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Abstract—We propose a framework based on machine learning
to assess the flexibility of power systems with optimal power
flow (OPF) model. The definition of flexibility is a range within
which all demands are feasible. Conventional methods to evaluate
the flexibility by solving a robust optimization problem are
time-consuming for large-scale power systems. Machine learning
provides us the opportunity to accelerate the computing process.
We formulate the problem as a nonlinear binary classification
problem and use a support vector machine (SVM) classifier with
a Gaussian R B F  kernel. To compute the flexibility, we solve
a simple nonlinear equation based on the trained classification
boundary. Then, we employ active learning to enhance the SVM’s
precision and adaptability. The simulation results for the five
I E E E  test cases indicate that our framework can compute the
flexibility with a low error rate and significantly less execution
time than the benchmark method for large-scale power systems.

Index Terms—Flexibility Assessment, Gaussian R B F  Kernel
SVM, Optimal Power Flow, Machine Learning.

I . INTRODUC T I ON

As a vital component of power system operations and
management, optimal power flow (OPF) seeks to identify
the optimal generation schedule to meet demand loads while
minimizing the total generation cost under specific system op-
erational constraints. Recent years have seen a rapid increase
in the penetration of renewable energy sources (RES), which
have introduced significant uncertainty into power system
operations and posed significant challenges for independent
system operators (ISOs) in maintaining system reliability and
security. In face of such a high level of uncertainty and
variability, ISOs need new tools to help schedule the resources
in the system.

To evaluate a power system’s ability to deal with the
variability and uncertainty of net loads at reasonable cost, the
concept of flexibility has been proposed. Several definitions
of flexibility have been proposed and studied in relation to
specific aspects of power systems [1]. For example, flexibil-
ity has been studied from system transmission and design’s
perspective [2], long-term generation planning’s perspective
[3], short-term power system operational perspective [4] and
robust management in terms of economic dispatch (ED) and
OPF’s perspective [5], [6], [7]. In order to assess and quantify
the flexibility of power systems under various definitions, the
flexibility assessment problems are also studied. [5] examined
the flexibility of power systems by explicitly concentrating on
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ED and dynamic automatic generation control (AGC). They
formulated a robust optimization problem to determine the
greatest variation of system loads that can be accommodated.
To manage system ramp capacity, [7] proposed a robust
optimization-based ED model and a lack of ramp probability
index as an operational metric to evaluate system adaptability.

Although the flexibility assessment problems based on OPF
or ED models have been studied in recent years, the majority
of models are converted into computationally intensive and
even intractable robust optimization problems[5], [8], [9].
However, machine learning (ML) provides us the chance to
address this issue. The application of ML techniques to the
OPF scheduling problem in order to speed up the computing
procedure has gained increasing interest recently. For instance,
[10] utilized deep neural network (DNN) in their frameworks
to address a variety of OPF problem variants (e.g., DC-
OPF, SCDCOPF and AC-OPF). They trained a DNN to learn
the mapping between the input load and system operating
decisions such as dispatch and power flow. Then for an
arbitrary load input, the corresponding operating decision can
be the output with the learned mapping. They demonstrated
a significant computation time reduction by applying DNN as
compared to conventional approaches. SVM was utilized in
[11] to solve transient stability-constrained OPF (TSC-OPF)
problems. The authors used SVM to discover the transient
stability boundary and incorporated it into TSC-OPF as a
constraint. By incorporating SVM into their proposed method,
the training period can be drastically reduced. While machine
learning techniques have been used to solve OPF operation
problems, to the best of our knowledge, no literature has
investigated machine learning’s ability to address the OPF
flexibility assessment problem.

In this paper, we propose a framework based on machine
learning for evaluating flexibility in the OPF problem with the
goals of achieving high evaluation accuracy and computational
efficiency. We formulate the OPF flexibility assessment prob-
lem as a binary classification problem and classify the feasible
and infeasible loads using Gaussian RBF  kernel SVM [12].
Then, we iteratively resample and retrain SVM using active
learning to obtain more accurate classification results. We then
solve a simple equation to determine the flexibility metric’s
value. The key contributions of our paper can be summarized
as follows:

• We propose a machine learning based framework for
power system flexibility in OPF problems that can signif-
icantly reduce the computational time while maintaining
excellent evaluation quality.

• We propose an iterative training and resampling pro-

Authorized licensed use limited to: University of Washington Libraries. Downloaded on March 25,2023 at 00:19:40 UTC from IEEE Xplore. Restrictions apply.



¯ d ¯ d

d d

¯

d d

u p
d

d,i d,i

min max

g g

d d

2

cedure based on active learning to further improve the
accuracy of the flexibility assessment and increase sample
efficiency.

• We conduct case studies on five different IEEE  test cases
ranging from small scales to large scales to demonstrate
the effectiveness of our proposed framework, particularly
with respect to large scale systems.

The rest of this paper is organized as follows. Section
III  introduces the formulation of power system flexibility
based on DC-OPF model and our proposed machine learning
framework. Section I V  conducts case studies on five IEEE
standard test systems. Section V  draws conclusions for our
paper.

I I . MOD E L AND A L G O R I T H M S

In this section, we develop a framework to evaluate the
power system flexibility based on DC-OPF model.

A. Flexibility Assessment based on DC-OPF

First, we briefly introduce the formulation to evaluate the
flexibility of DC-OPF problem. Motivated by [5], we define
the flexibility range as P  =  pd −  ∆pdn, pd +  ∆pup     that all
net loads within this range can be tolerated by the system. That
is, there exists at least one operation profile that can balance
the net loads. Here ∆pup and ∆pdn are vectors which refer to
the upper and lower net load deviation from the nominal net
load pd for each bus. In contrast to [5], which measures the
total allowable deviation of all the buses in a composite man-
ner, but is incapable of capturing power generation flexibility
on any given bus, we measure the maximum relative net load
deviation that the system can accommodate for all buses. Thus,
the range ensures that all buses have a minimum level of net
load uncertainty tolerance. Note that a net load outside of this
range may not necessarily result in system infeasible operation.
To obtain the maximum deviations ∆pup and ∆pdn for all
buses, one can solve the following optimization problem:

max min ∆pup +  ∆pdn (1)
θ , p g ,∆p d  , ∆ p d n i�{1, · · ·  , n d }

(Flex) s.t.     M g p g  −  Md pd =  Bbusθ , �pd � P  (2)
pline ≤  Bl ineθ  ≤  pline (3)

pmin ≤  pg ≤  pmax (4)
∆pup ≥  0, ∆pdn ≥  0 (5)

The objective function is to maximize the smallest range
of power system net load among all buses within which the
system can operate safely, where nd is the number of load
buses or length of vector pd. Constraints (2) are the nodal
power balance constraints which ensure the balance of power
flow at each bus. M g  and M d  are matrices that map the
generator and loads to the buses, pg is the vector of decision
variable of power generation. This should hold for any pd

within the flexibility range that we hope to find. Constraints
(3) represent the limits on active power flow on each line, θ is
the vector of voltage phase angle. Constraints (4) enforce
power generation bounds for each generation resource.

978-1-6654-5355-4/23/$31.00 ©2023 IEEE

This is a semi-infinite program that can be solved using the
technique proposed by [5]. However, as the scale of the prob-
lem increases (which is common in real-world power system),
the computational difficulty of the method in [5] increases sig-
nificantly. To circumvent it, we propose our machine learning
based framework to solve the flexibility assessment problem
which can accelerate the computing process.

Fig. 1. Flowchart of flexibility assessment based on SVM

B. Framework Overview

Figure 1 provides a brief overview of the proposed frame-
work. Solving the aforementioned flexibility assessment prob-
lem (1) is equivalent to searching for a hypercube of feasible
power demand profiles (that we can find a generation schedule
to fulfill the demand requirement). Instead of directly solving
the optimization problem, we use SVM with Gaussian RBF
kernel to find a approximated boundary between all the feasi-
ble and infeasible demands and then compute the desired set of
feasible demand accordingly. Comparing with other machine
learning models such as the DNN, the SVM is computationally
easier to train and statistically more robust to initial values and
other training parameters due to its convex formulation.

The first step in approximating the boundary is to collect
training and testing demand data. We collect data samples
using a uniform sampling method. Then, we assign a label to
each sampled demand by solving a DC-OPF problem. The
detailed procedure for sampling and labeling can be found in
Section II-C.

Second, we normalize the sampled data and train a Gaussian
RBF  kernel SVM classifier. Typically, a power system has
numerous buses; consequently, the dimension of the sampled
demand is large. Due to the curse of dimensionality, even with a
large sample size, the sampled data may still be sparse in
high-dimensional space, which may result in an inaccurate
classification model near the estimated boundary.

Active learning is a subset of machine learning in which
new data points are queried and labeled interactively. The
central concept of active learning is that a machine learning
model can pick and choose from the training data to achieve
greater accuracy [13]. The majority of active learning works
can be categorized as uncertainty sampling [14], query-by-
committee [15], [16], expected model change [17], estimated
error reduction [18], etc.

Most these active learning algorithms assume that there is
an existing unlabeled data set, and based on some criteria, the
best one or group of new data is selected from the unlabeled
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data set and labeled for the subsequent training step. The
selection process requires the training of multiple machine
learning models or the resolution of computationally intensive
optimization problems. In our case, we hope to obtain an
accurate solution in a short amount of time, and we can query
any point in a continuous space as opposed to being limited to a
given unlabeled data set. Therefore, we propose an efficient and
heuristic method for resampling data and querying their labels.
In addition, we resample many new data points and query
their labels simultaneously, as opposed to querying just one or
a few new data points. After training the SVM with a
Gaussian RBF  kernel, we sample some new data near the
estimated boundary using our resampling method, add them to
the previously sampled data, and then train a new SVM. We
repeat this procedure a predetermined number of times or until
the estimated boundary no longer fluctuates significantly.
Finally, we compute the variation range of the demand by
solving a nonlinear equation based on the classification result.
Details can be found in Section II-D.

C. Sampling and Labeling of Demand Data
We sample the total load data uniformly in a fixed range

[1T pmin, 1T pmax], where 1T is a vector of length ng

(number of generators) with all elements being 1. When
the sampled data has the total demand that is greater than
the maximum generation capacity or less than the minimum
generation capacity, it is infeasible naturally; therefore, we do
not need to collect any data there. Then, we uniformly sample
the demand on each bus with a sum equal to the total demand
previously sampled. The sampled demand data is then fed into
a DC-OPF solver to determine feasibility. If the demand is
feasible, we label it as 1; otherwise, it is labeled as 0. For
those data labeled as 1, constraints (2)-(5) are satisfied; for
those labeled as 0, constraints (2)-(5) are not satisfied. We
keep a total number of N s  of samples Xi , · · · , X N      with half
of them feasible and half of them infeasible (note that X i  is
an ng-dimension vector). In addition, the sampled data can be
represented as (X1, Y1), · · · , ( X N s  , YN s  ).

D. The Support Vector Machine
RBF  kernel function is a widely used kernel function which

can work with a general distribution of the data. It can help
make proper separations when no prior knowledge of data is
available [12]. Therefore for generality we use the SVM with
Gaussian RBF  kernel to build a binary classifier to classify the
sampled data. Before passing the data into the classifier, we
normalize the data into range [0, 1]. Then we train a Gaussian
RBF  kernel SVM as follows:

N s N s       N s

λ 1 · · ·  , λ N s  i = 1  

λ i  −  
2 

i = 1  j = 1  

λ i λ j Y i Y j K ( X i , X j )        (6)

s.t.     0 ≤  λ i  ≤  C ,                                                          (7)

where K ( X i , X j )  =  exp     −  γ||Xi −  Xj ||2 , λ i  are dual
variables for SVM. The Gaussian RBF  kernel performs well
in classification problems that may have nonlinear patterns.
When γ and C  are chosen appropriately, the algorithm can
efficiently learn the shape of the nonlinear boundary and
achieve high classification precision. By solving the above

978-1-6654-5355-4/23/$31.00 ©2023 IEEE

SVM problem (6), we get λ1, · · · , λN  . Most of them will be
0, and for i  where λ i  >  0, we call X i  a support vector. The
classification boundary of the trained SVM can be represented
with λ1, · · · , λN s  as:

λ i Y i K ( x , X i )  +  Ym = λ i Y i K ( X m , X i ) , (8)
i : λ i > 0                                                               i : λ i > 0

where m is an arbitrary support vector with 0 <  λm  <  C .
In the flexibility assessment problem (Flex), the uncertainty

set is P  =  p −  ∆pdn�, p +  ∆pup� . It is easy to prove that
the optimal solution to problem (Flex) should satisfy ∆pup� =
∆pup� and ∆pdn� =  ∆pdn� for �i =  1 · · · nd. Therefore it is
equivalent to find a hypercube with equal length on each
dimension where all demands in it are feasible. Then in the
SVM problem it is equivalent to find pd + ϵ1  × 1 n      and pd −
ϵ2 × 1 n      that is on the SVM classification boundary. We solve
the equation (9) with scalar ϵ to achieve our goal:

X  
λ i Y i K (pd  +  ϵ1, Xi )  +  Ym =  

X  
λ i Y i K ( X m , X i ) .

i : λ  > 0 i : λ  > 0
(9)

In some cases, there will be more than two roots when
solving this equation (9). We will only keep the positive root
ϵ +  and the negative root ϵ −  that are the closest to 0 based
on the definition of P .  Correspondingly, the flexibility will be
[pd +  ϵ −  ×  1n d  , pd +  ϵ +  ×  1n d  ].

The number of buses in a power system is typically very
large, which can be more than 1, 000. Therefore, the SVM
classification is conducted in a space with a high number of
dimensions. Even though we have a large sample size, such
as 100, 000 samples, they may be extremely sparse in the
high-dimensional space, resulting in an inaccurate estimate
of the boundary. In order to improve the precision of the
classification boundary and the flexibility range, we sample
more data around pd +  ϵ −  ×  1n d  and pd +  ϵ +  ×  1n d  .

Fig. 2. Method to sample new data

Figure 2 depicts our sampling strategy in a two-dimensional
space. The distance between the closest data in the old sample
and pd + ϵ +  × 1 n      is denoted by r. Then, we know that there
are no samples inside the ball with pd +  ϵ +  ×  1n      as the
center and r  as the radius. Therefore, more samples should be
collected from the ball. Due to the curse of dimensionality,
uniformly sampling data inside the ball is a poor choice, as
the sampled points are primarily located near the sphere of the
ball. To obtain more new samples inside the ball, we uniformly
sample new data on the sphere where pd +  ϵ +  ×  1n d      is the
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¯ d

.

       
u p u p |
∆ p̂ u p

d d

d

4

center and 0.75r is the radius. We also sample new data on the
sphere with pd +  ϵ +  ×  1n      as center and 0.5r as radius. The
newly sampled data will then be fed into a DC-OPF solver to
obtain each data’s label.

Then, we train an updated Gaussian RBF  kernel SVM on the
combined data set and compute an updated flexibility range.
We repeat the procedure a predetermined number of times or
until the change in flexibility range is negligible.

I I I . C A S E  S T U DY

In this section, we evaluate the performance of the our
machine learning assisted flexibility assessment framework.
The experiments are performed within Intel Core i7-8750H
CPU and 16G memory.

TA B L E  I
E S T I M AT E D  F L E X I B I L I T Y  VA L U E S  V  S . N U M B E R O F I T E R AT I O N S  A N D

B E N C H M A R K  T R U E  F L E X I B I L I T Y  VA L U E S

num iter case 9 case 30 case 39 case 57 case 118
1 164.277 10.107 77.160 16.102 33.875
2                 171.044        6.860            134.430        7.531            16.045
3                 179.505        5.175            104.562        12.503         25.839
4                 170.630        3.920            85.518          14.005         20.944
5                 179.109        5.183            102.684        11.019         17.988
6                 170.158        4.355            88.967          12.961         20.598
7                 178.022        4.939            83.102          11.669         18.463
8                 170.142        4.304            89.595          12.582         19.626
9                 177.146        4.709            85.316          13.486         18.651

10                170.106        4.350            90.233          12.567         19.636
Benchmark 172.67 4.41 88.35 12.01 20.52

We sample 100,000 data as the original data, with 50,000
feasible and 50,000 infeasible demands. At each iteration, new
points near the boundary are sampled according to the sam-
pling method described in section II-D. We test our machine
learning based framework on the IEEE  9-bus system, IEEE
30-bus system, IEEE  39-bus system, IEEE  57-bus system
and IEEE  118-bus system. As a benchmark, we employ the
traditional robust optimization method proposed by [5]. Our
method is compared to the benchmark on two dimensions:
computation time and assessment precision. In section III-A to
III-C, we test the relationship of assessment precision with
3 factors: Number of initial sample size, number of iteration
numbers and number of added sample size. We perform the
experiments on 5 test cases. In section III-D we compare the
relative error by using our sampling method and random
sampling method. In section III-E we compare the
computation time of our method and the benchmark method.
Table I  presents the true value of flexibility evaluated from
the benchmark robust optimization method and estimated
flexibility values for case 9, case 30, case 39, case 57 and
case 118 with initial training sample size 1,000, and additional
samples 10 in each iteration.

A. Impact of Initial Sample Size
In this subsection, we first investigate the relationship be-

tween number of initial sample size and the relative error.
The relative error is defined as |∆ p̃d  − ∆ p̂ d        , where ∆p̃ up

is the upper flexibility computed by our proposed method,
and ∆p̂up is the upper flexibility computed by the benchmark
method. Here we assume that the benchmark method can find

978-1-6654-5355-4/23/$31.00 ©2023 IEEE

the ground truth flexibility of the power system. The number of
initial sample size is set as 1,000, 5,000, 10,000, 15,000,
20,000, 25000 and 30,000 for five test cases respectively. The
number of added samples is set as 10, and the number of
iterations is 10. We run our experiment ten times for each
number of sample size and calculate the mean and variance of
the relative errors of the 10 experiments. We show the trend
of the average relative error and the variance of the relative
error in Figures 3. The X-axis represents the number of initial
samples and the Y-axis represents the average relative error
and variance of relative error. From Figures 3, we can see that
the average relative error and the variance of the relative error
does not change significantly as the number of initial sample
changes.

Fig. 3. Number of initial sample v.s. average relative error and variance of
relative error

B. Impact of Iteration Numbers
In this subsection, we investigate the relation between itera-

tions and error. The number of additional samples is set to 10,
and the initial sample size is 1,000. Experiments are conducted
for iterations 1 through 10. For each iteration, the experiment
is repeated ten times. Figure 4 depicts the trend of the average
relative error and the variance of the relative error. As the
number of iterations increases, both the average error rate and
the variance of the error rate exhibit a decreasing trend. After
approximately ten iterations, the average and variance of error
rate converge and remain relatively stable.

Fig. 4. Number of iterations v.s. average relative error and variance of relative
error

C. Impact of Added Sample Size
In this subsection, we report the relationship between sam-

ple size addition and relative error. 1,000 is set as the initial
sample size, and 10 is set as the number of iterations. The
added sample size ranges from 10 to 100, with 10 serving as
the interval. We repeat the experiments ten times for every
additional sample size. Figures 5 depict the trend of the
average relative error and the variance of the relative error for
the 10 experiments. According to the data, the average relative
error does not appear to have a strong correlation with the
initial sample size. However, the variance decreases slightly
as the number of samples increases.
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Fig. 5. Number of added sample size v.s. average relative error and variance
of relative error

D. Impact of resampling method
In this subsection, we conduct experiments to demonstrate

the effectiveness of our resampling procedure. We set the
numbers of the initial sample as 1000, added sample per
iteration as 10, and iterations as 10, respectively. We carry out
the experiments by using our resampling method mentioned
in section II-C in each iteration and by using uniform random
sampling (which is the same as the initial dataset sampling)
in each iteration. The experiments are run ten times for each
sampling method.

Fig. 6. Average relative error our resampling method and uniform random
resampling method

Figure 6 shows the boxplots for the relative error of the five
test cases under our resampling method and the random resam-
pling approach. We can see that our method can outperform
random sampling approach in terms of relative error.

E. Running time
The section III-A to III-C demonstrate that the number of

iterations has a significant impact on the relative error. The
number of additional samples has a minor effect on the relative
error. The number of initial sample size has minimal effect on
relative error. Therefore, we set the initial sample size to 1,000,
the number of iterations to 10, and the added sample size to
50. We compare the running time of our proposed method
with the benchmark robust optimization method [5] in Table
II, where we report the total running time for the benchmark,
and the total time to train the Gaussian RBF  kernel SVM (6)
and solve equation (9) for our method.

It can be observed that although our method does not out-
perform the benchmark robust optimization method for small-
scale test cases, our method’s execution time is significantly
less than the benchmark for large cases.

TA B L E  II
RUNN IN G T I M E (S)

Proposed Framework Benchmark
case 9 20.67 0.112
case 30 24.171 2.464
case 39 45.367 2933.9
case 57 32.515 1704.915
case 118 80.509 43512.184

978-1-6654-5355-4/23/$31.00 ©2023 IEEE

I V. CO NC L U S I O N

In this paper, we proposed a machine learning based frame-
work to evaluate the power system flexibility with DC-OPF
model. We classified feasible and infeasible demand loads us-
ing Gaussian-kernel SVM and then solved a nonlinear equation
to obtain the uncertainty set and flexibility metric. Then, we
proposed an efficient resampling method to sample new data
and train a new Gaussian-kernel SVM in an iterative manner
in order to achieve greater accuracy and reduce the number
of samples used. Our case studies demonstrated that our
method can achieve high assessment accuracy while reducing
computation time significantly.
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