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Abstract
In healthcare domain, complication risk profiling which can be seen as multiple clinical risk
prediction tasks is challenging due to the complex interaction between heterogeneous clinical
entities.With the availability of real-world data,many deep learningmethods are proposed for
complication risk profiling. However, the existing methods face three open challenges. First,
they leverage clinical data from a single view and then lead to suboptimal models. Second,
most existing methods lack an effective mechanism to interpret predictions. Third, models
learned from clinical data may have inherent pre-existing biases and exhibit discrimination
against certain social groups.We then propose amulti-viewmulti-task network (MuViTaNet)
to tackle these issues. MuViTaNet complements patient representation by using amulti-view
encoder to exploit more information. Moreover, it uses a multi-task learning to generate
more generalized representations using both labeled and unlabeled datasets. Last, a fairness
variant (F-MuViTaNet) is proposed to mitigate the unfairness issues and promote healthcare
equity. The experiments show that MuViTaNet outperforms existing methods for cardiac
complication profiling. Its architecture also provides an effective mechanism for interpreting
the predictions, which helps clinicians discover the underlying mechanism triggering the
complication onsets. F-MuViTaNet can also effectively mitigate the unfairness with only
negligible impact on accuracy.
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1 Introduction

Cardiovascular diseases are widely known as the leading causes of mortality in breast cancer
survivors [1–4]. With the recent substantial improvement of breast cancer survival rates, pre-
dicting the onset of multiple cardiac complications has become a critical task for enhancing
patients’ life quality. It is also a key to cost-effective disease management and prevention.
However, this task is highly challenging because of the complex interactions between hetero-
geneous clinical entities. Effectively capturing these interactions may lead to more precise
prediction and treatment for cancer survivors.

Over the past few decades, the rapid growth of real-world clinical data such as electronic
health record (EHR) and insurance claims makes them valuable data sources used in data-
driven (e.g., deep learning) systems for clinical risk prediction, especially complication risk
profiling [5–7]. As shown in Fig. 1, this data includes heterogeneous clinical entities (e.g.,
visit, disease, medication) and can be considered frommultiple views (i.e., sequence of visits,
set of features). However, the existing methods for complication risk profiling have some
limitations: (C1) these models cannot capture complex relationships between heterogeneous
clinical entities and may result in the less optimal treatments for cancer survivors; (C2)
most of them lack an efficient mechanism to interpret the predictions, thereby cannot help
clinicians discover the underlying mechanism triggering the onset and make better clinical
decisions; (C3) these models may be biased and violate fairness with respect to different
patient groups in their predictions.

The potential reasons for these limitations are as follows. First, due to the heterogeneous
and hierarchical structure of clinical data, there aremultiple views to consider patient records:
treating them as sequences of visits or as sets of clinical features. Encoding patient records
from either view cannot provide comprehensive representations of patients, and may fail to
capture dynamic patterns of clinical features or dependencies among clinical visits. Second,
treating each complication onset prediction independently can lead to suboptimal models,
because the dependencies among complications that are manifestations caused by their com-
mon underlying condition cannot be captured. This is particularly the case when data are
limited. Third, interpretable predictions help clinicians better interact with models and make
optimal treatment decisions. However, it is challenging to establish a simple and effective
interpretation mechanism for complex models. Fourth, models built with heterogeneous,
unbalanced clinical data may easily exhibit discrimination against certain patient groups. As
shown in Sect. 4 (i.e., Table 10), the existing approach for optimizing clinical risk predic-
tion models (i.e., minimizing binary cross-entropy objective function) exhibits disparities in
model predictions across different social groups and prediction tasks. This phenomenon is
more critical for minority groups and rare diseases. Then, how to ensure the fairness and
health equity while preserving a sufficient level of model accuracy is another challenge [8].

To tackle the aforementioned challenges, we propose a new neural network-based
framework named Multi-View Multi-Task Network (MuViTaNet) and its fairness variant
(F-MuViTaNet) for cardiac complication risk profiling. These proposed models consist of a
multi-view encoder and a novelmulti-task learning (MTL) scheme (deal withC1 andC2),
and a fairness-informed objective function (deal with C3). In particular, the multi-view
encoder includes visit-view and feature-view encoders that simultaneously capture infor-
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Fig. 1 Visit-view (sequence of clinical visits (rows)) and feature-view (set of clinical codes (columns)) of
clinical data

mation from clinical visits and features: visit-view encoder considers a patient record as the
sequence of clinical visits and captures their temporal relation byGatedRecurrentUnit (GRU)
network; feature-view encoder considers the patient record as the set of temporal medical
features whose temporal patterns are extracted separately using convolutional neural net-
works (CNN), following which are max-pooling operations that extract the most significant
signals from temporal sequences. TheMTL scheme utilizes an attention mechanism to learn
complication-specific representation from shared information generated by the multi-view
encoder. This scheme allowsMuViTaNet to exploit additional information from related com-
plications and unlabeled data to generatemore generalized representations for patients, which
enables more accurate predictions. By leveraging the attention mechanism associated multi-
view encoder, the proposed model provides an efficient way to interpret its predictions from
multiple perspectives, thereby helping clinicians discover the underlying mechanism trigger-
ing the onset and making better clinical treatments. Figure 2 distinguishes our multi-view
multi-task learning approach from the existing works for clinical risk prediction. To miti-
gate unfairness in clinical prediction across different patient groups, we incorporate fairness
constraint by adding regularization to the model objective function (F-MuViTaNet) during
training.

By conducting experiments on multiple datasets derived from real-world data (i.e., insur-
ance claim database) under the real clinical scenario (i.e., predicting chances of developing
cardiac complications in the future for breast cancer patients), we demonstrate that the pro-
posed model MuViTaNet is interpretable (i.e., Tables 8 and 9, and Fig. 5) and significantly
outperforms the state-of-the-art approaches (i.e., Tables 5 and 6) for complication risk profil-
ing.We show that compared to task-specificmodels,MTL scheme can affect fairness property
by mitigating group disparity in predictions (i.e., Table 10). Further, when enforcing fairness
constraint to MuViTaNet, the fairness can be improved significantly with only negligible
impacts on model accuracy (i.e., Figs. 6, 7, 8). These results indicate that our proposed
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model can be applied to achieve both fair and accurate predictions for cardiac complication
risk profiling in clinical practice. Our contributions can be summarized as follows:

• We design a multi-view multi-task neural network architecture1 (MuViTaNet) that accu-
rately predicts multiple complication onsets and efficiently interprets its predictions. It
includes (1) amulti-view encoder to explicitly capture dependencies among clinical visits
and clinical features from clinical data; (2) a MTL scheme that utilizes a complication-
specific attention mechanism on top of the multi-view encoder to capture additional
clinical information from related complications and unlabeled datasets.

• We design a fairness variant (F-MuViTaNet) that mitigates unfairness across different
patient groups while maintaining accurate predictions.

• Finally, we conduct comprehensive experiments to demonstrate the effectiveness of
MuViTaNet in terms of both accuracy, interpretability, and fairness for cardiac com-
plication risk profiling.

Note that the presentwork is an extensionof our conference paper [9], inwhichMuViTaNet
was first introduced. The key differences are the followings:

• We focus on the unfairness issues in this work. To mitigate group disparity and promote
health equity, we propose a fairness mechanism by incorporating the fairness objective
function as regularization intoMuViTaNet. The resultingmodel (F-MuViTaNet) achieves
both accurate and fair predictions for cardiac complication risk profiling tasks.

• We conduct comprehensive empirical studies to investigate the impact ofMTL on unfair-
ness and examine the impact of enforcing fairness constraint on prediction performances
under MTL setting.

The remainder of the paper is organized as follows. Section 2 summarizes relatedworks on
clinical risk prediction as well as complication risk profiling, and fairness inmachine learning
and healthcare applications. Section 3 describes the technical details of the proposed models
(MuViTaNet and F-MuViTaNet). Section 4 presents experimental results and discussions.
Finally, Sect. 5 concludes the paper.

2 Related works

In this section, we briefly review existing works related to our study, including patient repre-
sentation learning and MTL for clinical risk prediction and complication risk profiling. We
also review the fair machine learning literature by presenting the common fairness criteria
and approaches to satisfying these criteria, and the recent advances in domain of healthcare.

Patient representation learning.The abundance of real-world data in recent years creates
an unprecedented opportunity to applymachine learning and dataminingmethods for clinical
risk predictions [10–12]. With the advancement of deep learning theory and the acceleration
in computational technologies, neural network-based architectures can significantly improve
prediction performance due to their ability to extract rich representations from data. Because
of the temporal nature of clinical data, most existingmethods rely on recurrent neural network
architectures to learn patient representations, which are then used to make predictions for
future clinical events (e.g., diagnosis, mortality, readmission, etc.) [5–7, 13, 14]. These works
focused on designing attention mechanisms to capture dependencies among clinical visits
[5, 13, 14] and time-aware mechanisms to incorporate temporal information [6, 15, 16]

1 Code is available at https://github.com/pth1993/MuViTaNet.
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Fig. 2 General schemes for learning fromclinical data. a Single-view single-task learning,b single-viewmulti-
task learning, cmulti-viewmulti-task learning. Our proposed model belongs to multi-viewmulti-task learning
with the multi-view encoder (i.e., visit-view and feature-view) and the task-specific attention mechanisms and
decoders for both labeled and unlabeled datasets

into patient representation for making better predictions. Nonetheless, these models cannot
explicitly capture the relationships among clinical features. Instead of considering EHR
data as sequences of clinical visits, Concare [17] treats the record as the set of clinical
features and extracts dynamic patterns of these features separately. Then, the predictions
are made by aggregating representations of all clinical features. However, all the existing
methods only extract information from a single view of clinical data which makes the learned
patient representations suboptimal. In contrast, we propose a multi-view model for capturing
information from multiple views of clinical data simultaneously.

Multi-task learning.Multi-task learning (MTL) has been used widely across many appli-
cations ofmachine learning and datamining. By sharing information among related tasks, the
prediction model can generalize better. In healthcare domain, some existing works applied
MTL techniques to leverage information from related tasks to improve model performance
in clinical risk prediction. In particular, both classical machine learning [18–20] and deep
learning models [21–23] are formulated asMTL frameworks and are applied on a wide range
of healthcare applications including disease progression modeling [18], mortality prediction
[21], disease onset prediction [22], and diagnosis classification [23].

Complication risk profiling. Mitigating the risk of complications is crucial for many
disease management programs. Despite its importance, there have not been many existing
methods designed for this task. Unlike a single clinical risk prediction task, complication
risk profiling requires multiple predictions for onset of complications. Thus, capturing rela-
tionships among related complications is crucial to achieving good prediction performances.
Some methods have been proposed to predict the onset of complications of some diseases
and clinical procedures. For example, multi-task logistic regression has been used to predict
complication risks for diabetes care [19, 24]. Besides linearmodels, the deep learningmethod
is also used to predict complications of this chronic disease [25] but this work considers each
complication independently. For breast cancer survivors, relationships between cardiac com-
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plications and cancer were also investigated [3, 4, 26] to show the correlation between these
two diseases.

Fairness in machine learning.Machine learning has been increasingly used in domains
with intensive impacts on society such as healthcare, policy and hiring. While the hope is to
improve the societal benefits, they may exhibit biases against certain demographic groups [8,
27–29]. To measure and remedy the unfairness, various fairness notions have been proposed
in the literature and they can be roughly classified into two classes: group fairness and
individual fairness. For group fairness notions (e.g., demographic parity [30], equalized odds
[31], equal opportunity [31]), the entire population is categorized into different groups based
on some sensitive attributes (e.g., age, gender, race, etc.), and certain statistical measures are
(approximately) equalized across these groups. For example, demographic parity [31, 32]
requires the similar ratio of positive outcomes for every sensitive groups; equalized odds [31]
states that the protected and unprotected groups should have equal rates for true positives
and false positives; equal opportunity [31] only requires equal true positive rates for different
groups. In contrast, individual fairness notions (e.g., counterfactual fairness, fairness through
awareness) target the individual, rather than group level. It requires the similar individuals to
be treated similarly [30]. For example, counterfactual fairness implies that a prediction for
an individual is fair if it is unchanged when individual belonged to a different group [33].

To satisfy certain fairness notions, many methods haven been proposed and they can be
roughly classified into three categories: (1) Pre-processing approach that modifies training
data to eliminate confounding bias from data [34–36]. For example, variational autoencoder
and generative adversarial network have been proposed to obfuscate sensitive information in
the learned representations, thereby allowing machine learning models to learn fair pre-
dictions [37–39]. (2) In-processing approach that introduces fairness during training by
modifying the learning algorithms such as imposing fairness constraints or changing objec-
tive functions. For example, [40–42] learn fair models by solving constrained optimization
with fairness criteria serving as constraints; [43–45] achieve fairness by imposing fairness-
specific regularization term in optimization. (3) Post-processing approach that calibrates
model predictions across sensitive groups to remove bias [31, 46].

Fairness in healthcare applications.Unfairness issues arisen from using machine learn-
ing models have also been well-documented in many healthcare applications. For example,
the accuracy of predictive systems for intensive care unit monitoring differs across different
racial groups [8, 27]; medical resources may be disproportionately allocated among patients
with different socioeconomic status [8]; skin-cancer detection models may fail to detect
early-stage disease in patients with dark skin [29]; atherosclerotic cardiovascular disease risk
prediction models may have racial bias [28]. Fairness notions and approaches introduced
above have also been used in clinical applications. For example, [27] uses the disparity in
false-positive/false-negative/accuracy as ameasure of unfairness andmitigates the unfairness
via data collection; [47] considers the disparity in conditional prediction/calibration/AUROC
as unfairnessmeasures and reduces disparity by adjustingmodels through regularization; [28]
adopts equalized odds fairness notion [31] and uses adversarial learning approach to satisfy-
ing fairness constraint; [48] extends counterfactual fairness [33] and trains a fair model via
counterfactual inference using a variational autoencoder.
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Table 1 Notation definition

Notation Description

C Set of clinical codes/features

P A patient record

ci i th clinical codes in set C

xi ∈ {0, 1}|C| Vector representation of code ci
v j j th clinical visit in P

c j Set of clinical codes in visit v j
t j Timestamp of visit v j

V j ∈ {0, 1}|C| Vector representation of visit v j

X j ∈ {0, 1}|ci |×|C| Matrix representation of visit v j

Xvisi t ∈ {0, 1}T×|C| Visit-level representation of P

X f eature ∈ T × ({0, 1}|ci |×|C|) Feature-level representation of P

ddemo Vector representation of demographics

α̂ j ∈ R|c j | Attention weights of codes in visit v j

β̂ j ∈ R|C| Task-specific attention weights for features

γ̂ j ∈ RT Task-specific attention weights for visits

δ j ∈ Rd Temporal encoding vector of visit v j

Hv ∈ RT×2d Representation learned by visit-view encoder

h∗ ∈ R2d Patient representation

H f ∈ R|C|×4d Representation learned by feature-view encoder

gvk ∈ R2d Visit-view task-specific representation for kth task

g f
k ∈ R4d Feature-view task-specific representation for kth task

ok ∈ R8d Task-specific representation for kth task

yk Ground-truth output for kth task

ŷk Predicted output for kth task

3 Methodology

In this section, we first give brief introduction about patient records, complication risk profil-
ing task and the corresponding notations. Then, we present our proposed model MuViTaNet
as well as its fairness variant F-MuViTaNet.

3.1 Definitions and basic notations

Definitions and notations used in this study are shown in the following paragraphs and are
summarized in Table 1.

Patient record.The heterogeneous and hierarchical structure of a patient record is defined
as follows.

• Definition 1 (Clinical code). C = {c1, c2, . . . , c|C|} is the set of unique clinical codes
including diagnosis, procedure, and medication codes with |C| is the number of these
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Fig. 3 The overall architecture of MuViTaNet. The proposed framework consists of four main components:
feature-view encoder, visit-view encoder, task-specific attention, and task-specific decoder. Given a patient
record, MuViTaNet first extracts information from clinical visits and features by looking at the record in
two different ways: sequence of clinical visits and set of clinical features. Then, the shared representation
learned by these two encoders is put into the task-specific attention to learn the task-specific representation.
Finally, the clinical predictions are generated by the task-specific decoders. Note that the figure only shows
the task-specific attention for one prediction task for simplicity

unique codes. Each code ci can be represented by binary vector xi ∈ {0, 1}|C| where i th
element of this vector is 1 and other elements are 0.

• Definition 2 (Clinical visit). A visit is a hospital stay from admission to discharge. Each
visit v j is a tuple of (c j , t j ) where c j = {c j1 , c j2 , · · · , c j|c j | } ∈ C |c j | with set of indexes
{ j1, · · · , j|c j |} ∈ {1, 2, · · · , |C|} and t j is the timestampof the visit. c j can be represented
by binary vector V j ∈ {0, 1}|C| where the i th element is 1 if c j contains the code ci .
Besides vector representation, c j can also be expressed as matrix X j ∈ {0, 1}|c j |×|C|

where i th row of this matrix is the binary vector x ji ∈ {0, 1}|C| of code c ji .
• Definition3: (Patient record).Thepatient record P is a sequenceof visits [v1, v2, · · · , vT ]

where T is the number of visits. Like clinical visit representation, P can be rep-
resented at the two different granularities. At visit-level, P can be represented as a
binary matrix Xvisi t ∈ {0, 1}T×|C| where j th row of this matrix is binary vector
V j of visit v j . At feature-level, P can be represented as the sequence of matrices
X f eature = [X1, X2, · · · , XT ].

• Definition 4: (Demographic information). Besides clinical information, a patient record
can have demographic information about the patient such as age, gender, and region. It
can be represented by binary vector ddemo ∈ {0, 1}ddemo , where ddemo is the number of
demographic attributes.

Clinical risk profiling. The aim of this task is to find a set of functions F =
{F1, F2, · · · , FN } that predicts the onset of complications Y ∈ RN from patient record
P , where N is the number of complications. In MTL setting, F1, F2, . . . , FN generally have
some shared parameters to learn shared information from related tasks for better predictions.

123



A fair and interpretable network for clinical risk… 1495

3.2 MuViTaNet

Overview architecture. This section presents our proposed multi-view multi-task network
(MuViTaNet) for predicting onset of multiple complications from patient records. MuVi-
TaNet is designed to explicitly capture the dependencies among clinical visits and clinical
features from patient records. It also leverages additional information from both related
labeled and unlabeled data to achieve accurate predictions and efficient interpretation. In par-
ticular, MuViTaNet consists of four main components as follows. (1) Feature-view Encoder.
This component considers a patient record as a set of temporal clinical features and then
encodes information of each feature separately. (2) Visit-view Encoder. This component for-
mulates a patient record as a sequence of visits and then learns a representation for each
visit in the sequential context. Specifically, this component is designed as a hierarchical
model that exploits patient records in the two levels, including feature-level and visit-level.
(3) Task-specific Attention. After learning the shared representation from feature-view and
visit-view encoders, an attention mechanism is employed to extract task-specific representa-
tion for each task from the shared representation. (4) Task-specific Decoder. The task-specific
representations are fed into the corresponding task-specific decoders to predict clinical out-
comes for patients in complication datasets and to project representations to unit hypersphere
for patients in unlabeled dataset. Figure 3 shows the overview architecture of MuViTaNet
and technical details of its components are presented as follows.

Feature-view encoder. This component treats patient data as a set C of clinical codes
which are represented by the set of temporal sequences (i.e., columns of matrix Xvisi t ∈
{0, 1}T×|C|). In particular, given clinical code ci , its temporal data can be represented by
a binary vector fi ∈ {0, 1}T which is i th column of Xvisi t . Then, one-dimensional con-
volutional neural networks (Conv1d) and max-pooling (MaxPool) operation are employed
to extract temporal patterns from each clinical code separately. In particular, Conv1d with
kernel size k (i.e., k = 3 in our setting) takes as inputs the sub-sequences of length k from
vector fi to learn the representation of code ci as follows.

H f
i = Conv1d( fi ) (1)

where H f
i ∈ R4d×T are the output of Conv1d and 4d is the number of filters used in

convolution operations. Next, the row-wise max-pooling is applied to H f
i to generate vector

representation for clinical code ci .

h f
i = MaxPool(H f

i ) (2)

Note that the weights of Conv1d are not shared between clinical codes. The output of feature-
view encoder is matrix H f = [h f

1 , h
f
2 , · · · , h

f
|C|] ∈ R|C|×4d .

Visit-view encoder. This component formulates patient data as a sequence of visits in
which each visit can be seen as a set of clinical codes. Due to the hierarchical characteristic
of this data structure, the visit-view encoder is also designed hierarchically to capture infor-
mation at different levels. Given visit v j , we represent this visit by matrix X j ∈ {0, 1}|c j |×|C|

which is j th element of the sequence X f eature. Because different clinical codes associated
with the same visit can have disparate impacts, instead of treating these clinical codes uni-
formly when aggregating them to represent the visit, the location attention mechanism is
employed to learn the contributions of these clinical codes to their visit representation. In
particular, given a binary representation x ji ∈ X j of code c ji , 1-layer feed-forward neural
network is applied to learn the dense representation from sparse vector of this clinical code
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as follows.

e ji = FFNN1(x ji ) = ReLU(W1x ji + b1) (3)

whereW1 ∈ Rd×|C| is the learned weight matrix of clinical codes, b1 ∈ Rd is the bias vector,
and ReLU is rectified linear unit activation function. Then, the 2-layer feed-forward neural
network FFNN2 with Tanh activation function is used to generate the attention score α ji for
this clinical code as follows.

α ji = FFNN2(e ji ) (4)

The attention vector α j = [α j1 ,α j2 , · · · ,α j|c j | ] which represents the contributions of clin-
ical codes in visit v j is fed into the softmax layer to get the normalized vector α̂ j =
[̂α j1 , α̂ j2 , · · · , α̂ j|c j | ] ∈ R|c j |.

α̂ j = Softmax(α j ) (5)

Then, the representation of visit v j are computed as the weighted average of its clinical
codes.

evj = (α̂ j )
T e j (6)

where e j = [e j1 , e j2 , · · · , e j|c j | ] ∈ R|c j |×d denotes the j th visit’s representation. To generate
personalized representation for each visit, demographic information including age and region
is incorporated into every clinical visit as follows.

ëvj = W2(Concat(evj , ddemo)) (7)

where Concat is the concatenation operation and W2 ∈ R(d+ddemo)×d is the weight matrix
mapping concatenated vectors to the original embedding space. Besides clinical codes, each
visit is also associated with its timestamp. In order to capture the elapsed time between visits,
we add the temporal encoding vector to each visit as follows.

êvj = ëvj + δ j (8)

where δ j ∈ Rd is the temporal encoding vector whose design is inspired by the positional
encoding used in Transformer architecture [49]. In particular, it is computed by trigonometric
functions as follows.

δ j,2t = sin
(

tT − t j
100002t/d

)

δ j,2t+1 = cos
(

tT − t j
100002t/d

) (9)

where 0 ≤ 2t < d − 1. From Equation (9), we can see that temporal embedding encodes
similar time intervals into similar vectors in embedding space.

To generate the sequential representations for visits in the sequential context, we put the
independent representations for visits learned from previous steps into the bidirectional GRU
layer. Specifically, the sequential representation for these visits is computed as follows.

−→
h j = GRU(̂evj ,

−−→
h j−1)

←−
h j = GRU(̂evj ,

←−−
h j+1)

hvj = Concat(
−→
h j ,

←−
h j )

(10)
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where hvj ∈ R2d . Then, the patient representation is computed based on the last visit in the
visit sequence.

h∗ = FFNN3(hvT ) (11)

In summary, the outputs of the visit-view encoder include the sequential representations of
clinical visits Hv = [hv1, hv2, · · · , hvT ] ∈ RT×2d and the patient representation h∗ ∈ R2d .

Task-specific attention. Given the shared representations generated by feature-view and
visit-view encoders, attention mechanisms are employed to generate the task-specific repre-
sentations for the patient. Specifically, the attention weights of clinical features and visits for
kth task are computed as follows.

βki = FFNNk
4(h

f
i )

γk j = FFNNk
5(h

v
j )

β̂k = Softmax([βk1 ,βk2 , · · · ,βk|C| ])
γ̂ k = Softmax([γk1 , γk2 , · · · , γkT ])

(12)

where FFNNk
4,FFNN

k
5 are 2-layer feed-forward neural networks with Tanh activation func-

tion that compute the weights of clinical features and visits from their representations. Then,
we obtain the task-specific representation ok ∈ R8d for kth task as follows.

g f
k = (β̂k)

T H f

gvk = (γ̂ k)
T Hv

ok = Concat(g f
k , g

v
k , h

∗)

(13)

Task-specific decoder. For a patient in labeled dataset (i.e., complication dataset), the
2-layer feed forward neural network with Sigmoid activation function at the last layer is
employed to predict the probability of complication onset for this patient.

ŷk = FFNNk
6(ok), k ∈ {1, · · · , N } (14)

For a patient in unlabeled dataset, the 2-layer feed forward neural networkwith normalization
operation (Norm) is used to project the feature-view and visit-view representations of this
patient on the unit hypersphere.

z f = Norm(FFNNk
6(g

f
k )), k = N + 1

zv = Norm(FFNNk
6(Concat(g

v
k , h

∗)))
(15)

Optimization. To train MuViTaNet in MTL setting, we follow the alternating training
strategy [50] in which each task is selected randomly and then is optimized for a fixed
number of parameter updates before switching to other tasks (Algorithm 1). In our setting,
different tasks have datasets of different sizes, so we select a task to optimize with probability
λk = |Dk |\nk∑N+1

k′=1|Dk′ |\nk′
, where Dk and nk are the dataset and batch size for kth task, and N is

the number of complication datasets.
For labeled datasets, the binary cross-entropy (BCE) loss function is used to optimize the

prediction based on ground-truth labels. Specifically, for kth task with dataset Dk , the loss
function for this task is computed as follows.

Lk
L = − 1

|Dk |

|Dk |∑

i=1

(
yki log(ŷki )+ (1 − yki ) log(1 − ŷki )

)
(16)
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Algorithm 1: Training procedure for MuViTaNet

Input: Datasets {Dk }N+1
k=1 (N labeled and 1 unlabeled datasets), set of clinical codes C, batch sizes ns ,

nu
Output: Trained model parameters θ = {θ shared , {θ task−speci f ic

k }Nk=1}
1 Randomly initialize θ ;

2 Calculate sampling rate for each dataset λk = |Dk |/nk∑N
k′=1|Dk′ |/nk′

(nk = nu if k = N + 1, nk = ns

otherwise);
3 for epoch = 1 to E do
4 repeat
5 Select dataset Dk ∼ λ;
6 Initialize loss Lk = 0;
7 Select sample batch b from dataset Dk ;
8 for patient Pi in batch b do
9 (X f eature, Xvisi t ) = Pi ;

10 Obtain feature-view representation H f from Xvisi t using Eq. (1), (2);
11 Obtain visit-view representation Hv and patient representation h∗ from X f eature using

Eq. (3)-(11);
12 Calculate task-specific attention weights β̂, γ̂ from H f , Hv using Eq. (12);
13 Obtain task-specific representations using Eq. (13);
14 if k ∈ {1, · · · , N } then
15 Calculate prediction ŷki using Eq. (14);
16 Calculate BCE loss Lki using Eq. (16);
17 else
18 Project multi-view representations to unit hypersphere using Eq. (15);
19 Calculate CL loss Lki using Eq. (17);
20 Lk = Lk + Lki ;
21 end
22 Update parameters θ using gradient of Lk ;
23 Dk = Dk \ b;
24 until {Dk }N+1

k=1 == ∅;
25 end

where yk and ŷk are the ground-truth and predicted outputs for kth task, respectively. For
unlabeled dataset, we leverage the contrastive (CL) loss function [51] to pull together the
normalized representations of feature-view and visit-view of the same patient and to push
apart these representations from representations of other patients.

LU = −
|Dk |∑

i=1

∑

zi∈{z fi ,zvi }

log
exp(z fi · zvi )∑

z j∈A(zi ) exp(zi · z j )
(17)

where A(zi ) ≡ Z \ zi in which Z = {z fi , zvi }
|Dk |
i=1 .

3.3 F-MuViTaNet with fairness constraint

Measures of unfairness. Many group fairness criteria have been proposed in the litera-
ture to mitigate the unfairness issues in machine learning systems. Under these criteria,
the population is partitioned into different groups based on some sensitive attributes (e.g.,
age, gender, race, etc.), and certain statistical measures are (approximately) equalized across
these groups. In this work, we focus on one of the most widely used criterion named equal
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opportunity [31]. Formally, denote Y , Ỹ , S as ground-truth label, prediction, and sensitive
attribute, respectively, then equal opportunity requires that given Y , Ỹ and S are conditional
independent, i.e., Ỹ ⊥ S | Y . In the case of binary classification, it means the equality of
true/false positive rates (TPR/FPR) across groups.

In ourmedical context, wewill focus on FPR. The goal is to avoid the patients from certain
groups being mistakenly diagnosed as positive at a rate that is higher than other groups. That
is,

∀s ∈ S : Pr(Ỹ = 1 | Y = 0, S = s) = Pr(Ỹ = 1 | Y = 0) (18)

where S is the set of all possible values of sensitive attribute S. Above formulation can be
extended to non-binary settings where there exist scores Ŷ that predict the likelihoods of
samples being positive. Specifically, we will study the following two cases:

1) Threshold-based case:Predictions Ỹ are binary and are attained by thresholding prediction

scores Ŷ , i.e., Ỹ = 1 if Ŷ > τ , otherwise Ỹ = 0. We can quantify the violation of equal
opportunity using FPR gap (FPRG) defined below:

MFPRG = 1
|S|

∑

s∈S
|Pr(Ỹ = 1 | Y = 0, S = s) − Pr(Ỹ = 1 | Y = 0)| (19)

2) Threshold-free case: In the presence of prediction scores Ŷ , we can use the earth mover’s
distance (EMD) [52] and mean distance (MD) to quantify violation of equal opportunity
Ŷ ⊥ S | Y = 1, i.e.,

MEMD = 1
|S|

∑

s∈S
EMD(Pr(Ŷ | Y = 0, S = s) ‖ Pr(Ŷ | Y = 0)) (20)

MMD = 1
|S|

∑

s∈S
|E(Ŷ | Y = 0, S = s) − E(Ŷ | Y = 0)| (21)

Above metrics can be empirically computed from sampled data D = {(yi , ŷi , ỹi , si )}|D|
i=1 as

follows.

M̂FPRG = 1
|S|

∑

s∈S

∣∣∣∣

∑
i 1(ỹi = 1, yi = 0, si = s)∑

i 1(yi = 0, si = s)
−

∑
i 1(ỹi = 1, yi = 0)∑

i 1(yi = 0)

∣∣∣∣ (22)

M̂EMD = 1
|S|

∑

s∈S
EMD({ŷi : yi = 0, si = s} ‖ {ŷi : yi = 0}) (23)

M̂MD = 1
|S|

∑

s∈S

∣∣∣∣

∑
i {ŷi : yi = 0, si = s}∑
i 1(yi = 0, si = s)

−
∑

i {ŷi : yi = 0}∑
i 1(yi = 0)

∣∣∣∣ (24)

Fairness as regularization. As introduced in Sect. 2 , there are roughly three types of
approaches to achieving fairness: pre-processing, in-processing, and post-processing. In our
study, we adopt in-processing approach by achieving fairness via regularization. Specifically,
for kth task, we penalize the fairness violation by adding an additional regularization term to
prediction loss, i.e.,

Lk = Lk
L + ωLk

F (25)

where Lk
L is the prediction loss measured by binary cross-entropy mentioned in the previous

section, Lk
F is the regularization term (fairness loss), and ω is the hyper-parameter that
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controls the ratio between prediction loss and fairness loss. In particular, we use maximum
mean discrepancy (MMD) [53], mean distance (MD) and correlation (COR) to quantify
fairness loss.

LMMD
F = 1

|S|
∑

s∈S
MMD({ŷi : yi = 0, si = s} ‖ {ŷi : yi = 0}) (26)

LMD
F = 1

|S|
∑

s∈S

∣∣∣∣

∑
i {ŷi : yi = 0, si = s}∑
i 1(yi = 0, si = s)

−
∑

i {ŷi : yi = 0}∑
i 1(yi = 0)

∣∣∣∣ (27)

LCOR
F = COR({ŷi , si : yi = 0}) (28)

where LMMD
F , LMD

F , LCOR
F are LF calculated by MMD, MD, and COR, respectively, and

task index k is omitted for simplicity.

4 Experiments

In this section, we evaluate the performances of MuViTaNet on six real-world insurance
claim datasets and compare its results with state-of-the-art clinical risk prediction models
to demonstrate the effectiveness of our method. Besides achieving accurate prediction, we
also show the robustness of MuViTaNet in terms of interpretability. Finally, we examine
the fairness properties of MuViTaNet and study the impact of imposing fairness constraint
by investigating the trade-off between accuracy and fairness. Note that although we conduct
experiments on insurance claim datawhich includes clinical codes only, our proposedmethod
is not limited to this setting. Specifically, it can be easily extended toworkwith heterogeneous
clinical data [54] (e.g., clinical notes, lab tests, vital signs) by incorporating more encoders
designed to handle these data types [55, 56].

4.1 Datasets

Breast cancer cohort construction. We extract clinical records of female breast cancer
patients from theMarketScan Commercial Claims and Encounter (CCAE) database provided
by Truven Health2 to construct cardiac complication risk profiling datasets. According to the
previous work [24], the records from 2012 to 2017 of de-identified patients are selected based
on the following criteria.

• Ages of the selected patients are from 18 to 65 at the initial diagnosis of breast cancer.
• The selected patients have at least six months of records and ten clinical visits before

being diagnosed with breast cancer.
• There is no cardiac complication diagnosis until the initial diagnosis of breast cancer of

the selected patients.

Cardiac complication datasets construction. After construing the breast cancer cohort,
we create a distinct dataset for each cardiac complication onset prediction task. In our setting,
we focus on profiling the risk of developing cardiac complications in a six-month window
after the initial diagnosis of breast cancer (i.e., prediction window), and the positive instances
are defined as patients who have cardiac complications in this window. Following previous
clinical research [3, 4], we identify six cardiac complications including atrial fibrillation (AF),

2 https://truvenhealth.com/markets/life-sciences/products/data-tools/marketscan-databases.
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Fig. 4 Cardiac complication datasets construction. Data for six cardiac complication prediction tasks (i.e.,
atrial fibrillation (AF), coronary artery disease (CAD), heart failure (HF), hypertension, peripheral arterial
disease (PAD), and stroke) are extracted from the breast cancer cohort. Index dates are dates when patients are
initially diagnosed to have breast cancer. Patients with cardiac complication onsets during prediction windows
are considered positive instances. Patients without any cardiac complication onsets during prediction windows
are considered negative instances. The ratio between positive and negative instances is 1:3 for all six datasets.
Information until the index dates is used to predict whether patients develop cardiac complication onsets during
the prediction window

coronary artery disease (CAD), heart failure (HF), hypertension, peripheral arterial disease
(PAD), and stroke. Patients with cardiac complication onsets during prediction windows
are considered positive instances. Patients without any cardiac complication onsets during
prediction windows are considered negative instances. The negative instances are randomly
selected from the breast cancer cohort with a ratio of 3:1 compared to positive instances.
To mimic the real clinical scenario, information until the initial diagnosis of breast cancer
(i.e., index date) is used to predict whether patients develop cardiac complication onsets
during the prediction window. Descriptions, ICD codes, and the corresponding numbers of
positive/negative instances of these complications are shown in Tables 2 and 3. The data
construction process is visualized in Fig. 4.

Unlabeled dataset construction. The negative patients that are not selected for compli-
cation datasets are used to construct a dataset for contrastive learning. MuViTaNet leverages
this dataset as additional information to improve the prediction performances of complication
onset prediction tasks.

Feature selection.We use the following information to profile cardiac complications for
breast cancer patients.

• Demographics including age and region information. We cluster patients into three age
groups (i.e., 18 − 44, 45 − 54, 55 − 65) and five region groups.

• Clinical codes including diagnosis, procedure, and medication codes. For diagnosis
codes, all ICD-9 codes are converted to ICD-10 codes. To alleviate data sparsity, we
group all diagnosis and procedure codes based on their first three characters and remove
codes that appear in less than 200 patients. For medication codes, we group them by their
therapeutic classes. This preprocessing step results in 1188 features.

4.2 Experimental setup

Baseline models. To validate the performance of the proposed model for cardiac complica-
tion risk profiling task, we compare it with several state-of-the-art models. Based on their
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architectures, these models are categorized into four main groups including classical model,
recurrent-based model, attention-based model, and time-aware model. The details of these
models are presented as follows.
• Logistic Regression (LR). A classical model used in binary classification. To deal with

insurance claim data, a patient record is converted to the count vector ∈ Z|C| whose i th

element is the frequency of i th clinical code in that record, and is then fed into LR.
• Random Forest (RF) [57]. A classical ensemble model whose prediction is the average

computed from predictions of a number of decision tree classifiers. Inputs for RF are
similar to LR.

• Gated Recurrent Unit (GRU) [58]. A variant of recurrent neural network (RNN) that
uses gating mechanism.

• Bidirectional GRU (Bi-GRU) [25]. An improved version of GRU by employing an
additional GRU model to learn the sequence data in reverse order.

• Dipole [5]. An attention-basedmodel that utilizes attentionmechanism over the sequence
generated by Bi-GRU to learn the dependencies between visits.

• RETAIN [13]. An attention-based model that first employs a reverse RNN to process
clinical records in reverse order to mimic physicians’ decisions. Then two attention
modules are used to identify significant visits and variables.

• T-LSTM [6]. A time-aware model designed for handling irregularity visits in clinical
records. The memory cell of LSTM is modified to capture time intervals between two
consecutive visits.

• Transformer [49]. A fully attention-based model that uses multi-head attention mecha-
nisms to learn the dependencies among elements in sequential data.

• LSAN [59]. An attention-based model that uses Transformer to capture global informa-
tion and CNN to capture local information.

• MTL Models: We develop the MTL version for each of the aforementioned neural
network-based models by employing task-specific attention and decoder over the output
generated by these models.

• MuViTaNet-visit-view: A variant of MuViTaNet by removing the visit-view encoder.
• MuViTaNet-feature-view: A variant of MuViTaNet by removing the feature-view encoder.
• MuViTaNet-task-specific: A variant of MuViTaNet by removing the task-specific attention

and decoder for single-task learning (STL) setting.
• MuViTaNet-unlabeled: A variant of MuViTaNet trained with labeled datasets only.
• F-MuViTaNet: A fairness variant of MuViTaNet by incorporating fairness loss as regu-

larization.
Implementation details. All neural network-based architectures are implemented by

PyTorch.3 For classical models including LR and RF, we use their Python implementations
from Scikit-Learn [60]. We use ADAM algorithm [61] to optimize the prediction perfor-
mances for neural network-based models. The batch size is set as 16 for labeled datasets
and 256 for unlabeled dataset, and the initial learning rate is 0.0001. All experiments are
conducted on a single server with 8-core CPU, 16 GBmemory of RAM, and 16 GBmemory
of GPU V100.

Evaluation metrics.We conduct experiments under 5-fold cross-validation setting. 10%
instances from the training set are used to construct the validation set, and the results on the
testing set are determined based on the best results on the validation set. The area under the
receiver operating characteristic (AU-ROC) is used to measure the performances of predic-
tion models for cardiac complication risk profiling. To understand the impact of imposing

3 https://pytorch.org/.
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Table 4 Accuracy/fairness metrics for threshold-based/free cases

Accuracy metric Fairness metric

Threshold-based F1 FPR gap (FPRG)

Accuracy

Threshold-free Area under the receiver operating characteristic (AU-ROC) Earth mover’s distance (EMD)

Area under the precision-recall curve (AU-PRC) Mean distance (MD)

Cross-entropy (CE)

fairness constraint, we examine the fairness-accuracy trade-off for each task by varying
hyper-parameter ω. We consider both threshold-based and threshold-free cases, and metrics
for accuracy and fairness of both cases are summarized in Table 4. To binarize prediction
scores (i.e., changing from threshold-free to threshold-based settings), we use J-statistic [62]
to select optimum thresholds from the validation sets. Age (i.e., 18-44, 45-54, 55-64) is
treated as the sensitive attribute in the experiments.

4.3 Results

We conduct experiments to answer the following questions.

• Q1. How accurate is MuViTaNet for cardiac complication risk profiling task comparing
to previous works?

• Q2. How each component of MuViTaNet contributes to its prediction performance?
• Q3. How to effectively interpret the predictions made by MuViTaNet?
• Q4. How is MuViTaNet’s fairness property can be affected by MTL scheme?
• Q5. How F-MuViTaNet performs in terms of fairness-accuracy trade-off for cardiac

complication risk profiling?

Cardiac complication risk profiling.As shown in Table 5, MuViTaNet achieves the best
performances compared to other baselines for cardiac complication risk profiling task mea-
sured by AU-ROC score. Generally, it achieves an average (i.e., over six datasets) AU-ROC
score of 0.8102, which is 11% better than the best previous method. Looking into each com-
plication dataset, we also observe thatMuViTaNet consistently outperforms other methods in
terms of AU-ROC score. Such improvements indicate the advantage of MuViTaNet by using
(1) multi-view encoder to extract comprehensive information and (2) MTL scheme to lever-
age information from both related labeled and unlabeled datasets to improve its prediction
performance.

To further support our conclusion, we conduct statistical tests for all models under a multi-
task learning setting. According to the guidelines in [63], we first conduct Friedman test [64,
65] to determine if there are any differences between the prediction performances of models.
This test returns a test statistic of 31.06 and the corresponding P-value of 7× 10−5(< 0.05)
resulting in the rejection of the null hypothesis (i.e., no difference). In other words, we have
sufficient evidence to conclude that there are differences between the performances ofmodels.
However, this test does not tell us which models are different from each other. To find out
exactly whether our proposed model is significantly different from the baseline models, we
further conduct Quade’s post hoc test [66]. The adjusted p-value from the statistical test of
each pair of classifiers is shown in Table 6. All p-values between our proposed model and
baseline models (i.e., in the last row/column) are significantly less than 0.05, then indicating
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Table 7 Average performances of MuViTaNet variants over 6 complication datasets (F Feature-view, V Visit-
view, L Labeled, U Unlabeled)

Models Multi-view Multi-task AU-ROC

F V L U

MuViTaNet-task-specific ✓ ✓ ✗ ✗ 0.7385± 0.0239

MuViTaNet-feature-view ✗ ✓ ✓ ✗ 0.7906± 0.0286

MuViTaNet-visit-view ✓ ✗ ✓ ✗ 0.7942± 0.0248

MuViTaNet-unlabeled ✓ ✓ ✓ ✗ 0.8102± 0.0136

MuViTaNet ✓ ✓ ✓ ✓ 0.8160± 0.0117

that our model achieves significantly better prediction performances for cardiac complication
risk profiling.

For baselinemethods, we can observe that formulating complication risk profiling asMTL
significantly improves the prediction performances of these methods. The improvements are
more noteworthy for small datasets, includingAF (31%),CAD (19%), PAD (22%), and stroke
(13%). These results demonstrate the importance of leveraging task-related information for
predicting the onset of complications. We also see that GRU-based models achieve slightly
improved performances compared to other neural network models. For STL setting, the
averaged prediction performances of deep learning models are on par with RF and are much
better than LR. To investigatemore, we zoom into the prediction performance for each dataset
and observe that RFoutperforms deep learningmodels forAF,CAD, PAD, and stroke datasets
whose sizes are relatively small compared to HF and hypertension datasets. This result is
reasonable because deep learning methods generally require large training data to achieve
good prediction performance.

Ablation study. To investigate the contribution of each component in MuViTaNet, we
conduct an ablation study by comparing MuViTaNet with its simpler variants including
MuViTaNet-visit-view,MuViTaNet-feature-view,MuViTaNet-task-specific, andMuViTaNet-unlabeled

on the six aforementioned datasets. TheAU-ROCscores of thesemodels are shown inTable 7.
We can observe that encoding clinical data solely by a single-view encoder is not as good as a
multi-view encoder. AU-ROC score of MuViTaNet decreases to 0.7906 (resp. 0.7942) when
only using visit-view (resp. feature-view) encoder. This result demonstrates the necessity of
aggregating information from multiple views. The performance of MuViTaNet also drops
significantly when we remove the task-specific attention mechanism and decoder, which fur-
ther confirms the importance of formulating complication risk profiling task as MTL with
both labeled and unlabeled datasets.

Model interpretability. The deployment of data-driven systems to healthcare applicants
in real-world requires not only models with good prediction performance but also efficient
mechanisms to interpret the automated decision to clinicians. By leveraging the multi-view
multi-task architecture, our proposed model can interpret the prediction for each complica-
tion in multiple perspectives, thereby helping clinicians understand which clinical entities
contribute most to the prediction.

To characterize cardiac complications, we find the most important features for each of
these cardiac complications by averaging the feature-view attention weights over all positive
patients for clinical features in each complication dataset.Due to the varied number of features
across patients, we rescale attention weights bymultiplying themwith the number of features
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Table 9 Top 5 most important clinical visits and features (i.e., with the highest attention weights) for the 2
patients illustrated in Fig. 5

Positive patient from heart failure dataset

Visits Visit 9 (0.11) Visit 3 (0.11) Visit 11 (0.10) Visit 8 (0.09) Visit 6 (0.09)

Features 796.2 (0.26) 250.00 (0.25) 278.00 (0.12) 882.0 (0.05) 19083 (0.04)

Negative patient from hypertension dataset

Visits Visit 9 (0.11) Visit 11 (0.11) Visit 7 (0.10) Visit 4 (0.10) Visit 3 (0.09)

Features M-174 (0.56) 250.00 (0.22) S0612 (0.13) J3010 (0.02) 82043 (0.02)

Fig. 5 Visualization of 2 patient records (i.e., positive patient from heart failure dataset and negative patient
from hypertension dataset) from breast cancer cohort. We only show important visits in clinical records due
to limited space

appeared in the corresponding records before averaging. Then, top-10 clinical features for
6 cardiac complications are shown in Table 8. We observe that these complications share
many common features such as I34 (nonrheumatic mitral valve disorders) and I49 (other
cardiac arrhythmias). This result is reasonable because all of these complications belong to
cardiovascular disease class. Moreover, many important features determined by our model
are known to be clinically associated with the corresponding complications. For example,
patients with type II diabetes are two to four times more likely to develop heart diseases
than someone without diabetes [67]. Obesity is another major known risk factor for heart
failure and hypertension patients [68, 69]. Angina pectoris is the type of chest pain caused
by reduced blood flow to the heart and is considered as a symptom of coronary artery disease
[70].

Case study formodel interpretability.To further investigate the interpretability ofMuVi-
TaNet, we look at two case studies to visualize the learned attention weights for finding risk
factors of each complication. The case studies include a positive patient from heart failure

123



A fair and interpretable network for clinical risk… 1511

dataset and a negative patient from hypertension dataset. Their clinical records are illustrated
in Fig. 5. The most important visits and features determined by their associated attention
weights from visit-view and feature-view task-specific attention components are shown in
Table 9. For the positive patient (Fig. 5a), the predicted probability for heart failure onset is
0.7790. As shown in Table 9, the visit-view attention focuses more on visits 3 and 9, which
include clinical codes 250.00 (Type II diabetesmellitus) and 278.00 (Obesity) and these codes
are also determined as the most important features by the feature-view attention. This result
is also consistent with clinical research in which type II diabetes mellitus and obesity have
been shown as the common risk factors for heart failure disease [67, 69], thereby demon-
strating the effectiveness of MuViTaNet in capturing the correlation between risk factors
and corresponding diseases. To further investigate the robustness of our model, we remove
important visits and features indicating heart failure’s risk factors from the patient record and
predict the probability of heart failure onset based on the modified records for capturing the
changes in model output. Figure 5a shows that the predicted score decreases to 0.5284 and
0.4834 when removing visits (3 and 9) and codes (250.00, 278.00, and 796.2), respectively.
Thus, MuViTaNet is capable to focus on clinical-related visits and features when predicting
onset of complications.

Figure 5b shows a clinical record of the negative patient who has type II diabetes mellitus
but is also treated by M-174 (Metformin). Table 9 indicates that MuViTaNet pays more
attention on M-174 and 250.00 when predicting onset of hypertension. To verify whether
ourmodel can capture the relationship between disease and treatment, we remove these codes
from the patient record as we did for the positive patient. Figure 5b shows that the predicted
probability increases from0.2330 to 0.3380when removingMetformin (diabetesmedication)
and decreases to 0.0373 when removing code 250.00 (diabetes). This result indicates that
MuViTaNet considers the impact of both disease and treatment on complication development
when making predictions.

Impact of multi-task learning on unfairness. In this task, we do not impose any fairness
constraint and empirically study the fairness property of MuViTaNet. We consider three
groups distinguished by age (i.e., 18-44, 45-54, 55-64). The statistic of each age group
corresponding to each complication onset dataset is shown in Table 3.We aim to examine that
without fairness intervention, whether MuViTaNet exhibits the disparate performance across
different groups, and how the disparity is affected under multi-task learning. To this end,
we compute AU-ROC and FPRG scores of MuViTaNet (MTL) and MuViTaNet-task-specific

(STL). The results are shown in Table 10.
The results show that MuViTaNet achieves superior performances compared to

MuViTaNet-task-specific in terms of both accuracy and fairness. The improvements are more
significant for prediction tasks with limited data (i.e., AF, CAD, PAD, stroke). It further
illustrates that MTL can capture additional information from related datasets and is effective
in developing accurate and fair clinical prediction systems. Moreover, we recognize that fair-
ness property is also affected by the data quantity and groups’ similarity of incident rates:
the fairness violation is milder in the prediction tasks with abundant data (i.e., hypertension)
and similar incident rates (i.e., HF) than the tasks with limited data and different incident
rates across groups (i.e., AF, CAD, PAD, stroke).

Impact of imposing fairness constraints. Although MTL can help mitigate unfairness,
there are still gaps in predictions generated by MuViTaNet across sensitive groups. We fur-
ther incorporate fairness constraint by adding regularization to the model objective function
(F-MuViTaNet) and then train the model on 6 cardiac complication onset datasets.We empir-
ically investigate the trade-off between fairness and accuracy by varying the hyper-parameter
ω from 10−3 (weak fairness violation penalty) to 10 (strong fairness violation penalty). For
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each setting, we observe the accuracy and fairness violation, and measure the performances
of F-MuViTaNet by averaging over 6 prediction tasks. The results are shown in Figs. 6, 7,
and 8.

In the following, we focus on the experiments using MMD as the regularization method
and report the results of F-MuViTaNet in Fig. 6 by multiple metrics including AU-ROC,
AU-PRC, CE, accuracy, F1 (accuracy metrics), and FPRG, EMD, MD (fairness metrics).
Analogous patterns are also observed when using MD and COR to enforce fairness and are
shown in Figs. 7 and 8, respectively. The first observation is the effect of hyper-parameter ω

on unfairness. In most settings, the larger ω (i.e., more penalty on fairness violation) during
training leads to better fairness on the testing sets. When ω approaches 10 (the largest value
in the experimental setting), the disparity across sensitive groups is almost eliminated that
FPR scores are similar across different groups. The only exception is the case of using COR
with large ω (ω > 0.1), where both accuracy and FPRG get worse under COR constraint.

In general, we observe the trade-off between accuracy and fairness in the testing when
varying ω but this trade-off is negligible in most cases. In particular, when increasing ω from
0.001 to 0.1, the prediction performance remains almost the same with respect to all accuracy
metrics including AU-ROC, AU-PRC, CE, accuracy, and F1 while the fairness violation is
reduced significantly (i.e., from 0.0867 to 0.0723 for FPRG, from 0.3203 to 0.2414 for EMD,
and from 0.1453 to 0.0789 forMD).Whenwe continue increasingω to 10, fairness violations
are almost eliminated (i.e., 0.0245 for FPRG, 0.0356 for EMD, and 0.0010 for MD) while
most of the accuracy metrics remain almost the same, except for AU-ROC which decreases
from 0.8160 to 0.7989 (Fig. 6A). However, this trade-off is acceptable as the predictions are
almost perfectly fair. The only exception, as we mentioned previously, is when using large ω

and COR as the regularization method. In that case, large ω significantly hurts both accuracy
and fairness. However, we can still achieve a good fairness-accuracy trade-off with COR as
we have for MMD and MD when selecting the suitable value for ω (i.e., ω = 0.1 as shown
in Fig. 8).

We also compare different groups by looking into per-group results. Without imposing
fairness constraint, age group 18-44 experiences the worse performance in both fairness and
accuracy compared to the other two age groups (45-54 and 55-64). This is because age groups
45-54 and 55-64 have the higher breast cancer and cardiac complication rates than age group
18-44, leading to more data instances in training dataset. Consequently, the trained model
can be more in favor of majority group (e.g., age groups 45-54 and 55-64) but less favorable
to the minority group (18-44). However, as shown in the results, the disparity across different
age groups can be mitigated significantly by adding fairness constraint during training.

5 Conclusions

In this paper, we propose a novel multi-view multi-task network (MuViTaNet) that leverages
clinical data to profile multiple complications for patients. To tackle the issues of existing
methods, MuViTaNet considers patient record as both the sequence of clinical visits (visit-
view) and the set of clinical features (feature-view) and then employs the multi-view encoder
to effectively exploit patient information. Due to the correlation among different compli-
cations, we utilize MTL architecture to learn task-specific representations of patients from
both labeled and unlabeled datasets. Finally, the predictions for each complication onset are
generated from the task-specific representation by the corresponding decoder. To prevent
MuViTaNet unfairly treating certain patient groups, we further propose a fairness mecha-
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Fig. 6 Performances of F-MuViTaNet (usingMMD to enforce fairness) for cardiac complication risk profiling
with respect to accuracy (i.e., AUROC (↑), AU-PRC (↑), CE (↓), Accuracy (↑), F1 (↑)) and fairness (FPRG
(↓), EMD (↓), MD (↓)) metrics. The arrows show the direction to optimum scores for these metrics. Per-
formances of baseline method (MuViTaNet) are shown by dash lines. The shade areas represents standard
deviation ranges of scores calculated from cross-validation setting
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Fig. 7 Performances of F-MuViTaNet (using MD to enforce fairness) for cardiac complication risk profiling
with respect to accuracy (i.e., AUROC (↑), AU-PRC (↑), CE (↓), Accuracy (↑), F1 (↑)) and fairness (FPRG
(↓), EMD (↓), MD (↓)) metrics. The arrows show the direction to optimum scores for these metrics. Per-
formances of baseline method (MuViTaNet) are shown by dash lines. The shade areas represents standard
deviation ranges of scores calculated from cross-validation setting
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Fig. 8 Performances of F-MuViTaNet (usingMMD to enforce fairness) for cardiac complication risk profiling
with respect to accuracy (i.e., AUROC (↑), AU-PRC (↑), CE (↓), Accuracy (↑), F1 (↑)) and fairness (FPRG
(↓), EMD (↓), MD (↓)) metrics. The arrows show the direction to optimum scores for these metrics. Per-
formances of baseline method (MuViTaNet) are shown by dash lines. The shade areas represents standard
deviation ranges of scores calculated from cross-validation setting
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nism (F-MuViTaNet) by incorporating the fairness constraint into the optimization objective.
We evaluate the prediction performances of MuViTaNet and F-MuViTaNet on the insurance
claim database. The experiments demonstrate that our proposed model outperforms other
state-of-the-artmodels for the complication risk profiling task.More importantly,MuViTaNet
provides an efficient mechanism to interpret their prediction from multiple perspectives, and
F-MuViTaNet can significantly mitigate unfairness in predictions across different groups
with only an negligible impact on accuracy.
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