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Abstract Machine learning techniques were applied to
job accounting and performance data for application
classification. Job data were accumulated using the XDMoD

monitoring technology named SUPReMM; they consist of job
accounting  information, application information from
Lariat/XALT, and job performance data from TACC_Stats. The
results clearly demonstrate that community applications have
characteristic signatures which can be exploited for job
classification. We conclude that machine learning can assist in
classifying jobs of unknown application; in characterizing the job
mixture; and in harnessing the variation in node and time
dependence for further analysis.
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I.  XDMoD AND OPEN XDMoD wiTH SUPREMM

High Performance Computers are a combination of complex
commodity level compute servers, network gear, and storage
subsystems. While the change to commodity level components
for supercomputers has been beneficial in terms of cost, it has
made managing them to ensure they are operating optimally
much more challenging. Given the important role they play in
science and engineering and the fact that they are almost
always oversubscribed, with a backlog of jobs waiting to run,
there has been a great need for an effective tool to manage
supercomputers to ensure that all the subcomponents are
operating optimally and that application codes are running
efficiently.

The National Science Foundation recognized the need for a
comprehensive management tool for its supercomputing
portfolio and in 2010 awarded UB’s Center for Computational
Research (CCR) with a S-year program to, among other
things, develop the XD Metrics on Demand (XDMoD) tool for
XSEDE, the world’s largest distributed supercomputing
infrastructure for open, scientific research [1].

Such data driven management requires a good set of tools for
data collection and analysis at different complexity and scale.

While there have been some tools for system measurement
(see for e.g. [17]) they have been targeted at application tuning
and do not use system usage data of the system being targeted.
We started with the core functionality of data collection as
described in earlier reports on XDMoD [2-9]. Initial attempts
at analysis discussed in these earlier reports were largely
comprised of characterization. We present here more complex
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analyses of this data using modern machine learning based
tools to extract more useful information from this system data.
Such an analysis will be of use in both a posteriori/ in-situ
characterization of system usage and predictive analysis of
jobs.

The XDMoD framework has been described previously [2-9]
and here we will provide only a brief description in order to
provide a context for the discussion of the application of
machine learning technology to XDMoD data. XDMoD
ingests and organizes data on computer system behavior from
multiple sources and then maps that data into metrics required
for overall system management. Metrics provided by XDMoD
include: number of jobs, CPUs consumed, wait time, and wall
time, with minimum, maximum and the average of these
metrics, in addition to many others. These metrics can be
broken down by: field of science, institution, job size, job wall
time, NSF directorate, NSF user status, parent science, person,
principal investigator, and resource. The success of XDMoD
in helping to manage the NSF portfolio of supercomputing
sites led to the development of Open XDMoD, an open source
version of XDMoD for use by academic and industrial HPC
centers [7]. Released in late 2013, Open XDMoD has already
been deployed at well over 60 institutions globally. In addition
to usage metrics, quality of service (QoS) metrics and
application code performance metrics (flops, 10 rates, network
metrics, etc) for all applications running on a given resource
are also available. QoS is measured through application
kernels [2,7,8] and job level performance is measured through
the SUPReMM project [4-7,9], both of which are described in
greater detail below.

Application kernels are designed to provide quality of service
metrics for HPC systems. Typically, HPC facilities do not
have a mechanism to monitor the quality of service they
provide to their end-users. Instead, often times the end-users
are the “canaries in the coal mine” who report problems to
center support personnel when their jobs suddenly run poorly
or fail to run altogether. The key idea behind the application
kernels is to periodically run a series of computationally
lightweight benchmarks and applications through the normal
user submission queues, in order to proactively detect
problems with the hardware and software. The resulting
application kernel job data is ingested into the XDMoD or
Open XDMoD data warehouse, and process control
algorithms automatically detect underperforming application

978-1-4673-6598-7/15 $31.00 © 2015 IEEE

DOI 10.1109/CLUSTER.2015.114

IEEE
computer
pSOCIe

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on March 25,2023 at 14:29:45 UTC from IEEE Xplore. Restrictions apply.

ty



kernels and notify support staff. The application kernels are
designed to span all aspects of the HPC cluster operation
(compute, storage, and network).

The most pertinent enhancement of XDMoD and Open
XDMoD for the purposes of this paper is SUPReMM. The
SUPReMM (Integrated HPC Systems Usage and Performance
of Resources Monitoring and Modeling) project integrates
tools for the collection of job performance data with the
powerful data warehousing and analysis capabilities of
XDMoD. While multiple open source data collection tools are
supported by SUPReMM including Performance Co-Pilot
(PCP) [11] and TACC stats [3-6,12], the data presented in
this paper are from TACC Stats and Lariat (soon to be
replaced by XALT). Lariat captures, among other things, the
application path and environment module information for all
jobs that are launched using ibrun on the Texas Advanced
Computing Center (TACC) machines. TACC_ Stats, an
enhancement to the conventional Linux "sysstat" system-wide
performance monitor, collects a range of node-level
performance information [4-6] and generates aggregated job-
centric views of performance data. In addition to the
information gathered by systat, TACC_Stats records hardware
performance counter values, parallel filesystem metrics, and
high-speed interconnect usage, resolving the measurements by
job and core. The basic component is a collector executed on
every compute node, both at the beginning and end of each job
(via batch scheduler prolog and epilog scripts) and at periodic
intervals (via cron every ten minutes by default). Data
collection takes place in the background, incurs very low
overhead, and requires no modification to user or system
applications. TACC Stats is open source and is freely
available for download [13].

The remainder of this paper is organized as follows: Section
II gives a general introduction to using machine learning
algorithms on SUPReMM data, Section III gives a detailed
description of using machine learning to classify jobs by
application and finally Section IV summarizes what has been
learned and discusses future work.

II.  MACHINE LEARNING ANALYSIS OF SUPREMM DATA

The set of data generated by SUPReMM consists of hundreds
of metrics in the broad categories of CPU usage, memory
usage, network usage and I/O usage. These metrics are
typically averaged over all nodes for the duration of the job
and reported as summaries of job activity. However, the sheer
volume of data makes it challenging to convert this data into
information that would be of use in understanding HPC
operations. Based on our experience with the performance
data, we have selected the metrics that appear to be of the
greatest importance and made them accessible through
XDMoD but even with this reduced set of metrics it can be
difficult to holistically evaluate the job mixture. Since the
SUPReMM data has a large number of samples, a moderate
number of predictor attributes, and can be labeled in several
possible ways we feel that it is well suited to machine learning
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and data discovery techniques such as classification,
dimensionality reduction, and clustering that other workers
have applied to similar data, see for example [10,18] and
references therein.

For the purposes of this analysis, we selected metrics for the
set of all jobs run on TACC Stampede in 2014 consuming
more than one minute of wall time. This resulted in a total of
1,683,850 individual jobs of which 969,641 were labeled with
application names extracted from Lariat data, 238,929
contained application names but were unable to be categorized
using the executable path or name (e.g., “data”, “main”, or
other user-compiled codes), and 475,280 where application
information was unavailable (e.g., they were run outside of
ibrun). A brief general description of the most important
metrics is included in Table 1.

Table 1: Brief description of SUPReMM metrics included.

Metric Description

CPU SYSTEM, CPU | Fraction of CPU time spent in kernel mode, user

USER, CPU IDLE mode, or idle.

CPLD Clock ticks per L1D cache: Average ratio of clock
ticks to L1D cache loads per core.

CPI Clock tics per instruction: Average ratio of clock
ticks to instructions per core.

FLOP Total floating point operations.

MEMORY USED Total memory used per node. This value excludes
the OS buffer cache and kernel memory.

MEMORY Total memory bandwidth in bytes per second.

TRANSFERRED

ETHERNET Total bytes transmitted over the ethernet device per

TRANSMIT node.

INFINIBAND Total bytes received over the InfiniBand device per

RECEIVE node.

HOME WRITE, Total bytes per node written to the indicated

SCRATCH WRITE directory file.

LUSTRE Total data transmitted by the Lustre filesystem

TRANSMIT driver per node.

LOCAL DISK The total local disk reads in bytes per second or

READ IOS, LOCAL operations per second.

DISK READ BYTES

NODES Number of nodes on which the job was executed.

....COV When COV is appended to the metric name, it
indicates the coefficient of variation of the metric
over the various nodes in the job, calculated by
computing the standard deviation of the data for the
nodes and dividing by the mean value, is used rather
than the mean value of the metric itself.

There are a number of different ways to view the SUPReMM
data and types of analyses that can be performed. Our initial
investigations  involved  automatic  identification  of
underperforming or inefficient applications. We manually
classified a set of 80,000 SUPReMM data points as efficient
or inefficient. Where inefficient jobs were defined to be those
with < 30% CPU USER; CPI values < 2; CPLD > 0.1,
CATASTROPHE (a metric indicating a shut down of the CPU
activity partway through the job) < 0.2; or CPU USER
IMBALANCE (a metric indicating some CPUs are not being
used) > 1. The data were selected to be completely separable
and only intended to test different machine learning
classification tools. Initially we tried three different types of
machine learning classifiers: Naive Bayesian (nb) [14],
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Support Vector Machine (svm) [14] and Random Forest (rF)
[15]. The Naive Bayesian classifier performed very poorly on
this problem, which is not surprising since the a priori data
distributions are not normal and the metrics are known to be
correlated. We then investigated the svm and rF classifiers
which do not require normally distributed data or linearly
independent attributes and should be well suited to this case
where a simple classification decision is needed. Using a
class-balanced training sample of 116,371 jobs and test
sample of 77,553 jobs, both the svm and the rF were very
successful as job application classifiers on this test data set
and achieved nearly 100% correct classification of the
withheld test data for this simple problem. The support vector
machine classifier is a supervised learning model which works
by using the training data to construct hyperplanes that
separate one class from all of the others. The best hyperplane
is that which produces the largest separation between the
given class and all of the others. The random Forest classifier
works on a completely different algorithm. The rF classifier
uses the training data to construct an ensemble of decision
trees. The classification of the test data is then done by
polling this ensemble.

We next applied the svm and rF classifiers to identify jobs as
either successful or failed using the job exit code as a label.
Although both classifiers trained very well, they were not very
successful in predicting the success or failure status of the jobs
in the withheld test data. This is not entirely surprising, since
the exit code for a job is typically the exit code of the last
operation that occurred in the run script. It is entirely possible
that, while an application completed successfully, a failure
code was returned. For example, a remove or grep operation in
the run script could return an unsuccessful exit code. The
conclusion is that the available SUPReMM data does not
contain the requisite information to perform this particular
classification task. We plan to revisit this issue when more
SUPReMM attributes, especially time dependent variation
metrics are added to the SUPReMM data set. Finally, we
applied the machine learning technology to the important and
practical task of classifying jobs by their application. The
next section will describe the results of this analysis.

1.

We will describe the results from an analysis that has
generated very promising results, that is, the machine
classification of jobs by their application name based on
performance data (e.g., VASP, LAMMPS, etc.) For facilities
that collect the job executable information (e.g., by using
Lariat or XALT), job data is associated with an application by
comparing the path of the job executable and matching this to
a known list of 121 community applications. While the
applications for many jobs are identified by this method, there
are two sets of job data that go unidentified. For the first set,
called “Uncategorized”, we cannot identify any known
application from the executable path. Many of these jobs are
user-compiled codes and test applications with names such as

“a.out”, “main”, “data”, etc. The second set, predominantly
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those jobs not launched using ibrun on the TACC facilities
have no Lariat data available and are labeled “NA” (Not
Available). We set out to develop a machine learning solution
for automatic classification of jobs to learn more about these
unclassified jobs and find out whether they are similar enough
to the known applications to classify them.

We used the svm classifier from the R package e1071 [14],
using the radial basis kernel tuned with gamma = 0.1 and cost
1000. We defer discussion on the SUPReMM metrics
included in the model to later when we discuss their
importance in detail. We trained on an application-balanced
mixture of 100,000 jobs from Stampede. The classifier was
able to correctly predict 99.95% of the known jobs in the
training set. We applied this trained svm to a test mixture
containing another 100,000 jobs (based on 20 unique
applications), and found that 97% of the jobs were properly
classified by application. Table 2 summarizes the 20 X 20
confusion matrix for this classification process, with each row
representing the results for one of the 20 unique applications.
Table 2 was constructed such that column 1 represents the
actual application with the number of times it was correctly
classified in parentheses. The second column includes the off
diagonal elements of the matrix which list all the misidentified
applications along with the number of times each application
was misidentified in parentheses. For example, in the first
row, AMBER was misidentified as GROMACS 5 times.
Based on the off-diagonal elements of the confusion matrix,
two factors seem to enter into the misclassifications. The first
is the number of jobs the particular applications have in the
native job mix. For example VASP and NAMD are the two
most used applications in the mixture at 33% and 17%,
respectively. VASP is often mistaken for NAMD while
NAMD is most often mistaken for VASP. This could possibly
be ameliorated by weighting the classes or using a non-native
job mixture. The other type of misclassification is mistaking
two similar types of applications. For example, GROMACS
is most often misclassified as LAMMPS where both are
molecular dynamics simulation codes. This will be further
expanded upon when we discuss classification of groups of
similar applications.

The fraction of correctly classified applications was a very
encouraging result; however, one final step is required before
the svm classifier could be applied to the two unclassified job
data sets. Since it is very likely that there are applications in
the Uncategorized and NA data sets which are not in the set of
community applications on which the svm classifier was
trained, it is necessary to look at the probability that the jobs
are properly classified. The svm classifier will find the best
match for the job, but if the probability of the classification is
very low, below some selected threshold value, we would
conclude that the job was not classified. For example, if a job
is classified as application A with only one percent higher
probability than application B, how confident are we that this
is the correct classification? Figure 1, below, shows a plot
indicating the percent of the test jobs that are classified as a
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function of the threshold probability. For example, over 85%
of the test jobs are considered classified, even if we require a
90% probability threshold. Note that for the high probability
classifications the correctly classified and the classified curves
are in complete alignment. As the probability requirement is
relaxed, although more jobs are classified, the correctly
classified curve drops below as some jobs are incorrectly
classified. The user can select the probability threshold to
match the requirements of the classification process depending
on how important it is to classify as many jobs as possible and
how important it is to have as high a correct classification
ratio. For example, Figure 1 shows that over 90% of the jobs
can be classified while incurring very few misclassifications.

The svm and rF classifiers were extensively tested and
compared. While true ROC (receiver operating characteristic)
curves can only be made for binary selection processes, one
can compare the fraction of jobs classified correctly to the
fraction classified incorrectly as a function of probability
threshold as described in Equation 1. Each point (x,y) is a
function of # the probability threshold. P and C are logical
vectors indicating whether or not a given job classification has
met the threshold and has been classified correctly or
incorrectly at that threshold, respectively. N is the total
number of jobs classified correctly or incorrectly. This plot is
shown in Figure 2 and compares the performance of the two
different algorithms. Both classifiers do an excellent job on
this classification problem and approach the ideal behavior.

Equation 1
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Figure 1 Plot indicating the percentage of jobs that are
classified (black) and those that are correctly classified (red)
in the test data set as a function of probability threshold.
Over 90% of the jobs are classified at the cost of only a
minimal number of misclassified jobs.

Finally, we applied the svm classifier to the Uncategorized
and NA jobs. Figure 3 shows the result of the percentage of
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Figure 2 ROC-like plot comparing the svm (black) and rF

(red) classifiers as a function of probability threshold from
1.0 to 0.05 in decreasing steps of 0.05.
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Figure 3 Plots indicating the percentage of jobs that are
classified as a function of probability threshold in the
uncategorized data set (top) and the NA data set (bottom).
The low number of jobs classified ~20% or less indicates that
the uncategorized and NA data sets are very different from the
majority of the job mixture where the jobs are classified by
application. Compare to Figure 1 above.

jobs that can be classified as a function of probability
threshold. Very few jobs can be classified, on the order of
20% or less, for a ~0.8 probability threshold. The contrast
between Figures 1 and 3 is striking.  Although it is
disappointing that a larger percentage of the unclassified jobs
could not be classified, it is perhaps not surprising since the
uncategorized job data sets mainly consist of custom
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applications not in the set of community applications that
make up the bulk of the job mix.

The classification of the Uncategorized and NA data sets by
application indicated that these job mixtures were very
different from the job mixture for which the applications were
known. We therefore tried to group the applications into broad
categories that were determined by the type of problems
solved by the applications to see if at least a general
classification by application type could be made. The
applications were grouped together into 12 broad categories
by application type: Math, Matlab, Benchmark,
E/M,photonics, Lattice Quantum Chemistry, Python,
Astrophysics, Quantum Chemistry, Molecular Dynamics,
Computational Fluid Dynamics, Extended System Quantum
Chemistry and Unknown. An svm classifier was trained and
was able to classify known applications from a test set into the
broad categories with a 97% success rate, see Table 3 below.
The only groups that are not well classified are those which
are represented by a very small number of jobs such that the
svm trainer had a very limited data set to work with. This
could be modified by using a non-native training mixture that
includes more of the less common groups or simply lumping
the less common groups in with the Unknown group. Given
this success, the trained classifier was applied to the
Uncategorized and NA data sets. Figure 4 shows the
probability threshold plot for the Uncategorized and NA data
sets. The distribution of this data is very similar and only
slightly improved over the simple application plots shown in
Figure 3. This again highlights how different the
Uncategorized and NA job sets are from the mainstream
characterized job set.

Table 3. Classification by general application type
group_name number % mix % correct
Astrophysics 8200 2.94 87.01
benchmark 1238 0.44 76.27
CFD 10405 3.74 90.63
E&M,photonics 2922 1.05 98.39
Lattice QCD 344 0.12 89.38
Math 766 0.28 73.70
Matlab 125 0.04 91.43
MD 111102 39.90 98.71
Python 2041 0.73 65.67
QC 7670 2.75 94.60
QC,ES 120236 43.18 98.25
Unknown 13414 4.82 87.52

An analysis of the importance that particular attributes play in
the various machine learning models is crucial in
understanding the SUPReMM data as well as the idea that
applications can be positively identified using a signature.
Unfortunately, the e1071 svm packages in R and even the
service package caret [16] do not provide direct programmatic
access to this information. However, the randomForest
package does provide information on the attribute importance
and has allowed us to identify a subset of the attributes that
have the most impact on the correct classification of
applications.  Although there may be some differences
between the two different classification algorithms, we expect
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that the attribute importance should be similar to the extent
that each is able to take advantage of the information content
of the data and we plan to test this in the future.

Figure 5 shows an output of the attribute importance plot from
the randomForest model. It is generated by permuting only a
single variable in the presence of all other variables in the
model. The larger the effect that this variation produces, the
more important the attribute is to the model. Examining
Figure 5, we see that the 4 most important attributes are:
MEMORY USED, CPI, CPU SYSTEM, and CPLD. The
covariance attributes were added to see if SUPReMM data

40 60 80 100

% jobs classified

20

02 04

probability threshold

Figure 4 Plot indicating the percentage of jobs that are
classified into one of 12 broad categories as a function of
probability threshold in the Uncategorized (black) and NA
(red) data sets. The low number of jobs classified ~20% or
less indicates that the Uncategorized and NA data sets are
very different from the majority of the job mixture where the
jobs are classified by application. Compare to Figures 1 and
3 above.

which would be difficult for a human observer to interpret,
could provide information that would improve the model.
Looking at the importance plot it is clear that this is the case.
These four most important attributes are mainly concerned
with CPU and memory usage. Noticeably absent is any 10 or
network attributes. The next 6 attributes, MEMORY USED
COV through LUSTRE TRANSMITTED COV still seem to
be making a contribution, albeit significantly less. Looking at
this list there are CPU, memory and IO attributes (including
several COV attributes) but no non-IO related network
contributions. The final 20 attributes, CPI COV through the
end, are making diminishing contributions. Note that all of
the non-I0 networking attributes are in this final category.
This attribute importance analysis indicates that the memory
usage, CPU usage and to a lesser extent IO usage contribute to
the application signature but network usage contributes very
little. There is one caveat that should be noted when analyzing
the importance data from Figure 5. Some of the variables are
highly correlated. Since attribute importance is computed by
permuting only a single variable in the presence of all others,
if a variable is highly correlated with another variable it may
appear to be relatively unimportant since it adds very little to
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the model when its correlated mate is present but it may seem
much more important if that correlated variable was removed
from the model. For example CPU USER, CPU IDLE and
CPU SYSTEM always add up to one. CPU SYSTEM was
found to be the third most important variable while CPU IDLE
and CPU USER were well down the list. It may be that if
CPU SYSTEM was removed from the model that CPU IDLE
or CPU USER would substantially increase in importance.

Memory Used

PRI

CPU System

CRID

Memory Used Cov
lustre Rev

Memory Iransferred
FIOPS Cow

k1 OP5

lustre Irans Cov
CPIRKF Cov

ZPU 1dle

Memory Iransferred Cov
Scratch Writes

I.ocal Disk Read Bytes
ZPU User

ZPLID Cov

Wialltime

1.ocal Disk ead 12PS
Wiork Wirites Cow

Home Wirites

Fthernet Irans

CPU User Imblanace
Infiniband Writes
Infiniband Rev Cov
Wiork Wirites o
Infiniband Rev
Infiniband Rev Cov
Infiniband Irans Bytes

ZPU User Tov

T T
32 42

2 s

Mean\)ecreaseﬁ.ccuracy
Figure 5 Plot indicating the importance of the various
SUPReMM data attributes in the randomForest classifier
model. The top 4 on the list are the most important
differentiating between applications. The next 6 seem to still
be contributing and the final 20 are making at most small
contributions.

T T
82 92

In order to gauge the role that these more important attributes
play in classification accuracy, we began by training a
randomForest classifier using the full set of available
attributes to achieve a 97% success rate on the test data set.
Removing five highly correlated attributes such as the number
of file device IOPs and read/write rates also resulted in a 97%
success rate, as expected. We then examined the mean
decrease in accuracy (i.e., attribute importance) values
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generated by the random forest classifier trained on the full set
of attributes and programmatically varied a cutoff value to
identify attributes falling below the cutoff. For each value of
the cutoff, we removed these less important attributes and
trained a new model using from 43 to 1 attribute. Figure 6
shows the resulting classifier accuracy as a function of the
number of predictors used. While the accuracy of the each
new model steadily decreased, it remained at or above 90%
until the number of attributes fell below five. In most models
these five attributes (CPI, CPLD, CPU SYSTEM, MEMORY
USED, MEMORY USED COV) are the most important
components of the application signature and models including
only these 5 produce an accuracy of 90%. Interestingly, this
set does not include any attributes directly related to
filesystem or network I/O. The inclusion of the number of
bytes read for both local disk and network filesystem increases
the overall model accuracy by only 3%. Other combinations
of attributes can produce results with similar accuracy. For
example, the combination of CPU SYSTEM, MEMORY
USED COV, LOCAL DISK READS, INFINIBAND READS
COV, and SCRATCH WRITES also yields approximately a
90% accuracy.

Maodal Accuracy
06 08 1.0

04

02

00

30 20

# of Predictors

Figure 6 Plot of model accuracy vs. number of predictors.

IV. DISCUSSION AND FUTURE WORK

A number of conclusions can be drawn from this preliminary
study using machine learning algorithms to analyze
SUPReMM job data. Clearly, machine learning can make a
real contribution to the analysis of SUPReMM performance
data. For example, this analysis tells us that we are capturing
most of the usage of the popular community applications
based on parsing the job scripts from jobs that are
recognizably launched as an identifiable application. Our
analysis demonstrates that very few instances of these
community applications are missed because the application
was launched in a manner such that we missed the data or
were not able to identify the application. The present analysis
clearly supports the idea that these community codes can be
identified based on a signature derived from performance data
collected during their execution and that the SUPReMM data
is sufficient to establish a signature for each application.
Furthermore, even using the reduced set of SUPReMM

Authorized licensed use limited to: University at Buffalo Libraries. Downloaded on March 25,2023 at 14:29:45 UTC from IEEE Xplore. Restrictions apply.



metrics currently included in the XDMoD data warehouse,
this signature can be used as the basis for automatic machine
learning classification. Other SUPReMM metrics can be
added to the job data that may further improve the job
classifiers. In fact, during the course of this analysis, we
added some attributes that looked at the variation in the
recorded metrics rather than their mean values that made a real
contribution to improving the machine classification. This is
an interesting point, because it means that we are taking
advantage of information from the SUPReMM data set using
machine learning that would not be otherwise useful. We
have made some preliminary randomForest models in which
time dependent attributes rather than the mean attributes were
used for the classification. These models worked very well
and were approximately as good as the models using mean
attributes. One advantage of the time dependent attributes is
that they have the potential to serve as the basis for cross
platform classifier models. Some initial efforts developing
time dependent attribute based cross platform classification
models showed limited success. They were superior to the
mean based cross platform classifiers, however any cross
platform classifier can only be useful if the job mixes on the
two platforms contain similar applications.

Finally, we have just made one initial step in the possible
applications of this technology. We do plan to develop the
machine learning technology that was explored in this work
into production tools for use in XDMoD. We anticipate
extending this study in a number of different directions. We
will explore the classification of jobs by various means: by
efficiency, and by whether they fail or go to completion.
Another avenue for investigation is to refine the classification
of jobs by broad grouping based on the similarity of the
applications that was briefly initiated. We may also attempt to
account for time-dependent performance data, for example
metrics that spike at different times during the execution of a
job such as /0O, network traffic, or FLOPS. The question can
be asked if jobs from these applications grouped together are
more similar to one another than they are to jobs from other
groups of applications. This analysis can also be extended to
other machines; we can look for similarities and differences
across different platforms and architectures. We can also add
other data such as the time based variation of metrics that can
potentially be analyzed and contribute to some of the
previously listed analyses. The data for these metrics has
already been collected, it is just a matter of reprocessing the
job set to include them in the data warehouse. Finally, such
machine learning techniques can be applied to perform a
multivariate regression analyses on job data sets. For example
a regression analysis can be applied to the application kernel
data available in XDMoD. The key to the application kernels
is that the same set of applications are run repeatedly using
identical inputs. We have done some initial svm and rF
regression analysis of the application kernel data. Initial
efforts have been successful in modeling wall time on
Stampede for all of the application kernels. Such a regression
analysis of this SUPReMM data may reveal useful
information on HPC performance.
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Table 2. Results from sym classifier confusion matrix**

Application Application Predicted by sym Classifier

AMBER (1916) CHARMM (3), CP2K (5), GADGET (1), GROMACS (5), LAMMPS (17), NAMD (16),
OPENFOAM (3), PYTHON (5), Q-ESPRESSO (5), VASP (68), WRF (3)

ARPS (1173) CACTUS (1), FLASH4 (3), LAMMPS (1), NAMD (3), OPENFOAM (1), VASP (18), WRF (5)

CACTUS (1619) ARPS (1), CHARMM (1), ENZO (5), FD3D (2), FLASH4 (1), LAMMPS (6), NAMD (2),
PYTHON (4), Q-ESPRESSO (3), VASP (56), WRF (9)

CHARMM++ (6779) AMBER (1), CP2K (4), ENZO (1), FLASH4 (6), GROMACS (9), LAMMPS (12), NAMD (53),
OPENFOAM (3), Q-ESPRESSO (4), SIESTA (5), VASP (50), WRF (1)

CHARMM (1491) AMBER (3), CHARMM-++ (1), CP2K (1), FLASH4 (2), GADGET (7), GROMACS (3), LAMMPS
(22), NAMD (15), OPENFOAM (1), PYTHON (1), Q-ESPRESSO (2), VASP (66), WRF (3)

CP2K (1407) CACTUS (1), CHARMM++ (3), ENZO (4), FLASH4 (2), GADGET (2), LAMMPS (1), NAMD
(5), PYTHON (1), Q-ESPRESSO (4), VASP (75), WRF (2)

ENZO (775) AMBER (1), ARPS (1), CACTUS (3), CHARMM (1), CP2K (1), GADGET (14), LAMMPS (5),
OPENFOAM (4), PYTHON (11), Q-ESPRESSO (11), SIESTA (2), VASP (39), WRF (10)

FD3D (1564), CHARMM (1), ENZO (1), VASP (12), WRF (1)

FLASH4 (907) ARPS (2), CACTUS (3), CHARMM++ (6), CHARMM (2), CP2K (4), ENZO (4), FD3D (1),
GADGET (5), IFORTDDWN (1), LAMMPS (9), NAMD (4), OPENFOAM (1), PYTHON (6), Q-
ESPRESSO (6), VASP (61), WRF (29)

GADGET (594) AMBER (1), ARPS (2), CACTUS (4), CHARMM (4), CP2K (1), ENZO (19), FLASH4 (3),

GROMACS (2), LAMMPS (4), NAMD (3), OPENFOAM (2), PYTHON (4), Q-ESPRESSO (8),
SIESTA (1), VASP (53), WRF (12)

GROMACS (7692)

AMBER (12), ARPS (1), CACTUS (3), CHARMM++ (4), CHARMM (3), ENZO (2), FLASH4
(6), GADGET (1), LAMMPS (79), NAMD (39), OPENFOAM (15), PYTHON (1), Q-ESPRESSO
(9), SIESTA (2), VASP (35), WRF (4)

IFORTDDWN (835)

VASP (12)

LAMMPS (12093)

AMBER (32), ARPS (4), CACTUS (13), CHARMM-++ (8), CHARMM (13), CP2K (1), ENZO (2),
FD3D (1), FLASH4 (7), GADGET (5), GROMACS (63), NAMD (53), OPENFOAM (7), PYTHON
(18), Q-ESPRESSO (8), SIESTA (4), VASP (145), WRF (3)

NAMD (17058) AMBER (9), CACTUS (2), CCARMM++ (51), CHARMM (3), ENZO (2), FLASH4 (8),
GROMACS (13), LAMMPS (55), OPENFOAM (2), PYTHON (4), Q-ESPRESSO (13), SIESTA
(4), VASP (100), WRF (13)

OPENFOAM (1301) AMBER (5), ARPS (1), CACTUS (9), ENZO (4), FLASH4 (1), GROMACS (20), LAMMPS (26),

NAMD (4), PYTHON (9), Q-ESPRESSO (10), VASP (42), WRF (15)

PYTHON (671)

AMBER (1), ARPS (3), CHARMM (2), CP2K (1), ENZO (7), FD3D (2), FLASH4 (11), GADGET
(4), GROMACS (1), LAMMPS (15), NAMD (8), OPENFOAM (15), Q-ESPRESSO (20), SIESTA
(1), VASP (95), WRF (11)

Q-ESPRESSO (2300)

AMBER (5), ARPS (1), CACTUS (13), CHARMM++ (15), CP2K (3), ENZO (12), FD3D (1),
FLASH4 (10), GADGET (11), GROMACS (7), LAMMPS (21), NAMD (14), OPENFOAM (14),
PYTHON (19), SIESTA (11), VASP (188), WRF (13)

SIESTA (1029) CACTUS (1), CHARMM++ (2), CHARMM (1), CP2K (4), GADGET (2), GROMACS (1),
LAMMPS (6), NAMD (13), PYTHON (1), Q-ESPRESSO (12), SIESTA (1029), VASP (44)

VASP (32499) AMBER (16), ARPS (2), CACTUS (17), CHARMM++ (30), CHARMM (24), CP2K (18), ENZO
(11), FD3D (7), FLASH4 (13), GADGET (8), GROMACS (7), IFORTDDWN (1), LAMMPS (94),
NAMD (58), OPENFOAM (8), PYTHON (20), Q-ESPRESSO (51), SIESTA (7), WRF (27)

WRF (2983) ARPS (2), CACTUS (5), CHARMM (1), CP2K (2), ENZO (12), FD3D (2), FLASH4 (19),

GADGET (7), LAMMPS (8), NAMD (14), OPENFOAM (2), PYTHON (11), Q-ESPRESSO (9),
SIESTA (2), VASP (103)

**Column 1 is the application and the number in parenthesis in this column indicates the number of times it was correctly
identified by the sym classifier. For example, AMBER was correctly identified 1916 times. Column 2 shows, for the application

in the first column, the number of times it was incorrectly identified as each other application.

Thus for AMBER in row one, the

sym classifier incorrectly identified AMBER as GROMACS 5 times. Zero off diagonal elements are not shown.
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