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SUMMARY

Application kernels are computationally lightweight benchmarks or applications run repeatedly on high per-
formance computing (HPC) clusters in order to track the Quality of Service (QoS) provided to the users.
They have been successful in detecting a variety of hardware and software issues, some severe, that have
subsequently been corrected, resulting in improved system performance and throughput. In this work, the
application kernels performance monitoring module of eXtreme Data Metrics on Demand (XDMoD) is
described. Through the XDMoD framework, the application kernels have been run repetitively on the Texas
Advanced Computing Center’s Stampede and Lonestar4 clusters for a total of over 14,000 jobs. This
provides a body of data on the HPC clusters operation that can be used to statistically analyze how the
application performance, as measured by metrics such as execution time and communication bandwidth,
is affected by the cluster’s workload. We discuss metric distributions, carry out regression and correlation
analyses, and use a PCA study to describe the variance and relate the variance to factors such as the spatial
distribution of the application in the cluster. Ultimately, these types of analyses can be used to improve the
application kernel mechanism, which in turn results in improved QoS of the HPC infrastructure that is
delivered to the end users. Copyright © 2015 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Here, a brief overview of XD metrics on demand (XDMoD) is presented; a more detailed description
can be found in references [1–6]. XDMoD was originally designed to provide the analyses required for
effective overall management of the computational and operational resources of the Extreme Science
and Engineering Discovery Environment (XSEDE) [7] as part of the XSEDE Technology Audit
Service. Because the operation of high performance computing (HPC) centers are conceptually very
similar to XSEDE (i.e., they provide researchers with access to high-end computational resources),
an open source version of XDMoD (Open XDMoD) that shares much of the functionality of
XDMoD has also been developed and is widely in use at academic and industrial HPC centers and
can be downloaded from http://xdmod.sourceforge.net/.

The XDMoD tool ingests and organizes data on computer system usage and performance and then
maps that data into metrics required for overall system management. Conceptually, it can be considered
to consist of three primary components: (1) the XDMoD portal that provides the user with access to a
wide variety of usage and performance metrics through a GUI; (2) application kernels, a method for
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measuring the Quality of Service (QoS) provided by the HPC infrastructure; and (3) integrated HPC
systems usage and performance of resources monitoring and modeling (SUPReMM)/TACC_Stats
with Lariat, a method for measuring performance data for all jobs running on the HPC
infrastructure. We briefly describe each one of these components.

The XDMoD portal provides a rich set of features accessible through an intuitive graphical
interface, which is tailored to the role of the user. Metrics provided by XDMoD include number of
jobs, CPUs consumed, wait time, and wall time, with minimum, maximum, and the average of these
metrics, in addition to many others. These metrics can be broken down by field of science,
institution, job size, job wall time, National Science Foundation (NSF) directorate, NSF user status,
parent science, person, principal investigator, and by resource. Figure 1 shows a screenshot of the
XDMoD portal. For Open XDMoD, which is designed for academic and industrial HPC centers as
opposed to XSEDE, metrics are organized by a customizable hierarchy appropriate for these
organizations including group, faculty member, department, and decanal unit. Performance and QoS
metrics of the HPC infrastructure are also provided, along with application code-specific
performance metrics (flops, I/O rates, network metrics, etc.).

In addition to providing usage data, the XDMoD tool is also designed to measure QoS and
preemptively identify underperforming hardware and software by deploying customized,
computationally lightweight ‘application kernels’ that are run frequently (daily to several times per
week) to continuously monitor HPC system performance and reliability from the application users’
point of view [3, 5, 6]. The term ‘computationally lightweight’ is used to indicate that the application
kernel requires relatively modest resources for a given run frequency. Accordingly, through XDMoD,
system managers have the ability to proactively monitor system performance as opposed to having to
rely on users to report failures or underperforming hardware and software.

The third primary component of the XDMoD tool is centered around monitoring the performance of
all user jobs running on a given HPC resource with the goal of identifying inefficient resource use and
using the collected metrics to both identify the areas of poor performance and provide information that can
be utilized to remedy the inefficiency. This is accomplished through the SUPReMMprogram [1, 8, 9] that
utilizes TACC_Stats and Lariat to collect detailed job and node level performance data without requiring
recompilation of end user codes and with low system overhead (less than 0.1% on the Texas Advanced
Computing Center (TACC) Stampede system). For example, TACC_Stats can monitor the CPU
utilization of a user’s job and determine if the CPUs are being efficiently used. Identifying and
correcting poorly running codes are important, as it will allow more efficient utilization of these
oversubscribed resources.
Figure 1. Screen shot of the XDMoD portal. Note the tab-based navigation. Shown is a plot of the interleave
or random (IOR) file system benchmark application kernel running on Stampede. For the date range shown,
the Lustre file system experienced serious problems. Texas Advanced Computing Center (TACC) made re-

pairs that restored most of the bandwidth.
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Taken together, these three components of XDMoD provide an effective and much needed tool for
the comprehensive management of HPC systems. While there have been numerous publications
related to XDMoD and SUPReMM, to date, we have not yet described the implementation and
analysis of the application kernels in great detail. Accordingly, this paper focuses on application
kernels and their utility in providing QoS metrics and preemptively identifying underperforming
hardware and software.

The remainder of this paper is organized as follows. Related work is presented in Section 2.
An overview of how application kernel monitoring is implemented is presented in Section 3.
Section 3 also describes our data sources and lists examples where the use of application
kernels helped identify and diagnose QoS issues on production HPC resources. The main body
of the paper, Sections 4 and 5 present an analysis of variance of application kernel data run on
TACC’s Stampede and Lonestar4 facilities including distributions of the data, an analysis of
outliers, an analysis of network latency as a function of the number of hops between the
nodes, application performance as a function of Lustre system loading, a regression/correlation
analysis of the various metrics, and a principle components analysis of the metrics. The final
section, Section 6, provides a brief discussion of the value of using application kernels for
performance analysis.
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2. RELATED WORK

A number of open source and commercial monitoring tools are available to track HPC
performance, and some network monitoring systems can be adopted for HPC performance
monitoring purposes. Some of the more commonly used open source tools are performance co-
pilot [10], Ganglia [11, 12], lightweight distributed metric service (LDMS) [13], Zabbix [14],
and TACC_Stats [8, 9]. Nearly all of these tools keep track of the hardware and operating
system performance counters. They are mainly concerned with the performance of the
computational nodes. However, they cannot directly address the scientific software performance
quantitatively, that is, the application running in a degraded mode or compare performance
across different computational resources. This is partially because some of the mentioned tools do not
track by application and even for those which do, per node or per job statistics cannot reveal the
absolute application performance as it is related to the users’ problem sizes and types. XDMoD’s
application kernel module addresses this by repeatedly running the same set of application kernels
with the same input parameters.

Synthetic benchmarks and real-world application benchmarks are commonly used to assess the
performance of hardware and software infrastructure. The most popular synthetic benchmark for
HPC systems is high performance Linpack [15] that is used for ranking the top 500 most powerful
computer systems. The HPC challenge (HPCC) benchmark [16] targets the overall system
performance and includes multiple subtests such as Linpack, fast Fourier transform, matrix
multiplication, and others. Many synthetic benchmarks target a specific subsystem: Intel message-
passing interface (MPI) benchmarks (IMB) [17] (Intel, Santa Clara, CA, USA) measure node-to-
node communication, interleave or random (IOR) [18], and MPI-Tile-IO [19] target the performance
of high-performance parallel file systems. The purpose of the synthetic test is to show the peak
performance; however, they have a very limited predictability on the performance of real-life
applications [20]. To address that question, some benchmarks like Standard Performance Evaluation
Corporation MPI2007 [21] extract the computationally intense routines from various applications
and use them for benchmarking. Of course, applications themselves can be used as a benchmark.
However, as opposed to the nearly turn-key solution of synthetic benchmarks, the interested party
will need to identify a proper test problem.

Benchmarks are also often used to fine-tune the performance of HPC resource during initial
deployment. During production, it is considered a good practice to regularly rerun them especially
after major changes in the infrastructure. Usually, these benchmarks are run and analyzed manually
or using custom local ‘in-house’ scripts. The application kernel module of XDMoD provides
automatic tools for the regular execution of application kernels and performance analysis. Some of
Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:5238–5260
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interested system manager can receive periodic reports on their HPC resource performance or
choose to receive notification only when problems are detected.
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3. APPLICATION KERNELS PERFORMANCE MONITORING MODULE

As mentioned earlier, the main goal of the application kernels module is to monitor the performance of
HPC resources to help ensure QoS and preemptively identify underperforming or failed hardware and
software. When a new resource is introduced, a great deal of work is typically expended fine-tuning its
computational performance. Unfortunately, substantially less work is carried out to ensure its
continued operational quality. However, during the lifetime of the resource, often substantial
changes happen to the software stack and hardware configuration. Therefore, there is a need for an
automatic tool that will be able to identify underperforming software and hardware and inform
interested parties about problems that arise prior to impacting users and causing wasted cycles on
resources that are typically oversubscribed. The application kernels performance monitoring module
accomplishes this goal by a periodic execution of computationally lightweight application kernels
and an analysis of their performance metrics (for example, wall time).

3.1. Operation overview

The application kernel module of XDMoD consists of three parts. (1) The application kernel remote
runner (AKRR) executes the scheduled jobs, monitors their execution, processes the output, extracts
performance metrics, and exports the results to the database. (2) The application kernel process
control identifies poorly performing individual jobs. (3) The application kernel automatic anomaly
detector analyzes the performance of all application kernels executed on a particular resource and
automatically recognizes poorly performing application kernels.

3.1.1. Application kernel remote runner. Application kernel remote runner executes application
kernels on HPC resources using the same mechanism as a regular user, for example, it uses secure
shell to access the system and submits job scripts through the system scheduler. This allows for not
only monitoring the performance of the application kernels themselves but also testing the whole
workflow that regular users employ in order to carry out their work.

Application kernel remote runner was designed to automatically execute a large number of jobs on a
number of HPC resources according to a user-defined schedule. To achieve high reliability, a multi-
process design was chosen where the master process dispatches a small self-contained subtask to the
child processes. This allows the master process code to be relatively simple and moves the more
complicated code to the child processes. This way, a severe error on one of the child processes does
not cause the whole system to collapse.

Although application kernels are computationally lightweight and their pure execution time lies
between minutes to half an hour, the total time from job script creation to loading the results to the
database can easily take several days, due to potentially long-queue wait times. In order to manage a
large number of jobs and to be able to recover from critical failures, the entire application kernel
execution task is split into small self-contained subtasks (see Table I for the subtasks). Each subtask
is executed by a child process and should take only a few seconds. At the end of each subtask, the
current job state is dumped to the file system. This allows us to recover to the last known state of
AKRR in the case of a critical failure.

The AKRR master process utilizes two queues for job tracking: The first one is named ‘scheduled
tasks’ and contains the jobs scheduled for execution in the future, and the second one is named
‘active tasks’ and contains jobs that are currently being executed (Figure 2). When the scheduled
time occurs, the job is moved from the scheduled tasks queue to the active tasks queue with the
current due time. When a job in the active tasks queue is due, the master process dispatches a
subtask of this job to a child process. The child process executes the subtask, and in the case of
a successful execution, it requests the master process to schedule the next subtask for execution;
Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:5238–5260
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Table I. Subtasks of the application kernel jobs.

Number Subtask/step description

1 Create a job script.
2 Copy it to HPC resource and submit to queue. Reschedule to repeat until success or allowed number of

attempts is exceeded.
3 Check job status on HPC resource. Reschedule to repeat until job complete or allowed in-queue time is

exceeded.
4 Collect the job output if it is present.
5 Process the output if it was collected.
6 Load results to database. Reschedule to repeat until success or allowed number of attempts is exceeded.

HPC, high performance computing.

Figure 2. Illustration of the application kernel remote runner (AKRR) master process. The ‘scheduled tasks’
queue contains the jobs scheduled for execution in the future. When the scheduled time occurs, the job is
moved to the ‘active tasks’ queue, and at the due time, the master process dispatches a subtask of this job
to a child process. The child process executes the subtask, and in the case of a successful execution, it re-
quests the master process to schedule the next subtask for execution; otherwise, the same subtask is
rescheduled for future execution. When all subtasks are completed or the allowed number of rescheduling

attempts is exceeded, the job is moved out of the active tasks queue.
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otherwise, the same subtask is rescheduled for future execution. When all subtasks are completed or
the allowed number of rescheduling attempts is exceeded, the job is moved out of the active tasks
queue.

3.1.2. Application kernel process control. Because the same input file is used each time for a given
application kernel, the execution time or other metric that the application kernel is designed to
measure (for example, I/O rate) should be relatively constant from one run to the next. Indeed, the
Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:5238–5260
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very basis for the use of the application kernels is to provide QoS metrics. Because there are a
substantial number of application kernels and there can be several metrics associated with each
application kernel, it is desirable to have an automated process for determining if each application
kernel is performing within its normal bounds. We refer to this scheme as process control.

Process control monitors the performance of each individual application kernel metric and
automatically identifies underperforming regions. Figure 3 illustrates the identified performance
regions for the ping bandwidth metric of the IMB kernel. Each data point is categorized as either in
control, out of control, or better than control. The control region is defined to be the normal operating
envelope of the application kernel. In the beginning, the control region is automatically selected and
is often associated with the installation of a new application kernel. The process, in this case, the
performance of a given application kernel, is assumed to be nominally in control in this region. If the
five-point running average at a given point beyond the control region exceeds a specified tolerance
(based upon the data range in the control region), the process is flagged as out of control. In Figure 3,
the region where the network PingPing bandwidth metric of the IOR application kernel drops
substantially is automatically evaluated to be out of control. The control region is automatically
readjusted to account for software environment updates. The updates are determined by the change in
application signature [22]. The five-point running average used to determine the baseline for a given
Figure 3. Application kernel process control. The time history for the network benchmarking application
kernel, Intel message-passing interface (MPI) benchmarks (IMB), demonstrates an underperforming region.
The solid blue line is the data, the dashed black line is a five-point average, and the blue shading indicates
the control zone range. The red zones indicate that the process is out of control in an unfavorable sense,

while the green zones indicate superior performance compared to the in-control performance.

Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:5238–5260
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metric measured by a specific application kernel argues in favor of running the application kernels fairly
frequently (daily or several times a week at least). For example, if they are only run once per week, then
it may be several weeks before enough runs have occurred for the process control algorithm to
automatically identify a poorly performing application kernel. The end result being that the HPC
resource may have been running in a degraded mode for that entire time.

3.1.3. Application kernel automatic anomaly detector. The automatic anomaly detector creates a
performance map for all application kernels executed on a particular HPC resource (Figure 4). The
performance map is a discrete heat map depicting the dependency of the application kernel
performance on its execution on a given day. The single day performance of an application kernel
on a given resource is summarized as a discrete variable that can take three values. These values are
color coded as follows: Green means the application kernel ran successfully (was in-control) at least
once on that day, yellow indicates that the application kernel ran but was out of control, and red
indicates the failure of the application kernel to run for all runs that day. This discrete summary is
Figure 4. Portion of the application kernel performance map for the Edge cluster at Center for Computational
Research (CCR) showing which kernels ran normally (green), which ones ran sub-optimally (yellow), and
which ones failed to run (red). The three integers in each colored box, which are referred to as a triplet, are
respectively the number of runs of the application kernel that was in-control, the number out of control, and
the number of times the application kernel failed to run on that particular day. For example, 1/0/1 would re-
fer to an application kernel that ran two times, and one of the times was in-control, and the other time failed
to run. Similarly, 2/1/0 would indicate that the application kernel ran three times, and two of those times

were in-control, and one time was out of control.
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used for the creation of a performance heat map for automatic anomaly detection. Using pattern
analysis, the following problems are detected: (1) All application kernels failed/underperformed on a
given day or several days in a row; (2) specific application kernels failed/underperformed on all
node counts on a given day or several days in a row; and (3) specific application kernels
failed/underperformed on certain node count on a given day or several days in a row. Later on, the
identified problems are sorted according to severity and sent to interested personnel via the
execution summary report (Figure 5). In addition, the report also presents application kernel
execution statistics and the performance map. The reports can be delivered by e-mail to subscribed
users on a regular basis (daily, weekly, or monthly) or in case of degraded performance. The
application kernel process control and the application kernel automatic anomaly detector allow site
administrators to easily monitor application kernel run failures for troubleshooting performance
issues at their site.
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3.2. Application kernels

In order to provide a useful characterization of HPC resource performance, a set of application kernels
should test critical HPC resource components and should closely resemble the calculations performed
by the real users. Our selection of application kernels can be separated into two categories: benchmark-
based and real application-based application kernels. The first set addresses the performance of HPC
resource components, while the second set addresses the performance of real applications.
Furthermore, because different science fields can utilize similar numerical methods, the performance
of some applications and benchmarks can, to some extent, be transferred to other applications (for
more details, see the Berkeley ‘dwarfs’ classification of numeric methods [23] and its overlap with
application areas [24]). Currently, eight application kernels are used for performance monitoring:
Northwest computational chemistry program (NWChem) [25], general atomic and molecular
electronic structure system (GAMESS) [26], nanoscale molecular dynamics program (NAMD) [27],
Enzo [28], Graph500 [29], HPCC [16], IMB [17], and IOR [18]. Figure 6 shows the top 20
applications executed on Stampede during the 2013 year. As can be seen, molecular dynamics
simulation dominates the resource. Electronic structure calculations and applications that heavily
rely on PDE solving are also among the top applications. Our current selection of application
kernels provides a good coverage for this job mixture. In the rest of this section, we briefly describe
each application kernel to characterize the type of information that each provides on HPC
operations; more details on the application kernel input parameters can be found in APPENDIX A.

Northwest computational chemistry program (NWChem) [25] is a heavily used computational
chemistry code that spans the gamut from molecular mechanics and molecular dynamics to full ab
initio calculations. Its design goal was to handle a wide range of problems in quantum chemistry
and dynamics. It was designed to be scalable to take advantage of the computational capability of
large HPC clusters to address large problem sizes.

General atomic and molecular electronic structure system code (GAMESS-US) [26] is an ab initio
computational chemistry code.

Nanoscale molecular dynamics program (NAMD) [27] is a parallel molecular dynamics code that
was specifically designed for high performance simulations on large HPC clusters. It is routinely
one of the most heavily run applications on the large XSEDE compute resources. It is primarily
used for large biochemical problems. It has been scaled to thousands of cores.

Graph500 [29] is a benchmark that measures the performance of breadth-first search on a graph.
There are two kernels; the first generates a graph and compresses it, and the second does a parallel
search over random vertices.

The HPCC benchmark [16] is a benchmark that consists of seven tests: (1) Linpack; (2) matrix
multiplication; (3) memory bandwidth; (4) parallel matrix transpose; (5) random memory access; (6)
fast Fourier transform; and (7) bandwidth and latency. The goal is to measure a wide range of HPC
operations.

Intel MPI benchmark (IMB) [17] is an Intel benchmark that measuresMPI node-to-node communication.
Interleave or random benchmark [18] is used to test parallel file systems using portable operating

system interface (POSIX), MPI-IO, and hierarchical data format 5 (HDF5) interfaces.
Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:5238–5260
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Figure 5. Fragment of an e-mail report generated by the automatic anomaly detector. The e-mail contains
hypertext markup language (HTML) links that will redirect to areas of interest within e-mail or to the
XDMoD website to view a detailed report on the individual application kernel run. Throughout the report,
color coding is used: green for normally performing jobs, yellow for underperforming, and red for
completely failed runs. In this report, it was determined that all jobs submitted to the Gordon high perfor-
mance computing (HPC) resource failed to execute. The performance map shows that given application ker-
nels were performing properly at the end of July and suddenly failed to execute. Clicking on particular jobs
will bring a detailed job execution report, which indicates an inability to access the resource. Further inves-

tigation revealed the change in resource access method from GlobusSSH to OpenSSH.
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Figure 6. Applications ranking on Stampede for the year 2013. TACC, Texas Advanced Computing Center.
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Enzo [28] is an adaptive mesh refinement code for astrophysical simulation of cosmological
structure formation. The purpose of this code in our application kernel collection is to address the
performance of scientific applications that utilize adaptive mesh refinement in solving PDEs.

The proper choice of application kernel input parameters is critical for keeping total execution time
small but still being large enough to be representative of a real-life workload. Further, complicating
these requirements, it is also desirable to use the same problem for all node counts in order to
monitor the parallel scaling. Furthermore, these input parameters eventually need to be readjusted
because of growth of computational power and advances in the user applications. For NWChem,
GAMESS, NAMD, Graph500, and Enzo, we choose to use the same problem size, and for HPCC,
IMB, and IOR, the problem size is proportional to the node count. The input files used our suite of
application kernels is distributed with the application kernel toolkit, which is part of the release of
Open XDMoD. The parallel scaling of application kernels with chosen inputs is shown in Figure 7.
The total run-time for the majority of application kernels lies in the 1–30-min range.
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3.3. The use of application kernels to assure QoS

The application kernels deployed as part of XDMoD have demonstrated their utility in helping to
maintain the QoS on XSEDE resources. As one example, see Figure 8 taken directly from an
XDMoD plot. Poor performance of the most recent version of NWChem 6.3 was identified through
the application kernels on the Kraken supercomputer at the National Institute for Computational
Sciences (NICS). Initially, it was discovered through the NWChem application kernel that NWChem
version 6.1.1 had stopped running. Our analysis showed that this version had been recompiled by
the service provider and had broken a dependency on the optimized linear algebra library if the
default launching scheme was used (i.e., ‘module load NWChem’). In addition, as shown in
Figure 8, the most recent version of NWChem (NWChem 6.3) suffered a significant (three to eight
times) decrease in performance and inverted scaling behavior. The service provider was informed
about both issues, and as a result, NICS issued a notification e-mail informing users about the poor
performance of NWChem 6.3 and reverted to a prior version of NWChem (version 6.1). The
degraded performance of version 6.3 was later traced to drop support for the interconnect used in
Kraken.

Another example, this time uncovering a system-wide performance degradation in the parallel file
system used for scratch space on the HPC resource at the Center for Computational Research –
University at Buffalo (CCR), is shown in Figure 9. Here, the IOR application kernel clearly
Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:5238–5260
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Figure 7. Application kernels parallel performance scaling on Stampede. (A) Application kernels with con-
stant problem size. (B) Application kernels for which problem size grows as the number of nodes. Perfor-
mance scaling is defined as the ratio of execution wall time on single nodes to wall time on multiple
nodes. In case of nanoscale molecular dynamics program (NAMD) and Graph500, reverse simulated New-
ton second per day and reverse traversed edges per seconds (TEPS) were used instead of wall time. In our
implementation of the Graph500 benchmark, on a single node, we use the pure OpenMP version as it is sub-
stantially faster than the hybrid OpenMP/message-passing interface (MPI) version utilized for multi-node
configurations. GAMESS, general atomic and molecular electronic structure system; NWChem, Northwest
computational chemistry program; IMB, Intel message-passing interface (MPI) benchmarks; HPCC, high

performance computing challenge; IOR, interleave or random.

Figure 8. Northwest computational chemistry program (NWChem)-based application kernel discovers per-
formance degradation on Kraken caused by a new version of NWChem. Performance is measured as total
wall time. The points on the left correspond to earlier compilation of NWChem 6.1.1 and on the right to cur-
rent version of 6.3. The missing points in the middle correspond to the failure of the 6.1.1 version. Version

6.3 is 3–8 times slower than 6.1.1 and does not exhibit any parallelism.
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shows a dramatic and sudden drop-off in write performance in January 2014. Because the
application kernels are run frequently (daily in this case), CCR support staff were able to
associate the drop-off in performance with a routine firmware upgrade of the center’s core
network switch. As shown in Figure 9, the file system performance was eventually returned to
normal after working closely with the switch manufacturer and the vendor of the parallel file
system.

Additional application kernel success stories include (1) detection of a 25% degradation of NAMD
performance after an ‘upgrade’ [3]; (2) detection of a software bug in the I/O stack of a commercial
parallel file system that caused sporadic behavior in NWChem [5]; and (3) a sudden decrease in file
system performance on TACC Lonestar4 as measured by three different application kernels (IOR,
MPI-Tile-IO, and IMB) [6].
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4. VARIANCE ANALYSIS OF APPLICATION KERNEL DATA

This section of the paper includes a detailed description of variance analysis of the performance metrics
for application kernels that ran on two XSEDE resources, TACC Lonestar4, and TACC Stampede.
Because each application kernel is by definition the exact same application run on the same
problem, in principle, each run on a given resource should take the same time and have identical
metrics. This of course is true only for the unrealistic ideal case that all of the other jobs
concurrently running on the resource have no effect. In reality, rather than a single repetitive value,
there is a distribution for each metric that is characteristic of how the other jobs interact with the
application kernel performance. Therefore, an analysis of variance of the application kernel data for
the various metrics gives us information on how the jobs in the job mixture interact with one
another on a given resource. The different nature of the various application kernels and different
metrics make them the ideal probes of this interaction.

4.1. Data sources

4.1.1. High performance computing systems. The case studies given as examples in this paper were
carried out on the Stampede and Lonestar4 supercomputers at the TACC. Stampede has 6400 nodes
each of which resides in a Dell PowerEdge C8220z chassis (Dell, Round Rock, TX, USA) and
contains two 8-core Intel Xeon E5-2680 processors, 32GB of memory and one Intel Xeon SE10P
Phi coprocessor (Intel, Santa Clara, CA, USA). The file system is Lustre, and the interconnect is
Figure 9. Interleave or random (IOR)-based application kernel that shows the degradation in the parallel file
system at Center for Computational Research (CCR) that occurred suddenly in January 2014. The date of the
performance degradation, which was identified because of the periodic running of the application kernels,
was tied to an upgrade to the core network switch. Message Passing Interface parallel Input/Output (MPI-

IO) library was used for parallel file access.
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Fourteen Data Rate (FDR) InfiniBand. Lonestar4 is also a Linux cluster with 1888 Dell
PowerEdgeM610 compute nodes. Each compute node has two Intel Xeon 5680 series 3.33GHz
hexa-core processors and 24GB of memory. Lonestar4 has two file systems: Lustre and network file
system (NFS), and its interconnect is Quad Data Rate (QDR) InfiniBand (NFS is connected via
Ethernet).

4.1.2. Augmentation with systems usage and performance of resources monitoring and
modeling/TACC_Stats data. Data from the TACC_Stats tool have recently been added to the
XDMoD data warehouse. Therefore, it is now possible to enhance the application kernels
performance metrics with hardware performance counter data.

TACC_Stats [8, 9, 30, 31] is a tool for HPC resource performance measurement and analysis on the
job level. TACC_Stats executes and collects the values from performance registers at the beginning of
a job, periodically during the job (currently every 10min) and at the end of the job. For each executed
job, TACC_Stats can gather core-level CPU usage (user time, system time, idle time, etc.), socket-level
memory usage (free, used, cached, etc.), swapping/paging activities, system load and process statistics,
network and block device counters, interprocess communications (SysV inter-process
communication), software/hardware interrupt request count, file systems usage (NFS, Lustre, and
Panasas), interconnect fabric traffic (InfiniBand and Myrinet), and CPU hardware performance
counters. For a complete list of the data acquired by TACC_Stats, see the TACC_Stats web site [9].

TACC_Stats has been deployed on Stampede since early 2013 and on Lonestar4 since November of
2011. We analyzed TACC_Stats application kernel data collected on Stampede during July 2013 to
June 2014 and on Lonestar4 from March 2013 to June 2014.
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4.2. Metric distributions

The wall time is certainly a key metric for the application kernels. Upon analyzing the complete data
from the eight application kernels over the two resources and the ~14,000 jobs, it was found that in
general, the application kernel wall times were positively skewed distributions. That is, the
distribution has a long tail on the right side (to longer run times). For example, see Figures 10 and
11 that give the wall time distribution of NWChem and NAMD running on Stampede and
Lonestar4. The NWChem and NAMD wall time distributions shown in Figures 10 and 11 are
typical of all of the eight application kernels in that they all exhibit this positive skew. These
positively skewed distributions are caused by their being a minimal time that it takes to run the
application kernel and a long tail that is a characteristic of the variations that typically occur. For
example, the long tail to larger wall times shows that other jobs running concurrently on the same
resource typically cause an increase in execution time.

We also examined the distributions of various other metrics. Overall FLOPS, average memory
bandwidth, and average InfiniBand transmit and receive rates have mainly negative skew
coefficients (that is, the distribution has a long tail on the left side), whereas the CPU idle percent
and the CPU imbalance are characterized by positive skew coefficients. CPU imbalance is defined
as the (max–min)/max of the average CPU user per cent over all cores that the job was assigned.
For most metrics, the skew coefficients have the same sign and similar magnitude for the Stampede
and Lonestar4 data. For most metrics, the direction of the skew goes in the direction of poorer
performance. That is, metrics where poorer performance is to the higher side (such as wall time)
tend to be positively skewed and those where poorer performance is to the lower side (such as
memory bandwidth) tend to be negatively skewed.

4.3. Outliers analysis

We define an outlier as a job for which the wall time value is more than three standard deviations above
or below the mean value for that application. As shown in Table II, the outlier rate for all application
kernels are less than 3% on both Stampede and Lonestar4. Another measure of how consistently these
applications run is given by the coefficient of variation (the sample standard deviation/sample mean).
Fairly broad distributions are observed for IMB and IOR on Lonestar4 and NWChem on both systems.
Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:5238–5260
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Figure 10. Wall time distributions for the northwest computational chemistry program (NWChem) applica-
tion kernel on Lonestar4 (top) and Stampede (bottom) on one and four nodes.

Figure 11. Wall time distributions for the nanoscale molecular dynamics program (NAMD) application ker-
nel on Lonestar4 (top) and Stampede (bottom) on four and eight nodes.
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of shared machine resources. IOR and NWChem performance depends on the parallel file system
performance, which in turn depends on the other jobs running concurrently. The MPI benchmark
IMB strongly depend on the interconnect performance. We discuss the file system and interconnect
performance in more details in Sections 4.4 and 4.5.
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4.4. Influence of system nodes distribution on application kernel performance

The majority of large parallel jobs executed on supercomputing resources are characterized by
significant network traffic. Network bandwidth and latency can significantly affect the performance
of scientific applications [32, 33]. Poor choices of interconnect can result in weak to non-existent
application parallel scaling. Therefore, it is not surprising that a substantial fraction of the
supercomputer cost comes from the interconnect. Here, we use application kernel data to analyze
how the distribution of the job dedicated nodes on the system network topology affects its
performance.

The relative location of two hosts in the network can be characterized by hop count, which is the
number of intermediate devices (e.g., switches and routers) separating the two hosts. The number of
intermediate switches directly affects the network latency, and the bandwidth can be substantially
reduced because of the traffic from other nodes. Thus, the expectation is that a higher hop count
should result in poorer performance for network traffic intensive applications. To characterize the
job’s positioning on the network for multi-node jobs (two nodes and more), we utilize an average
hop count obtained by averaging over all possible node pairs. Other hop count averaging schemes
show qualitatively similar results. Figure 12 shows the dependency of wall time on average hop
count (over InfiniBand). IMB’s sole purpose is to determine the highest possible interconnect
performance; therefore, it is not surprising that it exhibits the strongest dependency on average
hop count. The real world-based application kernels such as GAMESS, NWChem, NAMD, and
Enzo do not show much dependency on the hop count. This is not too surprising because both
Lonestar4 and Stampede are high-end supercomputing resources with fast interconnect and a great
deal of effort was expended in developing these applications to optimize the inter-node
communication. There are two main differences between Lonestar4 and Stampede. First is that on
Lonestar4, jobs are concentrated more towards the high hop count, whereas on Stampede, they
Table II. Application kernel wall time outliers. Coefficient of variation is defined as sample standard
deviation divided by sample mean.

Resource Application kernel
Number of

jobs
Number of
outliers

Fraction of
outliers

Coefficient of
variation

Stampede IMB 544 8 0.015 0.110
Stampede GAMESS 539 14 0.026 0.032
Stampede NAMD 522 3 0.006 0.019
Stampede NWChem 513 8 0.016 0.719
Stampede HPCC 661 18 0.027 0.025
Stampede IOR 364 5 0.014 0.195
Stampede Graph500 629 9 0.014 0.200
Stampede Enzo 269 0 0.000 0.064
Lonestar4 IMB 1648 17 0.010 0.433
Lonestar4 GAMESS 1672 28 0.017 0.099
Lonestar4 NAMD 1879 17 0.009 0.074
Lonestar4 NWChem 1826 22 0.012 0.340
Lonestar4 HPCC 2194 20 0.009 0.113
Lonestar4 IOR 757 10 0.013 0.833
Lonestar4 Graph500 480 1 0.002 0.013
Lonestar4 Enzo 241 1 0.004 0.059

IMB, Intel message-passing interface (MPI) benchmarks; GAMESS, general atomic and molecular electronic
structure system; NAMD, nanoscale molecular dynamics program; NWChem, northwest computational chemistry
program; HPCC, high performance computing challenge; IOR, Interleave or random.
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Figure 12. Dependency of execution wall time on average hop count on eight nodes for Intel message-passing in-
terface (MPI) benchmarks (IMB) and northwest computational chemistry program (NWChem) application kernels.
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are more equally distributed between lowest and highest hop counts. Second, the distributions of job
wall times on Lonestar4 are wider towards high hop count, whereas on Stampede, it stays about the
same. Although using different schedulers, both resources do not utilize topology aware scheduling
and have similar network topology. The greater population of low hops count on Stampede can be
traced to the higher number of nodes on endpoint switches (20 vs. 12), to different schedulers
(simple Linux utility for resource management (SLURM) versus Portable Batch System (PBS))
and to differences in load patterns (e.g., the larger number of nodes may result in a higher
probability of the job scheduler finding a block of space for the job to run on neighboring nodes). The
wider distribution towards high hop count on Lonestar4 can be explained by worse distribution of the
jobs’ nodes across the system (thus, more traffic through core switches) and a slower fabric (QDR
versus Stampede’s FDR). Although Stampede has five-fourth oversubscription of the core switches,
both systems use four links between leaf and core switches. Assuming that other user’s jobs exhibit a
similar distribution of hop count, the higher hop counts would lead to a higher probability of
interference from the traffic on other nodes and thus widen the wall time distribution as the hop count
grows. Therefore, the increased number of ports and improved bandwidth and latencies significantly
reduces the influence from other jobs even without utilization of a topology-aware scheduler.
erned by the applicable C
rea
4.5. Influence of overall Lustre file system load

All scientific applications have some interaction with the file system because they have a need to read
the input parameters and write the calculation’s results. Some applications have only minimal file
Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:5238–5260
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system I/O utilization (for example, sparse trajectory recording for a molecular dynamics simulation),
while others cause a significant stress on the file system (for example, large scale quantum chemistry
applications utilize the file system to store intermediate results and extend available memory). Parallel
file systems like Lustre are a shared resource, and thus simultaneous usage by multiple users can
decrease their performance. In many cases, this can be overcome by implementing asynchronous
I/O. In this section, the dependence of application performance on the overall Lustre file system load
is discussed.

The overall Lustre file system load is calculated as the total number of bytes read and written from
all computational nodes to all Lustre nodes. Because the calculated overall Lustre file system load
metric does not distinguish the traffic to the individual Lustre nodes, this metric is not very sensitive
and is prone to a high noise level. The overall Lustre file system load was only calculated for
Stampede.

Figure 13 shows the wall time dependency on the overall Lustre file system load for the IOR file
system benchmark. As expected, this file system application kernel exhibits the strongest correlation
with the total file system load. Most of the other application kernels have very minor file system
utilization by design as they read fairly small input files and produce small output files. Besides
IOR, only NWChem produces sufficient file system traffic, due to its need for temporary storage,
and exhibits a weak dependency on the overall file system load. The coefficient of variation reaches
nearly 30% for IOR. Therefore, data driven but computationally lightweight applications can suffer
severely when the shared file system is heavily used.

4.6. Regression and correlation analysis

A full correlation matrix was computed for the eight application kernels running on Stampede having
13 metrics. We tracked:

1. wall time (seconds),
2. FLOPS – floating point operations per second (average per core, Giga FLOPS),
Figure 13. Dependency of interleave or random (IOR) execution wall time on overall file system load for
Texas Advanced Computing Center (TACC) Stampede on one, two, four, and eight nodes.
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3. mem_trans main-memory transfer rate (average per node, GB/s),
4. cpu_idle – CPU idle fraction (average per core),
5. cpu_system – CPU system fraction (average per core),
6. cpu_user – CPU user fraction (average per core),
7. cpi – clock ticks per instruction (average per core),
8. cpld – clock ticks per L1D load (average per core),
9. cpu_imbal – CPU imbalance (measured as (max–min)/max of the cpu_idle of the processors

used on the job, average per node, %),
10. lustre_tx – average transmit bandwidth by Lustre network drive (average per node, MB/s),
11. lustre_rx – average receive bandwidth by Lustre network drive (average per node, MB/s),
12. ib_tx – average transmit bandwidth by the InfiniBand interface (average per node, MB/s), and
13. ib_rx – average receive bandwidth by InfiniBand interface (average per node, MB/s).

Corregrams for NAMD and NWChem for four nodes on Stampede are shown in Figure 14. The
NWChem wall time anti-correlates with average FLOPS, file system, and InfiniBand bandwidth
(i.e., higher bandwidth leads to shorter runs). As opposed to NWChem, the NAMD wall time does
not correlate with most of the metrics besides average CPU imbalance. NAMD dynamically balances
the load between MPI proccesses, and in our short run, the balancing stage is dominant. Therefore, it
is not surprising that shorter imbalanced periods result in faster runs. The correlations between
different metrics for NAMD and NWChem have many similarities. For example, average FLOPS
correlate with memory transfer rate and average network and file-system bandwidth, because the data
need to be delivered to the CPU arithmetic units. Overall, most of the metrics tended to be positively
correlated or anti-correlated with wall time as expected. There are groups of metrics that tend to
correlate with each other suggesting that a PCA might be useful.
Figure 14. Correlation matrix between 13 performance metrics for northwest computational chemistry pro-
gram (NWChem) (lower triangle) and nanoscale molecular dynamics program (NAMD) (upper triangle) ex-
ecuted on Stampede. Pearson correlation coefficients are shown as a pie diagram; the scale is shown on the
right. For example, a full blue pie chart corresponds to total positive correlation, an empty pie chart corre-
sponds to no correlation, and full red pie chart corresponds to total negative correlation. Because the corre-
lation coefficients matrix is symmetric, the matrixes for NWChem and NAMD are shown on the same plot

for the sake of saving space and not for cross comparison.
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Although corregrams for different applications have many similarities, they are quantitatively
different. Therefore, in addition to the metrics themselves, their correlation can be used for users’
application classification. This can be useful for correlating users application performance to the
performance of application kernels.

Regressions to fit the wall time of the application kernels based on the other metrics were not
particularly successful. For example, NAMD running on four nodes of Stampede was fit by
cpu_imbal with a p value<0.0001 and R2 = 0.41. Adding cpu_idle and block_write improved the
fit marginally. For NWChem running on four nodes of Stampede, the best fit was cpi + cpld with
R2 = 0.24 and both parameters with p<0.0001. Adding cpu_imbal marginally improved R2, but
the p value was >0.05.
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5. PRINCIPAL COMPONENT ANALYSIS (PCA)

The blocks of correlated metrics in Figure 14 suggest that a PCA might provide some insight to
understanding the relationship between these job metrics and aid in understanding the variation in
the way such repeated jobs run on the two HPC clusters. Therefore, a PCA was performed for the
application kernels running on Stampede and Lonestar4. We will present the results of the PCA of
NWChem on Stampede as an example.

For the Stampede PCA, we included the following metrics: wall_time (seconds), ib0_tx (InfiniBand
bytes transmitted), cpu_idle (fraction of time that the CPU spends in idle mode), cpi (cycles of the
reference clock divided by the number of instructions), cpld (cycles of the reference clock divided
by the number of L1 cache loads), scratch_write (bytes), memory (memory used per core in
megabyte), lustre_tx (bytes transmitted on Lustre file system), eth_tx (bytes transmitted on
Ethernet), block_write (bytes), flops, and cpu_imbal (standard deviation/mean of the cpu_idle of the
processors used on the job). Table III gives the loadings for the first four components of the PCA of
NWChem running on four nodes of Stampede. Figure 15 shows the scree plot, and Figure 16 plots
the scores for the first three components of this PCA.

PCA is generally used to reduce the number of variables in highly dimensional data. As such, it can
often simplify the data interpretation by reducing the number of variables, although the interpretation
of the new variables can be more complex. The results of the present PCA are rather interesting. Note
from Table III that the metrics split neatly into two sets. Component 1 has ib0_tx, cpu_idle,
scratch_write, lustre_tx, eth_tx, block_write, and FLOPS. Component 2 has wall_time, cpi, cpld,
memory, and cpu_imbal. Only the small coefficient of cpu_imbal in component 1 breaks a perfect
partition. Together, as seen in Figure 15, these two components account for 0.76 fraction of the
variance. This represents progress because now the original 12 variables can, to a certain extent, be
represented by the two main components 1 and 2. Furthermore, the metrics present in components 1
Table III. PCA of northwest computational chemistry program (NWChem) running on four nodes on
Stampede.

Loadings Comp_1 Comp_2 Comp_3 Comp_4

wall_time – +0.524 – –
ib0_tx +0.370 – – +0.169
cpu_idle �0.353 – +0.426 –
cpi – +0.515 �0.158 +0.264
cpld – �0.500 +0.207 �0.239
scratch_write +0.399 – – –
memory – 0.318 �0.151 �0.903
lustre_tx +0.391 – – –
eth_tx +0.350 – +0.165 –
block_write �0.384 – – –
Floating point operations per second (FLOPS) +0.353 – +0.193 �0.133
cpu_imbal �0.118 +0.299 +0.800 –
cum_variance 0.507 0.761 0.842 0.906
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Figure 15. Scree plot for the PCA of data of northwest computational chemistry program (NWChem) four
nodes running on Stampede.

Figure 16. Plot of scores for the first three components of the PCA of data of northwest computational chem-
istry program (NWChem) four nodes running on Stampede.
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and 2 are related and can be characterized. Component 1 mainly relates to external data transfer, and
component 2 carries the remainder of the principally internal operations. Components 3 and 4 have
a much smaller effect and tend to mix the two sets of metrics. We can see that the best way to view
the collection of metrics is that they are divided into internal operations that are conducted on
machine hardware that is dedicated to the job (such as CPU cores and the main memory bus) and
external operations that are conducted on shared resources (such as the parallel file system and the
Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:5238–5260
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6. CONCLUSIONS

As demonstrated in Section 3.3 and the references cited therein, running the application kernels
continuously on the XSEDE (or other HPC) resources provides a powerful tool to help assure QoS
on HPC systems. However, these application kernels now generate a tremendous amount of
performance data that makes manual oversight of the data to identify underperforming hardware or
software impractical. Accordingly, as demonstrated in Section 3.1, the development of automated
process control systems and automated notification systems to monitor application kernel
performance will provide the results to resource managers in a simple, timely fashion. These make a
strong addition to the XDMoD framework application kernel system.

The variance analysis presented in the present work suggests a number of conclusions about the
operation of the subject HPC resources and likely HPC resources in general. Generally, the
application kernels ran very well with few outliers. Metrics such as the wall time exhibited a skewed
distribution characterized by an ideal value and a long tail to poorer performance. Because IOR
measures I/O performance, its wall time exhibited the largest variance and showed a definite
dependence on the volume of concurrent file system usage. The hop count analysis shows a
surprisingly small dependence on the network topology for all kernels based on real world
applications. The PCA of the metrics shows that the first two components split neatly into two sets,
one generally related to external data transfer and the other carrying the remainder of the metrics.
This detailed analysis will aid in using application kernels as a mechanism to help to maintain QoS.

APPENDIX A: EXECUTION PARAMETERS OF APPLICATION KERNELS

Northwest computational chemistry program (NWChem) [25] application kernel performs semi-direct
MP2, fully direct MP2, and CCSD(T) energy calculation of gold ion (Au+) with explicitly defined basis
set (using Gaussian basis function). Calculations are performed using one, two, four and eight nodes.

General atomic and molecular electronic structure system (GAMESS-US) [26] application kernel
performs MP2 energy calculation of 1,3,5,7-octatetraene (C8H10) with cc-pVTZ basis set. Calculations
are performed using one, two, four, and eight nodes.

Nanoscale molecular dynamics program (NAMD) [27] application kernel performs short (2.4ps dura-
tion) NVE molecular dynamics simulation of apolipoprotein A1 dimer in water solution. This simulation
is based on ApoA1 NAMD benchmark (http://www.ks.uiuc.edu/Research/namd/performance.html).
System consists of 92,224 atoms. The 12Å cut-off is used for short-range interactions, and PME is used
for long-range interaction. Calculations are performed using one, two, four, and eight nodes.

Graph500 [29] application kernel performs breadth-first search (BFS) on a graph. The graph con-
sists of 1023 vertices. During each run, BFS searches for 64 vertices on the graph. The benchmark is
executed on one, two, four, and eight nodes.

High performance computing challenge (HPCC) [16] application kernel performs operation on ma-
trixes size of (20000*N1/2) × (20000*N1/2), where N is number of nodes. The benchmark is executed on
one, two, four, eight, and 16 nodes.

Intel message-passing interface (MPI) benchmarks (IMB) [17] application kernel measures MPI
node-to-node and collective communication latencies and bandwidth on a large number of MPI oper-
ations (PingPong, PingPing, Sendrecv, Exchange, Allreduce, Reduce, Reduce_scatter, Allgatherv,
Gather, Gatherv, Scatter, Scatterv, Alltoall, Alltoallv, Bcast, Barrier, Window, Unidir_Get, Unidir_Put,
Bidir_Get,Bidir_Put, and Accumulate) on messages with size up to 4MiB. The benchmark is executed
on two, four, eight, and 16 nodes.

Interleave or random (IOR) [18] application kernel performs write/read operations on file system
using four APIs: portable operating system interface (POSIX), MPI-IO, hierarchical data format 5,
and NetCDF. For each API, three file access modes are tested: (1) each MPI process writes to and reads
Copyright © 2015 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. 2015; 27:5238–5260
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from a separate file; (2) all MPI process writes to and reads from a single shared file; and (3) similar to
previous but collective I/O calls are used where available (all except POSIX). Each MPI process
writes/reads a portion of the file equal to 200MiB. For example, in the case of a single shared file mode
executed on eight nodes of 12 cores per node machine, the size of the file is 19,200MiB (18.75GiB).
The benchmark is executed on one, two, four, and eight nodes.

Enzo [28] application kernel is based on one of the Enzo tests. It performed a reionization simula-
tion using radiation hydrodynamics and radiating star particles. The top level grid is of size 1283 with
up to two mesh refinement levels with a refinement factor of 2. Calculations are performed using one,
two, four, and eight nodes.
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