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Risk-Bounded Temporal Logic Control
of Continuous-Time Stochastic Systems
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Abstract— Motivated by the recent interest in risk-aware
control, we study a continuous-time control synthesis problem
to bound the risk that a stochastic linear system violates a given
specification. We use risk signal temporal logic as a specification
formalism in which distributionally robust risk predicates are
considered and equipped with the usual Boolean and temporal
operators. Our control approach relies on reformulating these
risk predicates as deterministic predicates over mean and co-
variance states of the system. We then obtain a timed sequence
of sets of mean and covariance states from the timed automata
representation of the specification. To avoid an explosion in
the number of automata states, we propose heuristics to find
candidate sequences effectively. To execute and check dynamic
feasibility of these sequences, we present a sampled-data control
technique based on time discretization and constraint tightening
that allows to perform timed transitions while satisfying the
continuous-time constraints.

I. INTRODUCTION

The design of safe control laws for autonomous systems
has been studied extensively over the past years. For de-
terministic systems, the safe control synthesis problem is
usually cast as a set invariance problem. Proposed solutions
consider control barrier functions [1], Hamilton Jacobi reach-
ability analysis [2], or model predictive control [3]. However,
when the system is stochastic, e.g., due to uncertainty in
the system localization, set invariance has to be interpreted
by taking risk into account. Besides safety, the system is
subject to performance objectives. As system specification
complexity plays a major role in the tractability of the
control problem, often simple navigation specifications [4],
i.e., going from A to B while avoiding obstacles, or regulation
and reference tracking problems are studied. This excludes a
large class of specifications such as repetitive specifications
(always repeating a certain sequence of events), specifica-
tions with strict temporal requirements (reaching some state
within a specific time interval then reaching another state),
and many others. More complex system specifications have
recently been considered using spatio-temporal logics [5],
[6]. In this paper, we hence cast the safe control synthesis
problem of stochastic system as a risk-aware control syn-
thesis problem with the goal to upper bound the risk that
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spatio-temporal logic system specifications are violated.

Literature review. Signal temporal logic (STL) is a real-
time temporal logic that allows to impose large classes of
specifications [7]. Importantly, such specifications permit to
define robust semantics that provide information as to what
extent a specification is satisfied or violated [8], [9]. The
deterministic control synthesis problem has been addressed
using optimization techniques [5], [6], [10], machine learn-
ing techniques [11]-[13], and automata-based techniques in
conjunction with transient control laws [14], [15]. More
recently, stochastic control treating the STL specification as
a chance constraint have been considered [16]-[18]. These
works consider specific notions of risk and assumptions on
the state distribution such as Gaussian distributions, and they
largely study discrete-time systems. On the other hand, risk-
aware control for more simple system specification, i.e.,
not not complex temporal logic specifications, have been
considered in various directions, see e.g., [19]-[22].

In contrast, in this paper we consider risk-aware control
under STL specifications. Most closely related to this paper
are our previous works [23], [24] in which we consider risk-
aware control for STL specifications. While the focus in [23]
is on stochastic environments and reactivity, [24] considers
stochastic systems and risk, however in a setting where time
is discretized and only for the limited fragment of bounded
STL specifications. In this paper, we consider a continuous-
time stochastic linear system which, to our knowledge, has
not been solved with proper formal guarantees. We restrict
our attention to linear systems as the distribution’s statistics
for a nonlinear system are in general hard to estimate.

Contributions. We continue along the lines of our previ-
ous work [15] where the continuous-time control synthesis
problem for a deterministic system under STL specifications
is studied. The continuous-time control synthesis problem
for a stochastic system is more challenging and the state
explosion problem can not be addressed as in [15]. First, the
problem of finding control laws that achieve timed transitions
in the mean and covariance states is difficult. This problem
becomes even more difficult when the state distribution is
not known, as is the case in this paper. Second, the efficient
integration of control laws into the automata representation
of the specification is non-trivial. Our contributions are:

« We present, to the best of our knowledge, the first
risk-bounded solution to the continuous-time control
synthesis problem of stochastic (non-Gaussian) linear
systems under STL specifications.

« We propose a sampled-data control technique that per-
forms timed transitions within the space of distributions
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and guarantees continuous-time constraint satisfaction.

o As opposed to existing mixed integer linear program-
ming solutions (presented in the deterministic system
literature), our method can handle unbounded STL
formulas.

II. BACKGROUND

Let R, R, and Qs denote the sets of real numbers, non-
negative real numbers, and non-negative rational numbers
respectively. Let ® denote the Kronecker product. Given a
matrix, the vec(-) operator stacks its vectors. diag(+) is a
diagonal matrix of the arguments. I, and 0, are the nXn
identity and zero matrices. Let (Q,F,P) be a probability
space where Q is the sample space, F is a o-algebra of
subsets of Q, and PP is a probability measure on F. Given
random vectors X, X, : Q — R", the expected value of X;
with respect to IP is denoted by E[X;] and their covariance
is Cov(X1,X) = E[X,Xs ] - E[X,]E[X,]. We abbreviate
positive semi-definite as psd.

A. Real-Time Temporal Logics

Signal interval temporal logic (SITL) is a specification
formalism that allows describing a desired system behavior
for deterministic systems. A predicate u : R" —» B is a
Boolean-valued function that depends on a function & : R" —
R, also referred to as the predicate function. For a given
x € R", the predicate is true p(x) = T if a¢(x) = 0 and false
u(x) = L if a(x) < 0. Let M be a set of atomic predicates
M= {ul,...,u|M|}. For u € M, the SITL syntax is given by

O =T |u|=¢|d1Ad| 01U, (D

where ¢, ¢, and ¢, are STL formulas and where Uj is
the until operator with time interval I € Q5 that is not a
singleton; — and A encode negations and conjunctions. Based
on these operators, one can further derive the operators:
1V ¢ 1= =(=0; A =¢,) (disjunction operator), Fr¢ := TU;¢
(eventually operator), and G;¢ := =F;—¢ (always operator).

An SITL formula ¢ is evaluated over deterministic signals
x:Rso— R", potential trajectories of a deterministic system.
When x satisfies the SITL formula ¢ at time 7, we denote
this by (x,7) E ¢. The continuous-time STL semantics [8]
(define when x satisfies ¢ at 7) are inductively defined as:

o (x,8) Fpiff a(x(z))=0

* (X,l) F _'¢ iff (X,l) I?é ¢

. (x,t) F ¢1 A ¢2 iff (x,t) E ¢1 and ()C,l) E ¢2

o (5,0)E QUG iff " €r@, (x,1") F ¢y and Vi’ €

(tvt”)’ (X,t’) F (Pl

An SITL formula ¢ is satisfiable if Jx such that (x,0) F
¢. Such an SITL formula can be translated into a timed
automaton 7'STy [15] (see Appendix A for a brief summary).
From a timed automaton 7'STy, one can obtain plans which
can be thought of as requirements on how each predicate
w;(x(¢)) in M and hence the signal x(z) has to evolve over
time ¢ (see [15] for details). While SITL is defined over
deterministic signals (and hence for deterministic systems),
in this paper, we are interested in stochastic systems.

B. Continuous Time Stochastic System

We consider the stochastic linear system described by a
stochastic differential equation

dX(t) = (AX(t) +Bu(X(2)))dt +dw (), X(0)=X,, (2)

where A € R™", B e R™" are the (constant) dynamics
and input matrices. We assume that (A,B) is stabilizable.
X(t) € R" is the state, u : R" - R" is a state feed-
back control law, and X, : Q —» R" is a random vari-
able describing the unknown initial state. dW () is differ-
ential Brownian motion. The stochastic integral I()T dw =
W(T) —W(0) is a possibly non-Gaussian random vari-
able with zero mean W := E[W(z)] = 0 V¢, and covari-
ance ¥ := E[W(t)W(t)"] = diag(ot,...,07) where o} :=
Var(W;(t)) = Cov(W;(¢),W;(t)). Often, W(r) is assumed
to be Gaussian (some continuous-time stochastic systems
literature assumes that without explicitly stating it). However,
in this work we do not make such assumptions. Instead, to
promote robustness to uncertainties in the distribution, we
consider a moment based ambiguity set:

PV = (PY |Epw [W] =W, 3)
Covpw (W) = Epw [(W =W)(W -W)" ] =5}
that is, W(¢) can belong to any distribution with mean w
(in this case W =0,,) and psd covariance matrix X both of
which are assumed to be known.
In this paper, we consider the feedback control law
u(X (1)) = K()X (1) +k(1), )

which we motivate in the next section, where K(r) € R™"

is a feedback gain and k() € R" is an open-loop control
signal. The dynamics in (2) thus become:

dX(t) = (A+BK(1))X(t)dt + Bk(t)dt + dW (¢).  (5)

C. Mean and Covariance Dynamics
Consider the dynamics in (5). The state mean is denoted
by X(¢) :=E[X(z)] and the mean dynamics are given by:
)_((t) :=E[X(¢)] = (A+BK(1))X (¢) + Bk(r), X(0) =:x,
(6)
The state covariance is denoted by P(r) := Cov(X(t),X (1))
and the covariance dynamics are given by
P(t) = (A+BK(t))P(t) + P(t)(A+ BK())" +X, P(0) = B,
< vec(P(t)) = (I,® (A+BK(t))+
(A+BK(t))®1,)vec(P(t)) +vec(X). @)
Remark 1. The choice of feedback control law (4) results in

having k in the mean dynamics (6) (feedforward term) and
K in the covariance dynamics (7) (limit covariance growth).

The mean and covariance dynamics are both given by first
order ODEs and can be stacked into a single ODE:

X (1) = A(K(1))X (1) + BU(r) ()
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where
A(K) = i +OBK (1, ® (A +BK) 2 (A+BK) @1,1)}
s=[o ) x0=[20)]
U(r) = vfc((t;)] (vec(E) is a constant).

We chose to include vec(Z) (constant) in ¢ to retain the tra-
ditional linear system format. We also assume the following.

Assumption 1. We assume that there exist closed sets &, %
and M € R such that || X|| < M V(X U) e 2 xXU.

Since (8) is linear, it is Lipschitz continuous. This, and
Assumption 1 will become relevant in §IV-B. Regarding
the set 2", 1) we consider bounds on the mean state (e.g.
physical bounds on the system) so that Xpin = X = Xopar
where X in, X max € R" are known, and 2) we assume A +
BK (1) is stable by the choice of K(r), thus since ¥ is psd, P
will have a unique symmetric psd steady state value which
is the solution to a Lyapunov equation [25, Thm 22]; since
the covariance dynamics are linear, vec(P) will be bounded
0 < vec(P) = D € R"" for some D. As for U, vec(X) is a
constant and we assume that the open-loop control k(z) is
bounded ki, = k = kg

III. PROBLEM STATEMENT

In the stochastic framework introduced above, the satis-
fiability problem of an SITL formula ¢ is ill-posed, i.e.,
whether or not a stochastic linear system X (z) satisfies the
formula ¢. In fact, an atomic predicate 1 (X(z)) becomes a
random variable. We hence redefine the atomic predicates as
risk predicates. Intuitively, the truth value of a risk predicate
w®(X) is true if the risk of violating the predicate is small.

The risk of violation is obtained by using a risk measure,
i.e. a function that maps a random variable to a real number.
Let C denote all measurable functions from the sample space
Q to R", i.e., all random variables. Then, a risk measure is
defined as p : C — R. We use the distributionally robust value
at risk (DR-VaR) which is a coherent risk metric defined as
infpep P[—a¢(X) < 0] = 1—1n for some risk threshold n €
(0,1). The DR-VaR satisfies certain desirable axioms [26],
see [24, §II] for more details on risk measures.

Formally, we define the risk predicate as:

) :={T if p(-a(X)) =7 ©)

1 otherwise

The risk SITL (RiSITL) syntax is defined as
Ri
¢ = T U [ =0 |61 A0 | 01U

where u® € M™ for the risk predicates M~ = {uf, -+, ,uﬁf,' IR
while the other operators have the same meaning as in SITL.

The semantics of RiSITL are different in how the risk
predicates are evaluated. Instead of (x,7) E u iff o(x(r)) 20
in SITL, we have (X,7) E u™ iff p(—0t(X)) < 1, while the
other operators follow as in the SITL semantics presented

(10)

earlier. (X,t) F ¢ indicates that the stochastic linear system
with dynamics X satisfies the RiSITL formula ¢ at time .
We are now ready to state the formal problem definition.

Problem 1. Given the system (5) and an RiSITL ¢ per (10),
find the control variables K(¢) and k(z) so that (X,0) F ¢.

IV. RISK-BOUNDED TEMPORAL LOGIC CONTROL

Our solution to Problem 1 consists of a reformulation of
the risk predicates (§IV-A), an optimization-based controller
(§1V-B) for timed transitions (see Definition 1 later), and the
decomposition of the RiSITL specification into a sequence of
timed transitions (§IV-C - §IV-E). In particular, we generate
a candidate sequence of timed automaton transitions that
we feed into our optimization-based controller to check for
dynamic feasibility of this candidate sequence. We note that
our solution is sufficient, i.e., sound but not complete.

A. Atomic Predicate Reformulation

Consider now linear predicate functions a(X) =a' X +b
where a € R", b € R. The following reformulation holds

p(~a(X))<n =p(-(a' X +b)) <
& inf P[-a' X-b<0]21-7
EP

P
_ 1-—
=adX+b-/ Tn ||P1/2a||2 >0 (11)
:=H

where the last step follows from [27, Thm 3.1]. The risk
predicate (9) is now a deterministic risk-tightened predicate:

Ri(x) {T if aT7+b—H||P1/2a|'2 20 o

1 otherwise.

Remark 2. One way to interpret (12) is to view p™(X)
as a time varying halfspace in the mean dynamics X. This
follows as P(t) is specified apriori when K(t) is chosen in
advance. Intuitively, the halfspaces will be tightened so that
predicate functions o(X) specifying “goal regions” shrink
and “obstacle regions” expand with higher uncertainty.

B. Control of Timed Transitions

Consider now two polytopes S; and S, that are subsets
of R"™™” and that are either connected or intersecting. We
define the timed transition problem as follows.

Definition 1 (Timed Transition). Given polytopes S; and S,
and a transition time 7 > 0, then a feedback gain matrix
K(t) and a control law U(¢) achieve a timed transition from
X(0) € S; into S, at time T if the following is satisfied:

X(t) = AK(£))X(t) + BU(t) Vi e[0,T] (13a)
Uit)eu, Vi e[0,T] (13b)
X(1) €Sy, Ve e[0,T) (13¢)
X(T)€S,. (13d)

A timed transition under a feedback gain matrix K(¢) and
a control law U(z) hence occurs when the mean and the
covariance dynamics as well as the inputs bounds % are
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respected, and the system state X'(¢) transitions from the set
S1, in which the system starts, into the set S, at time 7.

In §IV-C, the sets S; and S, will encode conjunctions of
predicates u*'(X) as per (12). For instance, we may have
Sy :={(X,vec(P)) eR"™"" |’ X +b—H ||P1/2a||2 > 0} for
a single predicate function. It is clear that the polytopes are
convex in X. For example, §; may encode a room and S, may
encode a corridor next to the room. For a robot with initial
state in Sj, a timed transition here would require the robot
to stay in the room and transition into the corridor exactly
at time 7. Towards finding a feedback gain matrix K(¢) and
a control law U(r) we propose the following architecture.

1) Finding K(t): To efficiently integrate our control law
with the timed automata representation of ¢ (presented in
the next section), we propose to first select the closed-loop
feedback gain K(z) for a timed transition. Doing so will
allow us to determine the covariance matrix P(z) at all
times. Without loss of generality, we consider a constant
gain K over the entire timed-transition period and require
K to satisfy three requirements (related to Assumption 1):

o K must be stabilizing, i.e. A+ BK must be stable

« K must keep the dynamics X bounded by M

o K must keep the covariance bounded by D.
Additionally, K should be chosen to keep M, D small enough
to avoid the problem becoming infeasible when the atomic
predicates (12) are tightened. We note that this choice of K
may not exist even if a solution to (13) exists. This is one
factor that makes our solution methodology only sufficient.

2) Finding U(t): Once K is determined, the covariance
matrix P(t) becomes fully defined for all times ¢ = 0. We now
find a control law k(z), which determines U/(z), to achieve
the timed transition as in (13) by solving the optimization
problem where open-loop control k(¢) is minimized:

T
min J k(1) Rk (1) (14a)
k() 0
st (13a)— (13d). (14b)

where R is psd. Note that (14) is convex in k(z), but infinite
dimensional due to the continuous time formulation resulting
in an infinite number of decision variables and constraints.
Solving this finite horizon, continuous-time, constrained,
open-loop control problem exactly may be possible with
Pontryagin’s optimality principle, but is difficult in general.
However, to facilitate a sampled-data implementation, we
solve the above optimization problem by discretizing time as
in [28] while tightening the constraints to be able to satisfy
the original constraints in continuous time.

Our Assumption 1 is similar to [28, Asm 1]. We note that
M can be found by solving the following problem:

M =argmax || X||
st. XeZ, Ue¥.
Let us next define the signed distance function

distg : R"™" - R similar to [28, (5)] as: dists(X) :=
minyeg ||X = V|| —infzeic || X = Z]| ie., if X €S, then the
distance is the negative distance to the boundary of X while

if X ¢ S the distance is the positive distance to the boundary.
Hence, constraints of the form X'(¢r) € S are equivalent
to distg(X(t)) < 0. For simplicity, we opt for a uniform
discretization of the time interval [0,7] as T := {7y,... Ty}
such that 7o =0, 7y =T, and 67 = ]% is the time step. Then,
using [28] we can guarantee continuous-time satisfaction of
the constraints in (13a)-(13d) by tightening them further.
With K(t) = K for all € [0,T] selected as discussed before
and assuming k() is a zero-order hold control law, so that
we have k[T] for T € T, we propose the following problem
to find a controller that satisfies (13) in continuous-time:

min Y k(7] RA[T}] (15a)
k i€{0,..N}
st X(t1)= A(K)X(t)+BuU(t) VYte[0,T] (15b)
UT)ew, TeT (15¢)
dists, (X(T))<-M-8T, TEeT (15d)
X(T)€S,. (15€)

Theorem 1. Given K and M as in §IV-B.1. Let k[T ] be a
solution to (15). Then the constraints of the timed transition
problem (14) are satisfied, i.e. a timed transition from S| into
S, as per Definition 1 can be achieved under K and k[T ].

Proof. The proof follows by applying [28, Theorem 1] with
the augmented dynamics (8).

Remark 3. The dynamics (15b) are deterministic linear dy-
namics in X with a closed form solution at the sampled times
given by: X(T) = eA(K)TX(O) + IOT(eA(K)(T_t)Bk(t))dt
where the interval can be split into several integrals because

k(1) = k[T] for 1 € [T;, Tis1) [25].

48[
4.6
4.4f

4.2

a4
EX] /

3.6
3.4
3.28

3

L L |
2 25 3 3.5 4 4.5 5 5.5

Fig. 1. Constraints: not tightened (dotted), DR-tightening (dashed), and
DR- and DT-tightening (solid) for a goal region (left, green) and obstacle
region (right, red). A timed transition (blue) moves the robot into the goal.

Example 1. To demonstrate the different tightening proce-
dures described, consider three atomic predicate functions
in 2D o4 :=[-1,0]X+3 =0, o :=[-1,0]X +4 = 0, and
03 :=[1,0]X —4.5 = 0. The first defines a goal region (reach)
and the other two define an obstacle region (avoid). We
use a risk bound 1 = 0.5 for u'(X) and n = 0.1 for
pX(x) and pf(X) which are the risk-tightened predicates
as in (12). For single integrator dynamics with K(z) =
diag(—5,-5) VYt and 6T =0.01, we have M -86T =0.5712.
With X = diag(0.1,0.1), P(0) =0,, and T =2, we get P(2) =
diag(0.0101,0.0101). In Fig. 1, we plot the (not tightened)
constraints, the risk-tightened (DR-tightened) constraints at
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t =2 and the risk and discrete-time-tightened (DR- and DT-
tightened) constraints at r = 2 with dotted, dashed, and solid
edges respectively. Notice how the goal “shrinks” while the
obstacle “expands” as P(t) increases. The timed transition
(blue) is the solution to (15) that moves the robot into the
goal (from the purple to the red point). The discrete-time
points stay between the DR- and DT-tightened predicates of
the goal and obstacle for all ¢ € {7g,...,Ty—1}, thus satis-
fying (15d). At t = T, the agent satisfies the DR-tightened
predicates (15¢).

C. Risk-Based Automaton

As mentioned before, avoiding the state explosion prob-
lem for stochastic systems is challenging and can not be
addressed as in [15]. This is particularly the case as the
efficient integration of control laws for stochastic systems
into the timed-automata representation of the specification
is non-trivial. In our proposed problem solution, we first
translate the RiSITL specification ¢ into a timed automaton
T STy similarly to [15], but with risk predicates p R instead
of predicates u. The procedure closely follows Appendix A,
but we will next briefly describe the difference for RiSITL
and refer to the appendix for more intuition. We abstract

¢(M™") into a MITL specification ¢(P) (see Appendix B
for an introduction to MITL) where P is a set of propo-
sitions that replaces the set of risk predicates M™. The
MITL formula ¢ is then translated into a timed automaton
TST, according to [29]. Each state s and transition é in
TST, now encode intersections of constraints of the form
{(X,vec(P)) e R"™™" | a" X +b— H”Pl/2 | >0} which we
denote by A(s) and A(8). We then perform the following
operations on TST, to obtain T'ST:

[O1 ] Remove any s in TST, if A (X.P), (X,P)F A(s).

[02 ] Remove each transition & in TST, if A (X,P) such

that (X,P) E A(5).

Operations Ol and 02 are taken without the consideration
of the system dynamics (8). With respect to Remark 2, we
view P(r) as apriori given when K(t) is chosen in advance
so that the constraints A(s) and A(8) can be seen as time-
varying in the mean state. We can hence, instead, perform
operations O1 and O2 for a fixed P and obtain a tightened

automaton denoted by 7'S (;ght Some choices of P are:

« P=0,: [01], [02] become [01], [02] from [15]

o P € {Puy; | Yie{l,...[M|}} such that P, =
argsupp || 1/2czl-|| where 0 < vec(P) = D: Here, every
predlcate (12) is tightened by the maximum amount of
its ||P , term (we call this maximum tightening).

In these cases, [01] and [@] can be constructed as simple
feasibility problems as described in [30].

Example 2. Consider the illustrative example in Fig. 2.
Ignoring the environment bounds, the goal and obstacle
regions are defined with eight atomic predicates [.L] - ,,ug

The atomic predicates are indicated with dashed lmes and
the halfspace where the predicate is satisfied is indicated
by an arrow (top figure). There are two dark green goal

S H N W ke Ot N 000 N W R OOy N

Fig. 2. Automaton states changing as P changes

regions: 1) left g; := [,Lfei A [,Lgi and 2) right g, := ,uéei Their
atomic predicates point 1nwards There are two red obstacle
regions: 1) mlddle 01 := —|u4 A —n/.ts A —n/J,6 A —-,u7 and 2)
top 0y 1= = /.Lg Their atomic predicates point outwards. The
top figure is for P(0) = 0,. The bottom is for some stead state
P(00) > P(0) (its value is 1rre1evant here) Some examgles
of automaton states are: sl ‘= —|u1 /\[1312 A= 3 /\,u‘}e
"#s /\—'1446 /\—'H7 /\,LLS and s57:= M1 A=l A=piz A
LA =S A uEEA S A S Notice that with P(0) (top),
s is non-empty, but with P(co0) (bottom) it is empty and
removed by [O1]. The reverse happens for s;. The states
S1,52,53,54,85 are non-empty and remain connected for all
tightening values P(0) < P(¢) < P(o0).

D. Risk-Based Control: General Case

Towards an efficient solution, we propose to find candidate
sequences of timed transitions from TSTq;lght and post-hoc
check for dynamic feasibility by means of the control tech-
nique derived in §IV-B. The tightened automaton TST‘;lght
helps us to guide the search process to find a feasible solution
and to decrease the search space.

One approach is to consider the maximum tightening case
described earlier. This is the most conservative approach and
results in the most robust solution. [ﬁ] and [@] are applied
to TST, with every atomic predicate maximally tightened
(e.g. Fig. 2 (bottom)). The resulting automaton is TST, nght.

From the tightened automaton 7'S T¢ , we find a sequence
of timed automaton transitions using graph search techniques
(see [15], [31] for details). These automaton transitions are
defined by alternating transitions between automaton states
(in zero time) and transitions within the same automaton
state (in finite time). This returns a sequence of the form,

(50,0) 2 (51,0) 2 (51,71) B (52,71) D (52,71 + 1) >

(53,71 + 7). (50,0) — (51,0) is an example of a transition
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between automaton states, and (s1,0) 4 (s1,77) is a tran-
sition within the same state. The former transition occurs
instantaneously; it is the exact moment the switch happens
from one automaton state to another (e.g. the exact moment
a robot reaches the boundary between two rooms). The
latter transition occurs in the same automaton state while the
dynamics evolve in time (e.g. the robot moves in one room
to reach the boundary to the next room). To simplify notation
we use: (s1,0) o2, (52,71) 1= (51,0) = (s1,71) 2, ($2,71).

The timed transitions of Definition 1 accomplish

(s;,T;) 9, (5,7 + 7). For example, consider (s;,0) RN
(s2,71). The automaton state s; corresponds to a convex
set of mean states that satisfy its input label A(sy), i.e.
Sy := A(sy). This and 7; being the transition time T are
handled by (15d). Similarly, s, corresponds to the mean
states of S5 := A(s,) (hence (15¢)).

Algorithm 1: Risk-Based Timed Transition Control
input : Candidate automaton transition sequence
output: 2/(¢) or Failure

1 Choose K(t) = K for this transition;

2 s=5p,t=0;
3 for 7,6 in automaton transition sequence such that

0
(5,1) = (5", + 1) do

4 solved, k(7") = solve_timed_transition(s, T, 8);
5 if not solved then

6 ‘ break;

7 Store k(1);

8

S = Spext, L =1+ T,

Then, for a timed automaton transitions sequence from
igh . e .
TST‘];lg t, we use Algorithm 1 to check if it is dynamically

feasible. For every (s;,T;) 9, (sj,7i+ 1), we use §IV-B.1
and §IV-B.2 to find K and k() (lines 1, 4). If we fail to
find them, we stop and try a different sequence of timed
automaton transitions. If all transitions succeed, then we have
found u(z) and Problem 1 is solved. Note that this heuristic
approach is only sufficient to finding a solution.

Theorem 2. Consider the automaton TST;ght obtained by

performing operations [O1] and [02] for some fixed matrix
P, e.g., the maximal tightening. If a sequence of timed

automaton transitions (s;,7T;) =9, (sj,7+ 1) can be found
such that the corresponding timed transitions (Definition 1)
can be achieved by K and k(t) as per (15), then the linear
stochastic system X(t) satisfies the RiSITL formula ¢, i.e.
(X,0) E ¢ and Problem 1 is solved.

Proof. Ignoring the dynamics, the existence of a sequence
of timed automaton transitions ensures that the formula ¢ is
satisfiable [15, Lemma 2]. From Theorem 1, if K and k(¢)
are found for an automaton transition, then the resulting tra-
jectory is dynamically feasible and satisfies the continuous-
time risk-based constraints. Applying this to every automaton
transition completes the proof. O

Remark 4. In practice, when solving (15) repeatedly in
Algorithm 1, the DT-tightening may sometimes render (15)
infeasible. A simple workaround, which works well for small
0T, is to remove this DT-tightening term M- 37T from (15d)
for a few initial and final sampled times (e.g. Ty, Ty, T>» and
77\/—27 7;\7—1 ) 77\/)

E. Risk-Based Control: Special Case

We consider a special case which allows for a less-
conservative solution. While the method can be generalized
to R", we will discuss the R? case only. Consider a € {[0 +
177,[+10]"}. Thus, an automaton state s is a 2D rectangular
area. We thus have a’ P(t)a € {£P(t)(1,1), £P(t)(22)} (ie.
+ the first or second diagonal elements of P(¢)) and hence
||P1/2a||2 =vVa'Pae {\/P1,1),/P22)}- This makes it easier
to describe the conditions on P(t¢) for which an automaton
state s is non-empty (i.e. for which there exists (X,P) such
that (X,P) E A(s)). Example 3 illustrates these conditions.

b—H\/

—h, + H

1
=+ HyP(t)ay b —HPlt)aa

Fig. 3. Special case P conditions example

Example 3. Consider ufﬁ A /,15 “A uf “A uf "in Fig. 3. For
the rectangular set to be non-empty, the distances between
parallel edges must be positive (note P(; 1), P(22)»0, P is psd):

2

o —bi+H\Ri 1y sbs—H\Pip = (%52) 2 Puy
2

. —b2+H\/P(2,2)Sb4—H P(272) — (%) ZP(272).

We now introduce operation [O3] to augment the states of
the automaton T'ST, with conditions on P(t).

[03 ] For all s in TST, add the two conditions on P(t)(; 1)
and P(t)(22) (a la Example 3) for which s is non-empty.

After [03], the resulting 7'STy has the same states but with
extra guards on the states to guide the planning search. [03]
can be applied to TSTj after [O1], [O2]. Then, we can follow
the same procedure described in §IV-D.

V. NUMERICAL EXAMPLE

Consider the environment of Figure 2 (top) and a robot
with dynamics A = diag(0.07,0.1), B = diag(1,1). We
use kpax = —kmin = 30, 0T = 0.01, X = diag(0.1,0.1),
K = diag(—0.9,-0.5) for all transitions, and risk bound
n = 0.1 for all constraints except the environment bounds
where we use 7., = 0.4. For the specification, consider
the repetitive task ¢ = G[o34+230](—01 A =02) A Fjp3181 A
G[3’3+23w](F[0’11]g2 A F[11723]g1) where @ is the number of
repetitions of going from g; to g, and back (g1,g2,01,0;
were defined in Example 2).
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1 L L L L L L L

Fig. 4. (Top) Timed transitions of a solution for the considered example.
Circles mark the start and end of transition; their radius decreases as time
increases. (Bottom) 10000 Monte Carlo rollouts for the given solution.
Trajectories: (purple) from the initial condition to left goal, (blue) from
the left goal the to right goal, (orange) from the right goal to the left goal.

Using the approach in §IV-E, with the robot starting
at xo = [1, 1] with P(0) = 0, we get the sequence of

timed automaton transitions: (s,,0) RRUUR (s1,1) 228
“glﬁ)[ﬂi’ (51,4) 222 (5,6) 222, (55,8) 220,
(50,10 20 (g5,12) 222 (542.14) B=25,
(s5.16) 220 (g, 1) B2y ) 2
(52,22) 113:—2,61;) (51,24) T14=2,814 (Sg1,26)]w where [-]°

represents repeating the transitions @-times (the robot starts
in sp; all these automaton states are marked in Fig. 2).
We use (15) to find k(z) per Algorithm 1. The resulting
sequence of timed transitions, for @ = 2, is shown in Fig.
4 (top) with the constraints tightened using the steady-state
covariance P(00) = diag(0.0602,0.125). The repeated
transitions appear superimposed since they are almost
identical. The trajectory starts at (1,1), moves up to the first
goal, then repetitively visits the second goal then the first
goal. We run 10000 Monte Carlo simulations. The noise is
sampled from a 3 degree of freedom, 0-mean, X-covariance,
student-t distribution. The rollouts are plotted in the original
environment in Fig. 4 (bottom). The black and white circle
in gy are reached at t = 3 and ¢ = 49sec respectively. The
robot never collided with the obstacles, but violated the
environment bounds in 0.3% < 1., = 40% of the cases.

VI. CONCLUSION

We present a risk-bounded controller for continuous-time
stochastic, non-Gaussian, linear system under STL specifi-

cations. In particular, we use RiSITL to specify constraints
rooted in axiomatic risk theory and reformulate DR-VaR con-
straints into deterministic risk-tightened constraints. Then,
we consider timed transitions and tighten our constraints
further to account for the discrete-time implementation of
a sampled data system without loosing continuous-time
guarantees. From there, we show how these timed transitions
can be used to verify the dynamically-feasibility of timed
automaton transitions from a risk-based automaton.

APPENDIX
A. SITL to Timed Signal Transducers

An SITL formula ¢ can be translated into a language
equivalent timed signal transducer, i.e., a timed automaton
[15]. We will need some of the machinery presented in
[15] despite working with RiSITL, and hence summarize
the translation from SITL to timed signal transducer. The
first step is to abstract the SITL formula ¢ into an MITL
formula ¢ (see Appendix B for a description of MITL).
We use ¢(M) to make explicit that the SITL formula ¢
depends on the set of predicates M. We abstract the SITL
formula ¢(M) into an MITL formula ¢(P) essentially by
replacing predicates M in ¢(M) by a set of propositions P.
Forie{l,---,|M|}, associate with each L; € M a proposition
pi and let P:={py,---, ppr|}. Let then @(P) = ¢(P).

The translation from MITL to timed signal transducer
mainly follows [29]. Let ¢ € Rgo be a vector denoting O
clocks. These clocks can be reset by the reset function
r Rgo - Rgo. Clocks evolve with time when visiting a
state of a timed signal transducer, while clocks may be reset
during transitions between states. We define clock constraints
as Boolean combinations of conditions of the form ¢, < k and
¢, = k for some k € Q5. Let ®(c) denote the set of all clock
constraints over clock variables in c.

Definition 2 (Timed Signal Transducer [29]). A timed sig-
nal transducer is a tuple TST := (S,sq,A,I',c,1,AA,y, )
where S is a finite set of states, sy is the initial state
with soNS = @, A and I' are a finite sets of input and
output variables, respectively, 1 : S — ®(c) assigns clock
constraints over ¢ to each state, A is a transition relation so
that & = (s,g,7,5') € A indicates a transition from s € SUss to
s' € S satisfying the guard constraint g € ®(c) and resetting
the clocks according to r; A : SUA —» BC(A) and y: SUA —
BC(T") are input and output labeling functions where BC(A)
and BC(I") denote the sets of all Boolean combinations over
A and T, respectively, and &7 € pSuA is a generalized Biichi
acceptance condition.

To construct a timed signal transducer 7'ST, that encodes
the MITL formula ¢, we follow the algorithm presented in
[29]. For a signal d : Rsg — B/, it holds that (4,0) F ¢
if and only if d satisfies the generalized Biichi acceptance
condition of TST,, (see [29] for a definition). As the MITL
formula ¢ is an abstraction of the SITL formula ¢, we
perform two operations on 7'ST, to obtain the timed signal
transducer 7'STy encoding ¢, as presented in [15]:
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[O1] Remove any s € S if Ax € R" so that x F A(s). Remove
the corresponding s from 7.

[02] Remove any & := (s,g,r,5 ) €A if Ax € R" so that x
A(8). Remove the corresponding 6 from 7.

The modified 7TS7, is denoted by TS8T, :=
(S?,50,AT,c,1,A% A, 7,7%). For a signal x : Ryg — R, it
holds that (x,0) F ¢ if and only if x satisfies the generalized
Biichi acceptance condition of T'STy

B. Metric Interval Temporal Logic (MITL)

While system specifications are given as SITL formulas,
an intermediate step is needed when one wants to obtain a
timed signal transducer that encodes the SITL formula. The
difference between SITL and MITL is that SITL considers
predicates, while MITL considers propositions. Instead of
w(x), MITL only considers propositions p where p = T if
the proposition holds and p = L if the proposition does not
hold. Propositions are hence abstractions of predicates so
that MITL can be seen as an abstraction of SITL. Let P be
a set of propositions. For p € P, the MITL syntax is: ¢ ::=
T||=0]| @ A@ | @U@, with a similar interpretation
of the operators as for SITL. Note that we use ¢ to denote
MITL formulas, while we use ¢ to denote SITL formulas.

MITL semantics are similar to SITL semantics. An MITL
formula @ is interpreted over a Boolean signal d : R, —
B that corresponds to truth values of the propositions
in P over time. Define the projection of d onto p € P
as proj,(d) : Rso — B. The only difference of the MITL
semantics compared to the SITL semantics is now that
instead of (x,¢) F u iff a(x(z)) = 0, we have (d,t) F p iff
proj,(d)(t) = T, while the other operators follows as in
the SITL semantics [29, Sec. 4]. The expression (d,t) F ¢
indicates that d satisfies the MITL formula ¢ at time ¢.
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