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Abstract—— Machine learning techniques were applied to 
job accounting and performance data for application 
classification.  Job data were accumulated using the XDMoD 
monitoring technology named SUPReMM; they consist of job 
accounting information, application information from 
Lariat/XALT, and job performance data from TACC_Stats. The 
results clearly demonstrate that community applications have 
characteristic signatures which can be exploited for job 
classification.  We conclude that machine learning can assist in 
classifying jobs of unknown application; in characterizing the job 
mixture; and in harnessing the variation in node and time
dependence for further analysis.
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I. XDMOD  AND OPEN XDMOD WITH SUPREMM
High Performance Computers are a combination of complex 
commodity level compute servers, network gear, and storage 
subsystems. While the change to commodity level components
for supercomputers has been beneficial in terms of cost, it has 
made managing them to ensure they are operating optimally 
much more challenging. Given the important role they play in 
science and engineering and the fact that they are almost 
always oversubscribed, with a backlog of jobs waiting to run, 
there has been a great need for an effective tool to manage 
supercomputers to ensure that all the subcomponents are 
operating optimally and that application codes are running 
efficiently.

The National Science Foundation recognized the need for a 
comprehensive management tool for its supercomputing 
portfolio and in 2010 awarded UB’s Center for Computational 
Research (CCR) with a 5-year program to, among other 
things, develop the XD Metrics on Demand (XDMoD) tool for 
XSEDE, the world’s largest distributed supercomputing 
infrastructure for open, scientific research [1].  

Such data driven management requires a good set of tools for 
data collection and analysis at different complexity and scale.
While there have been some tools for system measurement 
(see for e.g. [17]) they have been targeted at application tuning 
and do not use system usage data of the system being targeted. 
We started with the core functionality of data collection as 
described in earlier reports on XDMoD [2-9]. Initial attempts 
at analysis discussed in these earlier reports were largely 
comprised of characterization. We present here more complex 

analyses of this data using modern machine learning based 
tools to extract more useful information from this system data. 
Such an analysis will be of use in both a posteriori/ in-situ 
characterization of system usage and predictive analysis of 
jobs.

The XDMoD framework has been described previously [2-9]
and here we will provide only a brief description in order to 
provide a context for the discussion of the application of 
machine learning technology to XDMoD data. XDMoD
ingests and organizes data on computer system behavior from 
multiple sources and then maps that data into metrics required 
for overall system management. Metrics provided by XDMoD 
include: number of jobs, CPUs consumed, wait time, and wall 
time, with minimum, maximum and the average of these 
metrics, in addition to many others. These metrics can be 
broken down by: field of science, institution, job size, job wall 
time, NSF directorate, NSF user status, parent science, person,
principal investigator, and resource. The success of XDMoD 
in helping to manage the NSF portfolio of supercomputing 
sites led to the development of Open XDMoD, an open source 
version of XDMoD for use by academic and industrial HPC 
centers [7]. Released in late 2013, Open XDMoD has already 
been deployed at well over 60 institutions globally. In addition 
to usage metrics, quality of service (QoS) metrics and 
application code performance metrics (flops, IO rates, network 
metrics, etc) for all applications running on a given resource
are also available. QoS is measured through application 
kernels [2,7,8] and job level performance is measured through 
the SUPReMM project [4-7,9], both of which are described in 
greater detail below.

Application kernels are designed to provide quality of service 
metrics for HPC systems.  Typically, HPC facilities do not 
have a mechanism to monitor the quality of service they 
provide to their end-users.  Instead, often times the end-users 
are the “canaries in the coal mine” who report problems to 
center support personnel when their jobs suddenly run poorly 
or fail to run altogether. The key idea behind the application 
kernels is to periodically run a series of computationally 
lightweight benchmarks and applications through the normal 
user submission queues, in order to proactively detect 
problems with the hardware and software.  The resulting 
application kernel job data is ingested into the XDMoD or 
Open XDMoD data warehouse, and process control 
algorithms automatically detect underperforming application 
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kernels and notify support staff. The application kernels are 
designed to span all aspects of the HPC cluster operation 
(compute, storage, and network). 

The most pertinent enhancement of XDMoD and Open 
XDMoD for the purposes of this paper is SUPReMM. The 
SUPReMM (Integrated HPC Systems Usage and Performance
of Resources Monitoring and Modeling) project integrates 
tools for the collection of job performance data with the 
powerful data warehousing and analysis capabilities of 
XDMoD. While multiple open source data collection tools are 
supported by SUPReMM including Performance Co-Pilot
(PCP) [11] and TACC_stats [3-6,12], the data presented in 
this paper are from TACC_Stats and Lariat (soon to be 
replaced by XALT).  Lariat captures, among other things, the 
application path and environment module information for all 
jobs that are launched using ibrun on the Texas Advanced 
Computing Center (TACC) machines. TACC_Stats, an 
enhancement to the conventional Linux "sysstat" system-wide
performance monitor, collects a range of node-level
performance information [4-6] and generates aggregated job-
centric views of performance data. In addition to the 
information gathered by systat, TACC_Stats records hardware 
performance counter values, parallel filesystem metrics, and
high-speed interconnect usage, resolving the measurements by 
job and core. The basic component is a collector executed on 
every compute node, both at the beginning and end of each job 
(via batch scheduler prolog and epilog scripts) and at periodic 
intervals (via cron every ten minutes by default). Data 
collection takes place in the background, incurs very low 
overhead, and requires no modification to user or system 
applications. TACC_Stats is open source and is freely 
available for download [13].  

The remainder of this paper is organized as follows:  Section
II gives a general introduction to using machine learning 
algorithms on SUPReMM data, Section III gives a detailed 
description of using machine learning to classify jobs by 
application and finally Section IV summarizes what has been 
learned and discusses future work.

II. MACHINE LEARNING ANALYSIS OF SUPREMM DATA

The set of data generated by SUPReMM consists of hundreds 
of metrics in the broad categories of CPU usage, memory 
usage, network usage and I/O usage. These metrics are 
typically averaged over all nodes for the duration of the job 
and reported as summaries of job activity.  However, the sheer 
volume of data makes it challenging to convert this data into 
information that would be of use in understanding HPC 
operations. Based on our experience with the performance 
data, we have selected the metrics that appear to be of the 
greatest importance and made them accessible through 
XDMoD but even with this reduced set of metrics it can be
difficult to holistically evaluate the job mixture. Since the 
SUPReMM data has a large number of samples, a moderate 
number of predictor attributes, and can be labeled in several 
possible ways we feel that it is well suited to machine learning 

and data discovery techniques such as classification, 
dimensionality reduction, and clustering that other workers 
have applied to similar data, see for example [10,18] and 
references therein. 

For the purposes of this analysis, we selected metrics for the 
set of all jobs run on TACC Stampede in 2014 consuming 
more than one minute of wall time. This resulted in a total of 
1,683,850 individual jobs of which 969,641 were labeled with 
application names extracted from Lariat data, 238,929
contained application names but were unable to be categorized
using the executable path or name (e.g., “data”, “main”, or 
other user-compiled codes), and 475,280 where application 
information was unavailable (e.g., they were run outside of 
ibrun). A brief general description of the most important 
metrics is included in Table 1.

Table 1: Brief description of SUPReMM metrics included.
Metric Description
CPU SYSTEM, CPU 
USER, CPU IDLE

Fraction of CPU time spent in kernel mode, user 
mode, or idle.

CPLD Clock ticks per L1D cache:  Average ratio of clock 
ticks to L1D cache loads per core.

CPI Clock tics per instruction: Average ratio of clock 
ticks to instructions per core.

FLOP Total floating point operations.
MEMORY USED Total memory used per node. This value excludes 

the OS buffer cache and kernel memory.
MEMORY 
TRANSFERRED

Total memory bandwidth in bytes per second.

ETHERNET 
TRANSMIT

Total bytes transmitted over the ethernet device per 
node.

INFINIBAND 
RECEIVE

Total bytes received over the InfiniBand device per 
node.

HOME WRITE, 
SCRATCH WRITE

Total bytes per node written to the indicated 
directory file.

LUSTRE 
TRANSMIT

Total data transmitted by the Lustre filesystem 
driver per node. 

LOCAL DISK 
READ IOS, LOCAL 
DISK READ BYTES

The total local disk reads in bytes per second or 
operations per second.

NODES Number of nodes on which the job was executed.
…..COV When COV is appended to the metric name, it 

indicates the coefficient of variation of the metric 
over the various nodes in the job, calculated by 
computing the standard deviation of the data for the 
nodes and dividing by the mean value, is used rather 
than the mean value of the metric itself.

There are a number of different ways to view the SUPReMM 
data and types of analyses that can be performed. Our initial 
investigations involved automatic identification of 
underperforming or inefficient applications. We manually 
classified a set of 80,000 SUPReMM data points as efficient 
or inefficient. Where inefficient jobs were defined to be those 
with < 30% CPU USER; CPI values < 2; CPLD > 0.1, 
CATASTROPHE (a metric indicating a shut down of the CPU 
activity partway through the job) < 0.2; or CPU USER 
IMBALANCE (a metric indicating some CPUs are not being 
used) > 1. The data were selected to be completely separable 
and only intended to test different machine learning 
classification tools.  Initially we tried three different types of 
machine learning classifiers: Naïve Bayesian (nb) [14],
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Support Vector Machine (svm) [14] and Random Forest (rF)
[15]. The Naïve Bayesian classifier performed very poorly on 
this problem, which is not surprising since the a priori data 
distributions are not normal and the metrics are known to be 
correlated.  We then investigated the svm and rF classifiers 
which do not require normally distributed data or linearly 
independent attributes and should be well suited to this case 
where a simple classification decision is needed.  Using a 
class-balanced training sample of 116,371 jobs and test 
sample of 77,553 jobs, both the svm and the rF were very 
successful as job application classifiers on this test data set
and achieved nearly 100% correct classification of the 
withheld test data for this simple problem. The support vector 
machine classifier is a supervised learning model which works 
by using the training data to construct hyperplanes that 
separate one class from all of the others.  The best hyperplane 
is that which produces the largest separation between the 
given class and all of the others.  The random Forest classifier 
works on a completely different algorithm.  The rF classifier 
uses the training data to construct an ensemble of decision 
trees.  The classification of the test data is then done by 
polling this ensemble.

We next applied the svm and rF classifiers to identify jobs as 
either successful or failed using the job exit code as a label.
Although both classifiers trained very well, they were not very 
successful in predicting the success or failure status of the jobs 
in the withheld test data.  This is not entirely surprising, since 
the exit code for a job is typically the exit code of the last 
operation that occurred in the run script. It is entirely possible 
that, while an application completed successfully, a failure 
code was returned. For example, a remove or grep operation in 
the run script could return an unsuccessful exit code.  The 
conclusion is that the available SUPReMM data does not 
contain the requisite information to perform this particular 
classification task.  We plan to revisit this issue when more 
SUPReMM attributes, especially time dependent variation 
metrics are added to the SUPReMM data set.  Finally, we 
applied the machine learning technology to the important and 
practical task of classifying jobs by their application.  The 
next section will describe the results of this analysis.

III. CLASSIFICATION OF JOBS USING MACHINE LEARNING

We will describe the results from an analysis that has 
generated very promising results, that is, the machine 
classification of jobs by their application name based on 
performance data (e.g., VASP, LAMMPS, etc.)  For facilities 
that collect the job executable information (e.g., by using 
Lariat or XALT), job data is associated with an application by 
comparing the path of the job executable and matching this to 
a known list of 121 community applications.  While the 
applications for many jobs are identified by this method, there 
are two sets of job data that go unidentified.  For the first set, 
called “Uncategorized”, we cannot identify any known
application from the executable path. Many of these jobs are 
user-compiled codes and test applications with names such as 
“a.out”, “main”, “data”, etc.  The second set, predominantly 

those jobs not launched using ibrun on the TACC facilities
have no Lariat data available and are labeled “NA” (Not 
Available).  We set out to develop a machine learning solution 
for automatic classification of jobs to learn more about these 
unclassified jobs and find out whether they are similar enough 
to the known applications to classify them.

We used the svm classifier from the R package e1071 [14],
using the radial basis kernel tuned with gamma = 0.1 and cost 
= 1000.  We defer discussion on the SUPReMM metrics 
included in the model to later when we discuss their 
importance in detail.  We trained on an application-balanced
mixture of 100,000 jobs from Stampede.  The classifier was 
able to correctly predict 99.95% of the known jobs in the 
training set.  We applied this trained svm to a test mixture 
containing another 100,000 jobs (based on 20 unique 
applications), and found that 97% of the jobs were properly 
classified by application.  Table 2 summarizes the 20 X 20 
confusion matrix for this classification process, with each row 
representing the results for one of the 20 unique applications.
Table 2 was constructed such that column 1 represents the 
actual application with the number of times it was correctly 
classified in parentheses.  The second column includes the off 
diagonal elements of the matrix which list all the misidentified
applications along with the number of times each application 
was misidentified in parentheses.  For example, in the first 
row, AMBER was misidentified as GROMACS 5 times.
Based on the off-diagonal elements of the confusion matrix, 
two factors seem to enter into the misclassifications.  The first 
is the number of jobs the particular applications have in the 
native job mix.  For example VASP and NAMD are the two 
most used applications in the mixture at 33% and 17%, 
respectively. VASP is often mistaken for NAMD while
NAMD is most often mistaken for VASP.  This could possibly 
be ameliorated by weighting the classes or using a non-native 
job mixture.  The other type of misclassification is mistaking 
two similar types of applications.  For example, GROMACS
is most often misclassified as LAMMPS where both are 
molecular dynamics simulation codes.  This will be further 
expanded upon when we discuss classification of groups of 
similar applications.

The fraction of correctly classified applications was a very 
encouraging result; however, one final step is required before 
the svm classifier could be applied to the two unclassified job 
data sets.  Since it is very likely that there are applications in 
the Uncategorized and NA data sets which are not in the set of 
community applications on which the svm classifier was 
trained, it is necessary to look at the probability that the jobs 
are properly classified.  The svm classifier will find the best 
match for the job, but if the probability of the classification is 
very low, below some selected threshold value, we would 
conclude that the job was not classified.  For example, if a job 
is classified as application A with only one percent higher 
probability than application B, how confident are we that this 
is the correct classification? Figure 1, below, shows a plot 
indicating the percent of the test jobs that are classified as a 
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function of the threshold probability.  For example, over 85% 
of the test jobs are considered classified, even if we require a 
90% probability threshold.  Note that for the high probability 
classifications the correctly classified and the classified curves 
are in complete alignment.  As the probability requirement is 
relaxed, although more jobs are classified, the correctly 
classified curve drops below as some jobs are incorrectly 
classified.  The user can select the probability threshold to 
match the requirements of the classification process depending 
on how important it is to classify as many jobs as possible and 
how important it is to have as high a correct classification 
ratio. For example, Figure 1 shows that over 90% of the jobs 
can be classified while incurring very few misclassifications.

The svm and rF classifiers were extensively tested and 
compared.  While true ROC (receiver operating characteristic) 
curves can only be made for binary selection processes, one 
can compare the fraction of jobs classified correctly to the 
fraction classified incorrectly as a function of probability 
threshold as described in Equation 1. Each point (x,y) is a 
function of t, the probability threshold. P and C are logical 
vectors indicating whether or not a given job classification has 
met the threshold and has been classified correctly or 
incorrectly at that threshold, respectively. N is the total 
number of jobs classified correctly or incorrectly.  This plot is 
shown in Figure 2 and compares the performance of the two 
different algorithms. Both classifiers do an excellent job on
this classification problem and approach the ideal behavior.

Equation 1

Figure 1 Plot indicating the percentage of jobs that are 
classified (black) and those that are correctly classified (red) 
in the test data set as a function of probability threshold.
Over 90% of the jobs are classified at the cost of only a 
minimal number of misclassified jobs. 

Finally, we applied the svm classifier to the Uncategorized 
and NA jobs.  Figure 3 shows the result of the percentage of 

Figure 2 ROC-like plot comparing the svm (black) and rF 
(red) classifiers as a function of probability threshold from 
1.0 to 0.05 in decreasing steps of 0.05. 

Figure 3 Plots indicating the percentage of jobs that are 
classified as a function of probability threshold in the 
uncategorized data set (top) and the NA data set (bottom).  
The low number of jobs classified ~20% or less indicates that 
the uncategorized and NA data sets are very different from the 
majority of the job mixture where the jobs are classified by 
application.  Compare to Figure 1 above.

jobs that can be classified as a function of probability 
threshold.  Very few jobs can be classified, on the order of 
20% or less, for a ~0.8 probability threshold.  The contrast 
between Figures 1 and 3 is striking.  Although it is 
disappointing that a larger percentage of the unclassified jobs 
could not be classified, it is perhaps not surprising since the 
uncategorized job data sets mainly consist of custom 
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applications not in the set of community applications that 
make up the bulk of the job mix.
The classification of the Uncategorized and NA data sets by 
application indicated that these job mixtures were very 
different from the job mixture for which the applications were 
known. We therefore tried to group the applications into broad 
categories that were determined by the type of problems 
solved by the applications to see if at least a general 
classification by application type could be made. The 
applications were grouped together into 12 broad categories
by application type: Math, Matlab, Benchmark, 
E/M,photonics, Lattice Quantum Chemistry, Python, 
Astrophysics, Quantum Chemistry, Molecular Dynamics, 
Computational Fluid Dynamics, Extended System Quantum 
Chemistry and Unknown. An svm classifier was trained and 
was able to classify known applications from a test set into the 
broad categories with a 97% success rate, see Table 3 below.  
The only groups that are not well classified are those which 
are represented by a very small number of jobs such that the 
svm trainer had a very limited data set to work with.  This 
could be modified by using a non-native training mixture that 
includes more of the less common groups or simply lumping 
the less common groups in with the Unknown group.  Given 
this success, the trained classifier was applied to the 
Uncategorized and NA data sets.  Figure 4 shows the 
probability threshold plot for the Uncategorized and NA data
sets. The distribution of this data is very similar and only 
slightly improved over the simple application plots shown in 
Figure 3. This again highlights how different the 
Uncategorized and NA job sets are from the mainstream 
characterized job set. 

Table 3. Classification by general application type
group_name number % mix % correct

Astrophysics 8200 2.94 87.01
benchmark 1238 0.44 76.27
CFD 10405 3.74 90.63
E&M,photonics 2922 1.05 98.39
Lattice QCD 344 0.12 89.38
Math 766 0.28 73.70
Matlab 125 0.04 91.43
MD 111102 39.90 98.71
Python 2041 0.73 65.67
QC 7670 2.75 94.60
QC,ES 120236 43.18 98.25
Unknown 13414 4.82 87.52

An analysis of the importance that particular attributes play in 
the various machine learning models is crucial in 
understanding the SUPReMM data as well as the idea that 
applications can be positively identified using a signature. 
Unfortunately, the e1071 svm packages in R and even the 
service package caret [16] do not provide direct programmatic 
access to this information.  However, the randomForest 
package does provide information on the attribute importance
and has allowed us to identify a subset of the attributes that 
have the most impact on the correct classification of 
applications.  Although there may be some differences 
between the two different classification algorithms, we expect 

that the attribute importance should be similar to the extent 
that each is able to take advantage of the information content 
of the data and we plan to test this in the future.

Figure 5 shows an output of the attribute importance plot from 
the randomForest model.  It is generated by permuting only a 
single variable in the presence of all other variables in the 
model.  The larger the effect that this variation produces, the 
more important the attribute is to the model.  Examining 
Figure 5, we see that the 4 most important attributes are: 
MEMORY USED, CPI, CPU SYSTEM, and CPLD. The 
covariance attributes were added to see if SUPReMM data 

Figure 4 Plot indicating the percentage of jobs that are 
classified into one of 12 broad categories as a function of 
probability threshold in the Uncategorized (black) and NA
(red) data sets. The low number of jobs classified ~20% or 
less indicates that the Uncategorized and NA data sets are 
very different from the majority of the job mixture where the 
jobs are classified by application.  Compare to Figures 1 and 
3 above.

which would be difficult for a human observer to interpret, 
could provide information that would improve the model. 
Looking at the importance plot it is clear that this is the case. 
These four most important attributes are mainly concerned 
with CPU and memory usage.  Noticeably absent is any IO or 
network attributes.  The next 6 attributes, MEMORY USED 
COV through LUSTRE TRANSMITTED COV still seem to 
be making a contribution, albeit significantly less.  Looking at 
this list there are CPU, memory and IO attributes (including 
several COV attributes) but no non-IO related network 
contributions.  The final 20 attributes, CPI COV through the 
end, are making diminishing contributions.  Note that all of 
the non-IO networking attributes are in this final category. 
This attribute importance analysis indicates that the memory 
usage, CPU usage and to a lesser extent IO usage contribute to 
the application signature but network usage contributes very 
little. There is one caveat that should be noted when analyzing 
the importance data from Figure 5.  Some of the variables are 
highly correlated.  Since attribute importance is computed by 
permuting only a single variable in the presence of all others, 
if a variable is highly correlated with another variable it may 
appear to be relatively unimportant since it adds very little to 
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the model when its correlated mate is present but it may seem 
much more important if that correlated variable was removed 
from the model.  For example CPU USER, CPU IDLE and 
CPU SYSTEM always add up to one.  CPU SYSTEM was 
found to be the third most important variable while CPU IDLE 
and CPU USER were well down the list.  It may be that if 
CPU SYSTEM was removed from the model that CPU IDLE 
or CPU USER would substantially increase in importance.

Figure 5 Plot indicating the importance of the various 
SUPReMM data attributes in the randomForest classifier 
model.  The top 4 on the list are the most important 
differentiating between applications.  The next 6 seem to still 
be contributing and the final 20 are making at most small 
contributions.

In order to gauge the role that these more important attributes 
play in classification accuracy, we began by training a 
randomForest classifier using the full set of available 
attributes to achieve a 97% success rate on the test data set. 
Removing five highly correlated attributes such as the number 
of file device IOPs and read/write rates also resulted in a 97% 
success rate, as expected. We then examined the mean 
decrease in accuracy (i.e., attribute importance) values 

generated by the random forest classifier trained on the full set 
of attributes and programmatically varied a cutoff value to 
identify attributes falling below the cutoff. For each value of 
the cutoff, we removed these less important attributes and 
trained a new model using from 43 to 1 attribute.  Figure 6
shows the resulting classifier accuracy as a function of the 
number of predictors used. While the accuracy of the each 
new model steadily decreased, it remained at or above 90% 
until the number of attributes fell below five.  In most models
these five attributes (CPI, CPLD, CPU SYSTEM, MEMORY 
USED, MEMORY USED COV) are the most important 
components of the application signature and models including 
only these 5 produce an accuracy of 90%. Interestingly, this 
set does not include any attributes directly related to 
filesystem or network I/O. The inclusion of the number of 
bytes read for both local disk and network filesystem increases 
the overall model accuracy by only 3%.  Other combinations 
of attributes can produce results with similar accuracy. For 
example, the combination of CPU SYSTEM, MEMORY 
USED COV, LOCAL DISK READS, INFINIBAND READS 
COV, and SCRATCH WRITES also yields approximately a 
90% accuracy.

Figure 6 Plot of model accuracy vs. number of predictors. 

IV. DISCUSSION AND FUTURE WORK

A number of conclusions can be drawn from this preliminary 
study using machine learning algorithms to analyze 
SUPReMM job data.  Clearly, machine learning can make a 
real contribution to the analysis of SUPReMM performance 
data.  For example, this analysis tells us that we are capturing 
most of the usage of the popular community applications 
based on parsing the job scripts from jobs that are 
recognizably launched as an identifiable application.  Our
analysis demonstrates that very few instances of these 
community applications are missed because the application 
was launched in a manner such that we missed the data or 
were not able to identify the application.  The present analysis 
clearly supports the idea that these community codes can be 
identified based on a signature derived from performance data 
collected during their execution and that the SUPReMM data 
is sufficient to establish a signature for each application.
Furthermore, even using the reduced set of SUPReMM 
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metrics currently included in the XDMoD data warehouse, 
this signature can be used as the basis for automatic machine 
learning classification.  Other SUPReMM metrics can be 
added to the job data that may further improve the job 
classifiers.  In fact, during the course of this analysis, we 
added some attributes that looked at the variation in the 
recorded metrics rather than their mean values that made a real 
contribution to improving the machine classification.  This is 
an interesting point, because it means that we are taking 
advantage of information from the SUPReMM data set using 
machine learning that would not be otherwise useful.  We 
have made some preliminary randomForest models in which 
time dependent attributes rather than the mean attributes were 
used for the classification.  These models worked very well 
and were approximately as good as the models using mean 
attributes.  One advantage of the time dependent attributes is 
that they have the potential to serve as the basis for cross 
platform classifier models.  Some initial efforts developing 
time dependent attribute based cross platform classification 
models showed limited success.  They were superior to the 
mean based cross platform classifiers, however any cross 
platform classifier can only be useful if the job mixes on the 
two platforms contain similar applications.
Finally, we have just made one initial step in the possible 
applications of this technology.  We do plan to develop the 
machine learning technology that was explored in this work 
into production tools for use in XDMoD.  We anticipate 
extending this study in a number of different directions.  We 
will explore the classification of jobs by various means: by 
efficiency, and by whether they fail or go to completion.
Another avenue for investigation is to refine the classification 
of jobs by broad grouping based on the similarity of the 
applications that was briefly initiated. We may also attempt to 
account for time-dependent performance data, for example 
metrics that spike at different times during the execution of a 
job such as I/O, network traffic, or FLOPS. The question can 
be asked if jobs from these applications grouped together are 
more similar to one another than they are to jobs from other 
groups of applications.  This analysis can also be extended to 
other machines; we can look for similarities and differences 
across different platforms and architectures.  We can also add
other data such as the time based variation of metrics that can 
potentially be analyzed and contribute to some of the 
previously listed analyses. The data for these metrics has 
already been collected, it is just a matter of reprocessing the 
job set to include them in the data warehouse.  Finally, such 
machine learning techniques can be applied to perform a 
multivariate regression analyses on job data sets.  For example 
a regression analysis can be applied to the application kernel 
data available in XDMoD.  The key to the application kernels 
is that the same set of applications are run repeatedly using 
identical inputs.  We have done some initial svm and rF 
regression analysis of the application kernel data.  Initial 
efforts have been successful in modeling wall time on 
Stampede for all of the application kernels.  Such a regression 
analysis of this SUPReMM data may reveal useful 
information on HPC performance.
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Table 2.  Results from sym classifier confusion matrix**
Application Application Predicted by sym Classifier
AMBER (1916) CHARMM (3), CP2K (5), GADGET (1), GROMACS (5), LAMMPS (17), NAMD (16), 

OPENFOAM (3), PYTHON (5), Q-ESPRESSO (5), VASP (68), WRF (3)
ARPS (1173) CACTUS (1), FLASH4 (3), LAMMPS (1), NAMD (3), OPENFOAM (1), VASP (18), WRF (5)
CACTUS (1619) ARPS (1), CHARMM (1), ENZO (5), FD3D (2), FLASH4 (1), LAMMPS (6), NAMD (2), 

PYTHON (4), Q-ESPRESSO (3), VASP (56), WRF (9)
CHARMM++ (6779) AMBER (1), CP2K (4), ENZO (1), FLASH4 (6), GROMACS (9), LAMMPS (12), NAMD (53), 

OPENFOAM (3), Q-ESPRESSO (4), SIESTA (5), VASP (50), WRF (1)
CHARMM (1491) AMBER (3), CHARMM++ (1), CP2K (1), FLASH4 (2), GADGET (7), GROMACS (3), LAMMPS 

(22), NAMD (15), OPENFOAM (1), PYTHON (1), Q-ESPRESSO (2), VASP (66), WRF (3)
CP2K (1407) CACTUS (1), CHARMM++ (3), ENZO (4), FLASH4 (2), GADGET (2), LAMMPS (1), NAMD 

(5), PYTHON (1), Q-ESPRESSO (4), VASP (75), WRF (2)
ENZO (775) AMBER (1), ARPS (1), CACTUS (3), CHARMM (1), CP2K (1), GADGET (14), LAMMPS (5), 

OPENFOAM (4), PYTHON (11), Q-ESPRESSO (11), SIESTA (2), VASP (39), WRF (10) 
FD3D (1564), CHARMM (1), ENZO (1), VASP (12), WRF (1)
FLASH4 (907) ARPS (2), CACTUS (3), CHARMM++ (6), CHARMM (2), CP2K (4), ENZO (4), FD3D (1), 

GADGET (5), IFORTDDWN (1), LAMMPS (9), NAMD (4), OPENFOAM (1), PYTHON (6), Q-
ESPRESSO (6), VASP (61), WRF (29)

GADGET (594) AMBER (1), ARPS (2), CACTUS (4), CHARMM (4), CP2K (1), ENZO (19), FLASH4 (3), 
GROMACS (2), LAMMPS (4), NAMD (3), OPENFOAM (2), PYTHON (4), Q-ESPRESSO (8), 
SIESTA (1), VASP (53), WRF (12)

GROMACS (7692) AMBER (12), ARPS (1), CACTUS (3), CHARMM++ (4), CHARMM (3),  ENZO (2),  FLASH4 
(6), GADGET (1), LAMMPS (79), NAMD (39), OPENFOAM (15), PYTHON (1), Q-ESPRESSO 
(9), SIESTA (2), VASP (35), WRF (4)

IFORTDDWN (835) VASP (12)
LAMMPS (12093) AMBER (32), ARPS (4), CACTUS (13), CHARMM++ (8), CHARMM (13), CP2K (1), ENZO (2), 

FD3D (1), FLASH4 (7), GADGET (5), GROMACS (63), NAMD (53), OPENFOAM (7), PYTHON 
(18), Q-ESPRESSO (8), SIESTA (4), VASP (145), WRF (3)

NAMD (17058) AMBER (9), CACTUS (2), CCARMM++ (51), CHARMM (3),  ENZO (2), FLASH4 (8), 
GROMACS (13),  LAMMPS (55), OPENFOAM (2), PYTHON (4), Q-ESPRESSO (13), SIESTA 
(4), VASP (100), WRF (13)

OPENFOAM (1301) AMBER (5), ARPS (1), CACTUS (9), ENZO (4), FLASH4 (1), GROMACS (20), LAMMPS (26), 
NAMD (4), PYTHON (9), Q-ESPRESSO (10),  VASP (42), WRF (15)

PYTHON (671) AMBER (1), ARPS (3), CHARMM (2), CP2K (1), ENZO (7), FD3D (2), FLASH4 (11), GADGET 
(4), GROMACS (1), LAMMPS (15), NAMD (8), OPENFOAM (15), Q-ESPRESSO (20), SIESTA 
(1), VASP (95), WRF (11)

Q-ESPRESSO (2300) AMBER (5), ARPS (1), CACTUS (13), CHARMM++ (15),  CP2K (3), ENZO (12), FD3D (1), 
FLASH4 (10), GADGET (11), GROMACS (7), LAMMPS (21), NAMD (14), OPENFOAM (14), 
PYTHON (19), SIESTA (11), VASP (188), WRF (13)

SIESTA (1029) CACTUS (1), CHARMM++ (2), CHARMM (1), CP2K (4), GADGET (2), GROMACS (1), 
LAMMPS (6), NAMD (13), PYTHON (1), Q-ESPRESSO (12), SIESTA (1029), VASP (44)

VASP (32499) AMBER (16), ARPS (2), CACTUS (17), CHARMM++ (30), CHARMM (24), CP2K (18), ENZO 
(11), FD3D (7), FLASH4 (13), GADGET (8), GROMACS (7), IFORTDDWN (1), LAMMPS (94), 
NAMD (58), OPENFOAM (8), PYTHON (20), Q-ESPRESSO (51), SIESTA (7), WRF (27)

WRF (2983) ARPS (2), CACTUS (5),  CHARMM (1), CP2K (2), ENZO (12), FD3D (2), FLASH4 (19), 
GADGET (7),   LAMMPS (8), NAMD (14), OPENFOAM (2), PYTHON (11), Q-ESPRESSO (9), 
SIESTA (2), VASP (103)

**Column 1 is the application and the number in parenthesis in this column indicates the number of times it was correctly 
identified by the sym classifier.  For example, AMBER was correctly identified 1916 times.  Column 2 shows, for the application
in the first column, the number of times it was incorrectly identified as each other application.   Thus for AMBER in row one, the
sym classifier incorrectly identified AMBER as GROMACS 5 times.  Zero off diagonal elements are not shown.
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