duration, blink and pupil size change (Kar &
Corcoran, 2017).

Fixations are defined as times when eyes are stationary between
movements and scan a scene. They have the least movement rate and
are helpful for scanning detailed information, reading and attention.
Saccades, on the other hand, have the highest movement rates and are
helpful for visual search. These are simultaneous movements of both
eyes that occur between fixations. Smooth pursuits are eye tracking
movements used to follow moving targets of interest. Scanpath is a
combination of alternating eye fixations and saccades prior to when
the eyes reach a target position. The dimensionality of eye gaze can be
classified as 2D gaze and 3D gaze. 2D eye gaze can be calculated using
gaze direction from a single eye, while 3D eye gaze estimation requires
both gaze direction and gaze depth from both eyes (Kwon et al., 2006).

3.2. Gaze estimation

Gaze estimation is an umbrella term used to assess human intent and
interest through the measurement of human eye gaze (Tsukada et al.,
2011). The history of human gaze estimation and eye-tracking dates
back to the 18th century where researchers used invasive eye-tracking
techniques to observe eye movements (Kar & Corcoran, 2017; Khan &
Lee, 2019). However, with the evolution of digital signal processing and
computer vision fields, more non-invasive gaze estimation approaches
have been adopted by utilizing unique, physical characteristics of the
eye (Chennamma & Yuan, 2013; Kar & Corcoran, 2017; Khan & Lee,
2019). The photometric and motion characteristics of the human eye
have provided essential features required for this task (Akinyelu &
Blignaut, 2020; Khan & Lee, 2019).

Gaze direction and point of gaze are two metrics used for gaze
estimation. The visual axis, which deviates from the optical axis, deter-
mines the gaze direction (Kar & Corcoran, 2017), as shown in Fig. 3.
Eye properties such as pupil and corneal reflection derived from eye
regions, are used to determine it in the application level (Chennamma
& Yuan, 2013). Subsequently, gaze point is defined as the intersection
of the of gaze direction and the object’s surface (Sun et al., 2016).

Before the emergence of computer vision-based methods, gaze es-
timation techniques relied on detecting patterns of eye movement
including fixations, saccades and smooth pursuits (Young & Sheena,
1975). Methods based on computer vision can be classified into three
groups: (1) 2D eye feature regression methods, (2) 3D eye model
recovery method and (3) appearance-based methods (Cheng et al.,
2021). These methods estimate the gaze using eye image and video
data and the eye’s geometric model characteristics. Specifically, the
first two approaches detect geometric features of the eye, such as
corneal reflection, pupil center and build an eye model to estimate
gaze (Cheng et al., 2021; Kar & Corcoran, 2017). Coherently, these two
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Fig. 3. Model of a human eye ball.

approaches are referred in the literature as model-based approaches.
The third strategy considers the eye’s photometric appearance to esti-
mate gaze (Chennamma & Yuan, 2013). Model-based methods require
the assistance of dedicated devices such as infrared cameras, while
methods based on appearance do not require specialized instruments
for gaze measurement.

Generally, there are two types of devices used in these methods: (1)
remote eye tracker and (2) head-mounted eye tracker. The first type is
typically kept at a distance of 60 cm from the user and the cameras. The
second type is commonly installed on a frame of glass (Cheng et al.,
2021). The user interfaces for gaze estimation are categorized into
four groups: active, passive, single, or multi-modal (Kumar, Paepcke
et al., 2007; Sibert & Jacob, 2000; Špakov & Miniotas, 2005). Active
interfaces utilize the user’s gaze to activate a function, while passive
interfaces use gathered gaze data to determine a user’s level of interest
or attention (Kar & Corcoran, 2017).

Depending on the coordinate system used, gaze estimation tech-
niques are divided into 2D and 3D gaze estimation. The existing ma-
jority of the studies have been proposed for 2D gaze estimation, while
a few studies have focused on 3D gaze for accurate gaze estimation in
real-world settings (Kodama et al., 2018; Sugano et al., 2016).

3.3. Multi-user gaze estimation

A growing interest in gaze estimation in unconstrained environ-
ments has been noticed alongside the rapid utilization of DL-based ap-
proaches in gaze estimation techniques in the last decade. The concept
of multi-user gaze estimation has been studied and applied in various
domains due to this adaptation (Bermejo et al., 2020; Kellnhofer et al.,
2019; Kodama et al., 2018). In contrast to conventional single-user
gaze estimation, the multi-user gaze estimation is mostly required in
open environmental settings such as retail, public gatherings and public
venues. Hence, it requires robust, low-overhead and high-speed gaze
estimation approaches.

Existing multi-user gaze estimation studies can be split into two
categories: time-sharing approaches and space-sharing approaches (Ko-
dama et al., 2018; Sugano et al., 2016). The time-sharing method
distributes the number of users over a time period. On the other hand,
the space sharing approach process multiple users at the same time. In
literature, time-shifting approaches have not captured much attention
due to their unscalability and fewer robustness (Park et al., 2012; Park
& Shi, 2015).

3.4. Applications of gaze estimation

Gaze estimation is becoming an increasingly effective technique
in a variety of fields including computer vision, medical diagnosis,
autonomous vehicles, psychology, human–computer interaction and
sports training (De Silva et al., 2021, 2019; Kerr-Gaffney et al., 2019;
Raptis et al., 2017; Sugano et al., 2016; Wang et al., 2015; Wang,

Pi et al., 2018; Zhang, Sugano, Bulling, 2019). Through eye gaze
estimation, valuable information of human behavior such as the object
of concentration, internal cognitive state, user intent and attention
analysis can be inferred (Kar & Corcoran, 2017). Eye tracking and
gaze estimation were limited to psychological and cognitive studies
and medical research in the early stages. But with technological break-
throughs in computing power, digital video processing, low-cost hard-
ware and applications in gaze estimation have grown into new domains
such as gaming, virtual reality and web advertising (Kar & Corcoran,
2017; Morimoto & Mimica, 2005). In human–computer interaction,
gaze location can be used as an input modality to supplement other
primary modalities such as a mouse, keyboard and touch. Eye move-
ments reflect the cognition process of a human, as well as the medical
and mental condition of that person, which can be used in multiple
applications (Guojun & Saniie, 2016).

Kar and Corcoran (2017) have classified the types of devices in
which single-user gaze estimation is used in five broad categories
as: desktop-based systems, television and large display panels, head-
mounted setups, automotive and hand-held devices (smartphones and
tablets). In desktop-based systems, gaze estimation is used for com-
puter communication such as mouse pointer control, gaze-based ob-
ject selection, password entry and psychoanalysis (Ghani et al., 2013;
Kasprowski & Harężlak, 2014; Kumar, Garfinkel et al., 2007; Sibert
& Jacob, 2000; Zhai et al., 1999). In television and large display, a
panel’s gaze estimation can be applied for navigating menus, modifying
display properties in TVs, switching channels and understanding user
interests (Gwon et al., 2013; Lee et al., 2010). Gaze trackers installed
on the head are commonly employed in portable platforms and have
a variety of uses in domains such as augmented reality, virtual reality,
sports training, computer gaming and psychological research (Lee et al.,
2009, 2011; Piumsomboon et al., 2017; Sidorakis et al., 2015; Thies
et al., 2018). In automotive systems, gaze estimation is vital for driver
alertness detection, driver fatigue detection and cognitive state estima-
tion (Ji et al., 2004; Sun et al., 2007; Zheng et al., 2015). In the context
of hand-held devices, smartphone and tablet interaction has been im-
mensely improved with the assistance of gaze estimation for tasks such
as controlling the device, gaze-based user authentication and keyboard
typing (Liu et al., 2015; Velichkovsky et al., 2014). Consequently, while
single-user gaze estimation has expanded to a broad range of domains
and applications, at the research level, multi-user gaze estimation is
still a novel concept.

4. Gaze estimation approaches

Existing gaze estimation approaches are classified into two broad
categories: appearance-based techniques and model-based techniques.
Model-based gaze estimation techniques make use of a geometric model
of the eye that includes a number of ocular components to include
the cornea, optical and visual axes. While model-based gaze estima-
tion methods are more precise, they typically require time-consuming
personal calibration for each participant.

Appearance-based methods usually require user eye appearance
images to directly learn a mapping function from eye appearance image
to gaze estimation (Fischer et al., 2018; Huang et al., 2017; Kellnhofer
et al., 2019; Xu et al., 2015). Appearance-based methods typically do
not require camera calibration and geometry data, since the mapping
is made directly on the image of the user’s eye. Appearance-based
methods can be divided into two categories: conventional appearance-
based methods and appearance-based methods with DL. Their abstract
concepts are depicted in Figs. 4 and 5, respectively.

4.1. Conventional appearance-based methods

Conventional appearance-based approaches treat whole images as
features and deduce eye gaze directly from them. Conventional
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Fig. 4. Conventional appearance-based methods.

Fig. 5. Appearance-based methods with deep learning.

Fig. 6. Constrained environment and Unconstrained environment.

appearance-based methods have used mapping functions, such as Adap-

tive linear regression, K-Nearest-Neighbor, Random Forest regression,

Artificial Neural Networks, Gaussian Processes, Support Vector Ma-

chines. Lu et al. (2014b) have proposed the adaptive linear regres-

sion (ALR) technique for mapping high-dimensional features of the

ocular image to low-dimensional gaze positions, which significantly

reduces the number of training samples for high accuracy estimation.

K-Nearest Neighbors has become a standard method in the conven-

tional appearance-based method for predicting gaze using the mean

of neighbor samples’ gaze angles. Wang, Zhao et al. (2018) have pre-

sented a gaze estimation framework that is a combination of neighbor

selection and neighbor regression. It makes extensive use of information

about the head’s position, the pupil center and the appearance of the

eyes. Kacete et al. (2016) have proposed an approach based on an

ensemble of trees grouped in a single forest to learn the highly non-

linear mapping function between the gaze information and the RGB

eye image appearances, including depth cues. Yu et al. (2016) have

proposed a method based on particle swarm optimization BP neural

network. These methods endure many challenges. Most conventional

appearance-based methods require a fixed head pose or a limited

range of head movements as represented in Fig. 6(a). Furthermore, this

method has difficulties in handling subject differences, especially in the

unconstrained environment.

4.2. Appearance-based methods with deep learning

In computer vision, it has been demonstrated that DL techniques
outperform earlier state-of-the-art machine learning techniques. Re-
cently, research on gaze estimation has concentrated on methods based
on DL. They have the ability to overcome challenges, such as signifi-
cant head motion, subject differences and unconstrained environmental
settings, as represented in Fig. 6(b). CNNs are the most widely used
algorithm in this regard. An in-depth discussion on appearance-based
methods with DL is presented in Section 8.

5. Coordinate systems

This section focuses on the main types of coordinate systems that
have been addressed in the literature on gaze estimation. Mainly the
coordinate systems can be categorized: (1) image coordinates, (2)
subject and camera coordinates, and (3) screen coordinates, as shown
in Fig. 7.

Image Coordinate System: An image coordinate system is a 2D
coordinate system that enables a coordinate to specify a location in
a 2D image (Chong et al., 2020; Fang et al., 2021; Recasens, 2016).
There are two types of image coordinates namely, pixel coordinate
and spatial coordinate. The image is treated as a grid composed of
discrete elements in the pixel coordinates, ordered from top to bottom
and left to right. Spatial coordinates provide for more precise location
specification in an image than pixel coordinates do. Also, they describe
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Fig. 7. Coordinate systems used for 2D and 3D gaze estimation; (a) Image coordinates, (b) Subject and camera coordinates, (c) Screen coordinates.

image positions in terms of partial pixels. Image coordinate systems are
especially used in gaze-following systems (Recasens, 2016). In gaze-
following dataset, a single image contains one or more persons. The
pixel or spatial coordinate system is used to annotate the locations of
the center of eyes, head, gaze point of each person in the image. In
addition, some datasets contain object bounding boxes, segmentation
masks and other boundaries. These are also annotated using the image
coordination system (Tomas et al., 2021). Fig. 7(a) depicts the standard
image coordinate system.

Subject and Camera Coordinate System: Subject coordinates rep-
resent the coordinate of the world from the perspective of the user’s
eyes (Bermejo et al., 2020; Kellnhofer et al., 2019). Camera coordinates
share an origin with the subject coordinate system, but the coordinate
axis orientation may be different as shown in Fig. 7(b). The coordinates
of a camera are expressed in terms of points with the origin at the op-
tical center of the camera. Subject coordinates and camera coordinate
systems are 3D coordinate systems and are specifically used in gaze
direction estimation systems to target positioning and, express the gaze
orientation.

Screen Coordinate System: When using an eye tracker with a
screen (gaze point estimation), all gaze estimations are mapped into a
screen coordinate system (Kar & Corcoran, 2017; Sugano et al., 2016).
This two-dimensional coordinate system corresponds to the physical
coordinates of pixels on the computer screen based on the current
screen resolution. The origin of the screen coordinate system is the
screen’s top left corner and the point (0, 0) signifies the screen’s upper
left corner, while (1, 1) denotes the screen’s bottom right corner as
shown in Fig. 7(c).

6. Datasets

6.1. Requirements for real-world benchmark datasets

The general requirements for a real-world benchmark dataset for
multi-user gaze estimation can be listed as follows.

Environment: Different light conditions (Kellnhofer et al., 2019)
that exist in unconstrained environments should be captured to im-
prove the generality of the dataset. Bright light, night light, dawn, dusk
and shadows are a few of the varying illumination conditions under
which the images should be captured. The dataset should include a
broad diversity in scenarios such as different head poses, body poses, in-
frame gaze points, out-frame gaze point (Chong et al., 2020; Kellnhofer
et al., 2019). Furthermore, these scenarios should be captured with
different backgrounds, patterns and textures.

Target variation: In gaze estimation literature, a variety of targets
such as gaze point, gaze direction and gazed object, have been stud-
ied. 2D and 3D gaze points are required by multiple applications to
include desktop scenarios and public displays (Recasens, 2016; Sugano
et al., 2016). 2D and 3D gaze directions are required to calculate the
respective gaze points (Fang et al., 2021). Gazed object is a target
associated with the novel concept of gaze object prediction, which

requires annotating gazed object bounding boxes (Tomas et al., 2021).
A multi-user perspective of these targets is a necessary requirement in
a multi-user benchmark dataset.

Subject variation: Substantial subject variations should be cap-
tured by considering aspects such as collecting images with a sufficient
number of subjects, male and female subjects, subjects from different
regions of the world representing different skin colors, face and eye
shapes (Kellnhofer et al., 2019; Tomas et al., 2021).

Viewpoint: Different viewpoints have been studied in the gaze
literature. 2D image coordinates, 2D screen coordinates, 3D subject
coordinates and 3D camera coordinates are the used viewpoints of
coordinate systems. Head pose is captured in different viewpoints such
as constraint head poses, unconstrained head poses, broad head yaw
and pitch variations (Zhang et al., 2020). Similarly, ocular regions are
captured in multiple viewpoints to include without occlusion, partial
occlusion and total occlusion (Kellnhofer et al., 2019). Either head-
mounted displays or remote cameras such as webcams, kinect and
surveillance cameras are used to collect images from the different
viewpoints.

Challenging conditions: Multi-user gaze estimation in
unconstrained settings introduce numerous challenging conditions.
Datasets should capture these challenging conditions such as eye, face
and body occlusion (Kellnhofer et al., 2019), and other subject distor-
tions such as scenarios where subjects are wearing spectacles (Tomas
et al., 2021). Furthermore, datasets should capture scene images with
varying camera-to-subject distances (Mishra & Lin, 2020) and different
illumination conditions (Zhang et al., 2015).

6.2. Public gaze datasets

Recent research on eye gaze estimation have used different types
of datasets with the growth of DL techniques. Most of the publicly
available datasets have used head mounted devices, surveillance cam-
era and other desktop and mobile eye trackers to capture images for
eye tracking, head pose detection and pupil tracking. Table 2 provides
a summary of common gaze estimation datasets. Most of the existing
datasets support the single-user eye gaze estimation process and there
is a lack of datasets related to multi-user eye gaze images. Some of the
datasets are captured in controlled environments, whereas the others
are acquired in uncontrolled (wild) settings. Fig. 8 includes sample
images from the publicly available datasets, namely (a) MPIIGaze (b)
Columbia Gaze, (c) Gaze360, (d) GazeFollow, (e) Gaze on objects. Some
of the gaze estimation datasets that are widely used in related studies
are listed as follows.

MPIIGaze: Zhang et al. (2015) have presented the MPIIGaze
dataset. It is a novel in-the-wild gaze dataset and one of the most widely
used datasets for estimating gaze using appearance-based methods.
This dataset was collected utilizing laptops over a three-month period
that demonstrate significant variations in eye appearance. Even though
the original dataset only contains binocular eye images, the improved
version of the dataset includes face images (Zhang et al., 2017) and
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Fig. 8. Sample images from publicly available datasets.

Table 2
Summary of gaze estimation datasets.

Dataset Year Subjects Total Annotations Type Environment

MPIIGaze (Zhang et al., 2015) 2015 15 213,659 2D and 3D gaze directions Single Wild
Columbia Gaze (Smith et al., 2013) 2013 56 5880 3D gaze direction Single Controlled
Gaze360 (Kellnhofer et al., 2019) 2019 238 172,000 3D gaze direction Single Wild
GazeFollow (Recasens, 2016) 2015 130,339 122, 143 2D gaze direction, target Multi Wild
GOOReal (Tomas et al., 2021) 2021 100 9552 2D gaze direction, target Single Wild
UTMultiview (Sugano et al., 2014) 2014 50 1,100,000 2D and 3D gaze direction Single Controlled
EyeDiap (Mora et al., 2014) 2014 16 94 (videos) 2D and 3D gaze direction Single Controlled
GazeCapture (Lu et al., 2014a) 2016 1474 2,400,000 2D gaze direction Single Wild
RT-Gene (Fischer et al., 2018) 2018 15 123,000 2D gaze direction Single Controlled
ETH-XGaze (Zhang et al., 2020) 2020 110 1,100,000 2D and 3D gaze direction Single Controlled
NVGaze (Kim et al., 2019) 2020 30 4,500,000 2D gaze direction Single Controlled
TabletGaze (Huang et al., 2017) 2017 51 816 (videos) 2D gaze direction Single Controlled

manually annotated landmarks (Zhang, Sugano, Fritz, Bulling, 2019)
as well. It contains 213,659 images that were gathered from fifteen
participants. It also includes both 2D and 3D annotations. Additionally,
MPIIGaze provides a standard evaluation dataset that includes 15
participants and 3000 images of each participant’s left and right eyes.
Most current gaze datasets restrict the head pose range. However,
MPIIGaze includes an extensive head-pose range and a gaze angle
range (Mora et al., 2014; Sugano et al., 2014).

Columbia Gaze: Smith et al. (2013) have developed a large publicly
available dataset for appearance-based gaze estimation. The collection
contains 5880 high-quality images of 56 subjects (32 males and 24
females), with a resolution of 5184 × 3456 pixels for each image.
Participants ranged in age from 18 to 36 years and 21 of them wore
glasses. Twenty-one participants were Asian, nineteen were Caucasian,
eight were South Asian, seven were African and four were Hispanic or
Latina, indicating a greater range of eye appearances. For each subject,
they collect images for each of the seven horizontal gaze directions, five
horizontal head poses and three vertical gaze directions. In the data
collection setting, participants were seated in a fixed place in front of a
black background. They were asked to focus on a dot shown on a wall
while their eye gaze was recorded. The 3 × 7 grid of dots was placed
in 10 increments vertically and ten increments horizontally.

Gaze360: Most of the available datasets are not suited for develop-
ing a model capable of reliably assessing 3D gaze in the wild. Kellnhofer
et al. (2019) have proposed Gaze360, a large-scale gaze estimate
dataset for unconstrained 3D gaze estimation. Gaze360 is unique for its
combination of numerous gaze poses, head poses, 3D gaze annotations,
a variety of indoor and outdoor locations and a diversity of subjects
like age, sex, ethnicity. The dataset contains 172 000 images of 238
participants and each image has a resolution of 3382 × 4096 pixels.
Dataset has collected in 5 indoor (with 53 participants) and 2 outdoor
(with 185 participants) locations. This dataset consists of 58% and 42%
of female and male participants, respectively. The dataset enables gaze
estimate up to the limit of eye visibility, which in certain circumstances
corresponds to gaze yaws of around ±140◦. The Gaze360 dataset
collecting arrangement was centered on a Ladybug5 360◦ panoramic
camera in the scene’s center, a moving target board marked with an
AprilTag (Wang & Olson, 2016), and a cross on which participants
were asked to gaze constantly. Participants were located at a distance
of approximately 1–3 m from a camera.

GazeFollow: This is a large-scale dataset labeled with the 2D image
location of where participants in the images are looking at (Recasens,
2016). The dataset contains 122,143 images that utilize people as

a source of imagery. These images contain individuals engaged in a
variety of ordinary tasks, and each image contains a single person or
multiple people. Since the images do not consist of ground truth gaze,
they have labeled images using Amazon’s Mechanical Turk and their
online tool. GazeFollow dataset is designed to capture different fixation
scenarios. Several images depict multiple people paying attention to
one another, while others depict individuals looking at each other (Ev-
eringham et al., 2009; Lin et al., 2014; Russakovsky et al., 2015; xiong
Xiao et al., 2010; Yao et al., 2011; Zhou et al., 2014).

GOOReal: Most of the gaze estimation datasets only have the pixel
being looked at instead of the boundaries of a particular object of
interest. This lack of object annotations presents an opportunity for ad-
vanced gaze estimation research. Tomas et al. (2021) have introduced
the task of gaze object prediction along with the Gaze On Object (GOO)
dataset for the retail environment in order to address this issue. The
GOO-Real dataset consists of 9552 images of 100 participants (32 fe-
male and 68 male), and each image is composed of shelves packed with
24 different classes of product items. Each participant was instructed
to enter the grocery environment, and they would then fixate on each
item for a few seconds. Two images were collected for each item stared
at, and annotators were attached a ground truth label (grocery item
identifier) for each image. All objects were annotated with their class,
bounding box (product items, head area) and segmentation mask.

6.3. Issues in public gaze datasets

Many public datasets have several issues and challenges when using
in real-world applications. The majority of datasets are suited for
physically constrained applications such as desktop and mobile phone
gaze estimation. Typically, these datasets are collected using a static
recording setup, which allows higher accuracy. However, they may lack
the diversity in illumination and motion blur. Therefore, these datasets
are not valid for general applications. On the other hand, these datasets
contain relatively small head pose angles and gaze variation and are
restricted to frontal views. Most of the existing gaze datasets are not
annotated for multi-user gaze estimation. Therefore, additional effort is
required to annotate the images using these datasets in the multi-user
gaze estimation process.

6.4. Generated synthetic datasets

Generally, publicly available datasets are primarily used to train and
evaluate gaze estimation models. Collecting accurate gaze estimation
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data and creating a dedicated gaze estimation dataset require time,
effort and cost. Additionally, public datasets are not always suitable
and sufficient for a particular task. Tomas et al. (2021) have presented
a synthetic dataset called GOO-Synth with 192,000 images. They have
used Unreal Engine to create a realistic-looking replica of the scene that
is used in the real dataset. Moreover, Bermejo et al. (2020) have created
a synthetic dataset with 50 subjects to improve the back head detection
task in their models. Different approaches based on techniques like
Mask-RCNN (Shashirangana et al., 2021) and StyleGAN (Karras et al.,
2020) have been used in the literature to generate synthetic datasets.

7. Performance evaluation metrics and standards

Different performance evaluation metrics and standards have been
used in the literature to assess the 2D and 3D gaze estimation tech-
niques. The type of evaluation metrics is depend on the nature of gaze
estimation, which can be further classified into two broad categories,
namely 2D gaze estimation and 3D gaze estimation. Furthermore,
these metrics differ depending on the gaze estimation task performed
including gaze point estimation, gaze direction estimation and gaze
object prediction.

Area Under Curve (AUC): Area Under the ROC curve is one of
the primary metrics used to evaluate the accuracy of 2D gaze point
estimation (Chong et al., 2020; Fang et al., 2021; Recasens, 2016;
Tomas et al., 2021). Judd et al. (2009) have presented Area Under
Curve criteria from a ROC curve to predict the performance of human
saliency maps in gaze fixations. The saliency map is treated as a
binary classifier for each image pixel in this metric. The classification
threshold is determined in such a way that a specified percentage
of picture pixels are categorized as fixated, while the remainder are
classed as unfixed. AUC of the value 1 indicates a model that behaves
perfectly, while average performance is 0.5.

L2 Distance: L2 distance is another primary metric used to evaluate
the accuracy of 2D gaze point estimation (Chong et al., 2020; Fang
et al., 2021; Recasens, 2016; Tomas et al., 2021). The mean Euclidean
distance between the gaze predictions and their respective ground-
truth gaze annotations is defined as L2 distance in 2D gaze estimation
literature (Fang et al., 2021; Recasens, 2016). L2 distance can be
obtained from Eq. (1), where gt_xi and gt_yi refers to the ground truth
gaze annotations along 𝑥-axis and y-axis, respectively. The notations xi
and yi denotes the gaze predictions in 2D image coordinates.

𝐿2𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
1

𝑛

𝑛∑

𝑖=1

√
(𝑔𝑡_𝑥i − 𝑥i)

2 + (𝑔𝑡_𝑦i − 𝑦i)
2 (1)

Angular Error: Some studies have used angular error to determine
the accuracy of 2D and 3D gaze direction estimation techniques (Fang
et al., 2021; Kellnhofer et al., 2019; Recasens, 2016; Tomas et al.,
2021). The angular difference between the predicted and true gaze
direction vectors is defined as the angular error. The predicted gaze
direction vector is produced by connecting the head point to the
predicted gaze point. This metric is calculated in both 2D and 3D vector
spaces.

Average Precision: The average precision metric is used in sce-
narios, where out of frame gaze binary classification has been con-
sidered (Chong et al., 2020; Fang et al., 2021). The area under the
precision–recall curve is defined as the average precision as stated
in Eq. (2).

𝐴𝑃 = ∫
1

0

𝑝(𝑟) 𝑑𝑟 (2)

Classification Accuracy: The classification accuracy metric is re-
ported in scenarios, where gaze estimation has been represented as a
classification problem (Akinyelu & Blignaut, 2020; Mahanama et al.,
2020). It is the ratio of correct predictions to total predictions. The
accuracy of binary classification is expressed in terms of positives and

negatives, as given in Eq. (3). The notations TP, TN, FP, FN denote true
positive, true negative, false positive, false negative, respectively.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
(3)

Mean Squared Error (MSE): The mean squared error is another
metric used to determine the accuracy of 2D and 3D gaze direction esti-
mation techniques (Fang et al., 2021; Kellnhofer et al., 2019; Recasens,
2016; Tomas et al., 2021). MSE is defined as the average squared dif-
ference between the ground truth and the prediction (Handelman et al.,
2019). In gaze estimation literature, MSE can be obtained from Eq. (4),
where yi and gt_yi refers to the predicted gaze and ground truth gaze,
respectively.

𝑀𝑆𝐸 =
1

𝑛

𝑛∑

𝑖=1

(𝑦i − 𝑔𝑡_𝑦i)
2 (4)

8. Related research models

Deep learning-based techniques have been widely used in the field
of gaze estimation due to their ability to map high-level gaze fea-
tures directly from images and produce results in real-world set-
tings (Kellnhofer et al., 2019; Wang & Shen, 2017; Zhang et al.,
2015). CNNs are at the backbone of most of these techniques incor-
porating other DL architectures and techniques such as Capsule Net-
works, Recurrent-Neural Networks, Residual Neural Networks, Multi-
Task CNNs and Transfer Learning (Chong et al., 2018; Fang et al., 2021;
Kellnhofer et al., 2019; Lian et al., 2018; Mahanama et al., 2020).

This section explores DL-based gaze estimation methods with a fo-
cus on multi-user gaze estimation. These methods are introduced in two
main perspectives, DL-based methods for single-user gaze estimation
and DL-based methods for multi-user gaze estimation. The surveyed
studies are further categorized according to the coordinate system
and environmental settings. The studies on single-user and multi-user
eye gaze estimation approaches are summarized in Tables 3 and 4,
respectively. Moreover, we discuss the recent research studies that have
used 2D and 3D DL architectures as demonstrated in Figs. 9–14.

8.1. Deep learning based methods for single-user gaze estimation

8.1.1. 2D deep learning methods in constrained-environments: Single-user

The extraction of the ocular regions is a challenging task in natural-
istic environments due to occlusion (Saad et al., 2020). Also, extracting
head-pose information from ocular regions has not been explored in
detail. Among the related studies, Mahanama et al. (2020) have pro-
posed an appearance-based 2D gaze estimation model named Gaze-Net,
using capsule networks for decoding, representing and estimating gaze
information from ocular region images. Capsule networks have been
used in contrast to CNNs with pooling due to their capability to learn
equivariant representations of objects. They have followed a two-step
approach combining the classification of gaze direction into six classes
and reconstructing the original ocular image in order to construct and
train the deep neural network. In their work, it has been hypothesized
that a single eye image consisting of sufficient information can reliably
estimate the gaze. They have used two publicly available datasets,
MPIIGaze (Zhang, Sugano, Fritz, Bulling, 2019) and the Columbia
Gaze (Smith et al., 2013), to train and test the model. Further, they have
incoperated PoseNet (Oved et al., 2018) to obtain x,y coordinates of
ocular regions in the images. An accuracy of 62% and a mean absolute
error of 2.84 were recorded for the gaze estimation task.
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8.1.2. 2D deep learning methods in the wild: Single-user
Existing gaze-related dataset annotations only contain the pixel of

the gaze, instead of the area of a specific object of interest. In a related
study, Tomas et al. (2021) have addressed this issue by introducing
a challenging task called gaze object prediction. Moreover, they have
presented the Gaze On Objects dataset based on the retail environment
for training and evaluation. The dataset consists of a smaller set of real
images (GOO-Real) and a larger synthetic set of images (GOO-Synth).
GOO-Real consists of 100 human and 9552 grocery item images. Goo-
Synth consists of 192,000 images created with Unreal Engine. All
Objects in the frame are annotated with their class, bounding box and
segmentation mask. The GOO dataset can be used in gaze following,
gaze object prediction and domain adaptation. Several baselines are
benchmarked on the GOO dataset (Chong et al., 2020; Lian et al.,
2018). They have been evaluated using standard metrics such as the
area under the ROC curve (AUC), L2 distance and the angular error.
Baseline evaluation results consistently show the models training on
the GOO-Synth dataset, prior to the training on a GOO-Real dataset to
achieve higher performance on all metrics.

8.1.3. 3D Deep learning methods in constrained-environments: Single-user
Most appearance-based eye gaze estimation methods have only used

encoded features from eye images. In addition, gaze estimation tasks
are limited to 2D screen mapping. Zhang et al. (2017) have proposed
a 2D and 3D appearance-based gaze estimation method that uses face
images as the input. The proposed model architecture is based on CNNs.
They have introduced additional layers that learn spatial weights to
activate the last convolutional layer in order to efficiently use the
face information. The spatial weights mechanism forces the network
to understand and learn the importance of various face regions for
gaze estimation. This mechanism has implemented using the concept
of the 1 × 1 convolutional layer and the rectified linear unit layer.
The obtained results have outperformed the state-of-the-art for both
2D and 3D gaze estimation, reaching an accuracy of 6◦ and 4.8◦,
improvements of up to 27.7% and 14.3% on EYEDIAP (Mora et al.,
2014) and MPIIGaze (Zhang, Sugano, Fritz, Bulling, 2019) for 3D gaze
estimation, respectively.

Another approach for 3D single-user gaze estimation has been pro-
posed by Lian et al. (2019) using multi-task CNNs. In this work, 3D
gaze estimation task has introduced as RGBD gaze estimation by incor-
porating the depth channel. A generative adversarial network (GAN)
has been used for depth image generation to reduce noise and black
holes. The proposed network architecture combines an eyeball feature
extractor, a head pose extractor and a 3D eye position encoder to
predict the gaze point by taking two single eye images and an RGBD
(Red, Green, Blue, Depth) head image as inputs.

8.1.4. 3D Deep learning methods in the wild: Single-user
Many related studies have explored gaze target detection without

incorporating the depth estimation of gaze prediction (Chong et al.,
2020; Recasens, 2016). As a solution, Fang et al. (2021) have proposed
a method for gaze target detection in the unconstrained environments
based on deep CNNs. As shown in Fig. 9, the authors have introduced
a novel architecture for the task by incorporating 3D gaze estimation
and a dual attention module (DAM) consisting of a field of view mask
and a gaze-depth channel. The model used a single image in the wild
as the input and outputs a 2D saliency map.

In another study by Ranftl et al. (2020), a priori depth map has
been employed to generate the depth map of the image. A coarse-to-
fine strategy has been developed for 3D gaze estimation, which can
cope with completely occluded eyes and faces. The task of gaze target
prediction has presented as a combination of two sub-tasks; (1) identi-
fying whether the gaze target is inside or out of the image, (2) locating
the target if inside. The output from the DAM and the scene image has
passed to a ResNet-50 backbone and then to a binary classification head
and a heatmap regression head to obtain the two results. They have

used Gaze360 (Kellnhofer et al., 2019), GazeFollow (Recasens, 2016)
datasets and VideoAttentionTarget (Chong et al., 2020) dataset to train,
test and fine-tune the model, respectively. The proposed method has
produced on par results as a single human, achieving 14.9◦ angular
error, 0.922 AUC and 0.896 average precision. This work has shown
promising results for single-user gaze target detection using 2D images
in the wild in spite of head-eye inconsistency and occlusion.

Robustly estimating gaze in the wild with varying-camera person
distances is another challenge for CNN backbones. Mishra and Lin
(2020) have proposed a novel solution for the task by aggregating
multiple zoom scales of the same input image using the center-cropping
technique. Moreover, they have introduced a sine–cosine transform to
avoid the yaw angle discontinuity in 360◦ backward gaze estimation,
which penalizes DL models with substantial losses. The aggregation of
center cropped input images with multiple sizes has been carried out by
spatial-max pooling and has fed into a ResNet-18 (He et al., 2016) back-
bone and other backbone variants. The pinball loss function inspired by
Gaze360 (Kellnhofer et al., 2019) has been used to output the uncer-
tainty of the predictions further. A sequential model using bidirectional
LSTM has been proposed, and a sequence of multi-crops has achieved
better performance on the Gaze360 dataset. The best mean angular
errors achieved for all 360◦, front 180◦, and back in Gaze360 dataset
are 12.4, 10.7 and 18.9, respectively, using the sequential model with
Hard-net (Chao et al., 2019) as the backbone. Validation of the model
on the RT-GENE dataset has achieved a state-of-the-art mean angular
error of 6.7 using the static model.

Another study on 3D single-user gaze estimation in the wild can
be summarized as follows. Chong et al. (2018, 2020) have published
two consecutive studies using state-of-the-art deep CNNs to predict
heatmaps of gazed targets by a single-user. The predecessor has
achieved near single-human performance on the GazeFollow dataset
for single image gaze target prediction. A summary of single-user gaze
estimation approaches is given in Table 3.

8.2. Deep learning based methods for multi-user gaze estimation

Gaze estimation of multiple people is a relatively new research area
that has been emerging with the adaptation of DL-based methods for
gaze estimation (Sugano et al., 2016). A summary of multi-user gaze
estimation approaches is presented in Table 4.

Existing methods of multi-user gaze estimation can be placed into
two categories: (1) techniques that analyze the gazes of multiple people
sharing time and space, and (2) techniques that explore the gazes of
multiple people sharing only space (Kodama et al., 2018). The first
type requires several people to be wearing head-mounted cameras to
estimate each of their gazes, thus hindering its practicality in real-world
scenarios due to the requirement of a head-mounted camera for each
person (Kodama et al., 2018; Park et al., 2012; Park & Shi, 2015). The
approaches for the second type are discussed under this section, com-
paring their performance, reliability and challenges. These approaches
are presented under two sections based upon the dimensionality of gaze
estimation and the nature of constraints in the environment.

8.2.1. 2D deep learning-based methods in the wild: Multi-user
Multi-user gaze estimation in a 2D image coordinates system is a

timely approach due to the potential of DL techniques in determining
gaze direction in unconstrained settings. Recasens (2016) has proposed
a deep neural network-based approach using CNNs for the novel task
gaze-following in the wild. A benchmark dataset GazeFollow has been
further presented. Gaze-following is the task of following a person’s
gaze to predict the object being looked at, which had not received
prominent attention until this point. As shown in Fig. 10, the head pose
and the gaze orientation are extracted from the scene image.

The location of different objects being looked at by different people
in the scene is predicted in 2D image coordinates. Unlike previous
work, this approach have used only a single third-person view of the
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Fig. 9. Representation of the model architecture presented by Fang et al. (2021).

Table 3
Summary of single-user gaze estimation approaches.

Ref. Architecture Backbone Dataset Performance Coordinate system Environment

Zhang et al. (2017) CNN-Spatial AlexNet Own dataset Ang - 4.8◦ 2D, 3D Controlled

Chong et al. (2018) Multi-task CNN ResNet-50 EYEDIAP, GazeFollow, SynHead AUC - 0.896
L2 - 0.187
Ang. - 6.4◦

3D Wild

Lian et al. (2019) Multi-task CNN ResNet-34, Own EYEDIAP, Own AUC - 0.906
L2 - 0.145
MAng - 8.8◦

3D Controlled

Chong et al. (2020) CNN-LSTM ResNet-50 GazeFollow, VideoAttentionTarget, VideoCoAtt AUC - 0.924
L2 - 0.096
Out of Frame AP
- 0.925

3D Wild

Mahanama et al. (2020) Capsules, CNN Own architecture MPIIGaze, Columbia Gaze Accuracy - 62% 2D Controlled

Mishra and Lin (2020) CNN-LSTM ResNet-18, Hardnet Gaze360, RT-GENE MAng - 12.4◦ 3D Wild

Tomas et al. (2021) CNN-static ResNet-50 GOO, GazeFollow AUC - 0.889
L2 - 0.150
Ang. - 29.1◦

2D Wild

Fang et al. (2021) CNN-static ResNet variants Gaze360, GazeFollow, VideoAttentionTarget AUC - 0.922
L2 - 0.124
Ang. - 14.9◦

3D Wild

Table 4
Summary of multi-user gaze estimation approaches.

Ref. Architecture Backbone Dataset Performance Coordinate system Environment

Recasens (2016) CNN with shifted grids AlexNet GazeFollow AUC - 0.878
L2 - 0.190
Ang. - 24◦

2D Wild

Sugano et al. (2016) CNN spatio-temporal AlexNet Own, Coutrot, Hollywood2 – 3D Wild
Kodama et al. (2018) CNN LeNet-5 Own MAE - 10.39 m 3D Wild

Kellnhofer et al. (2019) CNN-LSTM ResNet-50 Gaze360 MAng - 13.5◦ 3D Wild

Lian et al. (2018) CNN ResNet-50 GazeFollow, DLGaze AUC - 0.906
L2 - 0.081
MAng. - 8.8◦

2D Wild

Bermejo et al. (2020) CNN ResNet-18 UcoHead, Own MAE - 19◦

FPS - 0.52
3D Wild

scene, including the person and the object being gazed at to infer gaze.
They have introduced a large-scale dataset, GazeFollow, annotated
with the gaze object annotations by accumulating 122,143 image data
consisting of 130,339 people from several significant datasets for model
training and evaluation tasks. An in-depth survey of the dataset is
given in Section 6.2. The dataset is designed to capture various fixation
scenarios in which the people count varied from a single person to a
crowd of people. They have described the gaze-following of humans
using a gaze pathway that detects the gaze direction and a saliency
pathway that identifies the salient objects. Also, a CNN architecture
based on AlexNet (Krizhevsky et al., 2017) is used as the backbone.

The model is designed to support multi-modal predictions for reli-

able predictions of gaze objects in ambiguous scenarios. The problem

is formulated as a classification task by quantizing the fixation location

into an N×N grid where the size of 𝑁 is selected using a shifted grids

approach. The experimental results of the study show that the model

achieves an AUC of 0.878 and L2 distance of 0.190 for the gaze fixation

prediction task, where the measured single-human level performance

for the task is 0.924 ACU and 0.096 L2 distance. Even though the results

show that the model is robust to inaccurate head detection, the lack of

3D understanding has generated incorrect predictions in their work.
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Fig. 10. Representation of the GazeFollow network proposed by Recasens (2016).

Fig. 11. Representation of the model architecture presented by Lian et al. (2018).

A similar approach to GazeFollow (Recasens, 2016) has been pro-
posed by Lian et al. (2018) for multi-user gaze point prediction of
the target person in a scene. As demonstrated in Fig. 11, they have
proposed a two-stage solution consisting of a gaze direction pathway
and a heatmap pathway by mimicking the gaze-following the behavior
of a human. In the first stage, gaze direction was estimated by head
images and its position to generate multi-scale gaze direction fields. In
the second stage, multi-direction gaze fields have concatenated with
the original image to regress the heatmap. Unlike in GazeFollow (Re-
casens, 2016), two pathways have been associated with each other to
mimic gaze following the behavior of a human. Furthermore, more
robust gaze heatmap prediction has been proposed to replace gaze
point estimation. ResNet-50 based DCNN has been used along with
a three fully connected layer network for gaze direction prediction.
Adam optimizer has been used to optimize the model training. The
heatmap pathway has used a feature pyramid network (Lin et al., 2017)
with a Sigmoid activation function. The GazeFollow dataset and their
own video dataset named DLGaze, have been used for model training,
validation and evaluation. The experimental study has shown a mean
angular error of 8.8◦, which has surpassed the 11.6◦ result in Recasens
(2016). The authors have stated that the two-stage architecture inspired
by human behavior is the reason for the improved performance.

8.2.2. 3D Deep learning-based methods in the wild: Multi-user
Application independent 3D gaze estimation in the wild serves as a

good entry point for many applications in the domain. Kellnhofer et al.
(2019) have proposed a robust appearance-based method for 3D gaze
estimation in unconstrained images of large diversity using bidirec-
tional Long Short-Term Memory capsules (LSTM) (Graves et al., 2005).
As shown in Fig. 12, the authors have presented Gaze360, a large gaze
estimation dataset containing 172k images with 238 subjects. It consists
of a wide range of gaze and head pose angles, significant variation in
natural illumination, diverse and arbitrary environments for the task.

The gap between leveraging the full potential of DCNN and the lack
of sufficient annotated diverse data for the task is bridged through the
approach.

The proposed model emphasizes the temporal nature and the conti-
nuity of gaze as a signal by aggregating seven image frames to predict
the gaze of the central frame using LSTM capsules. ImageNet-pre-
trained ResNet-18 (He et al., 2016) architecture is used as the CNN
backbone to predict the gaze in real-world 3D spherical coordinates.
An uncertainty value for a gaze prediction is introduced and measured
using quantile regression (Koenker, 2005) by the pinball loss function.
The uncertainty prediction, as well as not relying on eye or face
detectors, allowed the model to robustly estimate a gaze direction even
in fully occluded eyes. Mean angular errors (MAE) are calculated for
various static and temporal models to validate the gaze estimation and
calculated the correlation between the actual error and the predicted
uncertainty using Spearman’s rank correlation. MAE values 13.5, 11.4
and 11.1 were obtained for all 360◦, front 180◦ and front-facing
scenarios, respectively. Further, an uncertainty correlation of 0.45 was
obtained using the proposed method.

Kodama et al. (2018) have proposed a method for localizing the
common gaze target focused on by a crowd of people in a tennis
stadium using low-resolution images by aggregating the individually
estimated 3D gaze of each person, as shown in Fig. 13. This study
has further analyzed the relationship between the number of people
involved in the aggregation and the localization accuracy of the com-
mon gaze target estimation. They have constructed a dataset of 12,792
images, which consists of 96 participants in a tennis stadium using two
cameras. Each image consists of 48 people. The dataset further contains
454,739 face images annotated with 3D real-world coordinates with
yaw angle and pitch angle ranging from −74.02 to 74.02 and −20.09
to −3.01, respectively.

The authors have used a multi-task cascaded CNN-based face de-
tector to detect the faces, which were then used to train the Le-Net-
5 (LeCun et al., 1998) based gaze angle estimator. In the experimental
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Fig. 12. Representation of the Gaze360 model architecture by Kellnhofer et al. (2019).

Fig. 13. Representation of the model architecture by Kodama et al. (2018).

study, the method’s performance has been studied with respect to the
number of people involved in the aggregation, considering the single-
person case as the baseline. They achieved a 13.99 m MAE of estimated
gaze point for the baseline and reduced it to 10.39 m by aggregating
24 people. Their comprehensive experimental study indicates promise
for aggregating individual gaze estimations for more accurate common
gaze target prediction in the wild. However, a more robust aggregation
method still needs to be developed where individual gaze estimations
contain significant biases.

An application-specific method for 3D Multi-user gaze estimation
in the wild has been explored by Bermejo et al. (2020). They have
proposed an exciting approach EyeShopper, to analyze customer be-
havior in retail stores using gaze estimation from back-head images of
shoppers as shown in Fig. 14. They have further generated a synthetic
back-head image dataset of 144,000 images consisting of 50 subjects
and ±90◦ head yaw and pitch variations due to the unavailability of
public back-head datasets in the wild. In this work, they have assumed
that the customer’s gaze can be predicted based on the customer’s head
position when the subject’s face is not visible. With this assumption,
they have proposed an accurate DCNN based architecture for gaze
estimation using head-pose from back-head images and a novel loss
function. A fine-tuned version of You Only Look Once (YOLO) v3 model
is used as the back-head detector and a hybrid coarse-fine approach
using a static ResNet-18 backbone as the head pose estimator has
been used. The coarse-fine approach combines a four-class head-pose
classification layer and a fine regression layer implemented using fully
connected layers. The proposed model has been trained with 122,092
images and validated on 26,184 images by combining images from
the UcoHead (Muñoz-Salinas et al., 2012) dataset, a manually labeled
dataset and the synthetic dataset. For backhead gaze estimation, a mean
absolute error of 19◦, which is 10% lower than Hopenet (Ruiz et al.,
2018) has been achieved along with an average of 0.52 frames per
second (FPS).

9. Discussion

9.1. Criteria for selecting a research approach

We provide our suggestions for the selection of the DL-based gaze
estimation approach in a practical point of view, as shown in Fig. 15.
The criteria are based on the performance metrics and implementa-
tion issues in gaze estimation literature. By considering the majority
vote of surveyed papers, we assumed that DL-based gaze estimation
approaches are employed in unconstrained settings, while model-based
methods are used in constrained situations. The effectiveness of the
aforementioned techniques depends on the environment settings, head
angle, distance variance, subject count, available computational re-
sources and the other constraints. Additionally, our selection criteria
are confined to methodologies based on DL and do not consider the
availability of datasets for decision making. These guidelines can be
used as an advisory for the practitioners and should not consider as a
rigid criterion.

9.2. Open challenges and future research directions

The existing appearance-based gaze estimation methods can be
broadly divided into single-user gaze estimation and multi-user gaze
estimation. Multi-user gaze estimation has not received considerable
attention in the literature thus far. With the adaptation of DL-based
techniques in this domain, most of the studies have progressed into gaze
estimation in real-world scenarios with unconstrained settings in the
last decade. As per this adaptation, the field has been confronted with
numerous challenges and future opportunities. Achieving real-time in-
ference speeds for multi-user gaze estimation has not yet been explored
and remains a significant challenge in the field. The application-specific
approach of Bermejo et al. (2020) for estimating shoppers’ gaze in retail
has reported an average of 0.52 FPS for the task.

Moreover, a generalized DL model for multi-user gaze estimation in
unconstrained settings has not been explored and remains a challenge.
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Fig. 14. Representation of the EyeShopper system architecture by Bermejo et al. (2020).

Fig. 15. Guide to select a deep learning-based gaze estimation approach.

This generalized model should not be restricted to a specific applica-
tion, environmental constraints and a given number of users. In another
point of view, the eye gaze estimation solutions can be integrated
with other related fields like human tracker (Gamage et al., 2018) and
face detection (Meedeniya & Ratnaweera, 2007) systems to provide a
complete product in a low-cost environment, where the models can be
deployed in edge devices (Shashirangana et al., 2021). Also, a standard
framework can be developed for performance evaluation of eye gaze
systems (Kar & Corcoran, 2017).

Furthermore, the success of DL algorithms is due to the availability
of large-scale datasets and computational resources. In this field, the
requirement of a large-scale generalized dataset remains a substantial
challenge. The currently available, GazeFollow dataset is limited to 2D
multi-user gaze annotations in the image coordinates. These challenges
are the basis for future research. Thus, the future directions can be
summarized as follows.

• DCNN based approaches for multi-user gaze estimation have only
been explored to a small extent in the literature. Current work
has considered a few application domains like retail industry and
crowd behavior analysis (Bermejo et al., 2020; Kodama et al.,

2018; Tomas et al., 2021). Therefore, future research can con-
sider applying multi-user gaze estimation in different application
domains.

• Most CNN-based techniques reviewed in this paper for multi-
user gaze estimation have not focused on the throughput of the
approach. Future work can focus on acquiring a trade-off between
the accuracy and the inference rate to produce a viable solution
in unconstrained environments.

• Although multiple datasets exist for single-user gaze estimation,
a standard publicly available dataset for multi-user gaze estima-
tion remains a limitation. Future work can produce a large-scale
generalized multi-user gaze dataset considering different head
poses, illumination conditions, facial and head occlusions, subject
variations and target variations.

• In the multi-user gaze estimation literature, a standard perfor-
mance evaluation framework has not been observed. Hence, fu-
ture work can develop a framework for performance evalua-
tion in multi-user gaze estimation considering unconstrained en-
vironments, target variations, subject variations, accuracy and
inference rates.

This survey presented an in-depth overview of DL-based gaze esti-
mation techniques focusing on multi-user gaze estimation in real-world
conditions by highlighting their advantages and limitations. Further-
more, we provided critical analysis on the related models, described
available datasets, coordinate systems, performance evaluation metrics
and standards, together with the challenges and future opportunities in
the field. Although only a few studies are done in the specific field of
multi-user gaze estimation, our study discussed state-of-the-art research
with a comprehensive benchmark to encourage more work in this field.
We believe that this field possesses a high potential in demand for gaze
estimation applications in real-world settings. Finally, this survey can
be used as a guideline for DL-based gaze estimation research.

10. Conclusion

Eye gaze estimation solutions are beneficial to many application
domains including commercial, social and medical health. This survey
mainly explored state-of-the-art approaches used in eye gaze research
focusing on deep learning techniques. This study critically analyzed the
related models in appearance-based gaze estimation approaches using
deep learning techniques. In comparison to model-based methods and
conventional appearance-based methods, appearance-based methods
with deep learning perform robustly in unconstrained environment set-
tings including extreme head-pose variations, illumination conditions,
eye and face occlusions. Furthermore, they can learn a complex non-
linear mapping function directly from image data to gaze without the
requirement of a dedicated device. It was observed that single-user
gaze estimation approaches have been broadly studied in constrained
and unconstrained environments, achieving near-human performance.
However, multi-user gaze estimation studies have been explored in
few application domains including retail and crowd-behavior analysis.
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Moreover, we have presented the strengths and challenges in related
techniques and the features of publicly available datasets. Finally,
we have provided suggestions for selecting eye gaze estimation ap-
proaches and discussed possible future research directions, which can
be beneficial for researchers and developers in the field.
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