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Abstract—The emergence of Silicon (Si) photonics necessitates
the development of automated testing and validation techniques.
Si-photonic device operation is sensitive to variations in the
manufacturing process. This paper describes a methodology and
abstraction models to evaluate the effect of variations in the
dimensions of waveguides, spacing and modulation parameters
on Si-photonic circuits. Such variations may result in signal
degradation and phase mismatch, causing interference based
devices to operate imperfectly. Experiments are performed on
various (linear) optical devices by introducing geometric and
layout deformities, and compact models are abstracted in terms
of Transfer Matrices. Using these models, we show how the
impact of design or manufacturing variations in a device can
be analyzed on the operation of optical logic circuits that
integrate various such components. The method is validated by
experiments performed on conventional SOI waveguide based
devices and circuits.

Index Terms—Silicon photonics, manufacturing variations,
transfer matrix

I. INTRODUCTION

Photonics have widespread applications in fields such as
communication, signal processing, quantum and reversible
computation [1]–[3], optical neural networks [4], optical com-
puting applications such as optical logic and networks-on-chip
[1], [5], [6], etc. Though the compatibility with the existing
CMOS infrastructure has scaled optoelectronic integrated cir-
cuit (OEIC) fabrication to a large extent [7], efforts are needed
to develop defect models, test and validation procedures.

Silicon photonic device operation is sensitive to variations
in the manufacturing process. Imperfections in optical lithog-
raphy processes lead to variations in device geometry and
layout. Such variations impact spacing between waveguides
and modulation parameters during fabrication, which affects
the effective refractive index n of waveguides and devices.
Refractive index changes affect the phase φ of optical waves
in the medium (φ ∝ 2πn

λ , λ = wavelength of light) and may
shift a device’s response off its design parameters, resulting
in not just performance degradation but also system failure in
the worst case. Therefore, it is desirable to develop defect and
fault models as well as analysis procedures that can analyze the
effect of design and manufacturing variations on operations of
large circuits. Such models and tools may further enable post-
fabrication tuning and calibration to improve yield and cost.
The effect of design or manufacturing errors can be simulated
using various OEIC design tools and numerical computational
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solvers such as Eigenvalue mode solvers or finite difference
time domain (FDTD) solvers, e.g. the design and simulation
suite provided by ANSYS LUMERICAL [8]. Such techniques
and tools are computationally intensive – they can simulate the
behavior of individual devices, but are infeasible in analyzing
the behaviors of circuits that integrate a larger number and
variety of OEICs. There is a need for compact yet accurate
modeling for Si-photonic circuit layouts.

Objective and Contributions: This paper proposes a hier-
archical approach – along with an abstraction model – to
analyze the effect of design errors or manufacturing defects
and variations on the performance of optoelectronic compo-
nents, devices and circuits. The paper focuses on linear optical
devices such as Si-waveguides, wave splitters, waveguide
couplers, electro-optic phase modulators and Mach-Zehnder
interferometers (MZIs). Analytical approximation models are
developed for estimating the (normalized) transmission power
and phase of signals at circuit outputs. Our models are based
on the concept of transfer matrices [9]. We show that the
conventional transfer matrix models can be augmented to
include the effect of arbitrary design errors or manufacturing
variations that lead to deformities in waveguide geometries.

Using conventional SOI waveguide technology parameters,
we design and simulate the performance of aforementioned op-
toelectronic components. Subsequently, a variety of waveguide
deformities are introduced in the components to reflect varia-
tions/imperfections in the lithography process. Such deformi-
ties include dislocation of Y-junctions, deviation of waveguide
coupling lengths and spacing between waveguides, changes
in applied voltages to the phase modulators, etc. Further
simulations are performed over a wide range of deformities.
The observed data is curve fitted [10] to derive a polyno-
mial function abstraction, mapping the deformity dimensions
(length) to output power transmission and phase. These are
used as scaling factors and incorporated in our transfer matrix
models for the ideal and deformed components. These are
composed (cascaded together) to derive transfer matrices for
optical circuits. At the component level, our abstraction model
accurately estimates device performance under the introduced
defects, as verified by fullscale FDTD simulations. However,
the execution time of our model is orders of magnitude faster
than FDTD. Moreover, when applied to larger OEIC designs
– a case study of an optical digital logic circuit with a
deformed MZI is presented – our model predicts degraded
signal-to-noise ratio, whereas FDTD simulation for this circuit
is computationally infeasible.
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Related prior work: With regards to manufacturing test,
[11] describes a wafer-level test infrastructure enabling semi-
automatic OEIC circuit test. The impact of manufacturing
variations on Si-photonic OEICs has been well documented
[12]. Nikdast et al [13] performed a study of fabrication non-
uniformity on si-photonic interconnects. Their work employs
a two-variable approach to account only for variations in the
top silicon thickness and waveguide width. Recently, Banerjee
et al [14] study the impact of manufacturing uncertainties on
neural network performance. Instead of explicitly analyzing
variations in waveguide profiles, they simulate the effect
of uncertainties by modeling variations in signal phase. In
contrast, we explicitly introduce variations in the geometric
profiles of device layouts to simulate a range of deformities
induced by variations in the lithography process. Using FDTD
simulations on deformed devices, we abstract compact models
and integrate them within the transfer matrices to accurately
and computationally efficiently estimate OEIC performance.

Paper Organization: The rest of the paper is organized
as follows. Section II sets up the preliminary concepts and
notations of the Si-photonic design parameters employed in
our designs and experiments. Section III describes transfer
matrices of elementary devices and computation of the trans-
fer matrices for complex devices. Section IV describes our
experiments with deformed devices and the abstraction model
incorporated into the transfer matrices. Section V demonstrates
application of our methodology to an example optical logic
circuit. Section VI concludes the paper.

II. BACKGROUND

Let us consider an optical wave propagating in the z
direction inside a waveguide. A travelling wave is expressed as
ψ(z) = A(z) ·Ω(z) ·e−iβ·z,where A(z) is the amplitude, Ω(z)
is the mode field and β the propagation constant of wave. A
mode field is the distribution pattern of electric and magnetic
field components of the wave. The propagation constant is
a measure of change in amplitude and phase experienced
by a wave while propagating in a given direction. Silicon
waveguide is transparent to telecommunication wavelength
range enabling it to guide the transmission of wave in the
medium. Silicon and silicon dioxide are ideal for constructing
optical waveguides given the large refractive index contrast
between the two: silicon has a refractive index of 3.43, while
silicon dioxide’s is 1.45 as shown. There are 3 types of
waveguides, as shown in Fig. 1. The photonic wires and
slab/planar waveguides are used mostly for modeling purposes,
whereas the ridge waveguide is the most commonly used in
silicon photonic circuits, as they offer good mode confinement
and low losses. In this work, we utilize the ridge waveguide,
with the dimensions shown in Fig. 2. In Fig. 2, refractive index
of the medium (Si) is shown as nf , whereas the bottom and
top claddings with ns, nc respectively. Typically, wavelengths
used for optical transmission are 850nm, 1300nm and 1550nm.
For Si and SiO2, intrinsic absorption losses are negligible at
1550nm. So, in this paper, we focus on transmission in ridge
waveguide at 1550nm.

Figure 1: Types of waveguides

Figure 2: Waveguide profile

III. TRANSFER MATRICES FOR OPTICAL SYSTEMS

Consider an optical system as shown in Fig. 3 consisting of
an input ray ya and angle of incidence θa propagating through
the system. The optical system performs operations on the
input ray. The output ray is yb with angle θb. In the paraxial
approximation, when the angles are sufficiently small so that
sin θ = θ, the relation between (y1, θ1) and (y2, θ2) is linear
and can be expressed algebraically as follows:

y2 = Ay1 +Bθ1

θ2 = Cy1 +Dθ1

[
y2

θ2

]
=

[
A B
C D

]
·
[
y1

θ1,

]
(1)

where A, B, C, and D can be real or complex functions.
The matrix in Eqn. (1) is called a transfer matrix of the
given system. The operations performed by optical devices and
systems can be expressed in the form of such a transfer matrix.
This concept can be extended to wave optics for analysis of
complex optical systems.

Optical System

Figure 3: Block diagram of an optical system

A. Transfer matrix for a Beam Splitter

A beam splitter, shown in Fig. 4, has two inputs ψ1 =
A(z) ·ΩA(z) · e−iβAz and ψ2 = B(z) ·ΩB(z) · e−iβBz , where
ΩA(z) and ΩB(z) are mode fields, A(z), B(z) are amplitudes
and βA, βB the propagation constants of the input beams,
respectively, and z is the direction of propagation. A beam
splitter splits the incoming beams into two arms following



amplitude distribution factors α1 in the upper arm and α2 in
the lower arm. Therefore, the remaining portions of the beams
transmitted into upper and lower arm are given by α2

′
and α1

′
,

respectively, following the energy conservation law such that
α1

2 + α1
′2 = 1. The operation performed by a beam splitter

on the input can be expressed as,[
ψo1
ψo2

]
=

[
α1 α2

′

α1
′

α2

]
·
[
A(z) · ΩA
B(z) · ΩB

]
, (2)

where TB =

[
α1 α2

′

α1
′

α2

]
is the transfer matrix and ψo1, ψo2

are outputs of the beam splitter. For a 50:50 beam splitter,
power is equally distributed such that α1 = α2 = 1√

2
.

Beam Splitter

,

,

Figure 4: Beam splitter

B. Transfer matrix for a Y-splitter

A Y-splitter operates similar to a beam splitter with the
difference that it takes only one input. Therefore, the transfer
matrix for a Y-splitter can be derived from TB by substituting
α2 = 0 and input B(z) · ΩB = 0 in Eqn. (2). The operation
takes the form, [

ψo1
ψo2

]
=

[
α1

α1
′

]
·
[
A(z) · ΩA

]
, (3)

where TY =

[
α1

α1
′

]
is the transfer matrix and ψo1, ψo2 are the

outputs of Y-splitter.

C. Phase Modulator
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Figure 5: Phase modulation

Phase modulators, as shown in Fig. 5, are devices that
modulate the phase of signal by external effects such as the
thermo-optic effect, carrier injection and depletion effect, and
electric field effects. Such externally affected phase changes
are employed in switches and modulators. There are two

efficient ways of dynamically changing the refractive index.
For one, phase can be modulated by exploiting the dependency
of refractive index of Si on temperature. Mathematically,

∆φ = (
2π

λ
)∆nL = (

2π

λ
)Lh

dn

dT
∆T, (4)

where ∆φ is the phase difference, λ is the wavelength, ∆n
refractive index, L is optical length, Lh is the length exposed
to heat and ∆T is the change in temperature. For Si, dn

dT
= 1.86×10−4/K. Tungsten based heating elements are used
for inducing heat. Secondly, the concentration of free charge
carriers can also affect the refractive index of material as,

∆n = − e2λ2

8π2c2εon
(
∆Ne
m∗ce

+
∆Nh
m∗ch

), (5)

where e is the charge of electron, ∆n is change in refractive
index, εo is permittivity of free space, c is speed of light,
n is refractive index of unperturbed crystalline-Si, ∆Ne is
the change in concentration of electrons, ∆Nh the change in
concentration of holes, m∗ch is the conductivity effective mass
of holes and m∗ce the conductivity effective mass of electrons.
According to Drude-Lorenz equation [15],

∆α =
e3λ2

4π2c3εon
(

∆Ne
µe(m∗ce)

2
+

∆Nh
µh(m∗ch)2

), (6)

where ∆α is change in optical absorption coefficient of Si,
µe is the mobility of electrons, µh the mobility of holes. Here
∆α gains positive values with increase in concentration of
electrons and holes. A P-i-N diode is used to modulate signal
phase by injecting or extracting carriers in a waveguide, where
the waveguide itself acts as the intrinsic region.

D. Transfer matrix of Y-splitter based MZI

Mach-Zehnder Interferometer (MZI) is composed of a Y-
splitter, a differential phase shift section and a Y-combiner, as
shown in Fig. 6. The transfer matrix TMY for an MZI can
be obtained by cascading individual transfer matrices of its
constituent elements.

For propagation matrix TP of input waves through straight
waveguides, consider two input waves ψ1 = A(z) · ΩA(z) ·
e−iβAz and ψ2 = B(z) ·ΩB(z) · e−iβBz , such that ψ1 = A(z) ·
ΩA(z) ·e−iβA(z+zo) and ψ2 = B(z) ·ΩB(z) ·e−iβB(z+zo) after
travelling a distance zo. This transmission can be represented,[

ψo1(z)
ψo2(z)

]
=

[
e−iφ1 0

0 e−iφ2

] [
A(z)
B(z)

]
where matrix TP =

[
e−iφ1 0

0 e−iφ2

]
is called propagation

matrix and φ1 = βA(z+zo) and φ2 = βB(z+zo). The operation
performed by stage I in Fig. 6 is given by Eqn. (3). Since
TY is a 2 × 1 matrix and the propagation matrix for straight
waveguides is a 2×2 matrix, TY has to be transposed in order
to meet the matrix multiplication constraint. Outputs of stage
II can be obtained as,[

α1A(z)ΩA α1
′
A(z)ΩA

] [eiφ 0
0 e−iφ

]



=
[
α1A(z)ΩAeiφ α1

′
A(z)ΩAe−iφ

]
(7)

where −φ and φ are the phase shifts introduced in the upper
and lower arms, respectively. By heat or carrier injection φ can
be changed to cause constructive or destructive interference at
the output, resulting in 1 or 0 signal detection, thus acting
as a switch. The final output of an MZI can be obtained by
multiplying the matrix obtained in stage II Eqn. (7) with the
combiner’s transfer matrix. Since a Y-combiner combines the
inputs from its two arms (additively) and produces a single
output without introducing any further phase change, stage III
output TMY reduces to scalar cos(φ) as shown below,[

α1A(z)ΩAeiφ α1
′
A(z)ΩAe−iφ

] [α1

α1
′

]
= cos(φ). (8)

Stage I Stage II Stage III

Input OutputV

Electro-optic material

Figure 6: Y-splitter based MZI

E. Coupled mode theory

Figure 7: Cross-sectonal view of waveguide a and b

When two waveguides are in close proximity, a wave
propagating in one waveguide couples into another with a
phase shift of π/2. In order to compute transfer matrix for
a 3dB coupler, consider two waveguides, a and b, of length
L each placed in close proximity along the x-direction with
refractive index na, nb and width wa, wb, respectively. Let z be
the direction of propagation and s be the spacing between the
two waveguides as shown in Fig. 7. Consider a wave Ψ(x, z)
expressed as the linear combination of mode fields Ωa(x) and
Ωb(x) input to the waveguides a and b. Mathematically,

Ψ(x, z) = A(z) ·Ωa(x) · e−iβa·z +B(z) ·Ωb(x) · e−iβb·z (9)

Consider the equation,

∂2Ψ

∂x2
+
∂2Ψ

∂z2
+ β2

on
2Ψ = 0 (10)

derived from Helmholtz equation. Substituting Eqn. (9) in
Eqn. (10) leads to coupled mode equations. For perturbed

space, refractive index is expressed as follows to simplify
the calculation: n2(x) = n2

a(x) + 4n2
a(x), where 4na(x)

is the change in refractive index experienced by wave in
waveguide a while coupling into waveguide b. With coupling
and orthogonality of mode fields, the differential equations of
coupled waves can be written as,

∂A

∂z
= −i · ρbaB(z) · e−i4β·z,∂B

∂z
= −i · ρabA(z) · e−i4β·z.

These are known as coupled mode equations. Solutions to
these differential equations are given as,

A(z) = X(z) ·A(0) + Y (z) ·B(0),

B(z) = U(z) ·A(0) + V (z) ·B(0) where,

X(z) = V ∗(z) = e
−iβa·z

2 [cos(γz)− i4β
2γ

sin(γz)],

Y (z) = (
ρab
iγ

)e
−iβa·z

2 sin(γz),

U(z) = (
ρba
i

)γe
−iβa·z

2 sin(γz), and

γ2 =
4β2

2
+ ρ2, ρ =

√
ρab · ρba.

Here, ρ is the coupling coefficient. The coupled mode equa-
tions can be expressed in the matrix form as,[

A(z)
B(z)

]
=

[
X(z) Y (z)
U(z) V (z)

] [
A(0)
B(0)

]

Assuming identical waveguides, n = na = nb, β1 = β2 (4β
= β1-β2 = 0), γ = ρab = ρba = ρ. The transfer matrix TMB is[

X(z) Y (z)
U(z) V (z)

]
=

[
cos(ρz) −i · sin(ρz)
−i · sin(ρz) cos(ρz),

]
(11)

where (ρz) represents phase φ of the waves. For a 3dB coupler,
φ = ρz = π/4. Hence Eqn. (11) takes the form,[

X(z) Y (z)
U(z) V (z)

]
=

[
1√
2

−i · 1√
2

−i · 1√
2

1√
2

]
. (12)

F. Transfer matrix for 3dB coupler based MZI

A 3dB coupler based MZI is constructed by using 3dB
couplers and phase modulators as shown in Fig. 8. The transfer
matrix TMC of such MZI can be obtained by multiplication
of transfer matrices of constituent elements.

TMC =
1

2

[
1 −i
−i 1

] [
e−iφ1 0

0 e−iφ2

] [
1 −i
−i 1

]
(13)

TMC =
1

2

[
e−iφ1 − e−iφ2 −i(e−iφ1 + e−iφ2)
−i(e−iφ1 + e−iφ2) −e−iφ1 + e−iφ2

]
(14)
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Figure 8: Mach Zehnder interferometer

IV. MODEL ABSTRACTION FROM EXPERIMENTS

The OEIC design suite of tools provided by Ansys Lumeri-
cal enables the design of photonic components and circuits [8].
It provides a framework for physical device design, analysis
and simulation engines based on eigen solving and FDTD
numerical computations for performance analysis of optical
design components. We used this suite to analyze the behavior
of devices in presence of geometric and layout variations, and
derive abstraction models from these experiments.

A. Y-splitter

An ideal Y-splitter, as shown in Fig 9, has equal power and
no phase difference at the two output arms. Simulations for a
prototype component are performed in varFDTD to analyze
the effect of physical deformity at the output parameters.
Deformities are introduced by dislocating the lower arm from
its ideal position. Simulations are performed for dislocations
starting from 0 to 450 nm with a step size of 50nm. It can be
observed from Table I that there is no phase difference for the
ideal Y-splitter arms. However, the disfigured geometry shown
in Fig. 10 introduces a phase difference (∆φ) among the arms,
and also leads to redistribution of transmitted power in upper
(Txu) and lower arms (Txl).

Figure 9: Ideal Y-Splitter

Dislocation(d)

Figure 10: Deformed
Y-Splitter

Model abstraction aims to develop analytical compact mod-
els to predict the behavior of a component in the presence
of such design errors or manufacturing induced deformity.
Polynomial equations are obtained by curve fitting the data
obtained in Table I to characterize the behavioral effects of
such a deformity. These equations are a function of dislocation
such that they predict the change in phase and transmitted
power for a given value of dislocation when incorporarated
into corresponding transfer matrices. The scaling factor for
transmitted power in upper and lower arms of a deformed Y-

Table I: Effect of deformity on power and phase in a
Y-splitter simulated using varFDTD

Dislocation
d (µm) TxU TxL ∆φ(rad)

Comp. time
(sec)

0 0.47 0.47 0 9.64
0.05 0.466 0.468 0.027 9.723
0.1 0.463 0.471 0.035 8.68
0.15 0.459 0.475 0.098 8.69
0.2 0.469 0.479 0.137 8.70
0.25 0.464 0.483 0.18 8.69
0.3 0.461 0.482 0.235 8.73
0.35 0.456 0.486 0.371 8.82
0.4 0.458 0.491 0.324 8.68
0.45 0.453 0.493 0.372 10.11

splitter are ∆UY and ∆LY , respectively, and are computed to
be,

∆LY = 0.6649964− 0.2400577 · d+ 4.315981 · d2 −
− 22.31828 · d3 + 49.46869 · d4 − 39.45889 · d5 (15)

∆UY = 0.6655622− 0.2804852 · d+ 2.48959 · d2 −
8.509644 · d3 + 10.41863 · d4 − 2.901393 · d5 (16)

where d is dislocation (in µm) of lower arm from its ideal
position. Substituting Eqn. (15) and Eqn. (16) in Eqn. (3),[

ψo1
ψo2

]
=

[
α1 ·∆UY

α
′

1 ·∆LY

]
·
[
A(z) · ΩA

]
(17)

It can be computed from Eqn. (17) that ψo1 = ψo2 = 0.47
when d = 0. We perform similar abstractions to observe the
effect of deformity d on the phase of signal on both Y-splitter
arms. Assuming φ2, φ1 as phase of the signal in lower arm
and upper arm respectively, the phase difference introduced
between the two arms, ∆φ, is obtained and expressed as,

∆φ = −0.0007342657 + 0.7467832 · d− 6.546387 · d2 −
49.50816 · d3 − 109.2774 · d4 + 71.79487 · d5 (18)

where ∆φ = φ2-φ1. The phase difference gained by two
outputs can be computed as m · φ, where m is the number
of cascaded stages. In order to analyze the impact of this
fabrication defect, Y-splitters are cascaded together as shown
in Fig. (11). Such Y-splitters are used in 1 : n multiplexers and
for signal sharing fanouts in optical circuits. Y-splitters are also
constituent elements of MZIs, and long chains of such MZIs
are used in optical neural network, optical logic and for pulse
transmission.

Simulation is performed in FDTD to analyze the effect of
deformities on transmitted power Tx and phase φ. Results tab-
ulated in Table II show transmitted power in the ideal case TxI ,
transmitted power in deformed case Txd, transmitted power
calculated using our mathematical model Txc, and computation
time for simulation in respective cases. Ideally, there is no
phase difference between the two outputs of a Y-splitter. We
performed experiment where the 1st stage Y-splitter and lower
Y-splitter of 2nd stage are deformed. Our model shows that a



Table II: Effect of deformity on power and phase in
cascaded two stage Y-splitters

Component TxI Txd Txc
Arm 1 0.465 0.466 0.459
Arm 2 0.478 0.485 0.493
Arm 3 0.202 0.0.208 0.210
Arm 4 0.208 0.203 0.226
Arm 5 0.215 0.209 0.226
Arm 6 0.205 0.226 0.243
Computation
time (sec) 1900.09 1930.11 0.0026

phase difference of 0.204 rad is developed after two cascaded
stages, which is verified by FDTD simulation result of 0.22
rad. However, computation time for our model (0.0026sec)
is orders of magnitude smaller than for FDTD simulation
(1930.11sec).

Input

Output

Output

Output

Output

Arm 1

Arm 2

Arm 3

Arm 4

Arm 5

Arm 6

Figure 11: Cascaded Y-splitter

B. 3dB coupler

A 3dB coupler divides input power equally into two arms
with the coupled wave phase shifted (lag) by π/2. Couplers
may have non-ideal coupling lengths and spacing between
straight waveguides, resulting due to fabrication defects. Simu-
lations for a prototype 3dB coupler are performed in varFDTD
with coupling length Lc= 23µm and gap s = 0.25µm. Then,
spacing between the straight waveguides section is varied from
0.25µm to 0.30µm with a step size of 0.05µm. It can be
observed from Table III that in the presence of deformity a
3dB coupler may behave as a 70:30 coupler, and the phase
difference ∆φ among output arms changes abruptly from − 3π

2
to π

2 for 15 to 20nm of dislocation. It is observed that a 3dB
coupler is fairly tolerant to any change in spacing between
waveguides for 0-15nm or 20-55nm.

The scaling factor for transmitted power in upper and
lower arms of a deformed 3dB coupler are ∆UC and ∆LC ,
respectively, and were computed by curve fitting Table III,

∆UC = 0.6930792 + 9.170137 · s− 194.4096 · s2 +

7787.592 · s3 − 157598.2 · s4 + 1160556 · s5 (19)

∆LC = 0.6931337− 9.781455 · s+ 338.3219 · s2 −
− 16196.51 · s3 + 350797.7 · s4 − 2701193 · s5, (20)

Table III: Effect of non-ideal spacing between waveguides on
power and phase in a 3dB coupler as simulated by varFDTD

Dislocation
s (µm) TxU TxL ∆φ(rad)

Comp. time
(sec)

0 0.49 0.49 -4.7 205.119
0.005 0.52 0.46 -4.699 195.54
0.01 0.544 0.437 -4.698 151.101
0.015 0.572 0.410 -4.7 197.2
0.02 0.593 0.391 1.581 149.382
0.025 0.616 0.366 1.581 143.355
0.035 0.639 0.343 1.58 140.635
0.04 0.661 0.322 1.578 183.417
0.045 0.681 0.302 1.579 255.979
0.05 0.699 0.285 1.578 1.579
0.055 0.719 0.264 1.578 101.794

where spacing s is as shown in Fig. 7. Substituting Eqn. (19)
and Eqn. (20) in Eqn. (12),

TMB =

[
1√
2
·∆UC −i · 1√

2
·∆LC

−i · 1√
2

1√
2

]
(21)

Since a 3dB coupler is one of the constituent elements of MZI,
a deformed 3dB coupler can effect the output of MZI. Sub-
stituting Eqn. (21) in Eqn. (13) transfer matrix for deformed
MZI is obtained below.

TMC =
1

2

[
∆UC −i∆LC

− i 1

] [
e−iφ1 0

0 e−iφ2

] [
1 −i
−i 1

]
In another experiment, we introduced coupling length Lc
deformity by changing the length of lower straight waveguide.
Simulations are performed in varFDTD by varying the length
Lc from 23 to 23.50µm with a step size of 50nm. It can be
observed from Table IV that a 3dB coupler with non-ideal
coupling length experiences a change in phase difference but
almost no change in power distribution at the output arms. The
scaling factors ∆φu, ∆φl for change in phase shift in upper
and lower arm are computed from Table IV,

∆φu = −0.499986− 0.02159674 · L+ 0.01177156 · L2 +

0.01398601 · L3 − 0.04662005 · L4

− 1.961808× 1014 · L5, (22)

∆φl = −4.30149 + 108.2905 · L− 1696.644 · L2 +

10139.44 · L3 − 23951.66 · L4 + 19405.13 · L5, (23)

where L is deviation in coupling length. Transfer matrix of
MZI comprising a deformed 3dB coupler can be computed by
substituting Eqn. (23) in Eqn. (13),

TMC =
1

2

[
1 −i
− i 1

] [
e−i∆φu 0

0 e−i∆φl

] [
1 −i
−i 1

]
.

V. APPLICATION OF OUR MODEL ON LOGIC CIRCUIT

We demonstrate the application of our model to analyze
the effect of a deformity in an optical digital logic circuit.
Using the optical logic synthesis methodology of [5], logic



Table IV: Effect of non-ideal coupling length on power and
phase in a 3dB coupler as simulated by varFDTD

Dislocation
L (µm) TxU TxL

Phase
upper
arm
(rad)

Phase
lower
arm
(rad)

Comp. time
(sec)

0 0.49 0.49 -0.500 -5.200 205.119
0.05 0.50 0.47 -0.501 1.153 101.959
0.1 0.5 0.482 -0.502 -5.045 102.209
0.15 0.501 0.483 -0.503 -4.927 107.812
0.2 0.500 0.484 -0.504 1.423 156.146
0.25 0.501 0.485 -0.504 1.533 148.203
0.3 0.499 0.486 -0.506 1.665 101.637
0.35 0.500 0.488 -0.506 1.754 104.213
0.40 0.501 0.487 -0.507 1.853 104.745
0.45 0.501 0.487 -0.508 1.954 99.185
0.5 0.503 0.485 -0.509 2.084 100.99

functions are composed of 2×2 electrically controlled optical
crossbar gates implemented using 3dB coupler based MZIs. As
depicted in Figs. 12-14, the switching input S is an electrical
input, P,Q are optical inputs and F,G optical outputs, where
S modulates/switches the device into a cross or a bar config-
uration. Signal S = 1 introduces a phase shift of ∆φ = 0 in
the modulating arms, whereas S = 0 =⇒ ∆φ = π. The
waveguides are sourced by light (logic “1”) or darkness (“0”),
and the function is photo-detected at the output.

Figure 12: Gate Figure 13: Bar Figure 14: Cross

Fig. 15 implements a Boolean function corresponding to
Segment-0 of a BCD-to-7segment display using 5 MZIs. Con-
sider the input X3X2X1X0 = 0100 (decimal digit 4) which
should set Segment-0 to “0”. In our experiment, we introduce
a deformed MZI at the device controlled by X0. Under the
above input, the deformity couples light in both arms of the
MZI controlled by X0. Simulation of this circuit by FDTD
or mode solvers is infeasible. However, using our method,
simulation was performed in 0.1025 seconds in Python. We
read the netlist, and compose the transfer matrices for each
device, incorporating the abstracted scaling factors for the
deformed device. Our simulation estimates that more than 30%
power is detected at Segment-0, which is detected as logic 1.

Our model further estimates a phase shift of ∆φ = 2.4
rad at the MZI controlled by X0, instead of the ideal case of
3.14 rad. Our approach can further assist in post-fabrication
tuning to rectify the effect of this deformity. We use the relation
φ = 2πeV L

Dλ , where e is the electro-optic coefficient of the
medium, V the voltage applied to the phase modulator, L the
length of the electro-optic section, D the distance between
electrodes, to estimate that an external voltage of -0.6 V on
the lower arm (Fig. 8) compensates for the imperfect coupling
and provides a 0.6 (strong “1” detection) and 0.06 (strong “0”

detection) transmission at the segment-0 output.

Figure 15: Segment “0” of BCD-to-7 Segment Display

VI. CONCLUSION

This paper has proposed an abstraction model to evaluate
the effect of manufacturing process variations in linear optical
devices. Experiments are performed to analyze the behavior
of devices under geometric and layout variations, designed
with conventional SOI waveguides. The results are curve fitted
into a compact model and incorporated into transfer matrix
representations of devices. The models are constructed to
observe the impact of deformities on power transmission and
phase in OEICs. Our approach is demonstrated by application
on a optical logic circuit which includes a deformed device. It
is shown that our models can also help with post-fabrication
tuning of OEICs impacted by manufacturing variations. As fu-
ture work, we are researching analogous models for resonance-
based devices, and testability metrics for Si-photonics.
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