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Abstract— We propose a policy iteration algorithm for solving
the multiplicative noise linear quadratic output feedback design
problem. The algorithm solves a set of coupled Riccati equations
for estimation and control arising from a partially observable
Markov decision process (POMDP) under a class of linear
dynamic control policies. We show in numerical experiments far
faster convergence than a value iteration algorithm, formerly
the only known algorithm for solving this class of problem. The
results suggest promising future research directions for policy
optimization algorithms in more general POMDPs, including the
potential to develop novel approximate data-driven approaches
when model parameters are not available.

I. INTRODUCTION

Multiplicative noise models can be used to represent
myriad phenomena where noise or uncertainty depends on
the system state, input, or output. These models have a
long history in control theory [1] and have been utilized
in the context of networked control systems [2], robots
with distance-dependent sensors such as lidar and optical
cameras [3], turbulent fluid flow [4], climate dynamics [5],
biological sensorimotor systems [6], neuronal brain networks
[7], portfolio optimization and financial markets [8] power
grids with stochastic inertia [9], and aerospace systems [10].
Recently, these models have also been used to represent
parametric uncertainty and promote robustness in data-driven
control and machine learning via, e.g., bootstrapping [11],
domain randomization [12], and dropout [13].

Designing optimal output feedback controllers for multi-
plicative noise dynamical systems is particularly challenging
because, in marked contrast to classical LQG/Ho and Hoo
control design, there is no separation between estimation and
control. In particular, a canonical linear quadratic problem
features a set of Riccati equations involving cost and covari-
ance matrices for the state and state estimate that are coupled
by the multiplicative noise. These equations cannot be solved
by direct methods for decoupled Riccati equations [14]. The
only known solution method is an iterative algorithm akin to
value iteration, described in [15].

Policy iteration has been studied extensively in general
settings for dynamic programming and reinforcement learning
and is closely related to the Newton method [16], [17].
Policy iteration and the Newton method have also been
studied extensively for solving the single generalized Riccati
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equation arising in the linear quadratic state-feedback setting
in [18], [19]. However, there is far less known about policy
iteration and the Newton method for output feedback control
or partially observable Markov decision processes (POMDPs).
Various approximate policy iteration schemes have been
studied to a limited extent in deterministic and additive noise
output feedback linear quadratic problems in [20], [21], [22]
and for tabular and nonlinear POMDPs in [23], [24]. None
of these address the coupled Riccati equations arising in the
output-feedback multiplicative noise setting.

Our main contribution is to propose a policy iteration
algorithm for multiplicative noise output feedback control
design, which solves a set of coupled Riccati equations for
estimation and control. We show in numerical experiments
far faster convergence than a value iteration algorithm, the
only known algorithm for solving this class of problem. We
provide an open source implementation of our algorithm to
facilitate further research and reproducibility. The results
suggest promising future research directions for policy
iteration and data-driven output feedback control algorithms
for the multiplicative noise problem and other more general
POMDPs.

The paper is organized as follows. §II formulates an optimal
output feedback control problem for systems with multiplica-
tive noise. §III describes the coupled Riccati equations that
determine an optimal policy in a form that motivates policy
iteration. Our policy iteration algorithm is proposed in §IV.
§V presents the numerical experiments, and §VI concludes.

Notation: Denote the set of real-valued n x m matrices as
R™ ™ and the set of n X n symmetric positive semidefinite
matrices as S’ . Denote the n x n all-zeros and identity
matrices as 0,, and I,,, respectively. For real-valued matrices
A and B, denote the transpose as AT, the trace as Tr(A),
and the Frobenius inner product as (A, B) :== Tr(AT B).

II. PROBLEM FORMULATION: OUTPUT FEEDBACK
CONTROL WITH MULTIPLICATIVE NOISE

We consider output-feedback control of the discrete-time
stochastic linear dynamical system

Tep1 = Ay + Brug + wy, (1a)
Y = Cyy + vy, (1b)

where x; € R" is the system state, u; € R™ is the control
input, and y; € RP is the observed output. The system
matrices (A, By, Cy) are time-varying random matrices
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decomposed as

a b
A=A+ Zat,iAAm B, =B+ Zﬁt,iBA,i,

i=1 i=1

c
Ci=C+> 7iCasi,
i=1
where A = E[4,], B = E[B], C = E[C}] are mean matrices,
{aei}ys {Beitoys {7045, are random scalars mutually
independent and independent across time with zero mean
. b
and standard deviations {UA’i}?:l’b {oBiti_y> {ocitioy
respectively, and {Aa;};_,, {Bai};—y» {Cai};_, are pat-
tern matrices constant across time specifying the directions
in which the multiplicative noise acts. This decomposition
can be obtained by an eigendecomposition of the covari-
ance structure of the A;, By, C;, treating the eigenvalues
a b c .
as {oa,i};_1» 10B,i};—1» 10c.i};—, and eigenvectors as
b . .
{Aniti {Ba,iti_ys .{CAJ.}EZI as discussed e.g. in [25].
The process and observation noises w; and vy, respectively, are
independent across time, have mean zero, and have covariance

T
Wt Wy me Wac
E = Yl =W = 0.
H”J [”J } [Wyz Wyy]
The initial state xg is a random vector drawn from a

distribution with mean zero and covariance X,. We consider
convex quadratic stage cost in the states and inputs

o= o] [ Gl fu] aro

This yields the infinite-horizon average-cost multiplicative-
noise linear quadratic output feedback control problem

T—1

min J(7) := lim_ %E > é(wt,ut)] (2a)
t=0

subject to (1), (2b)

where a control policy u; = 7(yo.t, uo.t—1) dependent on
the input-output history yo.: = [Yo, Y1, .-y Y], U0:t—1 =
[wo, w1, ..., uz—1] is to be designed, and expectation is taken
with respect to all random quantities in the problem, namely

{.%‘0, {At}7 {Bt}7 {Ot}’ {wt}7 {Ut}}'

A. Linear Dynamic Control Policies

A linear dynamic controller is a widely used class of policy
which combines a linear state estimator with a linear state
estimate feedback in the form

ii't+1 = F.’ft —+ Lyt, (3a)

w = K. (3b)

The initial state estimate is chosen as o = 0, since the initial
state has mean zero. Such a controller is fully specified by
the triple (F, K, L) where K € R™*"™ is the control gain,
L € R™*P is the state estimator gain, and F' € R™*"™ is the
closed-loop model matrix. We will consider the problem (2)
with optimization over this special class of linear dynamic
controllers. In the classical LQG setting with additive noise-
only (where A; = A, B, = B, Cy = (), the optimal policy is

indeed a linear dynamic controller of the class (3). However,
in the multiplicative noise setting this class may not be
optimal.1 Nevertheless, the work of [15] shows that restricting
attention to (3) admits useful stability characterizations and
optimal control synthesis equations.

B. Closed-Loop Dynamics and Performance Criterion

We now develop some notation and expressions for the
closed-loop dynamics and performance criteria, which will be
useful later for describing a policy iteration algorithm. Using
a controller (F, K, L), the closed-loop system dynamics are

Te41| At BtK Tt In 0 Wi
fol=lee RN o]l @

Denote the following augmented closed-loop matrices

/. -At BtK

@t T _LCf, F :|7 (Sa)
y L 0] [Que Quu] [In O

@ = 1o K} [Qw Quu] [o K}’ G0
;L 0] [Wew Wiy [, 0]7
w=[6 o e w62 e

Under the closed-loop dynamics (4), define the value and
covariance matrices at time ¢ recursively by

t/+1 =E [‘I);TP{‘I);] +Q,
1 =E[®.S9,T] + W'

(6a)
(6b)

with the initial value matrix P} = @Q’ and the initial second
Xo O
0 0
moment of the augmented state

st 1]

while P/ is related to the costs £(x¢,u;) through the relation

T—-1
Z é(.’L’t, ’U,t)
t=0

We re-state some definitions from [15] that characterize
asymptotic behavior of (4).

Definition 1 (Mean-square stability): System (4) is mean-
square stable (ms-stable) if there exists finite S € Si” such
that limy_, . S} = S/,.

Definition 2 (Mean-square compensatability): System (4)
is mean-square compensatable (ms-compensatable) if there
exists a controller (3) which renders system (4) ms-stable.

Assumption. System (4) is mean-square compensatable.
Define the linear operators ¥(-),'(-) : S — S™ by

(M) = E[®," M®)]
I(N) = E[®,N®,].

moment matrix Sj = ] . In particular, S is the second

T

= (P, So) + Y _(PL,W').
t=0

E

Due to the multiplicative noise, the state distribution is non-Gaussian
even when all primitive distributions are Gaussian, so the Kalman filter is
not necessarily the optimal state estimator. To our knowledge, it has not
been demonstrated whether there exist conditions under which a nonlinear
controller outperforms the optimal linear dynamic controller for the problem
(2), but this is beyond our scope here.
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These operators govern the second moment dynamics (6) as

Pt,Jrl = \IJ(Pt/) +@Q',
11 =T(S) + W'
Accordingly, the ms-stability of the closed-loop system is
characterized by the spectrum of the linear operator ¥(-),
or equivalently of I'(-), since they share the same spectra.
Namely, if the spectral radius p(¥(-)) < 1 then the closed-
loop system is ms-stable. From a computational viewpoint,
the spectral radius of W(-) is equal to the spectral radius of the
associated matrix W that satisfies WM = E[vec(®,T M ®})]
for any symmetric matrix M, which takes the explicit form

\I/ — @/T ®(I)/T +ZU?471

i=1

T® AN, (7)

b c
2 /7T /7T 2 /T /T
0B,iBa; ®Baj, +§ 0ciCni ®Chy s

i=1 =1
where
r_mie - | A BE P P V.NCA O
= ElP] = [LC F AT 0 O
/ o On BA,iK / o On On
BAJ o |:On On :| ’ CA7i o |:LCA,Z' On:| '

Note that a dual matrix I'" can be computed by dropping
all transpose marks (“T”) in (7). With such ms-stability, the
steady-state value matrix P’ and the steady-state second
moment S’ are found by solving the discrete-time generalized
Lyapunov equations

P =U(P)+Q,
S =T(S")y+wW'.

(8a)
(8b)

With a slight abuse of notation, the performance criterion
(2a) can be expressed and computed as

iteration algorithm, given P’ S’, define

P=1I, L)P[L, I]", (10a)
P=10, I,)P0, I]", (10b)
S=[l, —L)S[, -] (10c)
S=10, L]S [0, I.]". (10d)

In particular, the second moment of state estimation error
and state estimate are, respectively,

T _ A AT & 1 S AT
S = tlirgO]E[(xt ) (xy — T)7], S = tgrgoE[xtxt],

and P, P have analogous interpretations in terms of the cost.

III. OPTIMAL LINEAR FEEDBACK CONTROL DESIGN

The optimal linear dynamic controller for the multiplicative
noise problem (2) can be exactly computed by solving a
set of coupled Riccati equations for estimation and control
[15]. However, in the multiplicative noise setting there is no
separation between estimation and control, so the optimal
controller gains (F, K, L) must be jointly computed. Here we
derive the equations in a form that facilitates the development
of the policy iteration algorithm developed in the following
section. Specifically, the optimal gains can be computed by
solving the coupled nonlinear matrix Riccati equation

R(X)=0 (11)
in X = (P, PSS ) for the Riccati operator
R:SnXS”XS”XS"%S”XS”XS"XS” as

R | PHEX g o)
S+ Mo (X) = Hay (X)) (X Hyr(X)

=8+ F(X) + Hay (X)H ) (X)Hya(X)
(12)

where we define the operators G( ) in (13), the

closed-loop operators

X) and H(X

E(X) = (A~ L(X)C)TP(A - L(X)C)
/ U !/ /
J(F,K,L) = (P, W') = (5,Q"). ) F(X) = (A+ BK(X))S(A+ BK(X))T
which is finite only when (4) is ms-stable. Solving the gen- ~and the gain matrix operators
eralized Lyapunov equations (8) to evaluate the performance K(X) = — G-1 (X)Gua (X) (14a)
(9) of a given policy will form a basic component of our ' uu :;a: ’
policy iteration algorithm. Also in preparation for the policy L(X) = Hay (X)H,, (X). (14b)
Q(X) — er Qru + ATPA ATPB Z?:l Ui,iAL,iPAAJ 0
. Qum Quu BTPA BTPB 0 Z,ZL-)=1 02377:B£72-PBA71'
n _Z?:l Ui,iATA,iPAAJ + i oéiCL,iE(X)TP,C(X)CA,i 0 . (13a)
L 0 Z?:l UQB,iBL,iPBA,i
H(X) = Wee Way ASAT  ASCT Py Ji,iAA,iSATA}i 0
[ Wy Wy CSAT CSCT 0 P oéiC’AJSC’Li
+ Z?:l Ji,iAAﬁiSATA,Z + Z?:l 0—23,7BAJ]C(X)SIC(X)TB£,Z 0 R (13b)
L 0 25:1 G%’,iCAviSCL,i
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Note that G and H have a block 2 x 2 structure whose blocks
are referred to with the same subscripts as in ¢Q and W
as appropriate. These expressions can be derived from the
matrix minimum principle [26] as in [15]. Notice that the
gains /C(X) and £(X) depend only on the Gz, Guus Hays
Hyy blocks of G and H. Also notice that, unlike the G,
and H,, blocks, Gus, Guu, Hay, Hyy are not specified in
terms of (X)) and £(X). Hence, K(X) and £(X) can be
computed explicitly in terms of X, and consequently so can
G(X) and H(X).

The optimal controller is
(A+ BK(X") - L(X*)C.K(X*), L(X"))

where X* solves (12) [15]. With this controller, the cost and
second moment matrices satisfy

P+P —P S+S S
P/: ~ ~ /: N A~
[—P P}’ 5 [ 5 S]’

and thus the optimal controller achieves the optimal cost

o (3 & [k]#)

JT = <Q”’S>+<[K Qua

=015 [ ] [4)9)

When the multiplicative noise terms are zero, the coupled
Riccati equations reduce to the familiar two decoupled stan-
dard algebraic Riccati equations for optimal linear quadratic
control and state estimation, which can be solved via several
well-known methods such as the dynamic programming
techniques of policy iteration and value iteration [27], convex
semidefinite programming [28], and specialized direct linear
algebraic methods [14]. In contrast, the only known algorithm
for solving the coupled Riccati equations (12) is a value
iteration-type algorithm, described in [15]. This turns the
Riccati equation (11) into a recursive update according to

Xk = xF L R(XP). (15)

Convergence of (15) was proved in [15] using a homotopic
continuation argument that continuously deforms a multiplica-
tive noise-free version of the problem (for which convergence
of the value iteration algorithm is well-known) to the original
multiplicative noise-driven problem. The ms-compensatability
test described in [15] is simply that (15) converges.

IV. PoLICY ITERATION FOR MULTIPLICATIVE NOISE
OuTPUT FEEDBACK CONTROL

In this section, we describe a novel policy iteration
algorithm to solve the coupled Riccati equations (12). Policy
iteration is a well-known method for computing optimal
policies in the full state-feedback setting, originating with
[29], [30] for linear quadratic problems. It consists of two
steps: (1) policy evaluation, where the value of the current
policy is computed from the dynamics and cost; and (2)
policy improvement, where the current policy is improved
based on the policy evaluation. However, policy iteration is
far less developed in the context of output feedback control
problems or POMDPs.

The form of the coupled Riccati equations in (12) suggests a
policy iteration algorithm analogous to the full state-feedback
setting. The operators G(X) and H(X) play a role analogous
to the state-action value function (also called the Q-function)
in reinforcement learning. In particular, for a given X, the
gain operators (14) can be viewed as an update to the control
and estimator gains that improves the corresponding value.
Combining this with a policy evaluation step from solving the
generalized Lyapunov equations (8) leads to a policy iteration
algorithm for the multiplicative noise output feedback control
problem detailed in Algorithm 1. Note that the initial policy
must be ms-stabilizing so that solutions to (8) exist; this
is a standard assumption in policy iteration [29], [30] and
policy optimization algorithms [25]. Such a policy may be
known from special structural knowledge of the system e.g.
open-loop ms-stability or notions of ms-passivity, or can be
found by iterating (15) a sufficient number of times starting
from X = (0,0,0,0). Also note that due to the assumptions
Q = 0 and W = 0, the inverses G} (X) and H,!(X)

vy
remain well-defined throughout the iterations of Algorithm 1.

Algorithm 1 Policy iteration for optimal dynamic output
feedback of linear systems with multiplicative noise

LOC, K°, L9),

Input: ms-stabilizing policy (4 + BK° —
convergence threshold € > 0.
1: Initialize X°=(0,0,0,0), X' = (00, 00, 00,00), k=0.
2. while | X*+! — X*|| > ¢ do
3. Policy Evaluation: Compute the value X* =
(P*, P% S* S%) of the current policy (4 + BK* —
LkC, K*, L¥) by finding the solutions P'*, §’% to the
Lyapunov equations (8) and using the relations (10).
4:  Policy Improvement: Update the policy according to

Kk+1 — ’C(Xk), Lk+1 —_ ﬁ(Xk)

5: k+—k+1
Output: Nearly optimal policy (A + BK* — L*C, K* L¥)

V. NUMERICAL EXPERIMENTS

The algorithms were implemented in Python and executed
on a desktop PC with a quad-core Intel i7 6700K 4.0GHz
CPU and 16GB RAM; no GPU computing was utilized. Code
supporting §V is available in the GitHub repository

https://github.com/TSummersLab/
policy-iteration-mlgc

A. Pendulum system

As a first example, we examined a particular system
representing a forward Euler discretization of the continuous-
time dynamics of a pendulum with torque actuation and
control-dependent noise. The first and second states represent
the angular position and velocity, respectively. The system
dimensions weren =2, m=1,p=1,b=1,and a = ¢ = 0,
indicating A; and C; were unaffected by multiplicative noise.
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The problem data were

1.0 0.1 0 0
A= {1.0 0.95}  B= [0.1] » Bax= L.o} ’

Cc=][1 0],

oB,1 = 1.

The penalty and additive noise covariance matrices were
chosen as @ = I and W = diag(0,0.01,0.001) respectively.
The multiplicative noise value op,; was varied by scaling by
a noise level factor 7 € [0, 1]. Note that the system was open-
loop ms-stable; therefore we selected as our initial policy the
open-loop policy (4, 0,0). The algorithms were terminated
once the convergence criterion || X* — X*~1|| < 10712 was
achieved.

Figure 1 compares the policy iteration Algorithm 1 with
the value iteration method of [15]. The metric used for
comparison was

e* = max{5(P*),5(P*),5(S*),5(5%)},
where  §(M") = [|M* — M*||/|M° — M*|],

which measures the error of the current solution relative to
that of the initial solution. Iteration count refers to the index
k of each algorithm, while wall clock time refers to the total
elapsed time from the beginning of the algorithm to the end
of the current iteration; the wall clock time accounts for
per-iteration computation time while iteration count does not.

The results demonstrate two important issues which arise
and are addressed by the proposed policy iteration algorithm:

1) The value iteration algorithm converges much more
slowly compared to policy iteration, both in the mul-
tiplicative noise-free setting (n = 0) as well as in the
multiplicative noise setting (n > 0).

2) The presence of multiplicative noise causes value iter-
ation to converge significantly more slowly, while the
proposed policy iteration suffers a much less dramatic
slowdown as the noise level 7 increases.

These observations apply both in terms of iteration count and
wall clock time.

B. Random systems

Next, we report results for systems with randomly generated
parameters. The dimensions of each problem were chosen
asn=2m=1,p=1and a = b = c = 1. The entries
of A, B C, Ax1, Ba,1, Ca1 were randomly drawn from
a standard normal distribution. A was scaled to have p(A)
drawn uniformly random between 0 and 1. The variances 0124,1,
012371, 0%’1 were drawn uniform randomly between O and 1,
then scaled such that the open-loop system with (A4, 0,0) had

p(¥) = 1. Finally, the variances 0% |, 0%, 0¢, were
scaled by a factor 77 drawn uniform randomly between 0 and
1. Hence, the systems were always open-loop ms-stable by
construction; therefore we selected as our initial policy the
open-loop policy (A,0,0). The penalty and additive noise
covariance matrices were chosen as @ = I and W = 0.017
respectively.

The results are plotted in Figure 2, where each solved
problem instance is represented by a scatter point. It is evident

10 A Value iteration, n = 0.000
\ == Value iteration, n=0.100
1071 \\\ — = Value iteration, n = 1.000
\ N N Policy iteration, n=0.000
1073 \ N\ — Policy iteration, n=0.100
\ = Policy iteration, n =1.000
. 107 \ N
g \ N
w 1077 \ \\
\ N
10-° \\ \\
10-1 \ RN
\ N,
10-13 N
: ' r : : v T T T T
0 200 400 600 800 1000 0 5 10 15

Iterations Iterations

(a) Relative error vs iteration count.

A . > \
10! - Value iteration, n=0.000
I\ == Value iteration, n=0.100
1071 A \:\ — = Value iteration, n=1.000
\ \\ Policy iteration, n=0.000
1073 4 \ N\ — Policy iteration, n=0.100
\ = Policy iteration, n=1.000
. 1079 \ N
e \ N
o 10-7 N
\ N
\ \\
107° 4 \ \\
\
10711 \ AN
\ N,
10713 4 '
0.0 0.2 0.4 0.6 0.00 0.01 0.02

Wall clock time (s) Wall clock time (s)

(b) Relative error vs elapsed wall clock time.

Fig. 1: Performance of value iteration and policy iteration
for the pendulum system with various noise levels 7.

that the proposed policy iteration algorithm converges in far
fewer total iterations on almost every problem instance. Due
to greater per-iteration computation costs, the benefit in time
elapsed is not as large for the policy iteration algorithm
overall. However, per-iteration costs can be significantly
reduced by using specialized solvers for the generalized
Lyapunov equations based on e.g. alternating-direction im-
plicit preconditioning and Krylov subspaces [31] and other
schemes that take advantage of sparsity in the linear matrix
equation. Nevertheless, the greatest benefit was achieved when
the multiplicative noise was high relative to the maximum
uncertainty that allows mean-square compensatability, which
can be seen in the trend of Figure 2, mirroring the results
observed for the pendulum system in §V-A.

The observations of §V-A and §V-B together suggest that
the least computationally costly method of solving (2) may
be problem-instance dependent; a reliable indicator of when
our policy iteration Algorithm 1 will outperform the value
iteration (15) remains to be discovered.

VI. CONCLUSIONS

We proposed a policy iteration algorithm for multiplicative
noise optimal output feedback control design that, empirically,
converges far faster than value iteration.
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Fig. 2: Ratio of total iterations and time elapsed using value
iteration to that using policy iteration.

Given the intimate connections between policy iteration and
the Newton method, we believe there is a connection between
our proposed algorithm and the Newton method (or some
variation thereof) applied to the coupled Riccati equations
(12). Interpreting our algorithm through a Newton lens
may facilitate theoretical convergence results, in particular
a quadratic rate of convergence as in [29], [30], [32].
Furthermore, establishing a rate of convergence for the value
iteration algorithm (15), which we conjecture is a linear rate,
is, to our knowledge, also an open problem whose solution is
required to establish theoretical relative performance claims.
We leave this for future work.

Finally, our policy iteration algorithm opens the door to
investigate novel approximate policy iteration algorithms
that use input-output data to approximately execute policy

evaluation and policy improvement steps to solve POMDPs.

For example, it may be possible to use input-output data
generated from a given policy to form a least-squares estimate
of the cost and covariance operators, and then perform an

approximate policy improvement step based on this estimate.
We will also explore this and other variations in future work.
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