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Abstract—Resilience is the ability of a system to respond,
absorb, adapt, and recover from a disruptive event. Dozens
of metrics to quantify resilience have been proposed in the
literature. However, fewer studies have proposed models to
predict these metrics or the time at which a system will be
restored to its nominal performance level after experiencing
degradation. This paper presents two alternative approaches
to model and predict performance and resilience metrics with
techniques from reliability engineering, including (i) bathtub-
shaped hazard functions and (ii) mixture distributions . Given
their ease of accessibility, historical data sets on job losses
during recessions in the United States are used to assess the
predictive accuracy of these approaches. Goodness of fit measures
and confidence interval are computed to assess how well the
models perform on the data sets considered. The results suggest
that both approaches can produce accurate predictions for data
sets exhibiting V and U shaped curves, but that L. and W
shaped curves that respectively experience a sudden drop in
performance or deviate from the assumption of a single decrease
and subsequent increase cannot be characterized well by either
class of model proposed, necessitating additional modeling efforts
that can capture these more general scenarios.

Index Terms—resilience metrics, bathtub-shaped hazard func-
tions, mixture distributions

I. INTRODUCTION

In reliability engineering [1], a system may be modeled as
repairable or non-repairable. Models for non-repairable sys-
tems characterize the time between commissioning a system
and its eventual failure, whereas models for repairable systems
characterize failure and repair times to compute properties
such as availability and optimal maintenance policies [2]. In ei-
ther case, only two states are considered, the fully operational
and failed state. In the failed state, the system performance
is assumed to be zero. Resilience engineering [3], [4] may
thus be regarded as a generalization of repairable systems
from reliability engineering, in which the performance level
is degraded due to aging or externals shocks but is proactively
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maintained to preserve nominal performance equivalent to the
fully operational state in reliability modeling.

Resilience engineering is a complex, hierarchal and multi
disciplinary field [5], finding applications in a diverse spec-
trum of engineering and social science domains. As a result,
researchers have proposed a variety of metrics [6] to quantify
the resilience of these systems. However, application of these
metrics is almost exclusively performed on data after recov-
ering. This approach enables retrospective analysis to assess
how well the system performed under stress and inform future
design and operational decisions, yet this approach does not
project when the system will recover to a specified level of
performance or what actions to take in order to reach a target
level of performance quickly and cost effectively. Without
predictive models, emergency management teams tasked with
making critical decisions at times of intense stress will struggle
to optimally respond to disruptive scenarios that may impact
the lives of thousands or millions of individuals.

Relevant research on quantitative resilience metrics includes
the work of Biringer et al. [7] who presented seismic, prob-
abilistic, and economic resilience indexes focusing in struc-
tural requirements for a system to behave resiliently under
malevolent or natural hazard. Hosseini et al. [6] reviewed
the definitions of resilience across different application do-
mains, classifying over 50 articles according to the methods
proposed, including qualitative and quantitative, further sub-
dividing quantitative approaches into the categories of generic
resilience metrics or structural modeling. Cheng et al. [8]
performed a comprehensive survey of quantitative methods to
assess system resilience, including interval-based, point-based,
and probabilistic metrics as well as metrics that consider
multiple system attributes. For example, taking interval-based
metrics into consideration, Bruneau and Reinhorn [9] defined
resilience as the area under the curve to quantify the nor-
malized performance preserved relative to a baseline, whereas
Ouyang and Duefas-Osorio [10] defined resilience as the ratio
of the area under the curve over the area under the baseline
(average normalized performance preserved). Ouyang and
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Dueias-Osorio [11] subsequently extended to average perfor-
mance preserved when the hazard of interest is characterized
by a Poisson process. Yang and Frongopol [12] measured the
loss of resilience due to a hazard (performance lost). Zhou et
al. [13] defined resilience as the ratio of system performance
lost and target performance during disruption and recovery
period (average normalized performance lost). Zobel [14]
defined resilience from the point at which performance is
lowest (performance preserved from the minimum to recovery
minus minimum performance). Reed et al. [15] proposed
average performance preserved as a resilience metric, while
Cimerallo [16] suggested a resilience metric that employs a
user-specified weight to place emphasis on the area under
the curve before and after the critical condition (minimum
performance).

To overcome the limitations of past research, this paper
considers two alternative approaches to model and predict
resilience as well as various metrics with techniques from
reliability engineering, including (i) bathtub-shaped hazard
functions [17], and (ii) mixture distributions to characterize
deterioration and recovery. We assess these alternative ap-
proaches in the context of widely accessible historical data
on recessions in the United States. Goodness of fit measures
and confidence interval are computed to quantify how well
each model performs on the data sets considered. Our results
indicate that the competing risks form of the bathtub-shaped
function performed best with respect to the adjusted coefficient
of determination. Moreover, data sets that contain a sudden
drop in performance or deviate from the assumption of a single
decrease and subsequent increase could not be fit to either
class of proposed models. These results suggest that classical
reliability modeling techniques are suitable for modeling and
prediction of some resilience curves, but that explanatory
factors and domain specific information may increase the
predictive accuracy of the models.

The remainder of the paper is organized as follows: Sec-
tion II presents two alternative approaches to model resilience.
Section IIT describes model fitting techniques, validation, and
statistical inference methods. Section IV reviews common
interval-based resilience metrics. Section V provides illus-
trative examples of the alternative modeling and prediction
approaches. Section VI offers conclusions and identifies future
research.

II. RESILIENCE MODELING APPROACHES

This section develops quantitative resilience models with
alternative techniques from reliability engineering and statis-
tics to characterize the performance of a system. The concept
of performance is domain dependent, but may be defined
generally as the level of goal achievement of a system or
task. For example, in the context of cybersecurity [18], [19],
performance may be measured in terms of the computational
capacity or bandwidth preserved when some computers within
a network are compromised due to diverse attacks that affect

various functions and degrade the system. It is also impor-
tant to distinguish between system and mission performance,
since the available computational capacity or bandwidth may
degrade services such as e-commerce, compromising business
or economic activities.

Figure 1 provides a conceptual view of a resilience curve
possessing a bathtub shape.

P(®)

th ta &

Fig. 1. Conceptual resilience curve.

The dotted horizontal line indicates the nominal system per-
formance P(t) at time ¢, when the disruptive event occurs.
Performance deteriorates until a minimum is experienced at
time t4. In some cases deterioration is instantaneous, in which
case tq = tp. In other cases, the system is not resilient
and performance deteriorates to P(t4) = 0. In cases, where
the system is resilient, system performance improves from
minimum t4 until a new steady state performance is reached
at at time t,. Figure 1 indicates three possibilities, namely
degraded performance (dotted), nominal (solid), and improved
performance (dashed). Physical systems such as power gen-
eration may only exhibit recovery to nominal or degraded
performance, whereas economic systems and computational
systems such as machine learning are capable of achieving
improved performance.

A. Bathtub Shaped Functions

The following piece wise function can be used to specify
alternative resilience curves with bathtub shaped hazard func-
tions A(t) from reliability engineering

P(ty) t<t,
P(t) =< ex A(t) t, <t<t,
Pt,) t. <t

where the nominal performance before the hazard and after
recovery are respectively P(t;) and P(t,). The normalizing
constant ¢ ensures continuity because P(t) # A(tn).
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The following subsections specify alternative bathtub-
shaped curves to model resilience and derive expressions for
the time at which the system recovers to a new steady state
performance level P(t,) and area under the resilience curve
P(t) when analytical forms exist.

1) Quadratic Model: The form of the quadratic hazard
function is

At) = a+ Bt ++t2 €))

is bathtub-shaped when —2(ay)'/? < 8 < 0 and a, v > 0.
The time at which the system recovers to performance level
P(t,) is

=B —/B? —4day +4ayP(t,)
_ >

and area under the resilience curve characterized by the
quadratic hazard function is

ty 2

pt2 At
Pit)=at+— + - 3
(1) =at+ 5+ | 3

2) Competing Risks Model: The competing risks
model [20] is capable of displaying increasing, decreasing,
constant, and bathtub-shaped rates

M) = 1 f 5+ 2 &)

The time at which the system recovers to performance level
P(t,) is
BP(t) — 2y + /B?P(tr) + 4B7P(t;) — 8afy + 472
46y
S)

and area under the resilience curve characterized by the
competing risks model is

t, =

alog(1l + Bt) |t

P(t) =~t* + 5 N

(6)

B. Mixture Distributions

The following general form can be used to specify alterna-
tive resilience curves as mixture distributions

P(t) = a1(t)(1 — Fi(t)) + ax(t) Fa(t) (7

where aj(t) is the transition from degradation, with
lim; o+ a1(t) = 1 and lim;o0 a1 (t) = 0, and ax(t) is the
transition to recovery. Fi (t) and F(t) are an arbitrary cumu-
lative distribution functions (CDF). Thus, the terms (1 —F} (¢))
and F5(t) respectively characterize degradation and recovery
processes.

III. MODEL FITTING, VALIDATION, AND INFERENCE

This section describes methods to fit and validate models
as well as make inferences based on these models.

A. Model fitting technique

Least squares estimation (LSE) is a common approach to
estimate parameters of a model, which explains a resilience
curve possessing deterministic variables. LSE [21] minimizes
the disagreement between the empirical resilience data and
a specific parametric model in order to identify numerical
estimates of that model’s parameters.

min ) (R(t;) — P(t;))* (8)

where n is the number of measurements used for model
fitting, R(¢;) is the empirical resilience at time ¢;, and P(¢;) is
the corresponding value of resilience according to the model.

B. Validation and statistical inference

This section describes methods to validate models and make
inferences based on them, including statistical goodness of fit
measures and establishing confidence intervals around model
fits based on the sample size and corresponding uncertainty.

1) Goodness of fit measures: Goodness of fit measures

assess how well a model performs on a given data set. In
practice, no model performs best with respect to all measures.
Goodness of fit measures provide a quantitative approach
to compare alternative models. Models with lower error are
preferred. However, model selection is ultimately a subjective
choice that must be made by a decision-maker. A primary
consideration is the tradeoff between model complexity and
predictive accuracy.
Sum of squares error is calculated by fitting a model with
n observations with least squares estimation as specified in
Equation (8) and then computing the sum of squares difference
between the observations and model predictions.

n

SSE = (R(t:) — P(t:))* ©)

i=1

where the difference R(t;) — P(t;) is known as the error or
residual.

Predictive mean square error fits a model with the first n — /¢
observations and then computes the sum of squares of the
prediction residuals for the remaining ¢ observations not used
to fit the model.

n

2.

i=(n—~0+1)

PMSE = % (R(t:) — P(t:))? (10)
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Adjusted coefficient of determination is the proportion of
the variation in the dependent variable that is explained by
independent variables and is calculated according to

SSY — SSE n—1
2 —1-(1= 11
Tadj ( SSY )(nml) 1
where

SSY = i (R(t;) — R(t))”

is the sum of squares error associated with the naive predictor
R(t). Thus, the ri 4 value quantifies the degree of linear cor-
relation between the changes in performance of the empirical
resilience and those predicted by the model. A value of r? dj
closer to 1.0 indicates a strong relationship between the data

and model.

2) Confidence intervals: A confidence interval (CI) [22]
establishes a range for an estimated value or model parameter,
according to a desired level of confidence specified by the
user. To obtain an approximate confidence interval for the
predictions of a regression model, the variance of SSE

2 1
o _<n—2 SSE

represents the dispersion between the set of predictions and
their average value. Lower and upper confidence interval limits
for the change in performance between interval (i — 1) and 4
is

12)

CI=AP(t;) £ 2 _opVo? (13)

where 2;_,/7 is the critical value of the standard normal
distribution and « the user-specified level of significance.
Empirical coverage (EC) is the percentage of observations
contained by the confidence intervals, which is computed by
dividing the number of observations within the interval by the
total number of observations (n).

IV. METRICS

Categories of metrics [8] include interval-based, point-
based, and probabilistic metrics as well as metrics that
consider multiple system attributes. This paper focuses on
interval-based resilience metrics, since they measure a sys-
tem’s performance over a period of time, quantifying resilience
based on performance during the hazard and recovery periods.

The area under the curve [9] measures the performance

preserved as
tr
R(t,) = P(t)dt

th

(14)

and it can also be expressed as the ratio of system actual
and nominal performance (average normalized performance
preserved) [10], [11].

R(t,) = . P(t)dt

Pl (b — ) ()

Conversely, the performance lost is measured as area above
the curve [12], and is simply the difference between actual
and nominal performance.

R(t) = P)lt: ~tn)~ [ P (6

h

It can also be expressed in its normalized form as the area
above the curve over the nominal performance (average nor-
malized performance lost) [13].

Pt - P())dt
Pty (ty —th)

Performance from the minimum [14] has been expressed as the
performance preserved from the minimum to recovery minus
the rectangular region below the minimum performance.

R(t,)

a7

R = [ POa-PuG ) (9

ta
The average performance preserved is expressed as the area
under the curve from the hazard to recovery divided by the
duration between hazard and recovery [15]

t
" P(t)dt
R(t,) = Juy PO (19)
tr - th
Similarly, the average performance lost [15] is
Pty)(t, —tn) — [ P(t)dt
R(t,) = ()t = 1) = Ji, () (20)

t. — 1ty

The weighted average of performance preserved before and
after the minimum [16] provides an5 integrated measure of
the degradation and recovery processes

ta tr
P(t)dt P(t)dt
R(t,) :aﬁ_k(l_a)u 1)
ta — th tr — g

where « is a user specified weight factor in the interval (0, 1).
Larger values of « place greater importance on the period from
hazard to the minimum, while smaller values of o emphasize
the period from the minimum to recovery.

To apply interval-based metrics in a predictive manner, tj
is replaced with the first time interval not used for model
fitting, namely ¢,,_,4;. Similarly, ¢, is set to the last time
interval (¢,). Additional considerations include Equation (18)
and Equation (21), which require knowledge of the minimum
performance (Z4). In cases where the minimum is contained
within the observed data, that value is used. Similarly, in cases,
where the minimum has not yet been observed, the interval
predicted by the fitted model to experience the minimum (¢;)
is used for the purpose of calculating metrics. Moreover, ¢, is
set to tg in Equation (21), since this final metric utilizes the
entire interval.

V. ILLUSTRATIONS

This section illustrates the proposed modeling approaches
through a series of examples. The two alternative approaches
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to model resilience, including (i) bathtub-shaped hazard func-
tions from reliability engineering, and (ii) mixture distributions
to characterize deterioration and recovery. In each case, the
model goodness of fit is assessed as well as the models’ ability
to predict performance and resilience metrics.

Although the modeling efforts are general and aspire to
advance the general theory of predictive resilience engineer-
ing across domains such as infrastructure systems, including
electric power and transportation networks, cybersecurity, and
machine learning, data in these areas is not shared widely.
Therefore, the experiments reported here are illustrated using
seven U.S. recessions shown in Figure 2, which were docu-
mented by the Bureau of Labor Statistics’ Current Employ-
ment Statistics Program [23], [24], including the most recent
recession that began in March, 2020 at the start of the COVID-
19 pandemic.
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Fig. 2. Payroll change in U.S. recessions from peak employment

Each curve shows the normalized number of individuals em-
ployed with time step zero indicating peak employment prior
to a period of job loss and recovery. Economists describe
resilience curves [25] with various letters of the English
alphabet, including V, U, W, L, J, K, and J. In a V-shaped
recession, the economy suffers a sharp but brief degradation
followed by a similarly strong recovery, while a U-shaped
recession deteriorates and recovers more slowly. W-shaped
recessions possess two successive periods of degradation and
recovery in sequence. L-shaped recessions experience a sharp
decline followed by a long period of under performance. J-
shaped recessions are characterized by a slow recovery but
eventually return to pre-recession growth trends. K-shaped
recessions suffers a long sharp drop and divergent recovery
paths that are difficult to describe.

Table I indicates the competing risks model produced lower
PMSE on all data sets other than the 1974-76 and 2001-05
data. Moreover, the competing risks model was a close second
on nearly all measures when the quadratic model performed

best. Neither model performed well on the 1980 data, since it
exhibits a W-shaped curve. Hence, both the quadratic model
and competing risks model performed substantially poorer on
the 1980 data, resulting in low or even negative 72 q; 1n the
case of the quadratic model. Both models also fit the 2020-
21 data poorly because deterioration in performance occurred
rapidly, which is a characteristic of L and K-shaped recessions.
Thus, the competing risks model exhibited greater flexibility,
but neither model could characterize the 1980 or 2020-2021
data satisfactorily.

TABLE I
VALIDATION OF PREDICTION USING TWO BATHTUB FUNCTIONS ON DATA
FROM SEVEN U.S. RECESSIONS

l U.S Recession [ n [ Measure [ Quadratic [ Competing Risks

1974-76 48 [ SSE 0.00227675 0.00255851
PMSE 0.00000037 0.00000062
24 0.91792100 0.90776400
EC 97.91% 95.83%
1980 48 | SSE 0.00472714 0.00430915
PMSE 0.00002572 0.00002508
oy —0.07161330 0.02314130
EC 95.83% 95.83%
1981-83 48 | SSE 0.00503712 0.00183996
PMSE 0.00008464 0.00000841
20 0.84347000 0.95378100
EC 93.75% 97.91%
1990-93 48 | SSE 0.00005197 0.00003800
PMSE 0.00000037 0.00000015
24 0.99511300 0.99642600
E 91.66% 97.91%
2001-05 43 | SSE 0.00008087 0.00010226
PMSE 0.00000010 0.00000012
24 0.95919200 0.94839300
EC 95.83% 95.83%
2007-09 43 | SSE 0.00165841 0.00186147
PMSE 0.00000509 0.00000008
24 0.92051800 0.91078600
EC 97.91% 95.83%
2020-21 24| SSE 0.02328560 0.01771130
PMSE 0.00022676 0.00002900
24 0.11727200 0.32858600
EC 90.47% 90.47%

Figure 3 shows the 2001-05 U.S. recession data, fitted
quadratic model, and 95% confidence interval (grey region
centered around the quadratic model fit) computed with Equa-
tion (13). The dashed vertical line at ¢ = 42 indicates that
the first 43 months were used for model fitting and the last
five months use to compute predictive accuracy measures.
Since all but two of the 48 observed data points are within
the confidence interval, the EC is 95.83%, which is slightly
conservative.

Figure 4 shows the 1990-93 U.S. recession data, fitted
competing risks model, and 95% confidence interval. Since
all but one of the 48 observed data points are within the
confidence interval, the empirical coverage is 97.91%, which
is also conservative.

In addition to curve fitting and traditional methods to assess
the statistical validity of resilience models based on bathtub
shaped distributions, it is also possible to make predictions
for each of the interval-based metrics described in Section I'V.
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Fig. 3. Quadratic model fit to 2001-05 U.S recession data.
1.04 w T T —
— 1990-93 U.S. Recession
Competing Risk Model Fit :
1.03 95% Confidence Interval i 1

5
o
N
T
L

-
o
o

Payroll employment index
o

0.99

0 10 20 30 40 47
Number of months after employment peak

0.98

Fig. 4. Competing risks model fit to 2001-05 U.S recession data set.

Table II reports the predictive metrics for the quadratic and
competing risks models fit to the 1990-93 data set, and their
respective relative error according to

R(t) actual — R(t)predicted
R(t)actual

and o = 0.5 for weighted average of performance preserved
before and after the minimum (Equation (21)). Table II indi-
cates that the quadratic model exhibited lower relative error
on five of eight metrics, but that both models achieve error
of less than 0.01 on all metrics except for the normalized
average performance loss, which was larger because of the
normalization step. Negative values in the performance loss
metrics can be interpreted as the system having recovered
to a higher performance level than the time at which the

5 = 22)

disruption occurred, producing a negative performance loss
in the predictive period.

TABLE II
INTERVAL-BASED RESILIENCE METRICS USING BATHTUB SHAPED
FUNCTIONS AND 1990-93 U.S. RECESSIONS DATA

Metrics Data Quadratic ‘ Competing Risks
Performance preserved | Actual 5.168000 5.168000
Predicted 5.176470 5.165280
§ 0.001638 0.00052
Performance lost Actual —1.064000 —1.064000
Predicted | —1.061390 —1.055290
§ 0.00245 0.008183
Normalized average Actual 1.259260 1.259260
performance preserved | Predicted 1.257930 1.256760
0 0.00105 0.001982
Normalized average Actual 0.001059 0.001059
performance lost Predicted | —0.007925 —0.006763
[ 0.14403 0.269552
Performance preserved | Actual 1.603000 1.603000
from the minimum Predicted 1.598770 1.618710
§ 0.00264 0.009798
Average performance Actual 1.292000 1.292000
preserved Predicted 1.294120 1.291320
6 0.001638 0.00052
Average performance Actual —0.266000 —0.266000
lost Predicted | —0.265346 —0.263823
0 0.00245 0.008183
Average performance Actual 0.514662 0.514662
preserved before/after Predicted 0.518942 0.518053
minimum [ 0.008316 0.00658

A. Example II: Mixture Distributions

In the second experiment, least squares estimation was
applied according to Equation (8) in order to estimate the
parameters of the resilience curve characterized by the mixture
distribution model (Equation (7)), given 90% of each data
set shown in Figure 2. Four pairwise combinations of F (t)
and Fy(t) from reliability engineering [26] were considered to
characterize degradation and recovery, including the Weibull
(Wei) distribution, which possesses the form

F(t)=1-e¢ ()" (23)

and the simpler exponential (Exp) distribution, which is ob-
tained by setting £ = 1 in Equation (23). The trend describing
the transition from degradation was held constant at a;(¢) = 1
for simplicity. Alternative forms of transition to recovery
considered included

as(t) = {B, Bt, e, BIn(t)}

each of which corresponds to an increasing trend characteristic
of economic data. Predictions were then made for the last
10% of the data not used for model fitting and the SSE
(Equation (9)), PMSE (Equation (10)), ngj (Equation (11)),
and EC computed, as shown in Table III for as(t) = S1n(t),
which performed well for each data set shown in Figure 2.

Table III indicates that the simplest mixture composed of
the Exponential distributions, denoted (Exp-Exp), performed
poorly with respect to all measures on all data sets. At least
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TABLE III
VALIDATION OF PREDICTION USING MIXTURE DISTRIBUTIONS ON DATA FROM SEVEN U.S. RECESSIONS DATA

drop associated with the L and K-shaped curves respectively.

=N
o
w

U.S Recession | Measures Exp-Exp ‘ Wei-Exp ‘ Exp-Wei ‘ Wei-Wei ‘
1974-76 SSE 0.018194 0.002471 0.002473 0.005806
PMSE 0.000029 0.000009 0.000009 0.000023
ridj 0.344729 0.910974 0.910926 0.790891
EC 97.91% 100% 100% 100%
1980 SSE 0.007981 0.005087 0.007983 0.005087
PMSE 0.000141 0.000055 0.000141 0.000055
Tidj —0.809364 | —0.153224 | —0.809915 | —0.153203
EC 91.66% 91.66% 93.75% 93.75%
1981-83 SSE 0.023730 0.003452 0.003452 0.004281
PMSE 0.000115 0.000051 0.000051 0.000021
ngj 0.403901 0.913269 0.913279 0.892453
EC 91.66% 89.58% 93.75% 100%
1990-93 SSE 0.021164 0.000202 0.000203 0.000570
PMSE 0.000033 0.000001 0.000001 0.000002
T?I,dj —0.990459 0.980913 0.980908 0.946310
EC 93.75% 97.91% 97.91% 100%
2001-05 SSE 0.019830 0.000195 0.000195 0.000486
PMSE 0.000027 0.000001 0.000004 0.000003
T?Ldj 0.006810 0.901303 0.901281 0.754430
EC 95.83% 100% 100% 100%
2007-09 SSE 0.016917 0.016917 0.002022 0.005496
PMSE 0.000067 0.000067 0.000025 0.000015
Tzdj 0.189229 0.189229 0.903069 0.736572
EC 97.91% 97.91% 93.75% 97.91%
2020-21 SSE 0.017936 0.018654 0.017936 0.015770
PMSE 0.000007 0.000216 0.000007 0.000007
2 0.320035 | 0.292833 | 0.320035 | 0.402177
EC 85.71% 95.23% 90.47% 95.83%
one of the remaining three combinations for Fy(t) and F5(t)
(Wei-Exp, Exp-Wei, and Wei-Wei) achieved an rgdj greater 1.05 ' ’ )
than 0.9 on all data sets with the exception of the 1980 and 19908015 Regossion |
1.04 + Weibull-Exponential Model Fit i
2020-21 data sets because of the W-shaped curve and sharp 95% Confidence Interval i

In some cases, the bathtub shaped curves achieved a slightly
higher 72 4; than mixture distribution models partially because
the number of parameters in the mixture models was not

sufficient to substantially increase the model fit.

Figure 5 shows the 1990-93 U.S. recession data and the
fitted (Wei-Exp) model, while Figure 6 shows the 1981-83
recession data and the fitted (Exp-Wei) and (Wei-Wei) models,
since the former achieved better SSE and 7‘3 i but the latter
attained a lower PMSE on that data set.

Figures 5 and 6 also show the corresponding 95% confi-
dence intervals computed with Equation (13). Since all of
the observed data points shown in Figure 5 are within the
confidence interval, the empirical coverage was 100%. The
Wei-Wei confidence interval (light grey) of Figure 6 also
exhibited 100% empirical coverage, but the empirical coverage
for the Exp-Wei confidence interval (dark grey) was 93.75%.

Predictions for each of the interval-based metrics described
in Section IV are reported in Table IV for all four combinations
of the mixture distributions fit to the 1990-93 recession data,
and their respective relative error, where a = 0.5 for the
weighted average of performance preserved before and after
the minimum (Equation (21)). Table IV indicates that Wei-
Exp model achieved the lowest relative error on four of eight
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Fig. 5. Fit of Weibull-Exponential model fit to 1990-93 U.S recession data

set.
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metrics predicted, the Exp-Exp two metrics, and the Wei-
Wei two metrics. Considering Tables III and IV together, the
combination characterizing the deterioration and recovery by
the Weibull and exponential distributions respectively most
frequently predicted performance as well as metrics for the
data sets considered, while several of the other combinations
also exhibited similar accuracy.
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INTERVAL-BASED RESILIENCE METRICS USING MIXTURE DISTRIBUTIONS AND 1990-93 U.S. RECESSIONS DATA

TABLE IV

Metrics Data Exp-Exp Wei-Exp Exp-Wei Wei-Wei
Performance preserved | Actual 5.16800000 5.16800000 5.16800000 5.16800000
Predicted 5.25294000 5.15458000 5.15457000 5.14434000
0 0.01643570 0.0025963 0.00259779 0.00457829
Performance lost Actual —1.06400000 | —1.06400000 | —1.06400000 | —1.06400000
Predicted | —1.08461000 | —1.04811000 | —1.04811000 | —1.04552000
§ 0.01937030 0.0149350 0.01493750 0.01736510
Normalized average Actual 1.25926000 1.25926000 1.25926000 1.25926000
performance preserved | Predicted 1.26020000 1.25523000 1.25523000 1.25508000
§ 0.0007490 0.00319698 0.00319726 0.00331930
Normalized average Actual 0.00105905 0.00105905 0.00105905 0.00105905
performance lost Predicted | —0.01020250 | —0.00523343 | —0.00523308 | —0.00507940
§ 0.1018730 0.43478900 0.43482700 0.45142500
Performance preserved | Actual 1.60300000 1.60300000 1.60300000 1.60300000
from the minimum Predicted 4.90004000 1.67578000 1.67577000 1.65575000
[ 2.05679000 0.04540480 0.04539900 0.0329070
Average performance Actual 1.29200000 1.29200000 1.29200000 1.29200000
preserved Predicted 1.31323000 1.28865000 1.28864000 1.28608000
§ 0.01643570 0.0025963 0.00259779 0.00457829
Average performance Actual —0.26600000 | —0.26600000 | —0.26600000 | —0.26600000
lost Predicted | —0.27115200 | —0.26202700 | —0.26202700 | —0.26138100
§ 0.01937030 0.0149350 0.01493750 0.01736510
Average performance Actual 1.06091000 1.06091000 1.06091000 1.06091000
preserved before/after Predicted 1.05576000 1.04862000 1.04862000 1.05871000
minimum § 0.00485651 0.01158750 0.01158770 0.0020730
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Fig. 6. Fit of Exponential-Weibull and Weibull-Weibull models fit to 1981-83
U.S recession data set.

VI. CONCLUSIONS AND FUTURE RESEARCH

This paper presented two alternative approaches to model
and predict resilience as well as various metrics, including (i)
bathtub-shaped hazard functions and (ii) mixture distributions
to characterize deterioration and recovery. These alternative
approaches were assessed in the context of historical data
on jobs in the United States. Our results indicated that both
bathtub-shaped hazard functions and mixture distributions
fit performance and metrics well for several of the data
sets exhibiting V and U, shaped curves, but that data sets
possessing W, L, and K shaped curves could not be fit to

either class of model proposed. Thus, the results suggested
that classical reliability modeling techniques are suitable for
resilience modeling and prediction, but that explanatory factors
and domain specific information may increase the predictive
accuracy of the models.

Future research will explore other alternative statistical ap-
proaches to predict the movement in performance as a function
of disruptive events and activities to restore performance.
These modeling extensions will be assessed in terms of their
ability to accurately compute predictive metrics and the time
at which performance can be restored to a specified level.
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