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Robust autonomy stacks require tight integration of perception, motion planning, and con-
trol layers, but these layers often inadequately incorporate inherent perception and pre-
diction uncertainties, either ignoring them altogether or making questionable assumptions 
of Gaussianity. Robots with nonlinear dynamics and complex sensing modalities operat-
ing in an uncertain environment demand more careful consideration of how uncertainties 
propagate across stack layers. We propose a framework to integrate perception, motion 
planning, and control by explicitly incorporating perception and prediction uncertainties 
into planning so that risks of constraint violation can be mitigated. Specifically, we use a 
nonlinear model predictive control based steering law coupled with a decorrelation scheme 
based Unscented Kalman Filter for state and environment estimation to propagate the 
robot state and environment uncertainties. Subsequently, we use distributionally robust 
risk constraints to limit the risk in the presence of these uncertainties. Finally, we present 
a layered autonomy stack consisting of a nonlinear steering-based distributionally robust 
motion planning module and a reference trajectory tracking module. Our numerical exper-
iments with nonlinear robot models and an urban driving simulator show the effectiveness 
of our proposed approaches.

 2022 The Authors. Published by Elsevier B.V. This is an open access article under the 
CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Safety is a critical issue for robotic and autonomous systems that must traverse through uncertain environments. More 
sophisticated motion planning and control algorithms are needed as environments become increasingly dynamic and un-
certain to ensure safe and effective autonomous behavior. Safely deploying robots in such dynamic environments requires 
a systematic accounting of various risks both within and across layers in an autonomy stack from perception to motion 
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planning and control. Many widely used motion planning algorithms have been developed in deterministic settings. How-
ever, since motion planning algorithms must be coupled with the outputs of inherently uncertain perception systems, there 
is a crucial need for more tightly coupled perception and planning frameworks that explicitly incorporate perception and 
prediction uncertainties.

Motion planning under uncertainty has been considered in several lines of recent research [1–7]. Many approaches make 
questionable assumptions of Gaussianity and utilize chance constraints, ostensibly to maintain computational tractability. 
However, this can cause significant miscalculations of risk, and the underlying risk metrics do not necessarily possess de-
sirable coherence properties [8,9]. The emerging area of distributionally robust optimization (DRO) shows that stochastic 
uncertainty can be handled in much more sophisticated ways without necessarily sacrificing computational tractability [10]. 
These approaches allow modelers to explicitly incorporate inherent ambiguity in probability distributions, rather than mak-
ing overly strong structural assumptions on the distribution.

Traditionally, the perception and planning components in a robot autonomy stack are loosely coupled in the sense that 
nominal estimates from the perception system may be used for planning, while inherent perception uncertainties are usu-
ally ignored. This paradigm is inherited, in part, from the classical separation of estimation and control in linear systems 
theory. However, in the presence of uncertainties and constraints, estimation and control should not be separated as there 
are needs and opportunities to explicitly incorporate perception uncertainties into planning, both to mitigate risks of con-
straint violation [1,11,3,12,7,13–16] and to actively plan paths that improve perception [17]. Algorithms for motion planning 
under uncertainty have begun to address mission safety, state and control constraints, and trajectory robustness using 
chance constraints, as in [3]. It was recently broadened in [12,18,19] using a more general framework of axiomatic risk 
theory and distributionally robust optimization. The present paper is aimed towards establishing a systematic framework 
for integrating the perception and control components using a coherent risk assessment with distributionally robust risk 
constraints.

Contributions: This manuscript is a significant extension of our previous works [18,20]. In this paper, we relax the as-
sumptions from our previous works by considering both motion model and sensor models to be nonlinear with additive 
uncertainties and propose a unified framework aimed towards a tighter integration of perception and planning in au-
tonomous robotic systems. Apart from considering a full fledged nonlinear output model, we differ from our previous 
works by considering correlated process and sensor noises and employing a distance metric tailored for car-like vehicles to 
effectively capture the non-holonomic constraints while building our motion plan using sampling based motion planning 
algorithms. Our main contributions in this paper are:

1. We propose a distributionally robust incremental sampling-based motion planning framework that explicitly and coher-
ently incorporates perception and prediction uncertainties. Our solution approach called Nonlinear Risk Bounded RRT!

(NRB-RRT!) (Algorithm 1), approximates asymptotically optimal risk-bounded trajectories.
2. We design output feedback policies and consider moment-based ambiguity sets of distributions to enforce probabilistic 

collision avoidance constraints under the worst-case distribution in the ambiguity set (Algorithm 2). That is, trajectories 
generated using our output feedback policy are validated using a probabilistic collision check to ensure satisfaction of 
state risk constraints.

3. We formulate distributionally robust collision avoidance risk constraints. We demonstrate via numerical simulation 
results that this gives a more sophisticated and coherent risk quantification compared to an approach that accounts for 
uncertainty using Gaussian assumptions, without increasing the computation complexity.

4. We demonstrate our proposed algorithms and approaches using a unicycle model and a bicycle model in an open urban 
driving simulator [21] with static and dynamic obstacles and show that risk bounded motion planning can be achieved 
effectively for nonlinear robotic systems.

The rest of the paper is organized as follows. The integrated environment state formulation using the nonlinear dynamical 
model of the robot and the obstacle and their uncertainty modeling is discussed in §2. Next, we describe the layers of a 
distributionally robust autonomy stack and formulate a general stochastic optimal control problem in §3. An output feedback 
based steering law with uncertainty propagation is presented in §4. In §5, we describe the planner module that uses the 
(NRB-RRT!) motion planning algorithm for planning a reference trajectory. Then, in §6, we discuss about the reformulation 
technique for the distributionally robust risk constraints that define obstacle avoidance. The simulation results are then 
presented in §7. Finally, the paper summary and future research directions are discussed in §8.

Notation

The set of real numbers and natural numbers are denoted by R and N , respectively. The subset of natural numbers 
between and including a and b with a < b is denoted by [a : b]. The operators | · | and (·)c denote the set cardinality and the 
set complement of its argument, respectively. The operators ⊕, \ denote the set translation and set subtraction respectively. 
An identity matrix in dimension n is denoted by In . For a non-zero vector x ∈ Rn and a matrix P ∈ Sn

++ (set of positive 
definite matrices), let ‖x‖P =

√
x& P x.
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2. Description of the robot & the environment

Consider a robot operating in an environment, X ⊂Rn cluttered with obstacles whose locations and motion are uncer-
tain. The robot is assumed to be equipped with sensors and a perception system that support safe navigation through the 
environment. In what follows, we present the necessary ingredients for presenting the results such as the models for the 
robot, the environment, and the perception system.

2.1. Robot & environment model

2.1.1. Robot model
The robot is modeled as a stochastic discrete-time dynamical system:

xt+1 = f(xt , ut) + wr,t, (1)

where xt ∈ Rn, ut ∈ Rm are the robot state and input respectively at time t and f : Rn ×Rm → Rn is a nonlinear function 
that represents the robot dynamics. The initial condition x0 is subject to an uncertainty model with the true distribution 
Px0 of x0 belonging to a moment-based ambiguity set Px0 , i.e., Px0 ∈ Px0 where

Px0 :=
{
Px0 | E[x0] = x̄0,E[(x0 − x̄0)(x0 − x̄0)

&] = "x0

}
, (2)

and x̄0 and "x0 are some known parameters of appropriate dimensions. The additive process noise wr,t ∈ Rn is a zero-
mean random vector independent and identically distributed across time according to some prescribed distribution Pwr

with covariance "wr .

2.1.2. Environment model
The environment X is assumed to be convex and represented by finite number of linear inequalities

X := {xt | Aext ≤ be} ⊂ Rn, (3)

where the matrices Ae, be are of appropriate dimensions. We collectively refer the set of obstacles in the environment to be 
avoided as B with |B| = F ∈ N . We represent the shape of an obstacle i ∈ B at a given initial time (t0 = 0) by Oi,0 ⊂ Rn . 
For simplicity, ∀i ∈ B the obstacles shapes Oi,0 are assumed to be convex polytopes. That is, for i ∈ B

Oi,0 :=
{

x0 | Aix0 ≤ bi,0
}

⊂ Rn, (4)

with the matrices Ai ∈ Rn×n, bi,t ∈ Rn . All obstacles are assumed to have an uncertain motion with possibly noisy predic-
tion. Then, the free space in the environment at time t and the set defining the space occupied by the obstacle i ∈ B at any 
time t denoted by Oi,t are respectively given by

X free
t := X

∖ ⋃

i∈B
Oi,t, where, (5)

Oi,t = Ri,t−1Oi,t−1 ⊕ {r̄i,t} ⊕ {ri,t−1}, ∀t ≥ 1. (6)

Here, r̄i,t ∈ Rn represents a known nominal translation and ri,t ∈ Rn is a zero-mean random vector that represents the 
uncertain translation (possibly an unknown location or a noisy prediction of the obstacle motion) of the obstacle i ∈ B
at time t , and it is assumed to follow a known distribution P r

i,t with covariance "r
it . Further, Ri,t−1 ∈ Rn×n denotes the 

product of rotation matrices that represents the rotation of the obstacle i ∈ B at time t where we used the definition 
that multiplying a matrix Ri,t to a set Oi,t is defined by Ri,tOi,t :=

{
Ri,t · (o − co,i) + co,i | o ∈ Oi,t

}
with co,i ∈Rn denoting 

the centroid of obstacle set Oi,t . Although uncertainty in obstacle rotations could also be built into our framework, for 
the ease of exposition in the remainder of this paper, we shall assume that either Ri,t is known or Ri,t being an identity 
transformation (no rotation) at all time steps t , so that there is uncertainty only in the translation. We denote by Xi,t ∈Rl , 
the states of the obstacle i ∈ B, which for instance could represent the position and velocity of the centroid of the obstacle 
at time t . Then, the evolution of the state of the obstacle i ∈ B can be written as

Xi,t+1 = gi,t
(
Xi,t

)
+ wO,i,t . (7)

The random vector ri,t that resulted in the set translation in (6) manifests itself as the zero-mean process noise that affects 
the states of the obstacle i ∈ B as wO,i,t ∈Rl and wO,i,t is assumed to follow a known distribution PwOi

with covariance 
"wOi

. Further, gi,t : Rl → Rl denotes the function (possibly nonlinear) that represents the dynamics of the obstacle state 
at time t . For instance, the obstacle can be assumed to travel at a constant velocity but with process noise. Further, we 
assume that the uncertainty in the motion of obstacle i is independent from every other obstacle j ∈ B, which implies 
E 

[
wO,i,t w&

O, j,t

]
= 0, ∀i, j ∈ B, i .= j. Then, the joint evolution of all obstacles can be written as
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XO,t+1 = g
(
XO,t

)
+ wO,t, (8)

where XOt , g(·), and wO,t represent the concatenated states, nonlinear dynamics and the process noises of all the F
obstacles at time t respectively. The additive process noise wO,t ∈ RF l is a zero-mean random vector independent and 
identically distributed across time according to some prescribed distribution PwO with covariance "wO . We assume that 
the process noises affecting the robot and the obstacles i ∈ B are independent of each other. That is, E 

[
wr,t w&

O,i,t

]
= 0, ∀i ∈

B.

2.1.3. Integrated environmental dynamics
We concatenate both the robot’s state and the obstacle states at time t to form the environmental state

Zt =
[

xt
XOt

]
∈Rnz , nz = n + F l. (9)

Then the dynamics of the environmental state is given by

Zt+1 =
[

f(xt , ut)
g(XOt )

]

︸ ︷︷ ︸
f̃ (Zt ,ut )

+
[

wr,t
wO,t

]

︸ ︷︷ ︸
wt

. (10)

The initial condition Z0 is subject to an uncertainty model with the true distribution PZ0 of Z0 belonging to a moment-
based ambiguity set PZ0 , i.e., PZ0 ∈ PZ0 where

PZ0 :=
{
PZ0 |E[Z0] = Z̄0,E[(Z0 − Z̄0)(Z0 − Z̄0)

&] = "Z0

}
. (11)

Here, wt ∈ Rnz is a zero-mean random vector independent and identically distributed across time with covariance "w =[
"wr 0

0 "wO

]
. Even when the distributions of the uncertainties affecting the obstacle motion are assumed to be exactly 

known in advance, the nonlinear dynamics of the obstacle transform the distributions for the future obstacle states (which 
are part of the environmental state Zt ). At any instant of time t , xt can be extracted from the environmental state Zt as

xt =
[

In 0n×Fl
]

︸ ︷︷ ︸
Cxr

Zt . (12)

2.2. Sensor model

In an autonomous robot, the environmental state Zt must be estimated with a perception system represented by a noisy 
on-board sensor measurements. We assume that a high-level perception system, such as Semantic SLAM described in [22] is 
in place and it processes high dimensional raw data #t ∈RN# , N# ∈N to recognize the robot and the obstacles to produce 
noisy joint measurements of their respective states. In particular, the perception system recognizes the robot and obstacles 
through their distinctive features through mappings ϒx : RN# → Rn, ϒO : RN# → Rl , labels the entities accordingly and 
returns a noisy measurement about their position and orientation. We abstract this whole process and assume that the 
perception system produces noisy measurements of the robot and obstacle states using an assumed nonlinear output model

yt = S(Zt) + vt, (13)

where yt ∈ Rp is the output measurement and S : Rnz → Rp is a nonlinear function. The additive measurement noise 
vt ∈ Rp is a zero-mean random vector independent and identically distributed across time according to some prescribed 
distribution Pv with covariance "v . Cross correlated noises for instance in target tracking systems are known to occur 
when both process noise and the sensor noise are dependent on the system state as mentioned in [23]. Similarly, there can 
be interactions between the uncertainties of the perception system and the process disturbance, due to coupling between 
robot and environmental states in the perception and the use of an output feedback control policy. Ignoring the cross 
correlated noises will generally lead to incorrect dynamics for the state covariance propagation, and subsequently this may 
impose undue risk. To model the interaction, we assume that the process noise wt and the measurement noise vt are cross 

correlated with each other. That is, the joint noise 
[

wt
vt

]
has zero mean with covariance

"w v =E

[[
wt
vt

][
wt
vt

]&]

=
[

"w M
M& "v

]
/ 0, (14)

where M = E[wt v&
t ] ∈ Rnz×p denotes the rank-one cross-correlation matrix across all time steps t and the matrix M .=

0nz×p is such that the joint noise covariance "w v given by (14) is positive definite.
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Fig. 1. A distributionally robust autonomy stack with integrated perception, planning, and control layers.

2.3. State & input constraints

The robot is nominally subject to constraints on the state and input of the form

xt ∈ X free
t , (15)

ut ∈ U, (16)

for all t = 0, . . . , T − 1, where U ⊂ Rm is assumed to be convex polytope. Rewriting the description of the required sets 
using the robot inputs and environmental state, we see

U = {ut | Auut ≤ bu}, (17)

X = {Zt | A0CxrZt ≤ b0}, (18)

Oit = {Zt | AiCxrZt ≤ bit}, i ∈ B (19)

where bu ∈ Rnu , b0 ∈RnE , bit ∈Rni , and Au, A0, and Ai are matrices of appropriate dimension. Suppose that nobi and nenv

be the number of constraints for obstacle i ∈ B and the environment X respectively. Then, the total number of constraints 
is denoted by

ntotal = nenv +
F∑

i=1

nobi . (20)

3. Layers of a distributionally robust autonomy stack

The autonomy stack in an autonomous robot, as depicted in Fig. 1, can be partitioned into a hierarchy of i) a perception 
system that jointly estimates the robot and environmental states; ii) a motion planner which generates a reference trajectory 
through the environment, and iii) a feedback controller that tracks the reference trajectory online to mitigate the effects 
of disturbances. To emphasize our integrated approach, we first pose a general stochastic optimal control problem that 
incorporates all of these layers. Then we describe how the layers are integrated with explicit incorporation of uncertainties 
across layers in subsequent sections.

Given an initial state distribution Z0 ∼ PZ0 and a set of final goal locations Xgoal ⊂ X , we find a measurable output-
and-input-history-dependent control policy π = [π0, . . .πT −1] with ut = πt(y[0:t], u[0:t−1]) that moves the robot state mean 
to the goal set while respecting input constraints and distributionally robust collision risk constraints, while incorporating 
the ambiguities in the distributions described above. To this aim, we define the following distributionally robust constrained 
stochastic optimal control problem

minimize
π

[
T −1∑

t=0

&t(E[Zt], ut) + &T (E[ZT ])
]

(21a)

subject to Zt+1 = f̃ (Zt, ut) + wt, (21b)

yt = S(Zt) + vt, (21c)

Z0 ∼ PZ0 ∈ PZ , (21d)

wt ∼ Pw(0,"w), vt ∼ Pv(0,"v), (21e)

5
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ut ∈ U = {ut | Auut ≤ bu}, (21f)

sup
PZt ∈PZ

R
(
CxrZt /∈ X free

t
)
≤ αt, ∀t ∈ [0 : T ], (21g)

where PZ is an ambiguity set of marginal state distributions, αt ∈ (0, 0.5] is a user-prescribed stage risk parameter, and 
R(·) is a risk measure that operates on the distribution of states and satisfies certain desirable axioms mentioned in [9]. The 
stage cost functions &t(·) penalizes the robot’s distance to the goal set and actuator effort, and are assumed to be expressed 
in terms of the environmental state mean E[Zt ], so that the state uncertainty appears only in the constraints.

Remark 1. We can have a more complex objective function than (21a). For instance, we could consider a distributionally 
robust risk measure related to the nominal state and terminal cost functions, with expectation taken with respect to the 
worst case distribution of the states and noises. Although such cost formulations are possible, they end up further increasing 
the complexity of the already existing harder optimization problem with distributionally robust risk constraint (which is an 
infinite dimensional constraint). Hence, to simplify the exposition we consider uncertainties only in the constraints.

Two key features distinguish our problem formulation. First, the state constraints are expressed as distributionally robust 
risk constraints, using the risk measure R(·) and the ambiguity set PZ whose construction will be detailed below. Since 
we will work with moment based ambiguity sets for the states, we give special consideration to the distributionally robust 
value-at-risk (DR-VaR) risk measure

sup
PZt ∈PZ

PZt (CxrZt /∈ X free
t ) ≤ αt, ∀t ∈ [0 : T ], (22)

which is a special case of (21g) with a tractable reformulation. This means that the nominal constraints xt ∈ X free
t are 

enforced with probability αt at time t under the worst-case distribution in the ambiguity set and thus making them distri-
butionally robust chance constraints.

Second, since information about the environmental state is obtained only from noisy measurements, we optimize over 
dynamic output feedback policies. This policy encompasses the full autonomy stack from perception to planning to control. 
However, the problem is infinite-dimensional, and moreover, the distributionally robust risk constraint in (22) is also infinite-
dimensional and inherently non-convex due to the underlying obstacle avoidance constraints. Thus, solving (21) exactly is 
essentially impossible. Instead, we aim for an approximate solution. Our proposed solution framework, detailed below, 
integrates a dynamic nonlinear state estimator (the estimator block in Fig. 1), a nonlinear feedback controller (the controller 
block in Fig. 1), and a sampling-based kinodynamic motion planning under uncertainty algorithm (the planner block in 
Fig. 1). Specifically, in this work we propose using an Unscented Kalman filter as the nonlinear estimator, a nonlinear 
model predictive control as the nonlinear feedback controller, and a novel distributionally robust, kinodynamic variant of 
the RRT! called Nonlinear Risk Bounded RRT!(NRB-RRT!) as the planner.1 This integration and explicit incorporation of 
state estimation uncertainty into the motion planning and control takes a step toward tighter integration of perception, 
planning, and control, which are nearly always separated in state-of-the-art robotic systems. In our work, both the planning 
and the tracking modules make use of the same output feedback approach for accomplishing their tasks, with the planning 
module using it to steer to a feasible sampled point while building the motion plan, and the tracking module using it to 
steer the mean of the robot to the next reference point in the reference trajectory.

4. Output feedback based steering law: Unscented Kalman Filter with nonlinear model predictive controller

Sampling based motion planning algorithms require a steering law to steer the robot from one pose to another pose in 
the free space. Since the environment state has nonlinear dynamics and must be estimated from noisy nonlinear output 
measurements (13), our proposed steering law π = [π0, . . . , πT −1] with ut = πt(y0:t, u0:t−1) comprises a combination of 
nonlinear dynamic state estimator and a nonlinear feedback controller. We utilize the Unscented Kalman Filter (UKF) for 
joint estimation of robot and obstacle states. The UKF provides derivative-free estimation of the first and second moments 
that are more accurate than the Extended Kalman Filter while remaining computationally tractable. A nonlinear model 
predictive controller as described in [24], [25] is then utilized based on the state estimate from the UKF.

4.1. The Unscented Kalman Filter (UKF)

In this subsection, we elaborate about the Unscented Kalman Filter algorithm which serves as an estimator module for 
a perception system present in the autonomy stack shown in Fig. 1. Later in subsection 4.2, we will describe how the 
estimates from UKF are then used to realize an output feedback based controller.

1 It is worth noting that other choices for estimator, controller, and planner subsystems can be incorporated in our proposed framework, nevertheless, in 
this work, for reasons that will be explained later, we make the aforementioned choices for these subsystems.

6
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Noise Decorrelation. Before describing the UKF, we present a decorrelation scheme [26] to handle cross-correlation between 
process noise and sensor induced by the coupling between perception and control layers from (14). The scheme uses a 
pseudo state process equation to reconstruct a corresponding pseudo process noise, which is no longer correlated with the 
measurement noise. It is evident from (13) that yt − S(Zt) − vt = 0. Then, the environmental dynamics given in (10) can 
be rearranged as follows

Zt+1 = f̃ (Zt, ut) + wt + H(yt − S(Zt) − vt) (23)

= f̃ (Zt, ut) − HS(Zt) + Hyt︸ ︷︷ ︸
f ∗(Zt ,ut )

+ wt − Hvt︸ ︷︷ ︸
w∗

t

, (24)

where f ∗(Zt, ut), w∗
t are the corresponding pseudo process dynamics and pseudo process noise respectively. The term Hyt

is considered as a known input and is approximated with H ŷt . The pseudo gain term H is a design parameter chosen such 
that the cross-correlation between the pseudo process noise and the sensor noise is made zero. That is,

E
[

w∗
t v&

t

]
= 0 =⇒ E

[
(wt − Hvt)v&

t

]
= M − H"v = 0, =⇒ H = M"−1

v .

The mean and the covariance of the pseudo process noise are then given by

E
[

w∗
t
]
= E [wt − Hvt] = E [wt] − HE [vt] = 0, (25)

"∗
w = E

[
w∗

t w∗
t
&
]

=E
[
(wt − Hvt)(wt − Hvt)

&
]

= "w − MH& − HM& + H"vH&

= "w − M"−1
v M& − H"vH& + H"vH&

= "w − M"−1
v M&. (26)

Then, applying Schur complement on (14), it is easy to observe that "∗
w is positive definite as well:

[
"w M
M& "v

]
/ 0 ⇐⇒ "v / 0, "w − M"−1

v M&
︸ ︷︷ ︸

"∗
w

/ 0.

With the new pseudo process equation f ∗(·) given by (24) and the measurement update given by (13), the standard UKF 
can be implemented as the new process noise w∗

t is no longer cross-correlated with the sensor noise vt .

Remark 2. The complexity of computing the "∗
w using (26) is O (max(p, nz)

3). If the measurement function is known a 
priori, this must be done just once. In case, we need to recompute it by adding a new measurement function (e.g., when a 
new landmark is observed we add a new row), then it can be done incrementally via the Sherman-Morrison-Woodbury ma-
trix inversion formula. Such a detailed exposition is out of the scope of this paper and hence we assume the measurement 
function to be fixed.

The Unscented Kalman Filter. The UKF is a popular tool for nonlinear state estimation. It uses the so-called Unscented 
Transformation (UT) in both the propagation and update step, yielding derivative-free Kalman filtering for nonlinear systems. 
For Gaussian inputs, the moment estimates from UT are accurate up to the third order approximation and for the case of 
non-Gaussian, the approximations are accurate to at least the second-order [27]. An ensemble of 2nz + 1 samples called the 
sigma points following the Van Der Merwe algorithm is generated deterministically as follows:

χ0 = Ẑt−1 (27)

χi = Ẑt−1 +
[√

(nz + λ)"̂Zt−1

]

i
, i = [1 : nz] (28)

χi+n = Ẑt−1 −
[√

(nz + λ)"̂Zt−1

]

i
, i = [1 : nz], (29)

where Ẑt−1, "̂Zt−1 denote the posterior UKF estimate of mean and covariance of the environmental state at t − 1 and [√
(nz + λ)"̂Zt−1

]

i
is the ith row or column of the matrix square root 

√
(nz + λ)"̂Zt−1 . The weights of the sigma points in 

the calculation of propagated mean and covariance are

7
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W (m)
0 = λ

nz + λ
, W (c)

0 = λ

nz + λ
+ 1 − α2

u + βu, (30)

W (m)
i = W (c)

i = λ

2(nz + λ)
, i = 1,2, . . . ,2nz. (31)

The scaling parameter λ = α2
u(n + κ) − nz , where αu, βu, κ are used to tune the unscented transformation. Then, every 

sigma point is propagated through non-linear state update equation to yield an ensemble of sigma points capturing the a 
priori statistics of Zt namely Z−

t , "−
Zt

. In the update step, we use the transformed set of sigma points described above and 
propagate them using the given nonlinear measurement model. Finally, the a posteriori state Ẑt and covariance "̂Zt are 
computed using the output residual and the obtained Unscented Kalman filter gain, Lt as follows

ξi = f ∗(χi, ut), i = 0,1, . . . ,2nz, (32)

Z−
t =

2nz∑

i=0

W (m)
i ξi, (33)

"−
Zt

=
2nz∑

i=0

W (c)
i (ξi − Z−

t )(ξi − Z−
t )& + "∗

w (34)

#i = S(ξi), i = 0,1, . . . ,2nz, (35)

µ# =
2nz∑

i=0

W (m)
i #i, (36)

"# =
2nz∑

i=0

W (c)
i (#i − µ#)(#i − µ#)& + "v (37)

Lt =
[ 2nz∑

i=0

W (c)
i (ξi − Z−

t )(#i − µ#)&
]

"−1
# (38)

Ẑt = Z−
t + Lt(yt − µ#) (39)

"̂Zt = "−
Zt

− Lt"#L&
t . (40)

Remark 3. While the values of the scaling parameters λ, αu, βu, κ that yield third-order approximation accuracy for Gaussian 
state distributions are well known, there are still no known guidelines to choose the best values for the above parameters 
when the state distributions are non-Gaussian. With the environmental state distribution being generally non-Gaussian and 
along with the moments calculation being done using finite number of deterministic samples result in the obtained mo-
ments being only approximations of the true moments of the non-Gaussian state distributions. This motivates our use of 
distributionally robust risk constraints to explicitly account for this non-Gaussianity. The introduction of nonlinear output 
model along with the decorrelation scheme renders our current output feedback based steering approach significantly dif-
ferent from our previous work [20]. The complexity (costliest operation) of UKF lies in the matrix square-root operation 
used in the (28) and (29). This is the price that the UKF pays for being in the middle ground between the Extended Kalman 
Filter (EKF) and the Particle Filter (PF), as it avoids both expensive Jacobian computation of the EKF and the PF’s need for 
large numbers of particles to approximate the moments. An incremental UKF update as in [28] is possible, but is out of the 
scope of this paper. This calls for a design of better nonlinear filtering techniques in future to improve risk assessments for 
collision with obstacles.

4.2. Nonlinear model predictive control (NMPC) law

In this subsection, we elaborate about the feedback controller that represents an important module in the autonomy 
stack shown in Fig. 1. Since the robot dynamics is both nonlinear and stochastic, we will be describing an output feedback 
based nonlinear model predictive control algorithm to steer the robots in the considered setting. Specifically, the steering 
law for steering the robots is realized through a multiple shooting-based nonlinear model predictive controller [24], [25]
that uses the state estimate obtained through an Unscented Kalman filter at each time step. An illustration of the output 
feedback is shown in Fig. 2. The error at a time step t is

et = Cxr Ẑt − xs = x̂t − xs, (41)

8
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Fig. 2. An output feedback based controller using NMPC and UKF is illustrated here in R. The sigma points and the distribution of the robot states at 
different time steps are depicted with orange dots and shaded blue area respectively. The NMPC-steered trajectory from each sigma point is shown in 
dotted black lines. At each time step t , the distributionally robust budget risk constraint is shown using darkly shaded color whose area is at most αt
and the corresponding sigma points are steered using the NMPC control law. The distribution at time t + 1 is described using the approximated moments 
calculated using those transformed sigma points. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 3. This plot shows the simulated trajectories of a bicycle robot as in (53) using NMPC control law coupled with UKF based state estimator. The 
trajectories with M = 06×4 and with M = 10−3

[ M1
0

M1

0
M1
0

]
, M1 =

[
1
0

0
2

]
have different moments for the system states and hence will have different total 

trajectory cost and different risk evaluations.

where xs represents a sample in the free space to be steered to. At every time instance t , the nonlinear model predictive 
controller repeatedly solves the following optimization problem in a receding horizon fashion with prediction horizon Nt to 
find a control input sequence as follows

u†
t = argmin

{uk}t+Nt −1
k=t

t+Nt−1∑

k=t

(
‖ek‖2

Q + ‖uk‖2
R

)
+

∥∥ek+Nt

∥∥2
Q , (42)

subject to x̂k+1 = f(x̂k, uk),

x̂k ∈ X , uk ∈ U,

where only the first control input in the optimal sequence u†
t is applied at time t and the horizon is shifted to t + 1 for 

the problem to be solved again. Here, Q , R denote the state penalty and control penalty matrices respectively. To illustrate 
the need for considering the cross-correlation between the noises, we simulated a bicycle robot using the NMPC control 
law and the UKF with and without the cross-correlated noises. It is clear from Fig. 3 that the cost of steering from a source 
to the destination differs between the two cases as the state moments are different at all time steps due to the cross-
correlation between the noises. This is a crucial observation for risk based planning as the risk of obstacle collision, for a 
given trajectory, is computed using the resulting moments which in turn determines the safety of the path.

9
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r

Initial Pose

Target Pose

p0

pT

δ

φ

Fig. 4. The problem of steering a non-holonomic robot from an initial pose p0 to a target pose pT with different orientation is shown here.

5. Sampling-based motion planning algorithm

The planner module of an autonomy stack as shown in the Fig. 1 is responsible for planning a path from a given source 
to a desired destination adhering to all motion planning specifications. Typically, the planner module solves a motion plan-
ning problem as in (21) to design the reference trajectory from source to destination. However, due to the non-convex 
collision avoidance constraints and presence of uncertainties, it is difficult to exactly solve the motion planning problem 
subject to the distributionally robust risk constraints. Hence, we resort to a sampling based motion planner, which incre-
mentally constructs a motion plan from the source to the destination for a robot by sampling a point in the obstacle free 
space and connecting the point to the tree of motion plans if the trajectory connecting the points is collision-free. We 
propose to use a distributionally robust, kinodynamic variant of the RRT! motion planning algorithm with dynamic output 
feedback policies. Our proposed algorithm, called Nonlinear Risk Bounded RRT!(NRB-RRT!), grows trees of state and state 
estimate distributions, rather than merely trees of states, and incorporates distributionally robust risk constraints to build 
risk-bounded state trajectories and feedback policies. The NRB-RRT! tree expansion procedure, inspired by the chance con-
strained RRT! algorithm developed in [4], is presented in Algorithm 1. The NRB-RRT! tree is denoted by T , consisting of 
|T | nodes. Each node N of the tree T consists of a sequence of state distributions, characterized by a distribution mean x̂
and covariance D . A sequence of means and covariance matrices is denoted by σ̄ and 0̄, respectively. The final mean and 
covariance of a node’s sequence are denoted by x[N] and D[N], respectively. For the state distribution sequence (σ̄ , 0̄), the 
notation 1 J (σ̄ , 0̄) denotes the cost of that sequence. If (σ̄ , 0̄) denotes the trajectory of node N with parent Nparent , then 
we denote by J [N], the entire path cost from the starting state to the terminal state of node N , constructed recursively as

J [N] = J [Nparent] + 1 J (σ̄ , 0̄). (43)

5.1. Approximating optimal cost-to-go

In order to efficiently explore the reachable set of the dynamics and increase the likelihood of generating collision-free 
trajectories, authors in [29] described the limitations of the standard Euclidean distance metric and rather advocated the 
use of an optimal “cost-to-go” metric, that takes into account a dynamics and control-related quantities to steer the robot. 
When the dynamics are linear and obstacles are ignored, the optimal “cost-to-go” between any two nodes in the tree can 
be computed using dynamic programming. However, with nonlinear dynamics and potentially non-holonomic constraints, 
cost-to-go can be tailored to the specific robot dynamics. Inspired by [30], we present an approximate cost-to-go for some 
special robot representations and car-like dynamics. The initial pose of a robot, p0 can be defined using a tuple (x, y, ψ), 
where (x, y) are the positions in global coordinate frame and ψ being its orientation with respect to the positive x axis. We 
use an egocentric polar coordinate system to describe the relative location of the target pose pT observed from the robot 
with radial distance r along the line of sight vector from the robot to the target, orientation of the target φ, and orientation 
of the robot δ, where angles are measured from the line of sight vector as shown in the Fig. 4.

Definition 1. The non-holonomic directed distance from an initial pose p0 to a target pose pT , with non-holonomic constraints is 
defined as

D(p0, pT ) =
√

r2 + k2
φφ2 + kδ|δ|. (44)

Here, kφ > 0 is a constant that represent the weight of φ with respect to the radial distance r and kδ > 0 is another 
constant that emphasizes the weight on |δ| as δ can take both positive and negative values. The non-holonomic distance in 
(44) is asymmetric meaning that D(p0, pT ) is not equal to D(pT , p0).

10
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5.2. Outline of NRB-RRT! algorithm

In the first step, using the Sample(·) function, a random pose xrand is sampled from the free space X free
t . Then the tree 

node, Nnearest that is nearest to the sampled pose is selected using the NearestNode(·) function (line 3 of Algorithm 1) 
which uses the “cost-to-go” distance metric defined in (44). Attempts are then made to steer the robot from the nearest tree 
node to the random sample using the Steer(·) function that employs the steering law explained in Section 4 (line 4 of 
Algorithm 1). The control policy obtained is then used to propagate the state mean and covariance, and the entire trajectory 
(σ̄ , 0̄) is returned by the Steer(·) function. Using the DR-Feasible(·) function, each state distribution in the trajectory 
is checked for distributionally robust probabilistic constraint satisfaction discussed in the next section. Further, the line 
connecting subsequent state distributions in the trajectory is also checked for collision with the obstacle sets Oit , i ∈ B. An 
outline of the DR-Feasible subroutine is shown in Algorithm 2. If the entire trajectory (σ̄ , 0̄) is probabilistically feasible, a 
new node Nmin with that distribution sequence (σ̄ , 0̄) is created (line 7 of Algorithm 1) but not yet added to T . Instead, 
nearby nodes are identified for possible connections via the NearNodes(·) function (line 8 of Algorithm 1), which returns 
a subset of nodes Nnear ⊆ T , if they are within a search radius r ensuring probabilistic asymptotic optimality guarantees 
specified in [31]. The radius r is given by

r = min

{

γ

(
log(|Nt |)

Nt

) 1
d+1

,µmax

}

, (45)

where Nt refers to the number of nodes in the tree at time t , the positive scalar µmax is the maximum radius specified 
by the user, and γ refers to the planning constant based on the d dimensional environment and is selected using [31, 
Theorem 1]. Then we seek to identify the lowest-cost, probabilistically feasible connection from the Nnear nodes to xrand
(lines 10-14 of Algorithm 1). For each possible connection, a distribution sequence is simulated via the steering law (line 
11 of Algorithm 1). If the resulting sequence is probabilistically feasible, and the cost of that node represented as crand =
J [Nnear] + 1 J (σ̄ , 0̄), is lower than the cost of Nmin denote by J [Nmin], then a new node with this sequence replaces Nmin
(line 14 of Algorithm 1). The lowest-cost node is ultimately added to T (line 15 of Algorithm 1). Finally, edges are rewired 
based on attempted connections from the new node Nmin to nearby nodes Nnear (lines 17-22 of Algorithm 1), ancestors 
excluded (line 17 of Algorithm 1) which are found using Ancestors(·) function. A distribution sequence is simulated via 
the steering law from Nmin to the terminal state of each nearby node Nnear ∈ Nnear (line 18 of Algorithm 1). If the resulting 
sequence is probabilistically feasible, and the cost of that node cmin is lower than the cost of Nnear given by J [Nnear] (line 
19 of Algorithm 1), then a new node with this distribution sequence replaces Nnear (lines 21-22 of Algorithm 1). The tree 
expansion procedure is then repeated until a node from the goal set is added to the tree. At that point, a distributionally 
robust feasible trajectory is obtained from the tree root to Xgoal .

Algorithm 1 NRB-RRT!-tree expansion procedure.
1: Inputs: Current Tree T , time step t
2: xrand ← Sample(X free

t )

3: Nnearest ← NearestNode(xrand, T )

4: (σ̄ , 0̄) ← Steer(x̂[Nnearest ], D[Nnearest ], xrand)

5: // Check if sequence (σ̄ , 0̄) is DR-Feasible
6: if DR-Feasible(σ̄ , 0̄) then
7: Create node Nmin{σ̄ , 0̄}
8: Nnear ← NearNodes(T , xrand, |T |)
9: // Connect via a minimum-cost path

10: for each Nnear ∈ Nnear\Nnearest do
11: (σ̄ , 0̄) ← Steer(x̂[Nnear ], D[Nnear ], xrand)

12: crand ← J[xnear ] + 1 J (σ̄ , 0̄)

13: if DR-Feasible(σ̄ , 0̄) & crand < J [Nmin] then
14: Replace Nmin with Nmin{σ̄ , 0̄}
15: Add Nmin to T
16: // Re-Wire the Tree
17: for each Nnear ∈ Nnear\ Ancestors(Nmin) do
18: (σ̄ , 0̄) ← Steer(x̂[Nmin], D[Nmin], ̂x[Nnear ])
19: cmin ← J[Nmin] + 1 J (σ̄ , 0̄)

20: if DR-Feasible(σ̄ , 0̄) & cmin < J [Nnear ] then
21: Delete Nnear from T
22: Add new node Nnew {σ̄ , 0̄} to T

6. Distributionally robust collision check

It is necessary to ensure that the total risk of the trajectory returned by the planner module of the autonomy stack in 
Fig. 1 does not exceed the given total risk budget and thereby agree with the motion planning specifications. In this section, 
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Algorithm 2 DR-Feasible subroutine.

Input: T−time step distribution sequence(σ̄ , 0̄)

2: for t = 1 to T do
(x̂t , Dx̂t

) ← tth element in (σ̄ , 0̄) sequence
4: L ← Line connecting position block of x̂t−1 to x̂t

for each i ∈ B do
6: if (x̂t , Dx̂t

) dissatisfies (50) or L ∩ Oit .=∅ then
Return false

8: Return true

we evaluate the safety of a trajectory returned by the planner module using distributionally robust risk constraints and 
formally present a risk treatment to ensure the safety of the whole mission plan.

6.1. Moment-based ambiguity set to model uncertainty

Unlike most stochastic motion planning algorithms that often assume a functional form (often Gaussian) for probability 
distributions to model uncertainties, we will focus here on uncertainty modeling using moment-based ambiguity sets. Since 
the initial environmental state Z0 is not assumed to be Gaussian, then neither are the environmental state distributions 
PZt at any point of future time t . Hence, we define an ambiguity set for the whole environmental state by

PZt =
{
PZt |E[Zt] = Ẑt,E[(Zt − Ẑt)(Zt − Ẑt)

&] = "Zt

}
. (46)

6.2. Risk treatment for trajectory safety

To study the stage risk constraints (21) for the safety of the planned reference trajectory, we follow the steps similar to 
the one described in [20] which was inspired by the risk treatment developed by authors in [3] and [4]. Since, the robot 
dynamics are nonlinear, we generalize the risk treatment developed by authors in [3] to handle future states with arbitrary 
distributions. Let PSaf e denote the event that plan P succeeds and PFail as the complementary event (i.e. failure). Given a 
confidence β ∈ (0, 0.5] and a total time horizon T , we consider the specification that a plan succeeds with high probability 
or equivalently that it fails with low probability. That is,

P (PSaf e) ≥ 1 − β ⇐⇒ P (PFail) ≤ β. (47)

Failure of the total plan requires at least one stage risk constraints to be violated. Then, ∀t ∈ [0 : T ],

inf
PZt ∈PZ

PZt (CxrZt ∈ X free
t ) ≥ 1 − αt

⇔ sup
PZt ∈PZ

PZt (CxrZt /∈ X free
t ) ≤ αt .

Applying Boole’s law, probability of the success event can be bounded as

P (PSaf e) = 1 − P (PFail) = 1 − PZt

(
T⋃

t=0

CxrZt /∈ X free
t

)

≥ 1 − sup
PZt ∈PZ

PZt

(
T⋃

t=0

CxrZt /∈ X free
t

)

≥ 1 −
T∑

t=0

sup
PZt ∈PZ

PZt

(
CxrZt /∈ X free

t
)

≥ 1 −
T∑

t=0

αt

︸ ︷︷ ︸
:=β

If the stage risks ∀t ∈ [0 : T ] are equal, meaning αt = α, then β = (T + 1)α. Furthermore, if the stage risk αt = α is equally 
distributed over all ntotal constraints, then, a risk bound for a single constraint is α

ntotal
. Subsequently, the corresponding risk 

bound for an obstacle i ∈ B and the environment X would be αnobi
ntotal

and αnenv
ntotal

respectively. Usually the choice of T affects 
the design of the stage risk αt . It is typical to start with a conservative upper bound Tmax (usually an informed estimate 
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obtained using a trajectory optimization technique) and perform an uniform risk allocation to design a stage risk αt . If a 
reference path happens to be tracked by the robot in an earlier time say T ′ < Tmax , then we can refine our choice of Tmax
using T ′ and re-run the risk allocation. It is possible to have a spatio-temporal based risk allocation and it is currently being 
pursued as a future work.

6.3. Distributionally robust collision check

The non-convex obstacle avoidance constraints for obstacle i ∈ B can be expressed as the disjunction

¬(Ai CxrZt ≤ bit) ⇔
ni∨

j=1

(a&
i j CxrZt ≥ a&

i j ci jt), (48)

where ∨ denotes disjunction (logical OR operator) and ¬ denotes negation (logical NOT operator) and ci jt = ĉi jt + ri,t is 
a point nominally on the jth constraint of the ith obstacle whose covariance is the same as that of ri,t . The control law 
returned by the steering function should also satisfy the state constraints which are expressed as distributionally robust 
chance constraints. The nominal state constraints, CxrZt ∈ X free

t , are required to be satisfied with probability 1 − α, under 
the worst case probability distribution in the ambiguity set. Let the mean and covariance of the uncertain obstacle motion 
be defined using E[ci jt ] = ĉi jt and E[(ci jt − ĉi jt)(ci jt − ĉi jt)

&] = "c
jt . Following [32], under the moment-based ambiguity set 

defined by (46), a constraint on the worst-case probability of violating the jth constraint of obstacle i ∈ B

sup
PZt ∈PZ

PZt (a
&
i j CxrZt ≥ a&

i j ci jt) ≤ αi (49)

is equivalent to the linear constraint on the state mean Ẑt

a&
i j CxrẐt ≥ a&

i j ĉi jt +
√

1 − αi

αi

∥∥∥(Dx̂t
+ "c

jt)
1
2 aij

∥∥∥
2
, (50)

where Dx̂t
= Cxr"Zt C&

xr and αi is the user prescribed risk parameter for obstacle i ∈ B. Obstacle risks are allocated such 
that their sum does not exceed the total constraint risk α (as described in subsection 6.2). The scaling constant 

√
1−αi
αi

in 
the deterministic tightening of the nominal constraint in (50) is larger than the one obtained with a Gaussian assumption, 
leading to a stronger tightening that reflects the weaker assumptions about the uncertainty distributions.

7. Simulation results

In this section, we demonstrate our proposed framework using simulations with both a unicycle and a bicycle robot 
dynamics. Specifically, we demonstrate the bicycle dynamics in an urban driving simulator [21]. The robot is assumed to be 
moving in a bounded and cluttered environment. While the proposed framework can handle both dynamic and uncertain 
obstacles, we assume the obstacles to be static and deterministic (wOt = 0, ∀t) for simplicity, so that all uncertainty comes 
from the unknown initial state, robot process disturbance, and measurement noise. That is, we assume that gi (x) = 0, ∀i ∈ B.

7.1. Unicycle model based simulation

7.1.1. Robot motion model
We consider the problem of navigating a robot with unicycle dynamics from an initial state to a final set of states. The 

nonlinear robot and the static obstacle dynamics as shown in Fig. 5 are given by





xt+1
yt+1
θt+1

xobs,t+1
yobs,t+1




=





xt
yt
θt

xobs,t
yobs,t





︸ ︷︷ ︸
Zt

+1t





νt cos(θt)
νt sin(θt)

ωt
0
0




+ 1t wt (51)

where xt , yt ∈ R are the horizontal and vertical positions of the robot, θt ∈ R is the heading of the robot relative to the 
x-axis with vt , ωt ∈ R being the linear and angular velocity control inputs, and wt denoting the disturbances at time t . 
Further, xobs,t , yobs,t ∈R denote the horizontal and vertical positions of the obstacles at time t . The discretization time step 
was selected to be 1t = 0.2 sec.
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Fig. 5. A unicycle robot operating in R2 is shown here.

Fig. 6. A risk-bounded motion plan of a unicycle robot operating in R2 computed using the NRB-RRT! algorithm with stage-risk budget αt = 10−4 and the 
corresponding 1σ uncertainty covariance ellipses for its positions are shown here in yellow. The white triangle and the green rectangle respectively denote 
the start position and the goal region.

7.1.2. Measurement model
We assume that the unicycle robot is equipped with a sensor with measurement noise. Further we consider independent 

sensor and process noises for simplicity. The measurement model is given by

zt = S(Zt) + vt = Zt + vt . (52)

7.1.3. Discussion of results
The motion plan using NRB-RRT! algorithm was generated on a machine with an Intel Core i7 CPU and 8 GB of RAM. 

The trajectory tracking Monte Carlo simulations were performed on a machine with a Ryzen 7 2700X and 64 GB of RAM. The 
nonlinear MPC problem in (42) is modeled with CasADi Opti and solved with IPOPT solver [33]. We demonstrate NRB-RRT!

in a obstacle cluttered environment as shown in Fig. 6. The environment consisted of a root node (white triangle), a goal 
area (dashed green rectangle), and a 10 × 10 environment with rectangular obstacles for its sides (black boundary). The 
robot is assumed to occupy a single point. The input bounds are ±0.5 units/sec for linear velocity and ±π rad/sec for 
angular velocity. The NRB-RRT! steering horizon is N = 30 and the NMPC planning horizon is Nll = 10. The planner control 
cost matrix was R = diag([1, 1]). The tracking cost matrices were Q = diag([100, 100, 10]) and R = diag([1, 1]) for all 
t = [0 : T − 1], and Q T = 10Q . We used a high-level plan risk bound of β = 0.1. It is divided equally across the time 
steps Tmax = 1000 and among the obstacle constraints. The process noise distribution Pw and the sensor noise distribution 
Pv were taken as a multivariate Laplace distribution with zero mean and covariance "w = "v = 10−7 In . We employed 
NRB-RRT! algorithm with just the euclidean distance metric for generating the motion plan. Clearly, the NRB-RRT! tree as 
shown in Fig. 6 avoided the unsafe gap to the top-right of the goal region in process of reaching the goal as it was deemed 
to be too risky.

To evaluate the effectiveness of the NRB-RRT! algorithm, we performed Monte-Carlo simulation using the reference 
trajectory obtained after 1000 iterations of NRB-RRT! algorithm. Particularly, at each independent trials out of the total 
1000 trials, we realized both the process noise wt and the sensor noise vt from either a multivariate Laplacian distribution 

14



V. Renganathan, S. Safaoui, A. Kothari et al. Artificial Intelligence 314 (2023) 103812

Table 1
Performance metrics from 1000 independent Monte Carlo trials with different co-
variance matrices "w = "v for noises corresponding to two different distributions 
are tabulated here. It is evident the multivariate Laplacian being an heavy-tailed dis-
tribution results in more collisions than its counterpart multivariate Gaussian.

Noise Covariance 
"w = "v

Multivariate Laplacian Multivariate Gaussian

# of 
collisions

Average Run 
Time (s)

# of 
collisions

Average Run 
Time (s)

10−7 In 0 4.2117 0 4.2043
10−3 In 551 3.5119 495 3.7024
10−2 In 1000 0.8964 1000 0.9310

Table 2
Performance metrics from 1000 independent Monte 
Carlo trials with and without risk assessment for a given 
covariance matrix "w = "v of noises corresponding to 
multivariate Laplacian distribution are tabulated here. It 
is evident from Figs. 10, 11, 12 and the number of col-
lisions that taking risk into consideration results in a 
longer but safer path while the approach without risk 
consideration results in a short but a risky path.

Noise Covariance 
"w = "v

# of collisions

With Risk Without Risk

10−7 In 0 0
10−5 In 0 360

Fig. 7. Results of 1000 independent Monte-
Carlo trials using zero-mean noises wt , vt
sampled from multivariate Laplacian dis-
tribution with covariance matrices "w =
"v = 10−7 In are shown here. With noises 
being minimal, success rate is 100%. The 
white triangle, star and green rectangle 
denote the starting position, goal position 
and the goal region respectively.

Fig. 8. Results of 1000 independent Monte-
Carlo trials using zero-mean noises wt , vt
sampled from multivariate Laplacian dis-
tribution with covariance matrices "w =
"v = 10−3 In are shown here. With noises 
being stronger, success rate falls to 44.9%. 
The white triangle, star and green rectan-
gle denote the starting position, goal posi-
tion and the goal region respectively.

Fig. 9. Results of 1000 independent Monte-
Carlo trials using zero-mean noises wt , vt
sampled from multivariate Laplacian dis-
tribution with covariance matrices "w =
"v = 10−2 In are shown here. With noises 
being strong, success rate falls to 0%. The 
white triangle, star and green rectangle 
denote the starting position, goal position 
and the goal region respectively.

or a multivariate Gaussian distribution with the same mean and covariance. The results of the Monte-Carlo trials using 
multivariate Laplacian noises with covariance matrices ("w = "v) for different noise levels (10−7 In, 10−3 In, 10−2 In) are 
shown in Figs. 7, 8, 9 respectively (Table 1). Analogous results using multivariate Gaussian distribution based noises for 
same noise levels were also obtained. The Monte-Carlo trials subjected to noises from both distributions with different 
noise levels reveal that as the noise levels were smaller ("w = "v = 10−7 In), the feedback control layer had good tracking 
of the reference trajectory provided by the planning layer. However, when the noises got stronger ("w = "v = 10−3 In), 
more collisions/failure occurred and finally with even stronger noises, ("w = "v = 10−2 In), no trial was capable to track the 
whole trajectory without collision. This demonstrates that as the planner in the autonomy stack plans a reference trajectory 
with a conservative noise setting, the controller can tolerate noises up to a certain level after which it cannot reach the goal 
set without collisions. A similar analysis with and without taking the risk into account is shown in Figs. 10, 11 and 12 and 
the results are tabulated in Table 2. Note that when the noises in the tracking phase get realized with the same moments 
that was assumed in the planning phase, then our proposed approach ensures that the worst case probability of failure in 
the tracking phase is bounded by β = 0.1. In the next subsection, we simulate a car-like robot having bicycle dynamics with 
a nonlinear measurement model and sensor noise and demonstrate our approach using an urban driving simulator.

15



V. Renganathan, S. Safaoui, A. Kothari et al. Artificial Intelligence 314 (2023) 103812

Fig. 10. The reference path (shown in 
dashed) generated by the path planning 
module from source to goal goes through 
the risky narrow opening when no risk 
is taken into account during the plan-
ning. With zero-mean noises wt , vt sam-
pled from multivariate Laplacian distri-
bution with covariance matrices "w =
"v = 10−7 In , tracking of 1000 indepen-
dent Monte-Carlo trials are overlayed in 
blue. With no collisions, the worst case 
failure probability is less than β = 0.1.

Fig. 11. Results of 1000 independent 
Monte-Carlo trials using zero-mean noises 
wt , vt sampled from multivariate Lapla-
cian distribution with covariance matrices 
"w = "v = 10−5 In are shown here. The 
success rate falls down to 64% as the ref-
erence path goes through the risky nar-
row opening when no risk is considered. 
Though the noise is very small, it was 
enough to cause 36% of the trajectories to 
collide and thereby showing the need for 
including the risk while planning.

Fig. 12. Results of 1000 independent 
Monte-Carlo trials using zero-mean noises 
wt , vt sampled from multivariate Lapla-
cian distribution with covariance matrices 
"w = "v = 10−5 In are shown here. The 
success rate is still 100% for the reference 
path that uses the risk-based formulation. 
Unlike Fig. 11, the reference path with risk 
consideration avoids narrow openings to 
remain safe. The added conservatism of 
the reference path is partially a byproduct 
of the selection of Tmax .

δ

y

x

ψ

ν

βl r

l f

Fig. 13. A bicycle model [34] depicting the motion of a car-like vehicle is shown here.

7.2. Bicycle model based simulation

We consider a robotic car vehicle modeled using bicycle dynamics traversing in an uncertain environment with an 
obstacle. For the ease of exposition, we consider only one obstacle. To demonstrate our proposed approach, we perform a 
simulation with static obstacle first and then subsequently we present the results with a dynamic obstacle.

7.2.1. Robot motion model
The kinematics of the robot modeled using bicycle dynamics as shown in Fig. 13 and the static obstacle dynamics are 

given by





xt+1
yt+1
ψt+1
νt+1

xobs,t+1
yobs,t+1




=





xt
yt
ψt
νt

xobs,t
yobs,t





︸ ︷︷ ︸
Zt

+1t





νt cos(ψt)
νt sin(ψt)
νt
L tan(δt)

at
0
0




+ 1t wt, (53)
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where (xt , yt) denote the position of center of mass of the robot in the simulation environment, and ψt its orientation at 
time t . The pair (xobs,t , yobs,t) denote the position of center of mass of the obstacle at time t . The discretization time step 
was selected to be 1t = 0.2. The length of the vehicle wheelbase is denoted by L and L = l f + lr , where l f , lr denote the 
distance from the center of mass to the front and rear wheels respectively. The angle of the current velocity νt of the center 
of mass with respect to the longitudinal axis of the car is denoted by βt . The control inputs (at , δt) respectively denote the 
linear acceleration and the steering angle of the robot and acceleration of the center of mass is assumed to be in the same 
direction as the velocity νt . We assume the robot to start from the origin with an orientation (ψ0 = 270◦ in Carla). The pose 
of the robot is sampled uniformly within the bounds of the feasible environment in R2 whose boundaries are not treated 
probabilistically. We chose to simulate our model using the Audi E-Tron vehicle in the simulator whose parameter values 
are L = 2.9m. For the dynamic obstacle based simulations, we assumed the obstacle vehicle to move in a straight-line (along 
the y direction) with two different constant velocities of νobs ∈ {[0, 0.10]&, [0, 0.20]&}.

7.2.2. Measurement model
We assume that the robot is equipped with a radar sensor which provides a noisy bearing and range to multiple known 

obstacle locations in the landscape. Thus the measurement model is given by

zt = S(xt , yt, θ
!, xobs,t, yobs,t) =





√
(xt − xgoal)2 + (yt − ygoal)2

tan−1
(

yt−ygoal
xt−xgoal

)
− ψt

cos(θ!)xobs,t
sin(θ!)yobs,t




+ vt, (54)

where the point (xgoal, ygoal) denotes the location of a landmark inside the goal region Xgoal and θ! = 0.01 radian denotes 
a known distortion of a sensor that estimates the position of obstacles. The initial state is assumed to be of zero mean 
with covariance matrix "̂Z0 = 0.001Inz . The sensor noise and process noise covariance matrices were "v = 0.001I p and 
"w = diag(0.001, 0.001, 0.001, 0.001, 0, 0). For simplicity, we assumed the cross-correlation matrix to be zero (M = 0). 
While executing the Algorithm 1, the equation (44) is used to approximate the cost-to-go quantity with kφ = 1.2 and kδ = 3
respectively in the NearestNode(·) and NearNodes(·) modules and for the rest, the cost-to-go is approximated using the 
steering law that employs nonlinear model predictive control. The search radius used in the Algorithm 1 is obtained with 
γ = 30. For simplicity, the environmental boundaries are not treated probabilistically. Since the motion model given by (53)
and the measurement model given by (54) are nonlinear, this particular set up demands using Unscented Kalman Filter 
for state estimation and a nonlinear model predictive control for steering. To generate the sigma points and weigh them 
accordingly, we use αu = 1, β = 2, κ = 3 − n. Further, we define the error et = CxrẐt − xs for i = 0, . . . , T , with T = 1000. A 
dynamic output feedback policy ut that minimizes the cost function

J =
t+N−1∑

k=t

(
e&

k Q ek + u&
k Ruk

)
+ e&

k+N Q ek+N , (55)

is computed using nonlinear model predictive control to steer the robot from a tree node state xt to a random feasible 
sample pose xs with prediction horizon N = 50. The control inputs are constrained as |a| ≤ 3ms−2 and |δ| ≤ 70◦ . The 
nonlinear model predictive control law is obtained through the CasADi toolbox [33] that employs the IPOPT large-scale 
nonlinear optimization solver. The state and control penalty matrices namely Q = 100diag([2, 2, 1, 5, 1, 1]), R = 0.01Im
are used to penalize the state and control deviations respectively. The distributionally robust state constraints are enforced 
over a mission horizon length T = 50 and with probabilistic satisfaction parameter α = 0.05. For all the simulations, the 
NRB-RRT! algorithm with the distributionally robust collision check or Gaussian collision check procedure is run for 200 
iterations, with 2-σ position uncertainty ellipses from the covariance matrix being drawn at the end of each trajectory.

7.2.3. Results and discussion
Static Obstacle Simulation: The NRB-RRT! tree expansion procedure was run until at most 2 nodes from the goal region 
were added to the tree successfully and the resulting reference trajectory from the starting pose to the goal is shown in 
Fig. 14. The corresponding 2D projection is shown in the left side of Fig. 15 and distributionally robust risk constraints 
generated more conservative trajectories around the obstacles, by explicitly incorporating the uncertainty in the state due 
to the initial localization, system dynamics, and measurement uncertainties in the form of ambiguity sets. It produces 
trajectories that satisfy the chance constraints under the worst-case distribution in the ambiguity sets. Clearly, the feasible 
set is smaller with the distributionally robust constraints. On the other hand, a similar reference trajectory was generated 
using Gaussian chance constraints assuming system uncertainties are Gaussian. The reference trajectories generated using DR 
risk constraints (with UKF and EKF), and Gaussian chance constraints are shown in the center of Fig. 15. The distributionally 
robust trajectories with a more sophisticated and coherent quantification of risk, are generated with the same computational 
complexity as with Gaussian chance constraints and exhibit conservatism to account for state distribution ambiguity. Though 
the result with Extended Kalman Filter based state estimation also produces collision free trajectories, the result inherently 
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Fig. 14. Our proposed approach is demonstrated using an urban driving simulator [21]. An NRB-RRT! tree (in orange color) as a result of 200 iterations 
and the resulting reference path (in yellow color) from the start to the goal region are shown here. The NRB-RRT! algorithm employed distributionally 
robust chance constraints with α = 0.05.

Fig. 15. A 2-D projection of the urban driving environment containing the robot starting pose, goal region (blue shaded rectangle), the obstacle (black 
shaded rectangle), constructed motion plan with distributionally robust chance constraints (in blue color) after executing 200 iterations of NRB-RRT!

algorithm with the two-standard deviation covariance ellipses and the generated reference path from the source to the goal are shown on the plot to the 
left. A comparison of NRB-RRT! algorithm with distributionally robust (DR) (in blue color (UKF) and red color (EKF)) & Gaussian chance constraints (CC) 
(in green color (UKF)) are shown on the middle. Clearly, the added conservatism greater than that of the chance constrained counterpart that comes due 
to the distributional robustness would account for any arbitrary unknown state distribution satisfying the given moments. The results of 100 independent 
Monte Carlo trials of DR-UKF trajectory tracking with noises drawn from multivariate Gaussian distributions are shown on the right.

suffers from the (first order) approximations due to linearization and can possibly lead to significant miscalculation of 
risk. To corroborate the results generated by the high-level motion planner, a Monte-Carlo simulation of 100 independent 
trials involving noises sampled from multivariate Gaussian distribution was conducted and the results are shown in the 
right side of Fig. 15. It is evident that given the conservative noise assumption and risk quantification performed using 
the distributionally robust approach, the realized sampled paths from the source to destination had little deviations around 
the reference trajectory. This demonstrates our proposed approach that with a high-level motion plan that accounts for 
uncertainty, the low level online tracking controller has more room to maneuver and respond to noise realizations. Given a 
noise level and limited number of NRB-RRT! iterations, the chance constrained version might lead to a less conservative, 
shorter yet riskier path than the path obtained from the distributionally robust version that while possibly longer, remains 
comparatively safer. That is, conservatism is inherently traded off with risk guarantees under the worst case uncertainty 
distribution. Note that the tight probability of collision can be shown only with infinite number of NRB-RRT! iterations 
once the least possible horizon Tmax is fixed a priori.

Dynamic Obstacle Simulation: The simulation results with the dynamic obstacle are presented in Fig. 16. Two sepa-
rate motion plans were incrementally built with the obstacle moving in a straight line with constant velocity of νobs ∈
{[0, 0.10]&, [0, 0.20]&}. Since the reference trajectory was built by taking into account the motion of the dynamic obsta-
cle, we observe that overtaking or following the obstacle vehicle depends upon both the risk budget and the magnitude 
of the obstacle velocity. This shows that our framework is capable of handling dynamic obstacles by keeping track of the 
time-stamp of the obstacle motion and performing the probabilistic collision check with the time-varying obstacle location. 
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Fig. 16. The constructed reference path with distributionally robust chance constraints using NRB-RRT! algorithm from the source to the goal projected 
onto R2 with two different constant velocities for the dynamic obstacle is shown on the left plot. The next three plots on the right show snap shots of the 
robot overtaking an obstacle with velocity νobs = [0, 0.1]& .

The video of the both static and dynamic obstacle simulations is made available at https://youtu .be /YyquJ1Hh -6A and the 
simulation code is available at https://github .com /TSummersLab /Risk _Bounded _Nonlinear _Robot _Motion _Planning.

8. Conclusion

In this paper, we presented a framework aimed towards tighter integration of perception and planning in nonlinear 
robotic systems. Uncertainties in perception and motion prediction are explicitly accounted for through distributionally 
robust risk constraints. Using a dynamic output feedback based control policy realized using a nonlinear MPC and an Un-
scented Kalman filter, a new algorithm called NRB-RRT! is shown to produce risk bounded trajectories with systematic risk 
assessment. Future research involves using deep learning based perception system with semantic SLAM combined with our 
approach. We will also explore optimal spatio-temporal risk allocation for obstacles and environmental constraints which 
can result less conservative motion plans for robots operating in cluttered environments. Another direction involves studying 
propagation of state distributions of nonlinear systems with higher order moments and using them to estimate the risk.

Supplementary material

Video of the simulation is available at https://youtu .be /YyquJ1Hh -6A and the simulation code is available at https://
github .com /TSummersLab /Risk _Bounded _Nonlinear _Robot _Motion _Planning.
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